1 /* $OpenBSD: moduli.c,v 1.13 2006/03/25 00:05:41 djm Exp $ */
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * Two-step process to generate safe primes for DHGEX
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
44 #include <openssl/bn.h>
50 /* need line long enough for largest moduli plus headers */
51 #define QLINESIZE (100+8192)
54 * Specifies the internal structure of the prime modulus.
56 #define QTYPE_UNKNOWN (0)
57 #define QTYPE_UNSTRUCTURED (1)
58 #define QTYPE_SAFE (2)
59 #define QTYPE_SCHNORR (3)
60 #define QTYPE_SOPHIE_GERMAIN (4)
61 #define QTYPE_STRONG (5)
63 /* Tests: decimal (bit field).
64 * Specifies the methods used in checking for primality.
65 * Usually, more than one test is used.
67 #define QTEST_UNTESTED (0x00)
68 #define QTEST_COMPOSITE (0x01)
69 #define QTEST_SIEVE (0x02)
70 #define QTEST_MILLER_RABIN (0x04)
71 #define QTEST_JACOBI (0x08)
72 #define QTEST_ELLIPTIC (0x10)
76 * Specifies the number of the most significant bit (0 to M).
77 * WARNING: internally, usually 1 to N.
79 #define QSIZE_MINIMUM (511)
82 * Prime sieving defines
85 /* Constant: assuming 8 bit bytes and 32 bit words */
87 #define SHIFT_BYTE (2)
88 #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
89 #define SHIFT_MEGABYTE (20)
90 #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
93 * Using virtual memory can cause thrashing. This should be the largest
94 * number that is supported without a large amount of disk activity --
95 * that would increase the run time from hours to days or weeks!
97 #define LARGE_MINIMUM (8UL) /* megabytes */
100 * Do not increase this number beyond the unsigned integer bit size.
101 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
103 #define LARGE_MAXIMUM (127UL) /* megabytes */
106 * Constant: when used with 32-bit integers, the largest sieve prime
107 * has to be less than 2**32.
109 #define SMALL_MAXIMUM (0xffffffffUL)
111 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
112 #define TINY_NUMBER (1UL<<16)
114 /* Ensure enough bit space for testing 2*q. */
115 #define TEST_MAXIMUM (1UL<<16)
116 #define TEST_MINIMUM (QSIZE_MINIMUM + 1)
117 /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
118 #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
120 /* bit operations on 32-bit words */
121 #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
122 #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
123 #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
126 * Prime testing defines
129 /* Minimum number of primality tests to perform */
130 #define TRIAL_MINIMUM (4)
133 * Sieving data (XXX - move to struct)
137 static u_int32_t
*TinySieve
, tinybits
;
139 /* sieve 2**30 in 2**16 parts */
140 static u_int32_t
*SmallSieve
, smallbits
, smallbase
;
142 /* sieve relative to the initial value */
143 static u_int32_t
*LargeSieve
, largewords
, largetries
, largenumbers
;
144 static u_int32_t largebits
, largememory
; /* megabytes */
145 static BIGNUM
*largebase
;
147 int gen_candidates(FILE *, u_int32_t
, u_int32_t
, BIGNUM
*);
148 int prime_test(FILE *, FILE *, u_int32_t
, u_int32_t
);
151 * print moduli out in consistent form,
154 qfileout(FILE * ofile
, u_int32_t otype
, u_int32_t otests
, u_int32_t otries
,
155 u_int32_t osize
, u_int32_t ogenerator
, BIGNUM
* omodulus
)
162 gtm
= gmtime(&time_now
);
164 res
= fprintf(ofile
, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
165 gtm
->tm_year
+ 1900, gtm
->tm_mon
+ 1, gtm
->tm_mday
,
166 gtm
->tm_hour
, gtm
->tm_min
, gtm
->tm_sec
,
167 otype
, otests
, otries
, osize
, ogenerator
);
172 if (BN_print_fp(ofile
, omodulus
) < 1)
175 res
= fprintf(ofile
, "\n");
178 return (res
> 0 ? 0 : -1);
183 ** Sieve p's and q's with small factors
186 sieve_large(u_int32_t s
)
190 debug3("sieve_large %u", s
);
192 /* r = largebase mod s */
193 r
= BN_mod_word(largebase
, s
);
195 u
= 0; /* s divides into largebase exactly */
197 u
= s
- r
; /* largebase+u is first entry divisible by s */
199 if (u
< largebits
* 2) {
201 * The sieve omits p's and q's divisible by 2, so ensure that
202 * largebase+u is odd. Then, step through the sieve in
206 u
+= s
; /* Make largebase+u odd, and u even */
208 /* Mark all multiples of 2*s */
209 for (u
/= 2; u
< largebits
; u
+= s
)
210 BIT_SET(LargeSieve
, u
);
216 u
= 0; /* s divides p exactly */
218 u
= s
- r
; /* p+u is first entry divisible by s */
220 if (u
< largebits
* 4) {
222 * The sieve omits p's divisible by 4, so ensure that
223 * largebase+u is not. Then, step through the sieve in
227 if (SMALL_MAXIMUM
- u
< s
)
232 /* Mark all multiples of 4*s */
233 for (u
/= 4; u
< largebits
; u
+= s
)
234 BIT_SET(LargeSieve
, u
);
239 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
240 * to standard output.
241 * The list is checked against small known primes (less than 2**30).
244 gen_candidates(FILE *out
, u_int32_t memory
, u_int32_t power
, BIGNUM
*start
)
247 u_int32_t j
, r
, s
, t
;
248 u_int32_t smallwords
= TINY_NUMBER
>> 6;
249 u_int32_t tinywords
= TINY_NUMBER
>> 6;
250 time_t time_start
, time_stop
;
254 largememory
= memory
;
257 (memory
< LARGE_MINIMUM
|| memory
> LARGE_MAXIMUM
)) {
258 error("Invalid memory amount (min %ld, max %ld)",
259 LARGE_MINIMUM
, LARGE_MAXIMUM
);
264 * Set power to the length in bits of the prime to be generated.
265 * This is changed to 1 less than the desired safe prime moduli p.
267 if (power
> TEST_MAXIMUM
) {
268 error("Too many bits: %u > %lu", power
, TEST_MAXIMUM
);
270 } else if (power
< TEST_MINIMUM
) {
271 error("Too few bits: %u < %u", power
, TEST_MINIMUM
);
274 power
--; /* decrement before squaring */
277 * The density of ordinary primes is on the order of 1/bits, so the
278 * density of safe primes should be about (1/bits)**2. Set test range
279 * to something well above bits**2 to be reasonably sure (but not
280 * guaranteed) of catching at least one safe prime.
282 largewords
= ((power
* power
) >> (SHIFT_WORD
- TEST_POWER
));
285 * Need idea of how much memory is available. We don't have to use all
288 if (largememory
> LARGE_MAXIMUM
) {
289 logit("Limited memory: %u MB; limit %lu MB",
290 largememory
, LARGE_MAXIMUM
);
291 largememory
= LARGE_MAXIMUM
;
294 if (largewords
<= (largememory
<< SHIFT_MEGAWORD
)) {
295 logit("Increased memory: %u MB; need %u bytes",
296 largememory
, (largewords
<< SHIFT_BYTE
));
297 largewords
= (largememory
<< SHIFT_MEGAWORD
);
298 } else if (largememory
> 0) {
299 logit("Decreased memory: %u MB; want %u bytes",
300 largememory
, (largewords
<< SHIFT_BYTE
));
301 largewords
= (largememory
<< SHIFT_MEGAWORD
);
304 TinySieve
= xcalloc(tinywords
, sizeof(u_int32_t
));
305 tinybits
= tinywords
<< SHIFT_WORD
;
307 SmallSieve
= xcalloc(smallwords
, sizeof(u_int32_t
));
308 smallbits
= smallwords
<< SHIFT_WORD
;
311 * dynamically determine available memory
313 while ((LargeSieve
= calloc(largewords
, sizeof(u_int32_t
))) == NULL
)
314 largewords
-= (1L << (SHIFT_MEGAWORD
- 2)); /* 1/4 MB chunks */
316 largebits
= largewords
<< SHIFT_WORD
;
317 largenumbers
= largebits
* 2; /* even numbers excluded */
319 /* validation check: count the number of primes tried */
324 * Generate random starting point for subprime search, or use
325 * specified parameter.
327 largebase
= BN_new();
329 BN_rand(largebase
, power
, 1, 1);
331 BN_copy(largebase
, start
);
334 BN_set_bit(largebase
, 0);
338 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start
),
339 largenumbers
, power
);
340 debug2("start point: 0x%s", BN_bn2hex(largebase
));
345 for (i
= 0; i
< tinybits
; i
++) {
346 if (BIT_TEST(TinySieve
, i
))
347 continue; /* 2*i+3 is composite */
349 /* The next tiny prime */
352 /* Mark all multiples of t */
353 for (j
= i
+ t
; j
< tinybits
; j
+= t
)
354 BIT_SET(TinySieve
, j
);
360 * Start the small block search at the next possible prime. To avoid
361 * fencepost errors, the last pass is skipped.
363 for (smallbase
= TINY_NUMBER
+ 3;
364 smallbase
< (SMALL_MAXIMUM
- TINY_NUMBER
);
365 smallbase
+= TINY_NUMBER
) {
366 for (i
= 0; i
< tinybits
; i
++) {
367 if (BIT_TEST(TinySieve
, i
))
368 continue; /* 2*i+3 is composite */
370 /* The next tiny prime */
375 s
= 0; /* t divides into smallbase exactly */
377 /* smallbase+s is first entry divisible by t */
382 * The sieve omits even numbers, so ensure that
383 * smallbase+s is odd. Then, step through the sieve
384 * in increments of 2*t
387 s
+= t
; /* Make smallbase+s odd, and s even */
389 /* Mark all multiples of 2*t */
390 for (s
/= 2; s
< smallbits
; s
+= t
)
391 BIT_SET(SmallSieve
, s
);
397 for (i
= 0; i
< smallbits
; i
++) {
398 if (BIT_TEST(SmallSieve
, i
))
399 continue; /* 2*i+smallbase is composite */
401 /* The next small prime */
402 sieve_large((2 * i
) + smallbase
);
405 memset(SmallSieve
, 0, smallwords
<< SHIFT_BYTE
);
410 logit("%.24s Sieved with %u small primes in %ld seconds",
411 ctime(&time_stop
), largetries
, (long) (time_stop
- time_start
));
413 for (j
= r
= 0; j
< largebits
; j
++) {
414 if (BIT_TEST(LargeSieve
, j
))
415 continue; /* Definitely composite, skip */
417 debug2("test q = largebase+%u", 2 * j
);
418 BN_set_word(q
, 2 * j
);
419 BN_add(q
, q
, largebase
);
420 if (qfileout(out
, QTYPE_SOPHIE_GERMAIN
, QTEST_SIEVE
,
421 largetries
, (power
- 1) /* MSB */, (0), q
) == -1) {
435 logit("%.24s Found %u candidates", ctime(&time_stop
), r
);
441 * perform a Miller-Rabin primality test
442 * on the list of candidates
443 * (checking both q and p)
444 * The result is a list of so-call "safe" primes
447 prime_test(FILE *in
, FILE *out
, u_int32_t trials
, u_int32_t generator_wanted
)
452 u_int32_t count_in
= 0, count_out
= 0, count_possible
= 0;
453 u_int32_t generator_known
, in_tests
, in_tries
, in_type
, in_size
;
454 time_t time_start
, time_stop
;
457 if (trials
< TRIAL_MINIMUM
) {
458 error("Minimum primality trials is %d", TRIAL_MINIMUM
);
468 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
469 ctime(&time_start
), trials
, generator_wanted
);
472 lp
= xmalloc(QLINESIZE
+ 1);
473 while (fgets(lp
, QLINESIZE
, in
) != NULL
) {
477 if (ll
< 14 || *lp
== '!' || *lp
== '#') {
478 debug2("%10u: comment or short line", count_in
);
482 /* XXX - fragile parser */
484 cp
= &lp
[14]; /* (skip) */
487 in_type
= strtoul(cp
, &cp
, 10);
490 in_tests
= strtoul(cp
, &cp
, 10);
492 if (in_tests
& QTEST_COMPOSITE
) {
493 debug2("%10u: known composite", count_in
);
498 in_tries
= strtoul(cp
, &cp
, 10);
500 /* size (most significant bit) */
501 in_size
= strtoul(cp
, &cp
, 10);
503 /* generator (hex) */
504 generator_known
= strtoul(cp
, &cp
, 16);
506 /* Skip white space */
507 cp
+= strspn(cp
, " ");
511 case QTYPE_SOPHIE_GERMAIN
:
512 debug2("%10u: (%u) Sophie-Germain", count_in
, in_type
);
521 case QTYPE_UNSTRUCTURED
:
526 debug2("%10u: (%u)", count_in
, in_type
);
533 debug2("Unknown prime type");
538 * due to earlier inconsistencies in interpretation, check
539 * the proposed bit size.
541 if ((u_int32_t
)BN_num_bits(p
) != (in_size
+ 1)) {
542 debug2("%10u: bit size %u mismatch", count_in
, in_size
);
545 if (in_size
< QSIZE_MINIMUM
) {
546 debug2("%10u: bit size %u too short", count_in
, in_size
);
550 if (in_tests
& QTEST_MILLER_RABIN
)
556 * guess unknown generator
558 if (generator_known
== 0) {
559 if (BN_mod_word(p
, 24) == 11)
561 else if (BN_mod_word(p
, 12) == 5)
564 u_int32_t r
= BN_mod_word(p
, 10);
566 if (r
== 3 || r
== 7)
571 * skip tests when desired generator doesn't match
573 if (generator_wanted
> 0 &&
574 generator_wanted
!= generator_known
) {
575 debug2("%10u: generator %d != %d",
576 count_in
, generator_known
, generator_wanted
);
581 * Primes with no known generator are useless for DH, so
584 if (generator_known
== 0) {
585 debug2("%10u: no known generator", count_in
);
592 * The (1/4)^N performance bound on Miller-Rabin is
593 * extremely pessimistic, so don't spend a lot of time
594 * really verifying that q is prime until after we know
595 * that p is also prime. A single pass will weed out the
596 * vast majority of composite q's.
598 if (BN_is_prime(q
, 1, NULL
, ctx
, NULL
) <= 0) {
599 debug("%10u: q failed first possible prime test",
605 * q is possibly prime, so go ahead and really make sure
606 * that p is prime. If it is, then we can go back and do
607 * the same for q. If p is composite, chances are that
608 * will show up on the first Rabin-Miller iteration so it
609 * doesn't hurt to specify a high iteration count.
611 if (!BN_is_prime(p
, trials
, NULL
, ctx
, NULL
)) {
612 debug("%10u: p is not prime", count_in
);
615 debug("%10u: p is almost certainly prime", count_in
);
617 /* recheck q more rigorously */
618 if (!BN_is_prime(q
, trials
- 1, NULL
, ctx
, NULL
)) {
619 debug("%10u: q is not prime", count_in
);
622 debug("%10u: q is almost certainly prime", count_in
);
624 if (qfileout(out
, QTYPE_SAFE
, (in_tests
| QTEST_MILLER_RABIN
),
625 in_tries
, in_size
, generator_known
, p
)) {
639 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
640 ctime(&time_stop
), count_out
, count_possible
,
641 (long) (time_stop
- time_start
));