- djm@cvs.openbsd.org 2006/07/10 11:25:53
[openssh-git.git] / moduli.c
blobf6f15a2a40c24cf8c42c062f9f2ee78759c6dcbe
1 /* $OpenBSD: moduli.c,v 1.13 2006/03/25 00:05:41 djm Exp $ */
2 /*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * Two-step process to generate safe primes for DHGEX
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
40 #include "includes.h"
41 #include "xmalloc.h"
42 #include "log.h"
44 #include <openssl/bn.h>
47 * File output defines
50 /* need line long enough for largest moduli plus headers */
51 #define QLINESIZE (100+8192)
53 /* Type: decimal.
54 * Specifies the internal structure of the prime modulus.
56 #define QTYPE_UNKNOWN (0)
57 #define QTYPE_UNSTRUCTURED (1)
58 #define QTYPE_SAFE (2)
59 #define QTYPE_SCHNORR (3)
60 #define QTYPE_SOPHIE_GERMAIN (4)
61 #define QTYPE_STRONG (5)
63 /* Tests: decimal (bit field).
64 * Specifies the methods used in checking for primality.
65 * Usually, more than one test is used.
67 #define QTEST_UNTESTED (0x00)
68 #define QTEST_COMPOSITE (0x01)
69 #define QTEST_SIEVE (0x02)
70 #define QTEST_MILLER_RABIN (0x04)
71 #define QTEST_JACOBI (0x08)
72 #define QTEST_ELLIPTIC (0x10)
75 * Size: decimal.
76 * Specifies the number of the most significant bit (0 to M).
77 * WARNING: internally, usually 1 to N.
79 #define QSIZE_MINIMUM (511)
82 * Prime sieving defines
85 /* Constant: assuming 8 bit bytes and 32 bit words */
86 #define SHIFT_BIT (3)
87 #define SHIFT_BYTE (2)
88 #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
89 #define SHIFT_MEGABYTE (20)
90 #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
93 * Using virtual memory can cause thrashing. This should be the largest
94 * number that is supported without a large amount of disk activity --
95 * that would increase the run time from hours to days or weeks!
97 #define LARGE_MINIMUM (8UL) /* megabytes */
100 * Do not increase this number beyond the unsigned integer bit size.
101 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
103 #define LARGE_MAXIMUM (127UL) /* megabytes */
106 * Constant: when used with 32-bit integers, the largest sieve prime
107 * has to be less than 2**32.
109 #define SMALL_MAXIMUM (0xffffffffUL)
111 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
112 #define TINY_NUMBER (1UL<<16)
114 /* Ensure enough bit space for testing 2*q. */
115 #define TEST_MAXIMUM (1UL<<16)
116 #define TEST_MINIMUM (QSIZE_MINIMUM + 1)
117 /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
118 #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
120 /* bit operations on 32-bit words */
121 #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
122 #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
123 #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
126 * Prime testing defines
129 /* Minimum number of primality tests to perform */
130 #define TRIAL_MINIMUM (4)
133 * Sieving data (XXX - move to struct)
136 /* sieve 2**16 */
137 static u_int32_t *TinySieve, tinybits;
139 /* sieve 2**30 in 2**16 parts */
140 static u_int32_t *SmallSieve, smallbits, smallbase;
142 /* sieve relative to the initial value */
143 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
144 static u_int32_t largebits, largememory; /* megabytes */
145 static BIGNUM *largebase;
147 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
148 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
151 * print moduli out in consistent form,
153 static int
154 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
155 u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
157 struct tm *gtm;
158 time_t time_now;
159 int res;
161 time(&time_now);
162 gtm = gmtime(&time_now);
164 res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
165 gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
166 gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
167 otype, otests, otries, osize, ogenerator);
169 if (res < 0)
170 return (-1);
172 if (BN_print_fp(ofile, omodulus) < 1)
173 return (-1);
175 res = fprintf(ofile, "\n");
176 fflush(ofile);
178 return (res > 0 ? 0 : -1);
183 ** Sieve p's and q's with small factors
185 static void
186 sieve_large(u_int32_t s)
188 u_int32_t r, u;
190 debug3("sieve_large %u", s);
191 largetries++;
192 /* r = largebase mod s */
193 r = BN_mod_word(largebase, s);
194 if (r == 0)
195 u = 0; /* s divides into largebase exactly */
196 else
197 u = s - r; /* largebase+u is first entry divisible by s */
199 if (u < largebits * 2) {
201 * The sieve omits p's and q's divisible by 2, so ensure that
202 * largebase+u is odd. Then, step through the sieve in
203 * increments of 2*s
205 if (u & 0x1)
206 u += s; /* Make largebase+u odd, and u even */
208 /* Mark all multiples of 2*s */
209 for (u /= 2; u < largebits; u += s)
210 BIT_SET(LargeSieve, u);
213 /* r = p mod s */
214 r = (2 * r + 1) % s;
215 if (r == 0)
216 u = 0; /* s divides p exactly */
217 else
218 u = s - r; /* p+u is first entry divisible by s */
220 if (u < largebits * 4) {
222 * The sieve omits p's divisible by 4, so ensure that
223 * largebase+u is not. Then, step through the sieve in
224 * increments of 4*s
226 while (u & 0x3) {
227 if (SMALL_MAXIMUM - u < s)
228 return;
229 u += s;
232 /* Mark all multiples of 4*s */
233 for (u /= 4; u < largebits; u += s)
234 BIT_SET(LargeSieve, u);
239 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
240 * to standard output.
241 * The list is checked against small known primes (less than 2**30).
244 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
246 BIGNUM *q;
247 u_int32_t j, r, s, t;
248 u_int32_t smallwords = TINY_NUMBER >> 6;
249 u_int32_t tinywords = TINY_NUMBER >> 6;
250 time_t time_start, time_stop;
251 u_int32_t i;
252 int ret = 0;
254 largememory = memory;
256 if (memory != 0 &&
257 (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
258 error("Invalid memory amount (min %ld, max %ld)",
259 LARGE_MINIMUM, LARGE_MAXIMUM);
260 return (-1);
264 * Set power to the length in bits of the prime to be generated.
265 * This is changed to 1 less than the desired safe prime moduli p.
267 if (power > TEST_MAXIMUM) {
268 error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
269 return (-1);
270 } else if (power < TEST_MINIMUM) {
271 error("Too few bits: %u < %u", power, TEST_MINIMUM);
272 return (-1);
274 power--; /* decrement before squaring */
277 * The density of ordinary primes is on the order of 1/bits, so the
278 * density of safe primes should be about (1/bits)**2. Set test range
279 * to something well above bits**2 to be reasonably sure (but not
280 * guaranteed) of catching at least one safe prime.
282 largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
285 * Need idea of how much memory is available. We don't have to use all
286 * of it.
288 if (largememory > LARGE_MAXIMUM) {
289 logit("Limited memory: %u MB; limit %lu MB",
290 largememory, LARGE_MAXIMUM);
291 largememory = LARGE_MAXIMUM;
294 if (largewords <= (largememory << SHIFT_MEGAWORD)) {
295 logit("Increased memory: %u MB; need %u bytes",
296 largememory, (largewords << SHIFT_BYTE));
297 largewords = (largememory << SHIFT_MEGAWORD);
298 } else if (largememory > 0) {
299 logit("Decreased memory: %u MB; want %u bytes",
300 largememory, (largewords << SHIFT_BYTE));
301 largewords = (largememory << SHIFT_MEGAWORD);
304 TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
305 tinybits = tinywords << SHIFT_WORD;
307 SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
308 smallbits = smallwords << SHIFT_WORD;
311 * dynamically determine available memory
313 while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
314 largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
316 largebits = largewords << SHIFT_WORD;
317 largenumbers = largebits * 2; /* even numbers excluded */
319 /* validation check: count the number of primes tried */
320 largetries = 0;
321 q = BN_new();
324 * Generate random starting point for subprime search, or use
325 * specified parameter.
327 largebase = BN_new();
328 if (start == NULL)
329 BN_rand(largebase, power, 1, 1);
330 else
331 BN_copy(largebase, start);
333 /* ensure odd */
334 BN_set_bit(largebase, 0);
336 time(&time_start);
338 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
339 largenumbers, power);
340 debug2("start point: 0x%s", BN_bn2hex(largebase));
343 * TinySieve
345 for (i = 0; i < tinybits; i++) {
346 if (BIT_TEST(TinySieve, i))
347 continue; /* 2*i+3 is composite */
349 /* The next tiny prime */
350 t = 2 * i + 3;
352 /* Mark all multiples of t */
353 for (j = i + t; j < tinybits; j += t)
354 BIT_SET(TinySieve, j);
356 sieve_large(t);
360 * Start the small block search at the next possible prime. To avoid
361 * fencepost errors, the last pass is skipped.
363 for (smallbase = TINY_NUMBER + 3;
364 smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
365 smallbase += TINY_NUMBER) {
366 for (i = 0; i < tinybits; i++) {
367 if (BIT_TEST(TinySieve, i))
368 continue; /* 2*i+3 is composite */
370 /* The next tiny prime */
371 t = 2 * i + 3;
372 r = smallbase % t;
374 if (r == 0) {
375 s = 0; /* t divides into smallbase exactly */
376 } else {
377 /* smallbase+s is first entry divisible by t */
378 s = t - r;
382 * The sieve omits even numbers, so ensure that
383 * smallbase+s is odd. Then, step through the sieve
384 * in increments of 2*t
386 if (s & 1)
387 s += t; /* Make smallbase+s odd, and s even */
389 /* Mark all multiples of 2*t */
390 for (s /= 2; s < smallbits; s += t)
391 BIT_SET(SmallSieve, s);
395 * SmallSieve
397 for (i = 0; i < smallbits; i++) {
398 if (BIT_TEST(SmallSieve, i))
399 continue; /* 2*i+smallbase is composite */
401 /* The next small prime */
402 sieve_large((2 * i) + smallbase);
405 memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
408 time(&time_stop);
410 logit("%.24s Sieved with %u small primes in %ld seconds",
411 ctime(&time_stop), largetries, (long) (time_stop - time_start));
413 for (j = r = 0; j < largebits; j++) {
414 if (BIT_TEST(LargeSieve, j))
415 continue; /* Definitely composite, skip */
417 debug2("test q = largebase+%u", 2 * j);
418 BN_set_word(q, 2 * j);
419 BN_add(q, q, largebase);
420 if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE,
421 largetries, (power - 1) /* MSB */, (0), q) == -1) {
422 ret = -1;
423 break;
426 r++; /* count q */
429 time(&time_stop);
431 xfree(LargeSieve);
432 xfree(SmallSieve);
433 xfree(TinySieve);
435 logit("%.24s Found %u candidates", ctime(&time_stop), r);
437 return (ret);
441 * perform a Miller-Rabin primality test
442 * on the list of candidates
443 * (checking both q and p)
444 * The result is a list of so-call "safe" primes
447 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
449 BIGNUM *q, *p, *a;
450 BN_CTX *ctx;
451 char *cp, *lp;
452 u_int32_t count_in = 0, count_out = 0, count_possible = 0;
453 u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
454 time_t time_start, time_stop;
455 int res;
457 if (trials < TRIAL_MINIMUM) {
458 error("Minimum primality trials is %d", TRIAL_MINIMUM);
459 return (-1);
462 time(&time_start);
464 p = BN_new();
465 q = BN_new();
466 ctx = BN_CTX_new();
468 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
469 ctime(&time_start), trials, generator_wanted);
471 res = 0;
472 lp = xmalloc(QLINESIZE + 1);
473 while (fgets(lp, QLINESIZE, in) != NULL) {
474 int ll = strlen(lp);
476 count_in++;
477 if (ll < 14 || *lp == '!' || *lp == '#') {
478 debug2("%10u: comment or short line", count_in);
479 continue;
482 /* XXX - fragile parser */
483 /* time */
484 cp = &lp[14]; /* (skip) */
486 /* type */
487 in_type = strtoul(cp, &cp, 10);
489 /* tests */
490 in_tests = strtoul(cp, &cp, 10);
492 if (in_tests & QTEST_COMPOSITE) {
493 debug2("%10u: known composite", count_in);
494 continue;
497 /* tries */
498 in_tries = strtoul(cp, &cp, 10);
500 /* size (most significant bit) */
501 in_size = strtoul(cp, &cp, 10);
503 /* generator (hex) */
504 generator_known = strtoul(cp, &cp, 16);
506 /* Skip white space */
507 cp += strspn(cp, " ");
509 /* modulus (hex) */
510 switch (in_type) {
511 case QTYPE_SOPHIE_GERMAIN:
512 debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
513 a = q;
514 BN_hex2bn(&a, cp);
515 /* p = 2*q + 1 */
516 BN_lshift(p, q, 1);
517 BN_add_word(p, 1);
518 in_size += 1;
519 generator_known = 0;
520 break;
521 case QTYPE_UNSTRUCTURED:
522 case QTYPE_SAFE:
523 case QTYPE_SCHNORR:
524 case QTYPE_STRONG:
525 case QTYPE_UNKNOWN:
526 debug2("%10u: (%u)", count_in, in_type);
527 a = p;
528 BN_hex2bn(&a, cp);
529 /* q = (p-1) / 2 */
530 BN_rshift(q, p, 1);
531 break;
532 default:
533 debug2("Unknown prime type");
534 break;
538 * due to earlier inconsistencies in interpretation, check
539 * the proposed bit size.
541 if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
542 debug2("%10u: bit size %u mismatch", count_in, in_size);
543 continue;
545 if (in_size < QSIZE_MINIMUM) {
546 debug2("%10u: bit size %u too short", count_in, in_size);
547 continue;
550 if (in_tests & QTEST_MILLER_RABIN)
551 in_tries += trials;
552 else
553 in_tries = trials;
556 * guess unknown generator
558 if (generator_known == 0) {
559 if (BN_mod_word(p, 24) == 11)
560 generator_known = 2;
561 else if (BN_mod_word(p, 12) == 5)
562 generator_known = 3;
563 else {
564 u_int32_t r = BN_mod_word(p, 10);
566 if (r == 3 || r == 7)
567 generator_known = 5;
571 * skip tests when desired generator doesn't match
573 if (generator_wanted > 0 &&
574 generator_wanted != generator_known) {
575 debug2("%10u: generator %d != %d",
576 count_in, generator_known, generator_wanted);
577 continue;
581 * Primes with no known generator are useless for DH, so
582 * skip those.
584 if (generator_known == 0) {
585 debug2("%10u: no known generator", count_in);
586 continue;
589 count_possible++;
592 * The (1/4)^N performance bound on Miller-Rabin is
593 * extremely pessimistic, so don't spend a lot of time
594 * really verifying that q is prime until after we know
595 * that p is also prime. A single pass will weed out the
596 * vast majority of composite q's.
598 if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
599 debug("%10u: q failed first possible prime test",
600 count_in);
601 continue;
605 * q is possibly prime, so go ahead and really make sure
606 * that p is prime. If it is, then we can go back and do
607 * the same for q. If p is composite, chances are that
608 * will show up on the first Rabin-Miller iteration so it
609 * doesn't hurt to specify a high iteration count.
611 if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
612 debug("%10u: p is not prime", count_in);
613 continue;
615 debug("%10u: p is almost certainly prime", count_in);
617 /* recheck q more rigorously */
618 if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
619 debug("%10u: q is not prime", count_in);
620 continue;
622 debug("%10u: q is almost certainly prime", count_in);
624 if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
625 in_tries, in_size, generator_known, p)) {
626 res = -1;
627 break;
630 count_out++;
633 time(&time_stop);
634 xfree(lp);
635 BN_free(p);
636 BN_free(q);
637 BN_CTX_free(ctx);
639 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
640 ctime(&time_stop), count_out, count_possible,
641 (long) (time_stop - time_start));
643 return (res);