6811333 Remove prom_printf() message in emlxs driver
[opensolaris.git] / usr / src / uts / common / sys / dtrace.h
blob046dd13dd46e84e414d4a8b5bdb85c73f432a873
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 #ifndef _SYS_DTRACE_H
28 #define _SYS_DTRACE_H
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
35 * DTrace Dynamic Tracing Software: Kernel Interfaces
37 * Note: The contents of this file are private to the implementation of the
38 * Solaris system and DTrace subsystem and are subject to change at any time
39 * without notice. Applications and drivers using these interfaces will fail
40 * to run on future releases. These interfaces should not be used for any
41 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
42 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
45 #ifndef _ASM
47 #include <sys/types.h>
48 #include <sys/modctl.h>
49 #include <sys/processor.h>
50 #include <sys/systm.h>
51 #include <sys/ctf_api.h>
52 #include <sys/cyclic.h>
53 #include <sys/int_limits.h>
56 * DTrace Universal Constants and Typedefs
58 #define DTRACE_CPUALL -1 /* all CPUs */
59 #define DTRACE_IDNONE 0 /* invalid probe identifier */
60 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
61 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
62 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
63 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
64 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
65 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
66 #define DTRACE_ARGNONE -1 /* invalid argument index */
68 #define DTRACE_PROVNAMELEN 64
69 #define DTRACE_MODNAMELEN 64
70 #define DTRACE_FUNCNAMELEN 128
71 #define DTRACE_NAMELEN 64
72 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
73 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
74 #define DTRACE_ARGTYPELEN 128
76 typedef uint32_t dtrace_id_t; /* probe identifier */
77 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
78 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
79 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
80 typedef uint16_t dtrace_actkind_t; /* action kind */
81 typedef int64_t dtrace_optval_t; /* option value */
82 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
84 typedef enum dtrace_probespec {
85 DTRACE_PROBESPEC_NONE = -1,
86 DTRACE_PROBESPEC_PROVIDER = 0,
87 DTRACE_PROBESPEC_MOD,
88 DTRACE_PROBESPEC_FUNC,
89 DTRACE_PROBESPEC_NAME
90 } dtrace_probespec_t;
93 * DTrace Intermediate Format (DIF)
95 * The following definitions describe the DTrace Intermediate Format (DIF), a
96 * a RISC-like instruction set and program encoding used to represent
97 * predicates and actions that can be bound to DTrace probes. The constants
98 * below defining the number of available registers are suggested minimums; the
99 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
100 * registers provided by the current DTrace implementation.
102 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
103 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
104 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
105 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
106 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
108 #define DIF_OP_OR 1 /* or r1, r2, rd */
109 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
110 #define DIF_OP_AND 3 /* and r1, r2, rd */
111 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
112 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
113 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
114 #define DIF_OP_ADD 7 /* add r1, r2, rd */
115 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
116 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
117 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
118 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
119 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
120 #define DIF_OP_NOT 13 /* not r1, rd */
121 #define DIF_OP_MOV 14 /* mov r1, rd */
122 #define DIF_OP_CMP 15 /* cmp r1, r2 */
123 #define DIF_OP_TST 16 /* tst r1 */
124 #define DIF_OP_BA 17 /* ba label */
125 #define DIF_OP_BE 18 /* be label */
126 #define DIF_OP_BNE 19 /* bne label */
127 #define DIF_OP_BG 20 /* bg label */
128 #define DIF_OP_BGU 21 /* bgu label */
129 #define DIF_OP_BGE 22 /* bge label */
130 #define DIF_OP_BGEU 23 /* bgeu label */
131 #define DIF_OP_BL 24 /* bl label */
132 #define DIF_OP_BLU 25 /* blu label */
133 #define DIF_OP_BLE 26 /* ble label */
134 #define DIF_OP_BLEU 27 /* bleu label */
135 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
136 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
137 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
138 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
139 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
140 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
141 #define DIF_OP_LDX 34 /* ldx [r1], rd */
142 #define DIF_OP_RET 35 /* ret rd */
143 #define DIF_OP_NOP 36 /* nop */
144 #define DIF_OP_SETX 37 /* setx intindex, rd */
145 #define DIF_OP_SETS 38 /* sets strindex, rd */
146 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
147 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
148 #define DIF_OP_LDGS 41 /* ldgs var, rd */
149 #define DIF_OP_STGS 42 /* stgs var, rs */
150 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
151 #define DIF_OP_LDTS 44 /* ldts var, rd */
152 #define DIF_OP_STTS 45 /* stts var, rs */
153 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
154 #define DIF_OP_CALL 47 /* call subr, rd */
155 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
156 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
157 #define DIF_OP_POPTS 50 /* popts */
158 #define DIF_OP_FLUSHTS 51 /* flushts */
159 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
160 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
161 #define DIF_OP_STGAA 54 /* stgaa var, rs */
162 #define DIF_OP_STTAA 55 /* sttaa var, rs */
163 #define DIF_OP_LDLS 56 /* ldls var, rd */
164 #define DIF_OP_STLS 57 /* stls var, rs */
165 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
166 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
167 #define DIF_OP_STB 60 /* stb r1, [rd] */
168 #define DIF_OP_STH 61 /* sth r1, [rd] */
169 #define DIF_OP_STW 62 /* stw r1, [rd] */
170 #define DIF_OP_STX 63 /* stx r1, [rd] */
171 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
172 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
173 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
174 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
175 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
176 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
177 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
178 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
179 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
180 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
181 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
182 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
183 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
184 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
185 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
186 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
188 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
189 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
190 #define DIF_REGISTER_MAX 0xff /* highest register number */
191 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
192 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
194 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
195 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
196 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
198 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
199 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
200 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
202 #define DIF_VAR_ARGS 0x0000 /* arguments array */
203 #define DIF_VAR_REGS 0x0001 /* registers array */
204 #define DIF_VAR_UREGS 0x0002 /* user registers array */
205 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
206 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
207 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
208 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
209 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
210 #define DIF_VAR_ID 0x0105 /* probe ID */
211 #define DIF_VAR_ARG0 0x0106 /* first argument */
212 #define DIF_VAR_ARG1 0x0107 /* second argument */
213 #define DIF_VAR_ARG2 0x0108 /* third argument */
214 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
215 #define DIF_VAR_ARG4 0x010a /* fifth argument */
216 #define DIF_VAR_ARG5 0x010b /* sixth argument */
217 #define DIF_VAR_ARG6 0x010c /* seventh argument */
218 #define DIF_VAR_ARG7 0x010d /* eighth argument */
219 #define DIF_VAR_ARG8 0x010e /* ninth argument */
220 #define DIF_VAR_ARG9 0x010f /* tenth argument */
221 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
222 #define DIF_VAR_CALLER 0x0111 /* caller */
223 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
224 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
225 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
226 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
227 #define DIF_VAR_PID 0x0116 /* process ID */
228 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
229 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
230 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
231 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
232 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
233 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
234 #define DIF_VAR_PPID 0x011d /* parent process ID */
235 #define DIF_VAR_UID 0x011e /* process user ID */
236 #define DIF_VAR_GID 0x011f /* process group ID */
237 #define DIF_VAR_ERRNO 0x0120 /* thread errno */
239 #define DIF_SUBR_RAND 0
240 #define DIF_SUBR_MUTEX_OWNED 1
241 #define DIF_SUBR_MUTEX_OWNER 2
242 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
243 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
244 #define DIF_SUBR_RW_READ_HELD 5
245 #define DIF_SUBR_RW_WRITE_HELD 6
246 #define DIF_SUBR_RW_ISWRITER 7
247 #define DIF_SUBR_COPYIN 8
248 #define DIF_SUBR_COPYINSTR 9
249 #define DIF_SUBR_SPECULATION 10
250 #define DIF_SUBR_PROGENYOF 11
251 #define DIF_SUBR_STRLEN 12
252 #define DIF_SUBR_COPYOUT 13
253 #define DIF_SUBR_COPYOUTSTR 14
254 #define DIF_SUBR_ALLOCA 15
255 #define DIF_SUBR_BCOPY 16
256 #define DIF_SUBR_COPYINTO 17
257 #define DIF_SUBR_MSGDSIZE 18
258 #define DIF_SUBR_MSGSIZE 19
259 #define DIF_SUBR_GETMAJOR 20
260 #define DIF_SUBR_GETMINOR 21
261 #define DIF_SUBR_DDI_PATHNAME 22
262 #define DIF_SUBR_STRJOIN 23
263 #define DIF_SUBR_LLTOSTR 24
264 #define DIF_SUBR_BASENAME 25
265 #define DIF_SUBR_DIRNAME 26
266 #define DIF_SUBR_CLEANPATH 27
267 #define DIF_SUBR_STRCHR 28
268 #define DIF_SUBR_STRRCHR 29
269 #define DIF_SUBR_STRSTR 30
270 #define DIF_SUBR_STRTOK 31
271 #define DIF_SUBR_SUBSTR 32
272 #define DIF_SUBR_INDEX 33
273 #define DIF_SUBR_RINDEX 34
274 #define DIF_SUBR_HTONS 35
275 #define DIF_SUBR_HTONL 36
276 #define DIF_SUBR_HTONLL 37
277 #define DIF_SUBR_NTOHS 38
278 #define DIF_SUBR_NTOHL 39
279 #define DIF_SUBR_NTOHLL 40
280 #define DIF_SUBR_INET_NTOP 41
281 #define DIF_SUBR_INET_NTOA 42
282 #define DIF_SUBR_INET_NTOA6 43
284 #define DIF_SUBR_MAX 43 /* max subroutine value */
286 typedef uint32_t dif_instr_t;
288 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
289 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
290 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
291 #define DIF_INSTR_RD(i) ((i) & 0xff)
292 #define DIF_INSTR_RS(i) ((i) & 0xff)
293 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
294 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
295 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
296 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
297 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
298 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
299 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
301 #define DIF_INSTR_FMT(op, r1, r2, d) \
302 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
304 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
305 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
306 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
307 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
308 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
309 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
310 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
311 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
312 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
313 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
314 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
315 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
316 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
317 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
318 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
319 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
320 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
321 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
322 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
323 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
324 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
326 #define DIF_REG_R0 0 /* %r0 is always set to zero */
329 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
330 * of variables, function and associative array arguments, and the return type
331 * for each DIF object (shown below). It contains a description of the type,
332 * its size in bytes, and a module identifier.
334 typedef struct dtrace_diftype {
335 uint8_t dtdt_kind; /* type kind (see below) */
336 uint8_t dtdt_ckind; /* type kind in CTF */
337 uint8_t dtdt_flags; /* type flags (see below) */
338 uint8_t dtdt_pad; /* reserved for future use */
339 uint32_t dtdt_size; /* type size in bytes (unless string) */
340 } dtrace_diftype_t;
342 #define DIF_TYPE_CTF 0 /* type is a CTF type */
343 #define DIF_TYPE_STRING 1 /* type is a D string */
345 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
348 * A DTrace Intermediate Format variable record is used to describe each of the
349 * variables referenced by a given DIF object. It contains an integer variable
350 * identifier along with variable scope and properties, as shown below. The
351 * size of this structure must be sizeof (int) aligned.
353 typedef struct dtrace_difv {
354 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
355 uint32_t dtdv_id; /* variable reference identifier */
356 uint8_t dtdv_kind; /* variable kind (see below) */
357 uint8_t dtdv_scope; /* variable scope (see below) */
358 uint16_t dtdv_flags; /* variable flags (see below) */
359 dtrace_diftype_t dtdv_type; /* variable type (see above) */
360 } dtrace_difv_t;
362 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
363 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
365 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
366 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
367 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
369 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
370 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */
373 * DTrace Actions
375 * The upper byte determines the class of the action; the low bytes determines
376 * the specific action within that class. The classes of actions are as
377 * follows:
379 * [ no class ] <= May record process- or kernel-related data
380 * DTRACEACT_PROC <= Only records process-related data
381 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
382 * DTRACEACT_KERNEL <= Only records kernel-related data
383 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
384 * DTRACEACT_SPECULATIVE <= Speculation-related action
385 * DTRACEACT_AGGREGATION <= Aggregating action
387 #define DTRACEACT_NONE 0 /* no action */
388 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
389 #define DTRACEACT_EXIT 2 /* exit() action */
390 #define DTRACEACT_PRINTF 3 /* printf() action */
391 #define DTRACEACT_PRINTA 4 /* printa() action */
392 #define DTRACEACT_LIBACT 5 /* library-controlled action */
394 #define DTRACEACT_PROC 0x0100
395 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
396 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
397 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
398 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
399 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
401 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
402 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
403 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
404 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
405 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
407 #define DTRACEACT_PROC_CONTROL 0x0300
409 #define DTRACEACT_KERNEL 0x0400
410 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
411 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
412 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
414 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
415 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
416 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
417 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
419 #define DTRACEACT_SPECULATIVE 0x0600
420 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
421 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
422 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
424 #define DTRACEACT_CLASS(x) ((x) & 0xff00)
426 #define DTRACEACT_ISDESTRUCTIVE(x) \
427 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
428 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
430 #define DTRACEACT_ISSPECULATIVE(x) \
431 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
433 #define DTRACEACT_ISPRINTFLIKE(x) \
434 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
435 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
438 * DTrace Aggregating Actions
440 * These are functions f(x) for which the following is true:
442 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
444 * where x_n is a set of arbitrary data. Aggregating actions are in their own
445 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
446 * for easier processing of the aggregation argument and data payload for a few
447 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
449 #define DTRACEACT_AGGREGATION 0x0700
450 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
451 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
452 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
453 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
454 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
455 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
456 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
457 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
459 #define DTRACEACT_ISAGG(x) \
460 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
462 #define DTRACE_QUANTIZE_NBUCKETS \
463 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
465 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
467 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
468 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
469 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
470 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
471 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
473 #define DTRACE_LQUANTIZE_STEPSHIFT 48
474 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
475 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
476 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
477 #define DTRACE_LQUANTIZE_BASESHIFT 0
478 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
480 #define DTRACE_LQUANTIZE_STEP(x) \
481 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
482 DTRACE_LQUANTIZE_STEPSHIFT)
484 #define DTRACE_LQUANTIZE_LEVELS(x) \
485 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
486 DTRACE_LQUANTIZE_LEVELSHIFT)
488 #define DTRACE_LQUANTIZE_BASE(x) \
489 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
490 DTRACE_LQUANTIZE_BASESHIFT)
492 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
493 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
494 #define DTRACE_USTACK_ARG(x, y) \
495 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
497 #ifndef _LP64
498 #ifndef _LITTLE_ENDIAN
499 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
500 #else
501 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
502 #endif
503 #else
504 #define DTRACE_PTR(type, name) type *name
505 #endif
508 * DTrace Object Format (DOF)
510 * DTrace programs can be persistently encoded in the DOF format so that they
511 * may be embedded in other programs (for example, in an ELF file) or in the
512 * dtrace driver configuration file for use in anonymous tracing. The DOF
513 * format is versioned and extensible so that it can be revised and so that
514 * internal data structures can be modified or extended compatibly. All DOF
515 * structures use fixed-size types, so the 32-bit and 64-bit representations
516 * are identical and consumers can use either data model transparently.
518 * The file layout is structured as follows:
520 * +---------------+-------------------+----- ... ----+---- ... ------+
521 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
522 * | (file header) | (section headers) | section data | section data |
523 * +---------------+-------------------+----- ... ----+---- ... ------+
524 * |<------------ dof_hdr.dofh_loadsz --------------->| |
525 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
527 * The file header stores meta-data including a magic number, data model for
528 * the instrumentation, data encoding, and properties of the DIF code within.
529 * The header describes its own size and the size of the section headers. By
530 * convention, an array of section headers follows the file header, and then
531 * the data for all loadable sections and unloadable sections. This permits
532 * consumer code to easily download the headers and all loadable data into the
533 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
535 * The section headers describe the size, offset, alignment, and section type
536 * for each section. Sections are described using a set of #defines that tell
537 * the consumer what kind of data is expected. Sections can contain links to
538 * other sections by storing a dof_secidx_t, an index into the section header
539 * array, inside of the section data structures. The section header includes
540 * an entry size so that sections with data arrays can grow their structures.
542 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
543 * are represented themselves as a collection of related DOF sections. This
544 * permits us to change the set of sections associated with a DIFO over time,
545 * and also permits us to encode DIFOs that contain different sets of sections.
546 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
547 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
548 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
550 * This loose coupling of the file structure (header and sections) to the
551 * structure of the DTrace program itself (ECB descriptions, action
552 * descriptions, and DIFOs) permits activities such as relocation processing
553 * to occur in a single pass without having to understand D program structure.
555 * Finally, strings are always stored in ELF-style string tables along with a
556 * string table section index and string table offset. Therefore strings in
557 * DOF are always arbitrary-length and not bound to the current implementation.
560 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
562 typedef struct dof_hdr {
563 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
564 uint32_t dofh_flags; /* file attribute flags (if any) */
565 uint32_t dofh_hdrsize; /* size of file header in bytes */
566 uint32_t dofh_secsize; /* size of section header in bytes */
567 uint32_t dofh_secnum; /* number of section headers */
568 uint64_t dofh_secoff; /* file offset of section headers */
569 uint64_t dofh_loadsz; /* file size of loadable portion */
570 uint64_t dofh_filesz; /* file size of entire DOF file */
571 uint64_t dofh_pad; /* reserved for future use */
572 } dof_hdr_t;
574 #define DOF_ID_MAG0 0 /* first byte of magic number */
575 #define DOF_ID_MAG1 1 /* second byte of magic number */
576 #define DOF_ID_MAG2 2 /* third byte of magic number */
577 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
578 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
579 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
580 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
581 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
582 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
583 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
584 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
586 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
587 #define DOF_MAG_MAG1 'D'
588 #define DOF_MAG_MAG2 'O'
589 #define DOF_MAG_MAG3 'F'
591 #define DOF_MAG_STRING "\177DOF"
592 #define DOF_MAG_STRLEN 4
594 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
595 #define DOF_MODEL_ILP32 1
596 #define DOF_MODEL_LP64 2
598 #ifdef _LP64
599 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
600 #else
601 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
602 #endif
604 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
605 #define DOF_ENCODE_LSB 1
606 #define DOF_ENCODE_MSB 2
608 #ifdef _BIG_ENDIAN
609 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
610 #else
611 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
612 #endif
614 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
615 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
616 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
618 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
620 typedef uint32_t dof_secidx_t; /* section header table index type */
621 typedef uint32_t dof_stridx_t; /* string table index type */
623 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
624 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */
626 typedef struct dof_sec {
627 uint32_t dofs_type; /* section type (see below) */
628 uint32_t dofs_align; /* section data memory alignment */
629 uint32_t dofs_flags; /* section flags (if any) */
630 uint32_t dofs_entsize; /* size of section entry (if table) */
631 uint64_t dofs_offset; /* offset of section data within file */
632 uint64_t dofs_size; /* size of section data in bytes */
633 } dof_sec_t;
635 #define DOF_SECT_NONE 0 /* null section */
636 #define DOF_SECT_COMMENTS 1 /* compiler comments */
637 #define DOF_SECT_SOURCE 2 /* D program source code */
638 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
639 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
640 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
641 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
642 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
643 #define DOF_SECT_STRTAB 8 /* string table */
644 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
645 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
646 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
647 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
648 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
649 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
650 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
651 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
652 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
653 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
654 #define DOF_SECT_INTTAB 19 /* uint64_t array */
655 #define DOF_SECT_UTSNAME 20 /* struct utsname */
656 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
657 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
658 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
659 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
660 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
661 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
663 #define DOF_SECF_LOAD 1 /* section should be loaded */
665 typedef struct dof_ecbdesc {
666 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
667 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
668 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
669 uint32_t dofe_pad; /* reserved for future use */
670 uint64_t dofe_uarg; /* user-supplied library argument */
671 } dof_ecbdesc_t;
673 typedef struct dof_probedesc {
674 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
675 dof_stridx_t dofp_provider; /* provider string */
676 dof_stridx_t dofp_mod; /* module string */
677 dof_stridx_t dofp_func; /* function string */
678 dof_stridx_t dofp_name; /* name string */
679 uint32_t dofp_id; /* probe identifier (or zero) */
680 } dof_probedesc_t;
682 typedef struct dof_actdesc {
683 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
684 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
685 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
686 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
687 uint64_t dofa_arg; /* kind-specific argument */
688 uint64_t dofa_uarg; /* user-supplied argument */
689 } dof_actdesc_t;
691 typedef struct dof_difohdr {
692 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
693 dof_secidx_t dofd_links[1]; /* variable length array of indices */
694 } dof_difohdr_t;
696 typedef struct dof_relohdr {
697 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
698 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
699 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
700 } dof_relohdr_t;
702 typedef struct dof_relodesc {
703 dof_stridx_t dofr_name; /* string name of relocation symbol */
704 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
705 uint64_t dofr_offset; /* byte offset for relocation */
706 uint64_t dofr_data; /* additional type-specific data */
707 } dof_relodesc_t;
709 #define DOF_RELO_NONE 0 /* empty relocation entry */
710 #define DOF_RELO_SETX 1 /* relocate setx value */
712 typedef struct dof_optdesc {
713 uint32_t dofo_option; /* option identifier */
714 dof_secidx_t dofo_strtab; /* string table, if string option */
715 uint64_t dofo_value; /* option value or string index */
716 } dof_optdesc_t;
718 typedef uint32_t dof_attr_t; /* encoded stability attributes */
720 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
721 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
722 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
723 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
725 typedef struct dof_provider {
726 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
727 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
728 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
729 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
730 dof_stridx_t dofpv_name; /* provider name string */
731 dof_attr_t dofpv_provattr; /* provider attributes */
732 dof_attr_t dofpv_modattr; /* module attributes */
733 dof_attr_t dofpv_funcattr; /* function attributes */
734 dof_attr_t dofpv_nameattr; /* name attributes */
735 dof_attr_t dofpv_argsattr; /* args attributes */
736 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
737 } dof_provider_t;
739 typedef struct dof_probe {
740 uint64_t dofpr_addr; /* probe base address or offset */
741 dof_stridx_t dofpr_func; /* probe function string */
742 dof_stridx_t dofpr_name; /* probe name string */
743 dof_stridx_t dofpr_nargv; /* native argument type strings */
744 dof_stridx_t dofpr_xargv; /* translated argument type strings */
745 uint32_t dofpr_argidx; /* index of first argument mapping */
746 uint32_t dofpr_offidx; /* index of first offset entry */
747 uint8_t dofpr_nargc; /* native argument count */
748 uint8_t dofpr_xargc; /* translated argument count */
749 uint16_t dofpr_noffs; /* number of offset entries for probe */
750 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
751 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
752 uint16_t dofpr_pad1; /* reserved for future use */
753 uint32_t dofpr_pad2; /* reserved for future use */
754 } dof_probe_t;
756 typedef struct dof_xlator {
757 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
758 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
759 dof_stridx_t dofxl_argv; /* input parameter type strings */
760 uint32_t dofxl_argc; /* input parameter list length */
761 dof_stridx_t dofxl_type; /* output type string name */
762 dof_attr_t dofxl_attr; /* output stability attributes */
763 } dof_xlator_t;
765 typedef struct dof_xlmember {
766 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
767 dof_stridx_t dofxm_name; /* member name */
768 dtrace_diftype_t dofxm_type; /* member type */
769 } dof_xlmember_t;
771 typedef struct dof_xlref {
772 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
773 uint32_t dofxr_member; /* index of referenced dof_xlmember */
774 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
775 } dof_xlref_t;
778 * DTrace Intermediate Format Object (DIFO)
780 * A DIFO is used to store the compiled DIF for a D expression, its return
781 * type, and its string and variable tables. The string table is a single
782 * buffer of character data into which sets instructions and variable
783 * references can reference strings using a byte offset. The variable table
784 * is an array of dtrace_difv_t structures that describe the name and type of
785 * each variable and the id used in the DIF code. This structure is described
786 * above in the DIF section of this header file. The DIFO is used at both
787 * user-level (in the library) and in the kernel, but the structure is never
788 * passed between the two: the DOF structures form the only interface. As a
789 * result, the definition can change depending on the presence of _KERNEL.
791 typedef struct dtrace_difo {
792 dif_instr_t *dtdo_buf; /* instruction buffer */
793 uint64_t *dtdo_inttab; /* integer table (optional) */
794 char *dtdo_strtab; /* string table (optional) */
795 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
796 uint_t dtdo_len; /* length of instruction buffer */
797 uint_t dtdo_intlen; /* length of integer table */
798 uint_t dtdo_strlen; /* length of string table */
799 uint_t dtdo_varlen; /* length of variable table */
800 dtrace_diftype_t dtdo_rtype; /* return type */
801 uint_t dtdo_refcnt; /* owner reference count */
802 uint_t dtdo_destructive; /* invokes destructive subroutines */
803 #ifndef _KERNEL
804 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
805 dof_relodesc_t *dtdo_ureltab; /* user relocations */
806 struct dt_node **dtdo_xlmtab; /* translator references */
807 uint_t dtdo_krelen; /* length of krelo table */
808 uint_t dtdo_urelen; /* length of urelo table */
809 uint_t dtdo_xlmlen; /* length of translator table */
810 #endif
811 } dtrace_difo_t;
814 * DTrace Enabling Description Structures
816 * When DTrace is tracking the description of a DTrace enabling entity (probe,
817 * predicate, action, ECB, record, etc.), it does so in a description
818 * structure. These structures all end in "desc", and are used at both
819 * user-level and in the kernel -- but (with the exception of
820 * dtrace_probedesc_t) they are never passed between them. Typically,
821 * user-level will use the description structures when assembling an enabling.
822 * It will then distill those description structures into a DOF object (see
823 * above), and send it into the kernel. The kernel will again use the
824 * description structures to create a description of the enabling as it reads
825 * the DOF. When the description is complete, the enabling will be actually
826 * created -- turning it into the structures that represent the enabling
827 * instead of merely describing it. Not surprisingly, the description
828 * structures bear a strong resemblance to the DOF structures that act as their
829 * conduit.
831 struct dtrace_predicate;
833 typedef struct dtrace_probedesc {
834 dtrace_id_t dtpd_id; /* probe identifier */
835 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
836 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
837 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
838 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
839 } dtrace_probedesc_t;
841 typedef struct dtrace_repldesc {
842 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
843 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
844 } dtrace_repldesc_t;
846 typedef struct dtrace_preddesc {
847 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
848 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
849 } dtrace_preddesc_t;
851 typedef struct dtrace_actdesc {
852 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
853 struct dtrace_actdesc *dtad_next; /* next action */
854 dtrace_actkind_t dtad_kind; /* kind of action */
855 uint32_t dtad_ntuple; /* number in tuple */
856 uint64_t dtad_arg; /* action argument */
857 uint64_t dtad_uarg; /* user argument */
858 int dtad_refcnt; /* reference count */
859 } dtrace_actdesc_t;
861 typedef struct dtrace_ecbdesc {
862 dtrace_actdesc_t *dted_action; /* action description(s) */
863 dtrace_preddesc_t dted_pred; /* predicate description */
864 dtrace_probedesc_t dted_probe; /* probe description */
865 uint64_t dted_uarg; /* library argument */
866 int dted_refcnt; /* reference count */
867 } dtrace_ecbdesc_t;
870 * DTrace Metadata Description Structures
872 * DTrace separates the trace data stream from the metadata stream. The only
873 * metadata tokens placed in the data stream are enabled probe identifiers
874 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order
875 * to determine the structure of the data, DTrace consumers pass the token to
876 * the kernel, and receive in return a corresponding description of the enabled
877 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
878 * dtrace_aggdesc structure). Both of these structures are expressed in terms
879 * of record descriptions (via the dtrace_recdesc structure) that describe the
880 * exact structure of the data. Some record descriptions may also contain a
881 * format identifier; this additional bit of metadata can be retrieved from the
882 * kernel, for which a format description is returned via the dtrace_fmtdesc
883 * structure. Note that all four of these structures must be bitness-neutral
884 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
886 typedef struct dtrace_recdesc {
887 dtrace_actkind_t dtrd_action; /* kind of action */
888 uint32_t dtrd_size; /* size of record */
889 uint32_t dtrd_offset; /* offset in ECB's data */
890 uint16_t dtrd_alignment; /* required alignment */
891 uint16_t dtrd_format; /* format, if any */
892 uint64_t dtrd_arg; /* action argument */
893 uint64_t dtrd_uarg; /* user argument */
894 } dtrace_recdesc_t;
896 typedef struct dtrace_eprobedesc {
897 dtrace_epid_t dtepd_epid; /* enabled probe ID */
898 dtrace_id_t dtepd_probeid; /* probe ID */
899 uint64_t dtepd_uarg; /* library argument */
900 uint32_t dtepd_size; /* total size */
901 int dtepd_nrecs; /* number of records */
902 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
903 } dtrace_eprobedesc_t;
905 typedef struct dtrace_aggdesc {
906 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
907 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
908 int dtagd_flags; /* not filled in by kernel */
909 dtrace_aggid_t dtagd_id; /* aggregation ID */
910 dtrace_epid_t dtagd_epid; /* enabled probe ID */
911 uint32_t dtagd_size; /* size in bytes */
912 int dtagd_nrecs; /* number of records */
913 uint32_t dtagd_pad; /* explicit padding */
914 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
915 } dtrace_aggdesc_t;
917 typedef struct dtrace_fmtdesc {
918 DTRACE_PTR(char, dtfd_string); /* format string */
919 int dtfd_length; /* length of format string */
920 uint16_t dtfd_format; /* format identifier */
921 } dtrace_fmtdesc_t;
923 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
924 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
925 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
927 #define DTRACE_SIZEOF_AGGDESC(desc) \
928 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
929 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
932 * DTrace Option Interface
934 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
935 * in a DOF image. The dof_optdesc structure contains an option identifier and
936 * an option value. The valid option identifiers are found below; the mapping
937 * between option identifiers and option identifying strings is maintained at
938 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
939 * following are potentially valid option values: all positive integers, zero
940 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
941 * predefined tokens as their values; these are defined with
942 * DTRACEOPT_{option}_{token}.
944 #define DTRACEOPT_BUFSIZE 0 /* buffer size */
945 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
946 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
947 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
948 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
949 #define DTRACEOPT_NSPEC 5 /* number of speculations */
950 #define DTRACEOPT_STRSIZE 6 /* string size */
951 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
952 #define DTRACEOPT_CPU 8 /* CPU to trace */
953 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
954 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
955 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
956 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
957 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
958 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
959 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
960 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
961 #define DTRACEOPT_STATUSRATE 17 /* status rate */
962 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
963 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
964 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
965 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
966 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
967 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
968 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
969 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
970 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
971 #define DTRACEOPT_MAX 27 /* number of options */
973 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
975 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
976 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
977 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
979 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
980 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
983 * DTrace Buffer Interface
985 * In order to get a snapshot of the principal or aggregation buffer,
986 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
987 * structure. This describes which CPU user-level is interested in, and
988 * where user-level wishes the kernel to snapshot the buffer to (the
989 * dtbd_data field). The kernel uses the same structure to pass back some
990 * information regarding the buffer: the size of data actually copied out, the
991 * number of drops, the number of errors, and the offset of the oldest record.
992 * If the buffer policy is a "switch" policy, taking a snapshot of the
993 * principal buffer has the additional effect of switching the active and
994 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
995 * the additional effect of switching the active and inactive buffers.
997 typedef struct dtrace_bufdesc {
998 uint64_t dtbd_size; /* size of buffer */
999 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1000 uint32_t dtbd_errors; /* number of errors */
1001 uint64_t dtbd_drops; /* number of drops */
1002 DTRACE_PTR(char, dtbd_data); /* data */
1003 uint64_t dtbd_oldest; /* offset of oldest record */
1004 } dtrace_bufdesc_t;
1007 * DTrace Status
1009 * The status of DTrace is relayed via the dtrace_status structure. This
1010 * structure contains members to count drops other than the capacity drops
1011 * available via the buffer interface (see above). This consists of dynamic
1012 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1013 * speculative drops (including capacity speculative drops, drops due to busy
1014 * speculative buffers and drops due to unavailable speculative buffers).
1015 * Additionally, the status structure contains a field to indicate the number
1016 * of "fill"-policy buffers have been filled and a boolean field to indicate
1017 * that exit() has been called. If the dtst_exiting field is non-zero, no
1018 * further data will be generated until tracing is stopped (at which time any
1019 * enablings of the END action will be processed); if user-level sees that
1020 * this field is non-zero, tracing should be stopped as soon as possible.
1022 typedef struct dtrace_status {
1023 uint64_t dtst_dyndrops; /* dynamic drops */
1024 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1025 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1026 uint64_t dtst_specdrops; /* speculative drops */
1027 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1028 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1029 uint64_t dtst_errors; /* total errors */
1030 uint64_t dtst_filled; /* number of filled bufs */
1031 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1032 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1033 char dtst_killed; /* non-zero if killed */
1034 char dtst_exiting; /* non-zero if exit() called */
1035 char dtst_pad[6]; /* pad out to 64-bit align */
1036 } dtrace_status_t;
1039 * DTrace Configuration
1041 * User-level may need to understand some elements of the kernel DTrace
1042 * configuration in order to generate correct DIF. This information is
1043 * conveyed via the dtrace_conf structure.
1045 typedef struct dtrace_conf {
1046 uint_t dtc_difversion; /* supported DIF version */
1047 uint_t dtc_difintregs; /* # of DIF integer registers */
1048 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1049 uint_t dtc_ctfmodel; /* CTF data model */
1050 uint_t dtc_pad[8]; /* reserved for future use */
1051 } dtrace_conf_t;
1054 * DTrace Faults
1056 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1057 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1058 * postprocessing at user-level. Probe processing faults induce an ERROR
1059 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1060 * the error condition using thse symbolic labels.
1062 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1063 #define DTRACEFLT_BADADDR 1 /* Bad address */
1064 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1065 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1066 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1067 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1068 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1069 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1070 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1071 #define DTRACEFLT_BADSTACK 9 /* Bad stack */
1073 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1076 * DTrace Argument Types
1078 * Because it would waste both space and time, argument types do not reside
1079 * with the probe. In order to determine argument types for args[X]
1080 * variables, the D compiler queries for argument types on a probe-by-probe
1081 * basis. (This optimizes for the common case that arguments are either not
1082 * used or used in an untyped fashion.) Typed arguments are specified with a
1083 * string of the type name in the dtragd_native member of the argument
1084 * description structure. Typed arguments may be further translated to types
1085 * of greater stability; the provider indicates such a translated argument by
1086 * filling in the dtargd_xlate member with the string of the translated type.
1087 * Finally, the provider may indicate which argument value a given argument
1088 * maps to by setting the dtargd_mapping member -- allowing a single argument
1089 * to map to multiple args[X] variables.
1091 typedef struct dtrace_argdesc {
1092 dtrace_id_t dtargd_id; /* probe identifier */
1093 int dtargd_ndx; /* arg number (-1 iff none) */
1094 int dtargd_mapping; /* value mapping */
1095 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1096 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1097 } dtrace_argdesc_t;
1100 * DTrace Stability Attributes
1102 * Each DTrace provider advertises the name and data stability of each of its
1103 * probe description components, as well as its architectural dependencies.
1104 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1105 * order to compute the properties of an input program and report them.
1107 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1108 typedef uint8_t dtrace_class_t; /* architectural dependency class */
1110 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1111 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1112 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1113 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1114 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1115 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1116 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1117 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1118 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1120 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1121 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1122 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1123 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1124 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1125 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1126 #define DTRACE_CLASS_MAX 5 /* maximum valid class */
1128 #define DTRACE_PRIV_NONE 0x0000
1129 #define DTRACE_PRIV_KERNEL 0x0001
1130 #define DTRACE_PRIV_USER 0x0002
1131 #define DTRACE_PRIV_PROC 0x0004
1132 #define DTRACE_PRIV_OWNER 0x0008
1133 #define DTRACE_PRIV_ZONEOWNER 0x0010
1135 #define DTRACE_PRIV_ALL \
1136 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1137 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1139 typedef struct dtrace_ppriv {
1140 uint32_t dtpp_flags; /* privilege flags */
1141 uid_t dtpp_uid; /* user ID */
1142 zoneid_t dtpp_zoneid; /* zone ID */
1143 } dtrace_ppriv_t;
1145 typedef struct dtrace_attribute {
1146 dtrace_stability_t dtat_name; /* entity name stability */
1147 dtrace_stability_t dtat_data; /* entity data stability */
1148 dtrace_class_t dtat_class; /* entity data dependency */
1149 } dtrace_attribute_t;
1151 typedef struct dtrace_pattr {
1152 dtrace_attribute_t dtpa_provider; /* provider attributes */
1153 dtrace_attribute_t dtpa_mod; /* module attributes */
1154 dtrace_attribute_t dtpa_func; /* function attributes */
1155 dtrace_attribute_t dtpa_name; /* name attributes */
1156 dtrace_attribute_t dtpa_args; /* args[] attributes */
1157 } dtrace_pattr_t;
1159 typedef struct dtrace_providerdesc {
1160 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1161 dtrace_pattr_t dtvd_attr; /* stability attributes */
1162 dtrace_ppriv_t dtvd_priv; /* privileges required */
1163 } dtrace_providerdesc_t;
1166 * DTrace Pseudodevice Interface
1168 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1169 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1170 * DTrace.
1172 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1173 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1174 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1175 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1176 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1177 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1178 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1179 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1180 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1181 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1182 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1183 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1184 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1185 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1186 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1187 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1188 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1191 * DTrace Helpers
1193 * In general, DTrace establishes probes in processes and takes actions on
1194 * processes without knowing their specific user-level structures. Instead of
1195 * existing in the framework, process-specific knowledge is contained by the
1196 * enabling D program -- which can apply process-specific knowledge by making
1197 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1198 * operate on user-level data. However, there may exist some specific probes
1199 * of particular semantic relevance that the application developer may wish to
1200 * explicitly export. For example, an application may wish to export a probe
1201 * at the point that it begins and ends certain well-defined transactions. In
1202 * addition to providing probes, programs may wish to offer assistance for
1203 * certain actions. For example, in highly dynamic environments (e.g., Java),
1204 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1205 * names (the translation from instruction addresses to corresponding symbol
1206 * names may only be possible in situ); these environments may wish to define
1207 * a series of actions to be applied in situ to obtain a meaningful stack
1208 * trace.
1210 * These two mechanisms -- user-level statically defined tracing and assisting
1211 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1212 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1213 * providers, probes and their arguments. If a helper wishes to provide
1214 * action assistance, probe descriptions and corresponding DIF actions may be
1215 * specified in the helper DOF. For such helper actions, however, the probe
1216 * description describes the specific helper: all DTrace helpers have the
1217 * provider name "dtrace" and the module name "helper", and the name of the
1218 * helper is contained in the function name (for example, the ustack() helper
1219 * is named "ustack"). Any helper-specific name may be contained in the name
1220 * (for example, if a helper were to have a constructor, it might be named
1221 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1222 * action that they are helping is taken. Helper actions may only return DIF
1223 * expressions, and may only call the following subroutines:
1225 * alloca() <= Allocates memory out of the consumer's scratch space
1226 * bcopy() <= Copies memory to scratch space
1227 * copyin() <= Copies memory from user-level into consumer's scratch
1228 * copyinto() <= Copies memory into a specific location in scratch
1229 * copyinstr() <= Copies a string into a specific location in scratch
1231 * Helper actions may only access the following built-in variables:
1233 * curthread <= Current kthread_t pointer
1234 * tid <= Current thread identifier
1235 * pid <= Current process identifier
1236 * ppid <= Parent process identifier
1237 * uid <= Current user ID
1238 * gid <= Current group ID
1239 * execname <= Current executable name
1240 * zonename <= Current zone name
1242 * Helper actions may not manipulate or allocate dynamic variables, but they
1243 * may have clause-local and statically-allocated global variables. The
1244 * helper action variable state is specific to the helper action -- variables
1245 * used by the helper action may not be accessed outside of the helper
1246 * action, and the helper action may not access variables that like outside
1247 * of it. Helper actions may not load from kernel memory at-large; they are
1248 * restricting to loading current user state (via copyin() and variants) and
1249 * scratch space. As with probe enablings, helper actions are executed in
1250 * program order. The result of the helper action is the result of the last
1251 * executing helper expression.
1253 * Helpers -- composed of either providers/probes or probes/actions (or both)
1254 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1255 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1256 * encapsulates the name and base address of the user-level library or
1257 * executable publishing the helpers and probes as well as the DOF that
1258 * contains the definitions of those helpers and probes.
1260 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1261 * helpers and should no longer be used. No other ioctls are valid on the
1262 * helper minor node.
1264 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1265 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1266 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1267 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1269 typedef struct dof_helper {
1270 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1271 uint64_t dofhp_addr; /* base address of object */
1272 uint64_t dofhp_dof; /* address of helper DOF */
1273 } dof_helper_t;
1275 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1276 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1277 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1278 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1279 #define DTRACEMNRN_CLONE 2 /* first clone minor */
1281 #ifdef _KERNEL
1284 * DTrace Provider API
1286 * The following functions are implemented by the DTrace framework and are
1287 * used to implement separate in-kernel DTrace providers. Common functions
1288 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1289 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1291 * The provider API has two halves: the API that the providers consume from
1292 * DTrace, and the API that providers make available to DTrace.
1294 * 1 Framework-to-Provider API
1296 * 1.1 Overview
1298 * The Framework-to-Provider API is represented by the dtrace_pops structure
1299 * that the provider passes to the framework when registering itself. This
1300 * structure consists of the following members:
1302 * dtps_provide() <-- Provide all probes, all modules
1303 * dtps_provide_module() <-- Provide all probes in specified module
1304 * dtps_enable() <-- Enable specified probe
1305 * dtps_disable() <-- Disable specified probe
1306 * dtps_suspend() <-- Suspend specified probe
1307 * dtps_resume() <-- Resume specified probe
1308 * dtps_getargdesc() <-- Get the argument description for args[X]
1309 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1310 * dtps_usermode() <-- Find out if the probe was fired in user mode
1311 * dtps_destroy() <-- Destroy all state associated with this probe
1313 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1315 * 1.2.1 Overview
1317 * Called to indicate that the provider should provide all probes. If the
1318 * specified description is non-NULL, dtps_provide() is being called because
1319 * no probe matched a specified probe -- if the provider has the ability to
1320 * create custom probes, it may wish to create a probe that matches the
1321 * specified description.
1323 * 1.2.2 Arguments and notes
1325 * The first argument is the cookie as passed to dtrace_register(). The
1326 * second argument is a pointer to a probe description that the provider may
1327 * wish to consider when creating custom probes. The provider is expected to
1328 * call back into the DTrace framework via dtrace_probe_create() to create
1329 * any necessary probes. dtps_provide() may be called even if the provider
1330 * has made available all probes; the provider should check the return value
1331 * of dtrace_probe_create() to handle this case. Note that the provider need
1332 * not implement both dtps_provide() and dtps_provide_module(); see
1333 * "Arguments and Notes" for dtrace_register(), below.
1335 * 1.2.3 Return value
1337 * None.
1339 * 1.2.4 Caller's context
1341 * dtps_provide() is typically called from open() or ioctl() context, but may
1342 * be called from other contexts as well. The DTrace framework is locked in
1343 * such a way that providers may not register or unregister. This means that
1344 * the provider may not call any DTrace API that affects its registration with
1345 * the framework, including dtrace_register(), dtrace_unregister(),
1346 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1347 * that the provider may (and indeed, is expected to) call probe-related
1348 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1349 * and dtrace_probe_arg().
1351 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1353 * 1.3.1 Overview
1355 * Called to indicate that the provider should provide all probes in the
1356 * specified module.
1358 * 1.3.2 Arguments and notes
1360 * The first argument is the cookie as passed to dtrace_register(). The
1361 * second argument is a pointer to a modctl structure that indicates the
1362 * module for which probes should be created.
1364 * 1.3.3 Return value
1366 * None.
1368 * 1.3.4 Caller's context
1370 * dtps_provide_module() may be called from open() or ioctl() context, but
1371 * may also be called from a module loading context. mod_lock is held, and
1372 * the DTrace framework is locked in such a way that providers may not
1373 * register or unregister. This means that the provider may not call any
1374 * DTrace API that affects its registration with the framework, including
1375 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1376 * dtrace_condense(). However, the context is such that the provider may (and
1377 * indeed, is expected to) call probe-related DTrace routines, including
1378 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1379 * that the provider need not implement both dtps_provide() and
1380 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1381 * below.
1383 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1385 * 1.4.1 Overview
1387 * Called to enable the specified probe.
1389 * 1.4.2 Arguments and notes
1391 * The first argument is the cookie as passed to dtrace_register(). The
1392 * second argument is the identifier of the probe to be enabled. The third
1393 * argument is the probe argument as passed to dtrace_probe_create().
1394 * dtps_enable() will be called when a probe transitions from not being
1395 * enabled at all to having one or more ECB. The number of ECBs associated
1396 * with the probe may change without subsequent calls into the provider.
1397 * When the number of ECBs drops to zero, the provider will be explicitly
1398 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1399 * be called for a probe identifier that hasn't been explicitly enabled via
1400 * dtps_enable().
1402 * 1.4.3 Return value
1404 * On success, dtps_enable() should return 0. On failure, -1 should be
1405 * returned.
1407 * 1.4.4 Caller's context
1409 * The DTrace framework is locked in such a way that it may not be called
1410 * back into at all. cpu_lock is held. mod_lock is not held and may not
1411 * be acquired.
1413 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1415 * 1.5.1 Overview
1417 * Called to disable the specified probe.
1419 * 1.5.2 Arguments and notes
1421 * The first argument is the cookie as passed to dtrace_register(). The
1422 * second argument is the identifier of the probe to be disabled. The third
1423 * argument is the probe argument as passed to dtrace_probe_create().
1424 * dtps_disable() will be called when a probe transitions from being enabled
1425 * to having zero ECBs. dtrace_probe() should never be called for a probe
1426 * identifier that has been explicitly enabled via dtps_disable().
1428 * 1.5.3 Return value
1430 * None.
1432 * 1.5.4 Caller's context
1434 * The DTrace framework is locked in such a way that it may not be called
1435 * back into at all. cpu_lock is held. mod_lock is not held and may not
1436 * be acquired.
1438 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1440 * 1.6.1 Overview
1442 * Called to suspend the specified enabled probe. This entry point is for
1443 * providers that may need to suspend some or all of their probes when CPUs
1444 * are being powered on or when the boot monitor is being entered for a
1445 * prolonged period of time.
1447 * 1.6.2 Arguments and notes
1449 * The first argument is the cookie as passed to dtrace_register(). The
1450 * second argument is the identifier of the probe to be suspended. The
1451 * third argument is the probe argument as passed to dtrace_probe_create().
1452 * dtps_suspend will only be called on an enabled probe. Providers that
1453 * provide a dtps_suspend entry point will want to take roughly the action
1454 * that it takes for dtps_disable.
1456 * 1.6.3 Return value
1458 * None.
1460 * 1.6.4 Caller's context
1462 * Interrupts are disabled. The DTrace framework is in a state such that the
1463 * specified probe cannot be disabled or destroyed for the duration of
1464 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1465 * little latitude; the provider is expected to do no more than a store to
1466 * memory.
1468 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1470 * 1.7.1 Overview
1472 * Called to resume the specified enabled probe. This entry point is for
1473 * providers that may need to resume some or all of their probes after the
1474 * completion of an event that induced a call to dtps_suspend().
1476 * 1.7.2 Arguments and notes
1478 * The first argument is the cookie as passed to dtrace_register(). The
1479 * second argument is the identifier of the probe to be resumed. The
1480 * third argument is the probe argument as passed to dtrace_probe_create().
1481 * dtps_resume will only be called on an enabled probe. Providers that
1482 * provide a dtps_resume entry point will want to take roughly the action
1483 * that it takes for dtps_enable.
1485 * 1.7.3 Return value
1487 * None.
1489 * 1.7.4 Caller's context
1491 * Interrupts are disabled. The DTrace framework is in a state such that the
1492 * specified probe cannot be disabled or destroyed for the duration of
1493 * dtps_resume(). As interrupts are disabled, the provider is afforded
1494 * little latitude; the provider is expected to do no more than a store to
1495 * memory.
1497 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1498 * dtrace_argdesc_t *desc)
1500 * 1.8.1 Overview
1502 * Called to retrieve the argument description for an args[X] variable.
1504 * 1.8.2 Arguments and notes
1506 * The first argument is the cookie as passed to dtrace_register(). The
1507 * second argument is the identifier of the current probe. The third
1508 * argument is the probe argument as passed to dtrace_probe_create(). The
1509 * fourth argument is a pointer to the argument description. This
1510 * description is both an input and output parameter: it contains the
1511 * index of the desired argument in the dtargd_ndx field, and expects
1512 * the other fields to be filled in upon return. If there is no argument
1513 * corresponding to the specified index, the dtargd_ndx field should be set
1514 * to DTRACE_ARGNONE.
1516 * 1.8.3 Return value
1518 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1519 * members of the dtrace_argdesc_t structure are all output values.
1521 * 1.8.4 Caller's context
1523 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1524 * the DTrace framework is locked in such a way that providers may not
1525 * register or unregister. This means that the provider may not call any
1526 * DTrace API that affects its registration with the framework, including
1527 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1528 * dtrace_condense().
1530 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1531 * int argno, int aframes)
1533 * 1.9.1 Overview
1535 * Called to retrieve a value for an argX or args[X] variable.
1537 * 1.9.2 Arguments and notes
1539 * The first argument is the cookie as passed to dtrace_register(). The
1540 * second argument is the identifier of the current probe. The third
1541 * argument is the probe argument as passed to dtrace_probe_create(). The
1542 * fourth argument is the number of the argument (the X in the example in
1543 * 1.9.1). The fifth argument is the number of stack frames that were used
1544 * to get from the actual place in the code that fired the probe to
1545 * dtrace_probe() itself, the so-called artificial frames. This argument may
1546 * be used to descend an appropriate number of frames to find the correct
1547 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1548 * function is used.
1550 * 1.9.3 Return value
1552 * The value of the argument.
1554 * 1.9.4 Caller's context
1556 * This is called from within dtrace_probe() meaning that interrupts
1557 * are disabled. No locks should be taken within this entry point.
1559 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1561 * 1.10.1 Overview
1563 * Called to determine if the probe was fired in a user context.
1565 * 1.10.2 Arguments and notes
1567 * The first argument is the cookie as passed to dtrace_register(). The
1568 * second argument is the identifier of the current probe. The third
1569 * argument is the probe argument as passed to dtrace_probe_create(). This
1570 * entry point must not be left NULL for providers whose probes allow for
1571 * mixed mode tracing, that is to say those probes that can fire during
1572 * kernel- _or_ user-mode execution
1574 * 1.10.3 Return value
1576 * A boolean value.
1578 * 1.10.4 Caller's context
1580 * This is called from within dtrace_probe() meaning that interrupts
1581 * are disabled. No locks should be taken within this entry point.
1583 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1585 * 1.11.1 Overview
1587 * Called to destroy the specified probe.
1589 * 1.11.2 Arguments and notes
1591 * The first argument is the cookie as passed to dtrace_register(). The
1592 * second argument is the identifier of the probe to be destroyed. The third
1593 * argument is the probe argument as passed to dtrace_probe_create(). The
1594 * provider should free all state associated with the probe. The framework
1595 * guarantees that dtps_destroy() is only called for probes that have either
1596 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1597 * Once dtps_disable() has been called for a probe, no further call will be
1598 * made specifying the probe.
1600 * 1.11.3 Return value
1602 * None.
1604 * 1.11.4 Caller's context
1606 * The DTrace framework is locked in such a way that it may not be called
1607 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1608 * acquired.
1611 * 2 Provider-to-Framework API
1613 * 2.1 Overview
1615 * The Provider-to-Framework API provides the mechanism for the provider to
1616 * register itself with the DTrace framework, to create probes, to lookup
1617 * probes and (most importantly) to fire probes. The Provider-to-Framework
1618 * consists of:
1620 * dtrace_register() <-- Register a provider with the DTrace framework
1621 * dtrace_unregister() <-- Remove a provider's DTrace registration
1622 * dtrace_invalidate() <-- Invalidate the specified provider
1623 * dtrace_condense() <-- Remove a provider's unenabled probes
1624 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1625 * dtrace_probe_create() <-- Create a DTrace probe
1626 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1627 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1628 * dtrace_probe() <-- Fire the specified probe
1630 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1631 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1632 * dtrace_provider_id_t *idp)
1634 * 2.2.1 Overview
1636 * dtrace_register() registers the calling provider with the DTrace
1637 * framework. It should generally be called by DTrace providers in their
1638 * attach(9E) entry point.
1640 * 2.2.2 Arguments and Notes
1642 * The first argument is the name of the provider. The second argument is a
1643 * pointer to the stability attributes for the provider. The third argument
1644 * is the privilege flags for the provider, and must be some combination of:
1646 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1648 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1649 * enable probes from this provider
1651 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1652 * enable probes from this provider
1654 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1655 * may enable probes from this provider
1657 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1658 * the privilege requirements above. These probes
1659 * require either (a) a user ID matching the user
1660 * ID of the cred passed in the fourth argument
1661 * or (b) the PRIV_PROC_OWNER privilege.
1663 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1664 * the privilege requirements above. These probes
1665 * require either (a) a zone ID matching the zone
1666 * ID of the cred passed in the fourth argument
1667 * or (b) the PRIV_PROC_ZONE privilege.
1669 * Note that these flags designate the _visibility_ of the probes, not
1670 * the conditions under which they may or may not fire.
1672 * The fourth argument is the credential that is associated with the
1673 * provider. This argument should be NULL if the privilege flags don't
1674 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1675 * framework stashes the uid and zoneid represented by this credential
1676 * for use at probe-time, in implicit predicates. These limit visibility
1677 * of the probes to users and/or zones which have sufficient privilege to
1678 * access them.
1680 * The fifth argument is a DTrace provider operations vector, which provides
1681 * the implementation for the Framework-to-Provider API. (See Section 1,
1682 * above.) This must be non-NULL, and each member must be non-NULL. The
1683 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1684 * members (if the provider so desires, _one_ of these members may be left
1685 * NULL -- denoting that the provider only implements the other) and (2)
1686 * the dtps_suspend() and dtps_resume() members, which must either both be
1687 * NULL or both be non-NULL.
1689 * The sixth argument is a cookie to be specified as the first argument for
1690 * each function in the Framework-to-Provider API. This argument may have
1691 * any value.
1693 * The final argument is a pointer to dtrace_provider_id_t. If
1694 * dtrace_register() successfully completes, the provider identifier will be
1695 * stored in the memory pointed to be this argument. This argument must be
1696 * non-NULL.
1698 * 2.2.3 Return value
1700 * On success, dtrace_register() returns 0 and stores the new provider's
1701 * identifier into the memory pointed to by the idp argument. On failure,
1702 * dtrace_register() returns an errno:
1704 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1705 * This may because a parameter that must be non-NULL was NULL,
1706 * because the name was invalid (either empty or an illegal
1707 * provider name) or because the attributes were invalid.
1709 * No other failure code is returned.
1711 * 2.2.4 Caller's context
1713 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1714 * hold no locks across dtrace_register() that may also be acquired by
1715 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1717 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1719 * 2.3.1 Overview
1721 * Unregisters the specified provider from the DTrace framework. It should
1722 * generally be called by DTrace providers in their detach(9E) entry point.
1724 * 2.3.2 Arguments and Notes
1726 * The only argument is the provider identifier, as returned from a
1727 * successful call to dtrace_register(). As a result of calling
1728 * dtrace_unregister(), the DTrace framework will call back into the provider
1729 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1730 * completes, however, the DTrace framework will no longer make calls through
1731 * the Framework-to-Provider API.
1733 * 2.3.3 Return value
1735 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1736 * returns an errno:
1738 * EBUSY There are currently processes that have the DTrace pseudodevice
1739 * open, or there exists an anonymous enabling that hasn't yet
1740 * been claimed.
1742 * No other failure code is returned.
1744 * 2.3.4 Caller's context
1746 * Because a call to dtrace_unregister() may induce calls through the
1747 * Framework-to-Provider API, the caller may not hold any lock across
1748 * dtrace_register() that is also acquired in any of the Framework-to-
1749 * Provider API functions. Additionally, mod_lock may not be held.
1751 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1753 * 2.4.1 Overview
1755 * Invalidates the specified provider. All subsequent probe lookups for the
1756 * specified provider will fail, but its probes will not be removed.
1758 * 2.4.2 Arguments and note
1760 * The only argument is the provider identifier, as returned from a
1761 * successful call to dtrace_register(). In general, a provider's probes
1762 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1763 * an entire provider, regardless of whether or not probes are enabled or
1764 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1765 * probes from firing -- it will merely prevent any new enablings of the
1766 * provider's probes.
1768 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1770 * 2.5.1 Overview
1772 * Removes all the unenabled probes for the given provider. This function is
1773 * not unlike dtrace_unregister(), except that it doesn't remove the
1774 * provider just as many of its associated probes as it can.
1776 * 2.5.2 Arguments and Notes
1778 * As with dtrace_unregister(), the sole argument is the provider identifier
1779 * as returned from a successful call to dtrace_register(). As a result of
1780 * calling dtrace_condense(), the DTrace framework will call back into the
1781 * given provider's dtps_destroy() entry point for each of the provider's
1782 * unenabled probes.
1784 * 2.5.3 Return value
1786 * Currently, dtrace_condense() always returns 0. However, consumers of this
1787 * function should check the return value as appropriate; its behavior may
1788 * change in the future.
1790 * 2.5.4 Caller's context
1792 * As with dtrace_unregister(), the caller may not hold any lock across
1793 * dtrace_condense() that is also acquired in the provider's entry points.
1794 * Also, mod_lock may not be held.
1796 * 2.6 int dtrace_attached()
1798 * 2.6.1 Overview
1800 * Indicates whether or not DTrace has attached.
1802 * 2.6.2 Arguments and Notes
1804 * For most providers, DTrace makes initial contact beyond registration.
1805 * That is, once a provider has registered with DTrace, it waits to hear
1806 * from DTrace to create probes. However, some providers may wish to
1807 * proactively create probes without first being told by DTrace to do so.
1808 * If providers wish to do this, they must first call dtrace_attached() to
1809 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1810 * the provider must not make any other Provider-to-Framework API call.
1812 * 2.6.3 Return value
1814 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1816 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1817 * const char *func, const char *name, int aframes, void *arg)
1819 * 2.7.1 Overview
1821 * Creates a probe with specified module name, function name, and name.
1823 * 2.7.2 Arguments and Notes
1825 * The first argument is the provider identifier, as returned from a
1826 * successful call to dtrace_register(). The second, third, and fourth
1827 * arguments are the module name, function name, and probe name,
1828 * respectively. Of these, module name and function name may both be NULL
1829 * (in which case the probe is considered to be unanchored), or they may both
1830 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1831 * string.
1833 * The fifth argument is the number of artificial stack frames that will be
1834 * found on the stack when dtrace_probe() is called for the new probe. These
1835 * artificial frames will be automatically be pruned should the stack() or
1836 * stackdepth() functions be called as part of one of the probe's ECBs. If
1837 * the parameter doesn't add an artificial frame, this parameter should be
1838 * zero.
1840 * The final argument is a probe argument that will be passed back to the
1841 * provider when a probe-specific operation is called. (e.g., via
1842 * dtps_enable(), dtps_disable(), etc.)
1844 * Note that it is up to the provider to be sure that the probe that it
1845 * creates does not already exist -- if the provider is unsure of the probe's
1846 * existence, it should assure its absence with dtrace_probe_lookup() before
1847 * calling dtrace_probe_create().
1849 * 2.7.3 Return value
1851 * dtrace_probe_create() always succeeds, and always returns the identifier
1852 * of the newly-created probe.
1854 * 2.7.4 Caller's context
1856 * While dtrace_probe_create() is generally expected to be called from
1857 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1858 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1860 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1861 * const char *func, const char *name)
1863 * 2.8.1 Overview
1865 * Looks up a probe based on provdider and one or more of module name,
1866 * function name and probe name.
1868 * 2.8.2 Arguments and Notes
1870 * The first argument is the provider identifier, as returned from a
1871 * successful call to dtrace_register(). The second, third, and fourth
1872 * arguments are the module name, function name, and probe name,
1873 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1874 * the identifier of the first probe that is provided by the specified
1875 * provider and matches all of the non-NULL matching criteria.
1876 * dtrace_probe_lookup() is generally used by a provider to be check the
1877 * existence of a probe before creating it with dtrace_probe_create().
1879 * 2.8.3 Return value
1881 * If the probe exists, returns its identifier. If the probe does not exist,
1882 * return DTRACE_IDNONE.
1884 * 2.8.4 Caller's context
1886 * While dtrace_probe_lookup() is generally expected to be called from
1887 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1888 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1890 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1892 * 2.9.1 Overview
1894 * Returns the probe argument associated with the specified probe.
1896 * 2.9.2 Arguments and Notes
1898 * The first argument is the provider identifier, as returned from a
1899 * successful call to dtrace_register(). The second argument is a probe
1900 * identifier, as returned from dtrace_probe_lookup() or
1901 * dtrace_probe_create(). This is useful if a probe has multiple
1902 * provider-specific components to it: the provider can create the probe
1903 * once with provider-specific state, and then add to the state by looking
1904 * up the probe based on probe identifier.
1906 * 2.9.3 Return value
1908 * Returns the argument associated with the specified probe. If the
1909 * specified probe does not exist, or if the specified probe is not provided
1910 * by the specified provider, NULL is returned.
1912 * 2.9.4 Caller's context
1914 * While dtrace_probe_arg() is generally expected to be called from
1915 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1916 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1918 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
1919 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
1921 * 2.10.1 Overview
1923 * The epicenter of DTrace: fires the specified probes with the specified
1924 * arguments.
1926 * 2.10.2 Arguments and Notes
1928 * The first argument is a probe identifier as returned by
1929 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
1930 * arguments are the values to which the D variables "arg0" through "arg4"
1931 * will be mapped.
1933 * dtrace_probe() should be called whenever the specified probe has fired --
1934 * however the provider defines it.
1936 * 2.10.3 Return value
1938 * None.
1940 * 2.10.4 Caller's context
1942 * dtrace_probe() may be called in virtually any context: kernel, user,
1943 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
1944 * dispatcher locks held, with interrupts disabled, etc. The only latitude
1945 * that must be afforded to DTrace is the ability to make calls within
1946 * itself (and to its in-kernel subroutines) and the ability to access
1947 * arbitrary (but mapped) memory. On some platforms, this constrains
1948 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
1949 * from any context in which TL is greater than zero. dtrace_probe() may
1950 * also not be called from any routine which may be called by dtrace_probe()
1951 * -- which includes functions in the DTrace framework and some in-kernel
1952 * DTrace subroutines. All such functions "dtrace_"; providers that
1953 * instrument the kernel arbitrarily should be sure to not instrument these
1954 * routines.
1956 typedef struct dtrace_pops {
1957 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
1958 void (*dtps_provide_module)(void *arg, struct modctl *mp);
1959 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
1960 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
1961 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
1962 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
1963 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
1964 dtrace_argdesc_t *desc);
1965 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
1966 int argno, int aframes);
1967 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
1968 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
1969 } dtrace_pops_t;
1971 typedef uintptr_t dtrace_provider_id_t;
1973 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
1974 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
1975 extern int dtrace_unregister(dtrace_provider_id_t);
1976 extern int dtrace_condense(dtrace_provider_id_t);
1977 extern void dtrace_invalidate(dtrace_provider_id_t);
1978 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
1979 const char *, const char *);
1980 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
1981 const char *, const char *, int, void *);
1982 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
1983 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
1984 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
1987 * DTrace Meta Provider API
1989 * The following functions are implemented by the DTrace framework and are
1990 * used to implement meta providers. Meta providers plug into the DTrace
1991 * framework and are used to instantiate new providers on the fly. At
1992 * present, there is only one type of meta provider and only one meta
1993 * provider may be registered with the DTrace framework at a time. The
1994 * sole meta provider type provides user-land static tracing facilities
1995 * by taking meta probe descriptions and adding a corresponding provider
1996 * into the DTrace framework.
1998 * 1 Framework-to-Provider
2000 * 1.1 Overview
2002 * The Framework-to-Provider API is represented by the dtrace_mops structure
2003 * that the meta provider passes to the framework when registering itself as
2004 * a meta provider. This structure consists of the following members:
2006 * dtms_create_probe() <-- Add a new probe to a created provider
2007 * dtms_provide_pid() <-- Create a new provider for a given process
2008 * dtms_remove_pid() <-- Remove a previously created provider
2010 * 1.2 void dtms_create_probe(void *arg, void *parg,
2011 * dtrace_helper_probedesc_t *probedesc);
2013 * 1.2.1 Overview
2015 * Called by the DTrace framework to create a new probe in a provider
2016 * created by this meta provider.
2018 * 1.2.2 Arguments and notes
2020 * The first argument is the cookie as passed to dtrace_meta_register().
2021 * The second argument is the provider cookie for the associated provider;
2022 * this is obtained from the return value of dtms_provide_pid(). The third
2023 * argument is the helper probe description.
2025 * 1.2.3 Return value
2027 * None
2029 * 1.2.4 Caller's context
2031 * dtms_create_probe() is called from either ioctl() or module load context.
2032 * The DTrace framework is locked in such a way that meta providers may not
2033 * register or unregister. This means that the meta provider cannot call
2034 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2035 * such that the provider may (and is expected to) call provider-related
2036 * DTrace provider APIs including dtrace_probe_create().
2038 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2039 * pid_t pid)
2041 * 1.3.1 Overview
2043 * Called by the DTrace framework to instantiate a new provider given the
2044 * description of the provider and probes in the mprov argument. The
2045 * meta provider should call dtrace_register() to insert the new provider
2046 * into the DTrace framework.
2048 * 1.3.2 Arguments and notes
2050 * The first argument is the cookie as passed to dtrace_meta_register().
2051 * The second argument is a pointer to a structure describing the new
2052 * helper provider. The third argument is the process identifier for
2053 * process associated with this new provider. Note that the name of the
2054 * provider as passed to dtrace_register() should be the contatenation of
2055 * the dtmpb_provname member of the mprov argument and the processs
2056 * identifier as a string.
2058 * 1.3.3 Return value
2060 * The cookie for the provider that the meta provider creates. This is
2061 * the same value that it passed to dtrace_register().
2063 * 1.3.4 Caller's context
2065 * dtms_provide_pid() is called from either ioctl() or module load context.
2066 * The DTrace framework is locked in such a way that meta providers may not
2067 * register or unregister. This means that the meta provider cannot call
2068 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2069 * is such that the provider may -- and is expected to -- call
2070 * provider-related DTrace provider APIs including dtrace_register().
2072 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2073 * pid_t pid)
2075 * 1.4.1 Overview
2077 * Called by the DTrace framework to remove a provider that had previously
2078 * been instantiated via the dtms_provide_pid() entry point. The meta
2079 * provider need not remove the provider immediately, but this entry
2080 * point indicates that the provider should be removed as soon as possible
2081 * using the dtrace_unregister() API.
2083 * 1.4.2 Arguments and notes
2085 * The first argument is the cookie as passed to dtrace_meta_register().
2086 * The second argument is a pointer to a structure describing the helper
2087 * provider. The third argument is the process identifier for process
2088 * associated with this new provider.
2090 * 1.4.3 Return value
2092 * None
2094 * 1.4.4 Caller's context
2096 * dtms_remove_pid() is called from either ioctl() or exit() context.
2097 * The DTrace framework is locked in such a way that meta providers may not
2098 * register or unregister. This means that the meta provider cannot call
2099 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2100 * is such that the provider may -- and is expected to -- call
2101 * provider-related DTrace provider APIs including dtrace_unregister().
2103 typedef struct dtrace_helper_probedesc {
2104 char *dthpb_mod; /* probe module */
2105 char *dthpb_func; /* probe function */
2106 char *dthpb_name; /* probe name */
2107 uint64_t dthpb_base; /* base address */
2108 uint32_t *dthpb_offs; /* offsets array */
2109 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2110 uint32_t dthpb_noffs; /* offsets count */
2111 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2112 uint8_t *dthpb_args; /* argument mapping array */
2113 uint8_t dthpb_xargc; /* translated argument count */
2114 uint8_t dthpb_nargc; /* native argument count */
2115 char *dthpb_xtypes; /* translated types strings */
2116 char *dthpb_ntypes; /* native types strings */
2117 } dtrace_helper_probedesc_t;
2119 typedef struct dtrace_helper_provdesc {
2120 char *dthpv_provname; /* provider name */
2121 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2122 } dtrace_helper_provdesc_t;
2124 typedef struct dtrace_mops {
2125 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2126 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2127 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2128 } dtrace_mops_t;
2130 typedef uintptr_t dtrace_meta_provider_id_t;
2132 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2133 dtrace_meta_provider_id_t *);
2134 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2137 * DTrace Kernel Hooks
2139 * The following functions are implemented by the base kernel and form a set of
2140 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2141 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2142 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2145 typedef enum dtrace_vtime_state {
2146 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2147 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2148 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2149 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2150 } dtrace_vtime_state_t;
2152 extern dtrace_vtime_state_t dtrace_vtime_active;
2153 extern void dtrace_vtime_switch(kthread_t *next);
2154 extern void dtrace_vtime_enable_tnf(void);
2155 extern void dtrace_vtime_disable_tnf(void);
2156 extern void dtrace_vtime_enable(void);
2157 extern void dtrace_vtime_disable(void);
2159 struct regs;
2161 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2162 extern int (*dtrace_return_probe_ptr)(struct regs *);
2163 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2164 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2165 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2166 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2168 typedef uintptr_t dtrace_icookie_t;
2169 typedef void (*dtrace_xcall_t)(void *);
2171 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2172 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2174 extern void dtrace_membar_producer(void);
2175 extern void dtrace_membar_consumer(void);
2177 extern void (*dtrace_cpu_init)(processorid_t);
2178 extern void (*dtrace_modload)(struct modctl *);
2179 extern void (*dtrace_modunload)(struct modctl *);
2180 extern void (*dtrace_helpers_cleanup)();
2181 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2182 extern void (*dtrace_cpustart_init)();
2183 extern void (*dtrace_cpustart_fini)();
2185 extern void (*dtrace_debugger_init)();
2186 extern void (*dtrace_debugger_fini)();
2187 extern dtrace_cacheid_t dtrace_predcache_id;
2189 extern hrtime_t dtrace_gethrtime(void);
2190 extern void dtrace_sync(void);
2191 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2192 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2193 extern void dtrace_vpanic(const char *, __va_list);
2194 extern void dtrace_panic(const char *, ...);
2196 extern int dtrace_safe_defer_signal(void);
2197 extern void dtrace_safe_synchronous_signal(void);
2199 extern int dtrace_mach_aframes(void);
2201 #if defined(__i386) || defined(__amd64)
2202 extern int dtrace_instr_size(uchar_t *instr);
2203 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2204 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2205 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2206 extern void dtrace_invop_callsite(void);
2207 #endif
2209 #ifdef __sparc
2210 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2211 extern void dtrace_getfsr(uint64_t *);
2212 #endif
2214 #define DTRACE_CPUFLAG_ISSET(flag) \
2215 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2217 #define DTRACE_CPUFLAG_SET(flag) \
2218 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2220 #define DTRACE_CPUFLAG_CLEAR(flag) \
2221 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2223 #endif /* _KERNEL */
2225 #endif /* _ASM */
2227 #if defined(__i386) || defined(__amd64)
2229 #define DTRACE_INVOP_PUSHL_EBP 1
2230 #define DTRACE_INVOP_POPL_EBP 2
2231 #define DTRACE_INVOP_LEAVE 3
2232 #define DTRACE_INVOP_NOP 4
2233 #define DTRACE_INVOP_RET 5
2235 #endif
2237 #ifdef __cplusplus
2239 #endif
2241 #endif /* _SYS_DTRACE_H */