6811333 Remove prom_printf() message in emlxs driver
[opensolaris.git] / usr / src / uts / common / sys / queue.h
blobcb814390a96ad590934b001fe9c3f45885ca6c6e
1 /* $NetBSD: queue.h,v 1.42 2005/07/13 15:08:24 wiz Exp $ */
3 /*
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
31 * @(#)queue.h 8.5 (Berkeley) 8/20/94
34 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
35 * Use is subject to license terms.
38 #ifndef _SYS_QUEUE_H
39 #define _SYS_QUEUE_H
41 #pragma ident "%Z%%M% %I% %E% SMI"
43 #include <sys/note.h>
45 #ifdef __cplusplus
46 extern "C" {
47 #endif
50 * This file defines five types of data structures: singly-linked lists,
51 * lists, simple queues, tail queues, and circular queues.
53 * A singly-linked list is headed by a single forward pointer. The
54 * elements are singly linked for minimum space and pointer manipulation
55 * overhead at the expense of O(n) removal for arbitrary elements. New
56 * elements can be added to the list after an existing element or at the
57 * head of the list. Elements being removed from the head of the list
58 * should use the explicit macro for this purpose for optimum
59 * efficiency. A singly-linked list may only be traversed in the forward
60 * direction. Singly-linked lists are ideal for applications with large
61 * datasets and few or no removals or for implementing a LIFO queue.
63 * A list is headed by a single forward pointer (or an array of forward
64 * pointers for a hash table header). The elements are doubly linked
65 * so that an arbitrary element can be removed without a need to
66 * traverse the list. New elements can be added to the list before
67 * or after an existing element or at the head of the list. A list
68 * may only be traversed in the forward direction.
70 * A simple queue is headed by a pair of pointers, one the head of the
71 * list and the other to the tail of the list. The elements are singly
72 * linked to save space, so elements can only be removed from the
73 * head of the list. New elements can be added to the list after
74 * an existing element, at the head of the list, or at the end of the
75 * list. A simple queue may only be traversed in the forward direction.
77 * A tail queue is headed by a pair of pointers, one to the head of the
78 * list and the other to the tail of the list. The elements are doubly
79 * linked so that an arbitrary element can be removed without a need to
80 * traverse the list. New elements can be added to the list before or
81 * after an existing element, at the head of the list, or at the end of
82 * the list. A tail queue may be traversed in either direction.
84 * A circle queue is headed by a pair of pointers, one to the head of the
85 * list and the other to the tail of the list. The elements are doubly
86 * linked so that an arbitrary element can be removed without a need to
87 * traverse the list. New elements can be added to the list before or after
88 * an existing element, at the head of the list, or at the end of the list.
89 * A circle queue may be traversed in either direction, but has a more
90 * complex end of list detection.
92 * For details on the use of these macros, see the queue(3) manual page.
96 * List definitions.
98 #define LIST_HEAD(name, type) \
99 struct name { \
100 struct type *lh_first; /* first element */ \
103 #define LIST_HEAD_INITIALIZER(head) \
104 { NULL }
106 #define LIST_ENTRY(type) \
107 struct { \
108 struct type *le_next; /* next element */ \
109 struct type **le_prev; /* address of previous next element */ \
113 * List functions.
115 #if defined(_KERNEL) && defined(QUEUEDEBUG)
116 #define QUEUEDEBUG_LIST_INSERT_HEAD(head, elm, field) \
117 if ((head)->lh_first && \
118 (head)->lh_first->field.le_prev != &(head)->lh_first) \
119 panic("LIST_INSERT_HEAD %p %s:%d", (head), __FILE__, __LINE__);
120 #define QUEUEDEBUG_LIST_OP(elm, field) \
121 if ((elm)->field.le_next && \
122 (elm)->field.le_next->field.le_prev != \
123 &(elm)->field.le_next) \
124 panic("LIST_* forw %p %s:%d", (elm), __FILE__, __LINE__);\
125 if (*(elm)->field.le_prev != (elm)) \
126 panic("LIST_* back %p %s:%d", (elm), __FILE__, __LINE__);
127 #define QUEUEDEBUG_LIST_POSTREMOVE(elm, field) \
128 (elm)->field.le_next = (void *)1L; \
129 (elm)->field.le_prev = (void *)1L;
130 #else
131 #define QUEUEDEBUG_LIST_INSERT_HEAD(head, elm, field)
132 #define QUEUEDEBUG_LIST_OP(elm, field)
133 #define QUEUEDEBUG_LIST_POSTREMOVE(elm, field)
134 #endif
136 #define LIST_INIT(head) do { \
137 (head)->lh_first = NULL; \
138 _NOTE(CONSTCOND) \
139 } while (0)
141 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
142 QUEUEDEBUG_LIST_OP((listelm), field) \
143 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
144 (listelm)->field.le_next->field.le_prev = \
145 &(elm)->field.le_next; \
146 (listelm)->field.le_next = (elm); \
147 (elm)->field.le_prev = &(listelm)->field.le_next; \
148 _NOTE(CONSTCOND) \
149 } while (0)
151 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
152 QUEUEDEBUG_LIST_OP((listelm), field) \
153 (elm)->field.le_prev = (listelm)->field.le_prev; \
154 (elm)->field.le_next = (listelm); \
155 *(listelm)->field.le_prev = (elm); \
156 (listelm)->field.le_prev = &(elm)->field.le_next; \
157 _NOTE(CONSTCOND) \
158 } while (0)
160 #define LIST_INSERT_HEAD(head, elm, field) do { \
161 QUEUEDEBUG_LIST_INSERT_HEAD((head), (elm), field) \
162 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
163 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
164 (head)->lh_first = (elm); \
165 (elm)->field.le_prev = &(head)->lh_first; \
166 _NOTE(CONSTCOND) \
167 } while (0)
169 #define LIST_REMOVE(elm, field) do { \
170 QUEUEDEBUG_LIST_OP((elm), field) \
171 if ((elm)->field.le_next != NULL) \
172 (elm)->field.le_next->field.le_prev = \
173 (elm)->field.le_prev; \
174 *(elm)->field.le_prev = (elm)->field.le_next; \
175 QUEUEDEBUG_LIST_POSTREMOVE((elm), field) \
176 _NOTE(CONSTCOND) \
177 } while (0)
179 #define LIST_FOREACH(var, head, field) \
180 for ((var) = ((head)->lh_first); \
181 (var); \
182 (var) = ((var)->field.le_next))
185 * List access methods.
187 #define LIST_EMPTY(head) ((head)->lh_first == NULL)
188 #define LIST_FIRST(head) ((head)->lh_first)
189 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
193 * Singly-linked List definitions.
195 #define SLIST_HEAD(name, type) \
196 struct name { \
197 struct type *slh_first; /* first element */ \
200 #define SLIST_HEAD_INITIALIZER(head) \
201 { NULL }
203 #define SLIST_ENTRY(type) \
204 struct { \
205 struct type *sle_next; /* next element */ \
209 * Singly-linked List functions.
211 #define SLIST_INIT(head) do { \
212 (head)->slh_first = NULL; \
213 _NOTE(CONSTCOND) \
214 } while (0)
216 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
217 (elm)->field.sle_next = (slistelm)->field.sle_next; \
218 (slistelm)->field.sle_next = (elm); \
219 _NOTE(CONSTCOND) \
220 } while (0)
222 #define SLIST_INSERT_HEAD(head, elm, field) do { \
223 (elm)->field.sle_next = (head)->slh_first; \
224 (head)->slh_first = (elm); \
225 _NOTE(CONSTCOND) \
226 } while (0)
228 #define SLIST_REMOVE_HEAD(head, field) do { \
229 (head)->slh_first = (head)->slh_first->field.sle_next; \
230 _NOTE(CONSTCOND) \
231 } while (0)
233 #define SLIST_REMOVE(head, elm, type, field) do { \
234 if ((head)->slh_first == (elm)) { \
235 SLIST_REMOVE_HEAD((head), field); \
237 else { \
238 struct type *curelm = (head)->slh_first; \
239 while (curelm->field.sle_next != (elm)) \
240 curelm = curelm->field.sle_next; \
241 curelm->field.sle_next = \
242 curelm->field.sle_next->field.sle_next; \
244 _NOTE(CONSTCOND) \
245 } while (0)
247 #define SLIST_FOREACH(var, head, field) \
248 for ((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
251 * Singly-linked List access methods.
253 #define SLIST_EMPTY(head) ((head)->slh_first == NULL)
254 #define SLIST_FIRST(head) ((head)->slh_first)
255 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
259 * Singly-linked Tail queue declarations.
261 #define STAILQ_HEAD(name, type) \
262 struct name { \
263 struct type *stqh_first; /* first element */ \
264 struct type **stqh_last; /* addr of last next element */ \
267 #define STAILQ_HEAD_INITIALIZER(head) \
268 { NULL, &(head).stqh_first }
270 #define STAILQ_ENTRY(type) \
271 struct { \
272 struct type *stqe_next; /* next element */ \
276 * Singly-linked Tail queue functions.
278 #define STAILQ_INIT(head) do { \
279 (head)->stqh_first = NULL; \
280 (head)->stqh_last = &(head)->stqh_first; \
281 _NOTE(CONSTCOND) \
282 } while (0)
284 #define STAILQ_INSERT_HEAD(head, elm, field) do { \
285 if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
286 (head)->stqh_last = &(elm)->field.stqe_next; \
287 (head)->stqh_first = (elm); \
288 _NOTE(CONSTCOND) \
289 } while (0)
291 #define STAILQ_INSERT_TAIL(head, elm, field) do { \
292 (elm)->field.stqe_next = NULL; \
293 *(head)->stqh_last = (elm); \
294 (head)->stqh_last = &(elm)->field.stqe_next; \
295 _NOTE(CONSTCOND) \
296 } while (0)
298 #define STAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
299 if (((elm)->field.stqe_next = (listelm)->field.stqe_next) \
300 == NULL) \
301 (head)->stqh_last = &(elm)->field.stqe_next; \
302 (listelm)->field.stqe_next = (elm); \
303 _NOTE(CONSTCOND) \
304 } while (0)
306 #define STAILQ_REMOVE_HEAD(head, field) do { \
307 if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) \
308 == NULL) \
309 (head)->stqh_last = &(head)->stqh_first; \
310 _NOTE(CONSTCOND) \
311 } while (0)
313 #define STAILQ_REMOVE(head, elm, type, field) do { \
314 if ((head)->stqh_first == (elm)) { \
315 STAILQ_REMOVE_HEAD((head), field); \
316 } else { \
317 struct type *curelm = (head)->stqh_first; \
318 while (curelm->field.stqe_next != (elm)) \
319 curelm = curelm->field.stqe_next; \
320 if ((curelm->field.stqe_next = \
321 curelm->field.stqe_next->field.stqe_next) == NULL) \
322 (head)->stqh_last = &(curelm)->field.stqe_next; \
324 _NOTE(CONSTCOND) \
325 } while (0)
327 #define STAILQ_FOREACH(var, head, field) \
328 for ((var) = ((head)->stqh_first); \
329 (var); \
330 (var) = ((var)->field.stqe_next))
333 * Singly-linked Tail queue access methods.
335 #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
336 #define STAILQ_FIRST(head) ((head)->stqh_first)
337 #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
341 * Simple queue definitions.
343 #define SIMPLEQ_HEAD(name, type) \
344 struct name { \
345 struct type *sqh_first; /* first element */ \
346 struct type **sqh_last; /* addr of last next element */ \
349 #define SIMPLEQ_HEAD_INITIALIZER(head) \
350 { NULL, &(head).sqh_first }
352 #define SIMPLEQ_ENTRY(type) \
353 struct { \
354 struct type *sqe_next; /* next element */ \
358 * Simple queue functions.
360 #define SIMPLEQ_INIT(head) do { \
361 (head)->sqh_first = NULL; \
362 (head)->sqh_last = &(head)->sqh_first; \
363 _NOTE(CONSTCOND) \
364 } while (0)
366 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
367 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
368 (head)->sqh_last = &(elm)->field.sqe_next; \
369 (head)->sqh_first = (elm); \
370 _NOTE(CONSTCOND) \
371 } while (0)
373 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
374 (elm)->field.sqe_next = NULL; \
375 *(head)->sqh_last = (elm); \
376 (head)->sqh_last = &(elm)->field.sqe_next; \
377 _NOTE(CONSTCOND) \
378 } while (0)
380 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
381 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
382 (head)->sqh_last = &(elm)->field.sqe_next; \
383 (listelm)->field.sqe_next = (elm); \
384 _NOTE(CONSTCOND) \
385 } while (0)
387 #define SIMPLEQ_REMOVE_HEAD(head, field) do { \
388 if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
389 (head)->sqh_last = &(head)->sqh_first; \
390 _NOTE(CONSTCOND) \
391 } while (0)
393 #define SIMPLEQ_REMOVE(head, elm, type, field) do { \
394 if ((head)->sqh_first == (elm)) { \
395 SIMPLEQ_REMOVE_HEAD((head), field); \
396 } else { \
397 struct type *curelm = (head)->sqh_first; \
398 while (curelm->field.sqe_next != (elm)) \
399 curelm = curelm->field.sqe_next; \
400 if ((curelm->field.sqe_next = \
401 curelm->field.sqe_next->field.sqe_next) == NULL) \
402 (head)->sqh_last = &(curelm)->field.sqe_next; \
404 _NOTE(CONSTCOND) \
405 } while (0)
407 #define SIMPLEQ_FOREACH(var, head, field) \
408 for ((var) = ((head)->sqh_first); \
409 (var); \
410 (var) = ((var)->field.sqe_next))
413 * Simple queue access methods.
415 #define SIMPLEQ_EMPTY(head) ((head)->sqh_first == NULL)
416 #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
417 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
421 * Tail queue definitions.
423 #define _TAILQ_HEAD(name, type) \
424 struct name { \
425 type *tqh_first; /* first element */ \
426 type **tqh_last; /* addr of last next element */ \
428 #define TAILQ_HEAD(name, type) _TAILQ_HEAD(name, struct type)
430 #define TAILQ_HEAD_INITIALIZER(head) \
431 { NULL, &(head).tqh_first }
433 #define _TAILQ_ENTRY(type) \
434 struct { \
435 type *tqe_next; /* next element */ \
436 type **tqe_prev; /* address of previous next element */\
438 #define TAILQ_ENTRY(type) _TAILQ_ENTRY(struct type)
441 * Tail queue functions.
443 #if defined(_KERNEL) && defined(QUEUEDEBUG)
444 #define QUEUEDEBUG_TAILQ_INSERT_HEAD(head, elm, field) \
445 if ((head)->tqh_first && \
446 (head)->tqh_first->field.tqe_prev != &(head)->tqh_first) \
447 panic("TAILQ_INSERT_HEAD %p %s:%d", (head), __FILE__, __LINE__);
448 #define QUEUEDEBUG_TAILQ_INSERT_TAIL(head, elm, field) \
449 if (*(head)->tqh_last != NULL) \
450 panic("TAILQ_INSERT_TAIL %p %s:%d", (head), __FILE__, __LINE__);
451 #define QUEUEDEBUG_TAILQ_OP(elm, field) \
452 if ((elm)->field.tqe_next && \
453 (elm)->field.tqe_next->field.tqe_prev != \
454 &(elm)->field.tqe_next) \
455 panic("TAILQ_* forw %p %s:%d", (elm), __FILE__, __LINE__);\
456 if (*(elm)->field.tqe_prev != (elm)) \
457 panic("TAILQ_* back %p %s:%d", (elm), __FILE__, __LINE__);
458 #define QUEUEDEBUG_TAILQ_PREREMOVE(head, elm, field) \
459 if ((elm)->field.tqe_next == NULL && \
460 (head)->tqh_last != &(elm)->field.tqe_next) \
461 panic("TAILQ_PREREMOVE head %p elm %p %s:%d", \
462 (head), (elm), __FILE__, __LINE__);
463 #define QUEUEDEBUG_TAILQ_POSTREMOVE(elm, field) \
464 (elm)->field.tqe_next = (void *)1L; \
465 (elm)->field.tqe_prev = (void *)1L;
466 #else
467 #define QUEUEDEBUG_TAILQ_INSERT_HEAD(head, elm, field)
468 #define QUEUEDEBUG_TAILQ_INSERT_TAIL(head, elm, field)
469 #define QUEUEDEBUG_TAILQ_OP(elm, field)
470 #define QUEUEDEBUG_TAILQ_PREREMOVE(head, elm, field)
471 #define QUEUEDEBUG_TAILQ_POSTREMOVE(elm, field)
472 #endif
474 #define TAILQ_INIT(head) do { \
475 (head)->tqh_first = NULL; \
476 (head)->tqh_last = &(head)->tqh_first; \
477 _NOTE(CONSTCOND) \
478 } while (0)
480 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
481 QUEUEDEBUG_TAILQ_INSERT_HEAD((head), (elm), field) \
482 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
483 (head)->tqh_first->field.tqe_prev = \
484 &(elm)->field.tqe_next; \
485 else \
486 (head)->tqh_last = &(elm)->field.tqe_next; \
487 (head)->tqh_first = (elm); \
488 (elm)->field.tqe_prev = &(head)->tqh_first; \
489 _NOTE(CONSTCOND) \
490 } while (0)
492 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
493 QUEUEDEBUG_TAILQ_INSERT_TAIL((head), (elm), field) \
494 (elm)->field.tqe_next = NULL; \
495 (elm)->field.tqe_prev = (head)->tqh_last; \
496 *(head)->tqh_last = (elm); \
497 (head)->tqh_last = &(elm)->field.tqe_next; \
498 _NOTE(CONSTCOND) \
499 } while (0)
501 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
502 QUEUEDEBUG_TAILQ_OP((listelm), field) \
503 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
504 (elm)->field.tqe_next->field.tqe_prev = \
505 &(elm)->field.tqe_next; \
506 else \
507 (head)->tqh_last = &(elm)->field.tqe_next; \
508 (listelm)->field.tqe_next = (elm); \
509 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
510 _NOTE(CONSTCOND) \
511 } while (0)
513 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
514 QUEUEDEBUG_TAILQ_OP((listelm), field) \
515 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
516 (elm)->field.tqe_next = (listelm); \
517 *(listelm)->field.tqe_prev = (elm); \
518 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
519 _NOTE(CONSTCOND) \
520 } while (0)
522 #define TAILQ_REMOVE(head, elm, field) do { \
523 QUEUEDEBUG_TAILQ_PREREMOVE((head), (elm), field) \
524 QUEUEDEBUG_TAILQ_OP((elm), field) \
525 if (((elm)->field.tqe_next) != NULL) \
526 (elm)->field.tqe_next->field.tqe_prev = \
527 (elm)->field.tqe_prev; \
528 else \
529 (head)->tqh_last = (elm)->field.tqe_prev; \
530 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
531 QUEUEDEBUG_TAILQ_POSTREMOVE((elm), field); \
532 _NOTE(CONSTCOND) \
533 } while (0)
535 #define TAILQ_FOREACH(var, head, field) \
536 for ((var) = ((head)->tqh_first); \
537 (var); \
538 (var) = ((var)->field.tqe_next))
540 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
541 for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));\
542 (var); \
543 (var) = \
544 (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
547 * Tail queue access methods.
549 #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
550 #define TAILQ_FIRST(head) ((head)->tqh_first)
551 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
553 #define TAILQ_LAST(head, headname) \
554 (*(((struct headname *)((head)->tqh_last))->tqh_last))
555 #define TAILQ_PREV(elm, headname, field) \
556 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
560 * Circular queue definitions.
562 #define CIRCLEQ_HEAD(name, type) \
563 struct name { \
564 struct type *cqh_first; /* first element */ \
565 struct type *cqh_last; /* last element */ \
568 #define CIRCLEQ_HEAD_INITIALIZER(head) \
569 { (void *)&head, (void *)&head }
571 #define CIRCLEQ_ENTRY(type) \
572 struct { \
573 struct type *cqe_next; /* next element */ \
574 struct type *cqe_prev; /* previous element */ \
578 * Circular queue functions.
580 #define CIRCLEQ_INIT(head) do { \
581 (head)->cqh_first = (void *)(head); \
582 (head)->cqh_last = (void *)(head); \
583 _NOTE(CONSTCOND) \
584 } while (0)
586 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
587 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
588 (elm)->field.cqe_prev = (listelm); \
589 if ((listelm)->field.cqe_next == (void *)(head)) \
590 (head)->cqh_last = (elm); \
591 else \
592 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
593 (listelm)->field.cqe_next = (elm); \
594 _NOTE(CONSTCOND) \
595 } while (0)
597 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
598 (elm)->field.cqe_next = (listelm); \
599 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
600 if ((listelm)->field.cqe_prev == (void *)(head)) \
601 (head)->cqh_first = (elm); \
602 else \
603 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
604 (listelm)->field.cqe_prev = (elm); \
605 _NOTE(CONSTCOND) \
606 } while (0)
608 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
609 (elm)->field.cqe_next = (head)->cqh_first; \
610 (elm)->field.cqe_prev = (void *)(head); \
611 if ((head)->cqh_last == (void *)(head)) \
612 (head)->cqh_last = (elm); \
613 else \
614 (head)->cqh_first->field.cqe_prev = (elm); \
615 (head)->cqh_first = (elm); \
616 _NOTE(CONSTCOND) \
617 } while (0)
619 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
620 (elm)->field.cqe_next = (void *)(head); \
621 (elm)->field.cqe_prev = (head)->cqh_last; \
622 if ((head)->cqh_first == (void *)(head)) \
623 (head)->cqh_first = (elm); \
624 else \
625 (head)->cqh_last->field.cqe_next = (elm); \
626 (head)->cqh_last = (elm); \
627 _NOTE(CONSTCOND) \
628 } while (0)
630 #define CIRCLEQ_REMOVE(head, elm, field) do { \
631 if ((elm)->field.cqe_next == (void *)(head)) \
632 (head)->cqh_last = (elm)->field.cqe_prev; \
633 else \
634 (elm)->field.cqe_next->field.cqe_prev = \
635 (elm)->field.cqe_prev; \
636 if ((elm)->field.cqe_prev == (void *)(head)) \
637 (head)->cqh_first = (elm)->field.cqe_next; \
638 else \
639 (elm)->field.cqe_prev->field.cqe_next = \
640 (elm)->field.cqe_next; \
641 _NOTE(CONSTCOND) \
642 } while (0)
644 #define CIRCLEQ_FOREACH(var, head, field) \
645 for ((var) = ((head)->cqh_first); \
646 (var) != (void *)(head); \
647 (var) = ((var)->field.cqe_next))
649 #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
650 for ((var) = ((head)->cqh_last); \
651 (var) != (void *)(head); \
652 (var) = ((var)->field.cqe_prev))
655 * Circular queue access methods.
657 #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
658 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
659 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
660 #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
661 #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
663 #ifdef __cplusplus
665 #endif
667 #endif /* !_SYS_QUEUE_H */