Make sure FX slots that aren't made active are disabled
[openal-soft.git] / examples / almultireverb.c
blob447216d1feccfec88cd24665d972b243b20d40c0
1 /*
2 * OpenAL Multi-Zone Reverb Example
4 * Copyright (c) 2018 by Chris Robinson <chris.kcat@gmail.com>
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* This file contains an example for controlling multiple reverb zones to
26 * smoothly transition between reverb environments. The general concept is to
27 * extend single-reverb by also tracking the closest adjacent environment, and
28 * utilize EAX Reverb's panning vectors to position them relative to the
29 * listener.
33 #include <assert.h>
34 #include <inttypes.h>
35 #include <limits.h>
36 #include <math.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
41 #include "sndfile.h"
43 #include "AL/al.h"
44 #include "AL/alc.h"
45 #include "AL/efx.h"
46 #include "AL/efx-presets.h"
48 #include "common/alhelpers.h"
51 #ifndef M_PI
52 #define M_PI 3.14159265358979323846
53 #endif
56 /* Filter object functions */
57 static LPALGENFILTERS alGenFilters;
58 static LPALDELETEFILTERS alDeleteFilters;
59 static LPALISFILTER alIsFilter;
60 static LPALFILTERI alFilteri;
61 static LPALFILTERIV alFilteriv;
62 static LPALFILTERF alFilterf;
63 static LPALFILTERFV alFilterfv;
64 static LPALGETFILTERI alGetFilteri;
65 static LPALGETFILTERIV alGetFilteriv;
66 static LPALGETFILTERF alGetFilterf;
67 static LPALGETFILTERFV alGetFilterfv;
69 /* Effect object functions */
70 static LPALGENEFFECTS alGenEffects;
71 static LPALDELETEEFFECTS alDeleteEffects;
72 static LPALISEFFECT alIsEffect;
73 static LPALEFFECTI alEffecti;
74 static LPALEFFECTIV alEffectiv;
75 static LPALEFFECTF alEffectf;
76 static LPALEFFECTFV alEffectfv;
77 static LPALGETEFFECTI alGetEffecti;
78 static LPALGETEFFECTIV alGetEffectiv;
79 static LPALGETEFFECTF alGetEffectf;
80 static LPALGETEFFECTFV alGetEffectfv;
82 /* Auxiliary Effect Slot object functions */
83 static LPALGENAUXILIARYEFFECTSLOTS alGenAuxiliaryEffectSlots;
84 static LPALDELETEAUXILIARYEFFECTSLOTS alDeleteAuxiliaryEffectSlots;
85 static LPALISAUXILIARYEFFECTSLOT alIsAuxiliaryEffectSlot;
86 static LPALAUXILIARYEFFECTSLOTI alAuxiliaryEffectSloti;
87 static LPALAUXILIARYEFFECTSLOTIV alAuxiliaryEffectSlotiv;
88 static LPALAUXILIARYEFFECTSLOTF alAuxiliaryEffectSlotf;
89 static LPALAUXILIARYEFFECTSLOTFV alAuxiliaryEffectSlotfv;
90 static LPALGETAUXILIARYEFFECTSLOTI alGetAuxiliaryEffectSloti;
91 static LPALGETAUXILIARYEFFECTSLOTIV alGetAuxiliaryEffectSlotiv;
92 static LPALGETAUXILIARYEFFECTSLOTF alGetAuxiliaryEffectSlotf;
93 static LPALGETAUXILIARYEFFECTSLOTFV alGetAuxiliaryEffectSlotfv;
95 /* C doesn't allow casting between function and non-function pointer types, so
96 * with C99 we need to use a union to reinterpret the pointer type. Pre-C99
97 * still needs to use a normal cast and live with the warning (C++ is fine with
98 * a regular reinterpret_cast).
100 #if __STDC_VERSION__ >= 199901L
101 #define FUNCTION_CAST(T, ptr) (union{void *p; T f;}){ptr}.f
102 #else
103 #define FUNCTION_CAST(T, ptr) (T)(ptr)
104 #endif
107 /* LoadEffect loads the given initial reverb properties into the given OpenAL
108 * effect object, and returns non-zero on success.
110 static int LoadEffect(ALuint effect, const EFXEAXREVERBPROPERTIES *reverb)
112 ALenum err;
114 alGetError();
116 /* Prepare the effect for EAX Reverb (standard reverb doesn't contain
117 * the needed panning vectors).
119 alEffecti(effect, AL_EFFECT_TYPE, AL_EFFECT_EAXREVERB);
120 if((err=alGetError()) != AL_NO_ERROR)
122 fprintf(stderr, "Failed to set EAX Reverb: %s (0x%04x)\n", alGetString(err), err);
123 return 0;
126 /* Load the reverb properties. */
127 alEffectf(effect, AL_EAXREVERB_DENSITY, reverb->flDensity);
128 alEffectf(effect, AL_EAXREVERB_DIFFUSION, reverb->flDiffusion);
129 alEffectf(effect, AL_EAXREVERB_GAIN, reverb->flGain);
130 alEffectf(effect, AL_EAXREVERB_GAINHF, reverb->flGainHF);
131 alEffectf(effect, AL_EAXREVERB_GAINLF, reverb->flGainLF);
132 alEffectf(effect, AL_EAXREVERB_DECAY_TIME, reverb->flDecayTime);
133 alEffectf(effect, AL_EAXREVERB_DECAY_HFRATIO, reverb->flDecayHFRatio);
134 alEffectf(effect, AL_EAXREVERB_DECAY_LFRATIO, reverb->flDecayLFRatio);
135 alEffectf(effect, AL_EAXREVERB_REFLECTIONS_GAIN, reverb->flReflectionsGain);
136 alEffectf(effect, AL_EAXREVERB_REFLECTIONS_DELAY, reverb->flReflectionsDelay);
137 alEffectfv(effect, AL_EAXREVERB_REFLECTIONS_PAN, reverb->flReflectionsPan);
138 alEffectf(effect, AL_EAXREVERB_LATE_REVERB_GAIN, reverb->flLateReverbGain);
139 alEffectf(effect, AL_EAXREVERB_LATE_REVERB_DELAY, reverb->flLateReverbDelay);
140 alEffectfv(effect, AL_EAXREVERB_LATE_REVERB_PAN, reverb->flLateReverbPan);
141 alEffectf(effect, AL_EAXREVERB_ECHO_TIME, reverb->flEchoTime);
142 alEffectf(effect, AL_EAXREVERB_ECHO_DEPTH, reverb->flEchoDepth);
143 alEffectf(effect, AL_EAXREVERB_MODULATION_TIME, reverb->flModulationTime);
144 alEffectf(effect, AL_EAXREVERB_MODULATION_DEPTH, reverb->flModulationDepth);
145 alEffectf(effect, AL_EAXREVERB_AIR_ABSORPTION_GAINHF, reverb->flAirAbsorptionGainHF);
146 alEffectf(effect, AL_EAXREVERB_HFREFERENCE, reverb->flHFReference);
147 alEffectf(effect, AL_EAXREVERB_LFREFERENCE, reverb->flLFReference);
148 alEffectf(effect, AL_EAXREVERB_ROOM_ROLLOFF_FACTOR, reverb->flRoomRolloffFactor);
149 alEffecti(effect, AL_EAXREVERB_DECAY_HFLIMIT, reverb->iDecayHFLimit);
151 /* Check if an error occured, and return failure if so. */
152 if((err=alGetError()) != AL_NO_ERROR)
154 fprintf(stderr, "Error setting up reverb: %s\n", alGetString(err));
155 return 0;
158 return 1;
162 /* LoadBuffer loads the named audio file into an OpenAL buffer object, and
163 * returns the new buffer ID.
165 static ALuint LoadSound(const char *filename)
167 ALenum err, format;
168 ALuint buffer;
169 SNDFILE *sndfile;
170 SF_INFO sfinfo;
171 short *membuf;
172 sf_count_t num_frames;
173 ALsizei num_bytes;
175 /* Open the audio file and check that it's usable. */
176 sndfile = sf_open(filename, SFM_READ, &sfinfo);
177 if(!sndfile)
179 fprintf(stderr, "Could not open audio in %s: %s\n", filename, sf_strerror(sndfile));
180 return 0;
182 if(sfinfo.frames < 1 || sfinfo.frames > (sf_count_t)(INT_MAX/sizeof(short))/sfinfo.channels)
184 fprintf(stderr, "Bad sample count in %s (%" PRId64 ")\n", filename, sfinfo.frames);
185 sf_close(sndfile);
186 return 0;
189 /* Get the sound format, and figure out the OpenAL format */
190 if(sfinfo.channels == 1)
191 format = AL_FORMAT_MONO16;
192 else if(sfinfo.channels == 2)
193 format = AL_FORMAT_STEREO16;
194 else
196 fprintf(stderr, "Unsupported channel count: %d\n", sfinfo.channels);
197 sf_close(sndfile);
198 return 0;
201 /* Decode the whole audio file to a buffer. */
202 membuf = malloc((size_t)(sfinfo.frames * sfinfo.channels) * sizeof(short));
204 num_frames = sf_readf_short(sndfile, membuf, sfinfo.frames);
205 if(num_frames < 1)
207 free(membuf);
208 sf_close(sndfile);
209 fprintf(stderr, "Failed to read samples in %s (%" PRId64 ")\n", filename, num_frames);
210 return 0;
212 num_bytes = (ALsizei)(num_frames * sfinfo.channels) * (ALsizei)sizeof(short);
214 /* Buffer the audio data into a new buffer object, then free the data and
215 * close the file.
217 buffer = 0;
218 alGenBuffers(1, &buffer);
219 alBufferData(buffer, format, membuf, num_bytes, sfinfo.samplerate);
221 free(membuf);
222 sf_close(sndfile);
224 /* Check if an error occured, and clean up if so. */
225 err = alGetError();
226 if(err != AL_NO_ERROR)
228 fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
229 if(buffer && alIsBuffer(buffer))
230 alDeleteBuffers(1, &buffer);
231 return 0;
234 return buffer;
238 /* Helper to calculate the dot-product of the two given vectors. */
239 static ALfloat dot_product(const ALfloat vec0[3], const ALfloat vec1[3])
241 return vec0[0]*vec1[0] + vec0[1]*vec1[1] + vec0[2]*vec1[2];
244 /* Helper to normalize a given vector. */
245 static void normalize(ALfloat vec[3])
247 ALfloat mag = sqrtf(dot_product(vec, vec));
248 if(mag > 0.00001f)
250 vec[0] /= mag;
251 vec[1] /= mag;
252 vec[2] /= mag;
254 else
256 vec[0] = 0.0f;
257 vec[1] = 0.0f;
258 vec[2] = 0.0f;
263 /* The main update function to update the listener and environment effects. */
264 static void UpdateListenerAndEffects(float timediff, const ALuint slots[2], const ALuint effects[2], const EFXEAXREVERBPROPERTIES reverbs[2])
266 static const ALfloat listener_move_scale = 10.0f;
267 /* Individual reverb zones are connected via "portals". Each portal has a
268 * position (center point of the connecting area), a normal (facing
269 * direction), and a radius (approximate size of the connecting area).
271 const ALfloat portal_pos[3] = { 0.0f, 0.0f, 0.0f };
272 const ALfloat portal_norm[3] = { sqrtf(0.5f), 0.0f, -sqrtf(0.5f) };
273 const ALfloat portal_radius = 2.5f;
274 ALfloat other_dir[3], this_dir[3];
275 ALfloat listener_pos[3];
276 ALfloat local_norm[3];
277 ALfloat local_dir[3];
278 ALfloat near_edge[3];
279 ALfloat far_edge[3];
280 ALfloat dist, edist;
282 /* Update the listener position for the amount of time passed. This uses a
283 * simple triangular LFO to offset the position (moves along the X axis
284 * between -listener_move_scale and +listener_move_scale for each
285 * transition).
287 listener_pos[0] = (fabsf(2.0f - timediff/2.0f) - 1.0f) * listener_move_scale;
288 listener_pos[1] = 0.0f;
289 listener_pos[2] = 0.0f;
290 alListenerfv(AL_POSITION, listener_pos);
292 /* Calculate local_dir, which represents the listener-relative point to the
293 * adjacent zone (should also include orientation). Because EAX Reverb uses
294 * left-handed coordinates instead of right-handed like the rest of OpenAL,
295 * negate Z for the local values.
297 local_dir[0] = portal_pos[0] - listener_pos[0];
298 local_dir[1] = portal_pos[1] - listener_pos[1];
299 local_dir[2] = -(portal_pos[2] - listener_pos[2]);
300 /* A normal application would also rotate the portal's normal given the
301 * listener orientation, to get the listener-relative normal.
303 local_norm[0] = portal_norm[0];
304 local_norm[1] = portal_norm[1];
305 local_norm[2] = -portal_norm[2];
307 /* Calculate the distance from the listener to the portal, and ensure it's
308 * far enough away to not suffer severe floating-point precision issues.
310 dist = sqrtf(dot_product(local_dir, local_dir));
311 if(dist > 0.00001f)
313 const EFXEAXREVERBPROPERTIES *other_reverb, *this_reverb;
314 ALuint other_effect, this_effect;
315 ALfloat magnitude, dir_dot_norm;
317 /* Normalize the direction to the portal. */
318 local_dir[0] /= dist;
319 local_dir[1] /= dist;
320 local_dir[2] /= dist;
322 /* Calculate the dot product of the portal's local direction and local
323 * normal, which is used for angular and side checks later on.
325 dir_dot_norm = dot_product(local_dir, local_norm);
327 /* Figure out which zone we're in. */
328 if(dir_dot_norm <= 0.0f)
330 /* We're in front of the portal, so we're in Zone 0. */
331 this_effect = effects[0];
332 other_effect = effects[1];
333 this_reverb = &reverbs[0];
334 other_reverb = &reverbs[1];
336 else
338 /* We're behind the portal, so we're in Zone 1. */
339 this_effect = effects[1];
340 other_effect = effects[0];
341 this_reverb = &reverbs[1];
342 other_reverb = &reverbs[0];
345 /* Calculate the listener-relative extents of the portal. */
346 /* First, project the listener-to-portal vector onto the portal's plane
347 * to get the portal-relative direction along the plane that goes away
348 * from the listener (toward the farthest edge of the portal).
350 far_edge[0] = local_dir[0] - local_norm[0]*dir_dot_norm;
351 far_edge[1] = local_dir[1] - local_norm[1]*dir_dot_norm;
352 far_edge[2] = local_dir[2] - local_norm[2]*dir_dot_norm;
354 edist = sqrtf(dot_product(far_edge, far_edge));
355 if(edist > 0.0001f)
357 /* Rescale the portal-relative vector to be at the radius edge. */
358 ALfloat mag = portal_radius / edist;
359 far_edge[0] *= mag;
360 far_edge[1] *= mag;
361 far_edge[2] *= mag;
363 /* Calculate the closest edge of the portal by negating the
364 * farthest, and add an offset to make them both relative to the
365 * listener.
367 near_edge[0] = local_dir[0]*dist - far_edge[0];
368 near_edge[1] = local_dir[1]*dist - far_edge[1];
369 near_edge[2] = local_dir[2]*dist - far_edge[2];
370 far_edge[0] += local_dir[0]*dist;
371 far_edge[1] += local_dir[1]*dist;
372 far_edge[2] += local_dir[2]*dist;
374 /* Normalize the listener-relative extents of the portal, then
375 * calculate the panning magnitude for the other zone given the
376 * apparent size of the opening. The panning magnitude affects the
377 * envelopment of the environment, with 1 being a point, 0.5 being
378 * half coverage around the listener, and 0 being full coverage.
380 normalize(far_edge);
381 normalize(near_edge);
382 magnitude = 1.0f - acosf(dot_product(far_edge, near_edge))/(float)(M_PI*2.0);
384 /* Recalculate the panning direction, to be directly between the
385 * direction of the two extents.
387 local_dir[0] = far_edge[0] + near_edge[0];
388 local_dir[1] = far_edge[1] + near_edge[1];
389 local_dir[2] = far_edge[2] + near_edge[2];
390 normalize(local_dir);
392 else
394 /* If we get here, the listener is directly in front of or behind
395 * the center of the portal, making all aperture edges effectively
396 * equidistant. Calculating the panning magnitude is simplified,
397 * using the arctangent of the radius and distance.
399 magnitude = 1.0f - (atan2f(portal_radius, dist) / (float)M_PI);
402 /* Scale the other zone's panning vector. */
403 other_dir[0] = local_dir[0] * magnitude;
404 other_dir[1] = local_dir[1] * magnitude;
405 other_dir[2] = local_dir[2] * magnitude;
406 /* Pan the current zone to the opposite direction of the portal, and
407 * take the remaining percentage of the portal's magnitude.
409 this_dir[0] = local_dir[0] * (magnitude-1.0f);
410 this_dir[1] = local_dir[1] * (magnitude-1.0f);
411 this_dir[2] = local_dir[2] * (magnitude-1.0f);
413 /* Now set the effects' panning vectors and gain. Energy is shared
414 * between environments, so attenuate according to each zone's
415 * contribution (note: gain^2 = energy).
417 alEffectf(this_effect, AL_EAXREVERB_REFLECTIONS_GAIN, this_reverb->flReflectionsGain * sqrtf(magnitude));
418 alEffectf(this_effect, AL_EAXREVERB_LATE_REVERB_GAIN, this_reverb->flLateReverbGain * sqrtf(magnitude));
419 alEffectfv(this_effect, AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
420 alEffectfv(this_effect, AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
422 alEffectf(other_effect, AL_EAXREVERB_REFLECTIONS_GAIN, other_reverb->flReflectionsGain * sqrtf(1.0f-magnitude));
423 alEffectf(other_effect, AL_EAXREVERB_LATE_REVERB_GAIN, other_reverb->flLateReverbGain * sqrtf(1.0f-magnitude));
424 alEffectfv(other_effect, AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
425 alEffectfv(other_effect, AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
427 else
429 /* We're practically in the center of the portal. Give the panning
430 * vectors a 50/50 split, with Zone 0 covering the half in front of
431 * the normal, and Zone 1 covering the half behind.
433 this_dir[0] = local_norm[0] / 2.0f;
434 this_dir[1] = local_norm[1] / 2.0f;
435 this_dir[2] = local_norm[2] / 2.0f;
437 other_dir[0] = local_norm[0] / -2.0f;
438 other_dir[1] = local_norm[1] / -2.0f;
439 other_dir[2] = local_norm[2] / -2.0f;
441 alEffectf(effects[0], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[0].flReflectionsGain * sqrtf(0.5f));
442 alEffectf(effects[0], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[0].flLateReverbGain * sqrtf(0.5f));
443 alEffectfv(effects[0], AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
444 alEffectfv(effects[0], AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
446 alEffectf(effects[1], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[1].flReflectionsGain * sqrtf(0.5f));
447 alEffectf(effects[1], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[1].flLateReverbGain * sqrtf(0.5f));
448 alEffectfv(effects[1], AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
449 alEffectfv(effects[1], AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
452 /* Finally, update the effect slots with the updated effect parameters. */
453 alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, (ALint)effects[0]);
454 alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, (ALint)effects[1]);
458 int main(int argc, char **argv)
460 static const int MaxTransitions = 8;
461 EFXEAXREVERBPROPERTIES reverbs[2] = {
462 EFX_REVERB_PRESET_CARPETEDHALLWAY,
463 EFX_REVERB_PRESET_BATHROOM
465 ALCdevice *device = NULL;
466 ALCcontext *context = NULL;
467 ALuint effects[2] = { 0, 0 };
468 ALuint slots[2] = { 0, 0 };
469 ALuint direct_filter = 0;
470 ALuint buffer = 0;
471 ALuint source = 0;
472 ALCint num_sends = 0;
473 ALenum state = AL_INITIAL;
474 ALfloat direct_gain = 1.0f;
475 int basetime = 0;
476 int loops = 0;
478 /* Print out usage if no arguments were specified */
479 if(argc < 2)
481 fprintf(stderr, "Usage: %s [-device <name>] [options] <filename>\n\n"
482 "Options:\n"
483 "\t-nodirect\tSilence direct path output (easier to hear reverb)\n\n",
484 argv[0]);
485 return 1;
488 /* Initialize OpenAL, and check for EFX support with at least 2 auxiliary
489 * sends (if multiple sends are supported, 2 are provided by default; if
490 * you want more, you have to request it through alcCreateContext).
492 argv++; argc--;
493 if(InitAL(&argv, &argc) != 0)
494 return 1;
496 while(argc > 0)
498 if(strcmp(argv[0], "-nodirect") == 0)
499 direct_gain = 0.0f;
500 else
501 break;
502 argv++;
503 argc--;
505 if(argc < 1)
507 fprintf(stderr, "No filename spacified.\n");
508 CloseAL();
509 return 1;
512 context = alcGetCurrentContext();
513 device = alcGetContextsDevice(context);
515 if(!alcIsExtensionPresent(device, "ALC_EXT_EFX"))
517 fprintf(stderr, "Error: EFX not supported\n");
518 CloseAL();
519 return 1;
522 num_sends = 0;
523 alcGetIntegerv(device, ALC_MAX_AUXILIARY_SENDS, 1, &num_sends);
524 if(alcGetError(device) != ALC_NO_ERROR || num_sends < 2)
526 fprintf(stderr, "Error: Device does not support multiple sends (got %d, need 2)\n",
527 num_sends);
528 CloseAL();
529 return 1;
532 /* Define a macro to help load the function pointers. */
533 #define LOAD_PROC(T, x) ((x) = FUNCTION_CAST(T, alGetProcAddress(#x)))
534 LOAD_PROC(LPALGENFILTERS, alGenFilters);
535 LOAD_PROC(LPALDELETEFILTERS, alDeleteFilters);
536 LOAD_PROC(LPALISFILTER, alIsFilter);
537 LOAD_PROC(LPALFILTERI, alFilteri);
538 LOAD_PROC(LPALFILTERIV, alFilteriv);
539 LOAD_PROC(LPALFILTERF, alFilterf);
540 LOAD_PROC(LPALFILTERFV, alFilterfv);
541 LOAD_PROC(LPALGETFILTERI, alGetFilteri);
542 LOAD_PROC(LPALGETFILTERIV, alGetFilteriv);
543 LOAD_PROC(LPALGETFILTERF, alGetFilterf);
544 LOAD_PROC(LPALGETFILTERFV, alGetFilterfv);
546 LOAD_PROC(LPALGENEFFECTS, alGenEffects);
547 LOAD_PROC(LPALDELETEEFFECTS, alDeleteEffects);
548 LOAD_PROC(LPALISEFFECT, alIsEffect);
549 LOAD_PROC(LPALEFFECTI, alEffecti);
550 LOAD_PROC(LPALEFFECTIV, alEffectiv);
551 LOAD_PROC(LPALEFFECTF, alEffectf);
552 LOAD_PROC(LPALEFFECTFV, alEffectfv);
553 LOAD_PROC(LPALGETEFFECTI, alGetEffecti);
554 LOAD_PROC(LPALGETEFFECTIV, alGetEffectiv);
555 LOAD_PROC(LPALGETEFFECTF, alGetEffectf);
556 LOAD_PROC(LPALGETEFFECTFV, alGetEffectfv);
558 LOAD_PROC(LPALGENAUXILIARYEFFECTSLOTS, alGenAuxiliaryEffectSlots);
559 LOAD_PROC(LPALDELETEAUXILIARYEFFECTSLOTS, alDeleteAuxiliaryEffectSlots);
560 LOAD_PROC(LPALISAUXILIARYEFFECTSLOT, alIsAuxiliaryEffectSlot);
561 LOAD_PROC(LPALAUXILIARYEFFECTSLOTI, alAuxiliaryEffectSloti);
562 LOAD_PROC(LPALAUXILIARYEFFECTSLOTIV, alAuxiliaryEffectSlotiv);
563 LOAD_PROC(LPALAUXILIARYEFFECTSLOTF, alAuxiliaryEffectSlotf);
564 LOAD_PROC(LPALAUXILIARYEFFECTSLOTFV, alAuxiliaryEffectSlotfv);
565 LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTI, alGetAuxiliaryEffectSloti);
566 LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTIV, alGetAuxiliaryEffectSlotiv);
567 LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTF, alGetAuxiliaryEffectSlotf);
568 LOAD_PROC(LPALGETAUXILIARYEFFECTSLOTFV, alGetAuxiliaryEffectSlotfv);
569 #undef LOAD_PROC
571 /* Load the sound into a buffer. */
572 buffer = LoadSound(argv[0]);
573 if(!buffer)
575 CloseAL();
576 return 1;
579 /* Generate two effects for two "zones", and load a reverb into each one.
580 * Note that unlike single-zone reverb, where you can store one effect per
581 * preset, for multi-zone reverb you should have one effect per environment
582 * instance, or one per audible zone. This is because we'll be changing the
583 * effects' properties in real-time based on the environment instance
584 * relative to the listener.
586 alGenEffects(2, effects);
587 if(!LoadEffect(effects[0], &reverbs[0]) || !LoadEffect(effects[1], &reverbs[1]))
589 alDeleteEffects(2, effects);
590 alDeleteBuffers(1, &buffer);
591 CloseAL();
592 return 1;
595 /* Create the effect slot objects, one for each "active" effect. */
596 alGenAuxiliaryEffectSlots(2, slots);
598 /* Tell the effect slots to use the loaded effect objects, with slot 0 for
599 * Zone 0 and slot 1 for Zone 1. Note that this effectively copies the
600 * effect properties. Modifying or deleting the effect object afterward
601 * won't directly affect the effect slot until they're reapplied like this.
603 alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, (ALint)effects[0]);
604 alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, (ALint)effects[1]);
605 assert(alGetError()==AL_NO_ERROR && "Failed to set effect slot");
607 /* For the purposes of this example, prepare a filter that optionally
608 * silences the direct path which allows us to hear just the reverberation.
609 * A filter like this is normally used for obstruction, where the path
610 * directly between the listener and source is blocked (the exact
611 * properties depending on the type and thickness of the obstructing
612 * material).
614 alGenFilters(1, &direct_filter);
615 alFilteri(direct_filter, AL_FILTER_TYPE, AL_FILTER_LOWPASS);
616 alFilterf(direct_filter, AL_LOWPASS_GAIN, direct_gain);
617 assert(alGetError()==AL_NO_ERROR && "Failed to set direct filter");
619 /* Create the source to play the sound with, place it in front of the
620 * listener's path in the left zone.
622 source = 0;
623 alGenSources(1, &source);
624 alSourcei(source, AL_LOOPING, AL_TRUE);
625 alSource3f(source, AL_POSITION, -5.0f, 0.0f, -2.0f);
626 alSourcei(source, AL_DIRECT_FILTER, (ALint)direct_filter);
627 alSourcei(source, AL_BUFFER, (ALint)buffer);
629 /* Connect the source to the effect slots. Here, we connect source send 0
630 * to Zone 0's slot, and send 1 to Zone 1's slot. Filters can be specified
631 * to occlude the source from each zone by varying amounts; for example, a
632 * source within a particular zone would be unfiltered, while a source that
633 * can only see a zone through a window or thin wall may be attenuated for
634 * that zone.
636 alSource3i(source, AL_AUXILIARY_SEND_FILTER, (ALint)slots[0], 0, AL_FILTER_NULL);
637 alSource3i(source, AL_AUXILIARY_SEND_FILTER, (ALint)slots[1], 1, AL_FILTER_NULL);
638 assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
640 /* Get the current time as the base for timing in the main loop. */
641 basetime = altime_get();
642 loops = 0;
643 printf("Transition %d of %d...\n", loops+1, MaxTransitions);
645 /* Play the sound for a while. */
646 alSourcePlay(source);
647 do {
648 int curtime;
649 ALfloat timediff;
651 /* Start a batch update, to ensure all changes apply simultaneously. */
652 alcSuspendContext(context);
654 /* Get the current time to track the amount of time that passed.
655 * Convert the difference to seconds.
657 curtime = altime_get();
658 timediff = (float)(curtime - basetime) / 1000.0f;
660 /* Avoid negative time deltas, in case of non-monotonic clocks. */
661 if(timediff < 0.0f)
662 timediff = 0.0f;
663 else while(timediff >= 4.0f*(float)((loops&1)+1))
665 /* For this example, each transition occurs over 4 seconds, and
666 * there's 2 transitions per cycle.
668 if(++loops < MaxTransitions)
669 printf("Transition %d of %d...\n", loops+1, MaxTransitions);
670 if(!(loops&1))
672 /* Cycle completed. Decrease the delta and increase the base
673 * time to start a new cycle.
675 timediff -= 8.0f;
676 basetime += 8000;
680 /* Update the listener and effects, and finish the batch. */
681 UpdateListenerAndEffects(timediff, slots, effects, reverbs);
682 alcProcessContext(context);
684 al_nssleep(10000000);
686 alGetSourcei(source, AL_SOURCE_STATE, &state);
687 } while(alGetError() == AL_NO_ERROR && state == AL_PLAYING && loops < MaxTransitions);
689 /* All done. Delete resources, and close down OpenAL. */
690 alDeleteSources(1, &source);
691 alDeleteAuxiliaryEffectSlots(2, slots);
692 alDeleteEffects(2, effects);
693 alDeleteFilters(1, &direct_filter);
694 alDeleteBuffers(1, &buffer);
696 CloseAL();
698 return 0;