1 /* $OpenBSD: umac.c,v 1.3 2008/05/12 20:52:20 pvalchev Exp $ */
2 /* -----------------------------------------------------------------------
4 * umac.c -- C Implementation UMAC Message Authentication
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
12 * Copyright (c) 1999-2006 Ted Krovetz
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
23 * ---------------------------------------------------------------------- */
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
27 * 1) This version does not work properly on messages larger than 16MB
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
49 /////////////////////////////////////////////////////////////////////// */
51 /* ---------------------------------------------------------------------- */
52 /* --- User Switches ---------------------------------------------------- */
53 /* ---------------------------------------------------------------------- */
55 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
56 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
57 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
58 /* #define SSE2 0 Is SSE2 is available? */
59 /* #define RUN_TESTS 0 Run basic correctness/speed tests */
60 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
62 /* ---------------------------------------------------------------------- */
63 /* -- Global Includes --------------------------------------------------- */
64 /* ---------------------------------------------------------------------- */
67 #include <sys/types.h>
75 /* ---------------------------------------------------------------------- */
76 /* --- Primitive Data Types --- */
77 /* ---------------------------------------------------------------------- */
79 /* The following assumptions may need change on your system */
80 typedef u_int8_t UINT8
; /* 1 byte */
81 typedef u_int16_t UINT16
; /* 2 byte */
82 typedef u_int32_t UINT32
; /* 4 byte */
83 typedef u_int64_t UINT64
; /* 8 bytes */
84 typedef unsigned int UWORD
; /* Register */
86 /* ---------------------------------------------------------------------- */
87 /* --- Constants -------------------------------------------------------- */
88 /* ---------------------------------------------------------------------- */
90 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
92 /* Message "words" are read from memory in an endian-specific manner. */
93 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
94 /* be set true if the host computer is little-endian. */
96 #if BYTE_ORDER == LITTLE_ENDIAN
97 #define __LITTLE_ENDIAN__ 1
99 #define __LITTLE_ENDIAN__ 0
102 /* ---------------------------------------------------------------------- */
103 /* ---------------------------------------------------------------------- */
104 /* ----- Architecture Specific ------------------------------------------ */
105 /* ---------------------------------------------------------------------- */
106 /* ---------------------------------------------------------------------- */
109 /* ---------------------------------------------------------------------- */
110 /* ---------------------------------------------------------------------- */
111 /* ----- Primitive Routines --------------------------------------------- */
112 /* ---------------------------------------------------------------------- */
113 /* ---------------------------------------------------------------------- */
116 /* ---------------------------------------------------------------------- */
117 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
118 /* ---------------------------------------------------------------------- */
120 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
122 /* ---------------------------------------------------------------------- */
123 /* --- Endian Conversion --- Forcing assembly on some platforms */
124 /* ---------------------------------------------------------------------- */
127 #define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p)))
128 #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v))
129 #else /* HAVE_SWAP32 */
131 static UINT32
LOAD_UINT32_REVERSED(void *ptr
)
133 UINT32 temp
= *(UINT32
*)ptr
;
134 temp
= (temp
>> 24) | ((temp
& 0x00FF0000) >> 8 )
135 | ((temp
& 0x0000FF00) << 8 ) | (temp
<< 24);
139 static void STORE_UINT32_REVERSED(void *ptr
, UINT32 x
)
141 UINT32 i
= (UINT32
)x
;
142 *(UINT32
*)ptr
= (i
>> 24) | ((i
& 0x00FF0000) >> 8 )
143 | ((i
& 0x0000FF00) << 8 ) | (i
<< 24);
145 #endif /* HAVE_SWAP32 */
147 /* The following definitions use the above reversal-primitives to do the right
148 * thing on endian specific load and stores.
151 #if (__LITTLE_ENDIAN__)
152 #define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr))
153 #define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x)
155 #define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr)
156 #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x))
159 /* ---------------------------------------------------------------------- */
160 /* ---------------------------------------------------------------------- */
161 /* ----- Begin KDF & PDF Section ---------------------------------------- */
162 /* ---------------------------------------------------------------------- */
163 /* ---------------------------------------------------------------------- */
165 /* UMAC uses AES with 16 byte block and key lengths */
166 #define AES_BLOCK_LEN 16
169 #include "openbsd-compat/openssl-compat.h"
170 #ifndef USE_BUILTIN_RIJNDAEL
171 # include <openssl/aes.h>
173 typedef AES_KEY aes_int_key
[1];
174 #define aes_encryption(in,out,int_key) \
175 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
176 #define aes_key_setup(key,int_key) \
177 AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
179 /* The user-supplied UMAC key is stretched using AES in a counter
180 * mode to supply all random bits needed by UMAC. The kdf function takes
181 * an AES internal key representation 'key' and writes a stream of
182 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
183 * 'ndx' causes a distinct byte stream.
185 static void kdf(void *buffer_ptr
, aes_int_key key
, UINT8 ndx
, int nbytes
)
187 UINT8 in_buf
[AES_BLOCK_LEN
] = {0};
188 UINT8 out_buf
[AES_BLOCK_LEN
];
189 UINT8
*dst_buf
= (UINT8
*)buffer_ptr
;
192 /* Setup the initial value */
193 in_buf
[AES_BLOCK_LEN
-9] = ndx
;
194 in_buf
[AES_BLOCK_LEN
-1] = i
= 1;
196 while (nbytes
>= AES_BLOCK_LEN
) {
197 aes_encryption(in_buf
, out_buf
, key
);
198 memcpy(dst_buf
,out_buf
,AES_BLOCK_LEN
);
199 in_buf
[AES_BLOCK_LEN
-1] = ++i
;
200 nbytes
-= AES_BLOCK_LEN
;
201 dst_buf
+= AES_BLOCK_LEN
;
204 aes_encryption(in_buf
, out_buf
, key
);
205 memcpy(dst_buf
,out_buf
,nbytes
);
209 /* The final UHASH result is XOR'd with the output of a pseudorandom
210 * function. Here, we use AES to generate random output and
211 * xor the appropriate bytes depending on the last bits of nonce.
212 * This scheme is optimized for sequential, increasing big-endian nonces.
216 UINT8 cache
[AES_BLOCK_LEN
]; /* Previous AES output is saved */
217 UINT8 nonce
[AES_BLOCK_LEN
]; /* The AES input making above cache */
218 aes_int_key prf_key
; /* Expanded AES key for PDF */
221 static void pdf_init(pdf_ctx
*pc
, aes_int_key prf_key
)
223 UINT8 buf
[UMAC_KEY_LEN
];
225 kdf(buf
, prf_key
, 0, UMAC_KEY_LEN
);
226 aes_key_setup(buf
, pc
->prf_key
);
228 /* Initialize pdf and cache */
229 memset(pc
->nonce
, 0, sizeof(pc
->nonce
));
230 aes_encryption(pc
->nonce
, pc
->cache
, pc
->prf_key
);
233 static void pdf_gen_xor(pdf_ctx
*pc
, UINT8 nonce
[8], UINT8 buf
[8])
235 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
236 * of the AES output. If last time around we returned the ndx-1st
237 * element, then we may have the result in the cache already.
240 #if (UMAC_OUTPUT_LEN == 4)
241 #define LOW_BIT_MASK 3
242 #elif (UMAC_OUTPUT_LEN == 8)
243 #define LOW_BIT_MASK 1
244 #elif (UMAC_OUTPUT_LEN > 8)
245 #define LOW_BIT_MASK 0
248 UINT8 tmp_nonce_lo
[4];
249 #if LOW_BIT_MASK != 0
250 int ndx
= nonce
[7] & LOW_BIT_MASK
;
252 *(UINT32
*)tmp_nonce_lo
= ((UINT32
*)nonce
)[1];
253 tmp_nonce_lo
[3] &= ~LOW_BIT_MASK
; /* zero last bit */
255 if ( (((UINT32
*)tmp_nonce_lo
)[0] != ((UINT32
*)pc
->nonce
)[1]) ||
256 (((UINT32
*)nonce
)[0] != ((UINT32
*)pc
->nonce
)[0]) )
258 ((UINT32
*)pc
->nonce
)[0] = ((UINT32
*)nonce
)[0];
259 ((UINT32
*)pc
->nonce
)[1] = ((UINT32
*)tmp_nonce_lo
)[0];
260 aes_encryption(pc
->nonce
, pc
->cache
, pc
->prf_key
);
263 #if (UMAC_OUTPUT_LEN == 4)
264 *((UINT32
*)buf
) ^= ((UINT32
*)pc
->cache
)[ndx
];
265 #elif (UMAC_OUTPUT_LEN == 8)
266 *((UINT64
*)buf
) ^= ((UINT64
*)pc
->cache
)[ndx
];
267 #elif (UMAC_OUTPUT_LEN == 12)
268 ((UINT64
*)buf
)[0] ^= ((UINT64
*)pc
->cache
)[0];
269 ((UINT32
*)buf
)[2] ^= ((UINT32
*)pc
->cache
)[2];
270 #elif (UMAC_OUTPUT_LEN == 16)
271 ((UINT64
*)buf
)[0] ^= ((UINT64
*)pc
->cache
)[0];
272 ((UINT64
*)buf
)[1] ^= ((UINT64
*)pc
->cache
)[1];
276 /* ---------------------------------------------------------------------- */
277 /* ---------------------------------------------------------------------- */
278 /* ----- Begin NH Hash Section ------------------------------------------ */
279 /* ---------------------------------------------------------------------- */
280 /* ---------------------------------------------------------------------- */
282 /* The NH-based hash functions used in UMAC are described in the UMAC paper
283 * and specification, both of which can be found at the UMAC website.
284 * The interface to this implementation has two
285 * versions, one expects the entire message being hashed to be passed
286 * in a single buffer and returns the hash result immediately. The second
287 * allows the message to be passed in a sequence of buffers. In the
288 * muliple-buffer interface, the client calls the routine nh_update() as
289 * many times as necessary. When there is no more data to be fed to the
290 * hash, the client calls nh_final() which calculates the hash output.
291 * Before beginning another hash calculation the nh_reset() routine
292 * must be called. The single-buffer routine, nh(), is equivalent to
293 * the sequence of calls nh_update() and nh_final(); however it is
294 * optimized and should be prefered whenever the multiple-buffer interface
295 * is not necessary. When using either interface, it is the client's
296 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
298 * The routine nh_init() initializes the nh_ctx data structure and
299 * must be called once, before any other PDF routine.
302 /* The "nh_aux" routines do the actual NH hashing work. They
303 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
304 * produce output for all STREAMS NH iterations in one call,
305 * allowing the parallel implementation of the streams.
308 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
309 #define L1_KEY_LEN 1024 /* Internal key bytes */
310 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
311 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
312 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
313 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
316 UINT8 nh_key
[L1_KEY_LEN
+ L1_KEY_SHIFT
* (STREAMS
- 1)]; /* NH Key */
317 UINT8 data
[HASH_BUF_BYTES
]; /* Incomming data buffer */
318 int next_data_empty
; /* Bookeeping variable for data buffer. */
319 int bytes_hashed
; /* Bytes (out of L1_KEY_LEN) incorperated. */
320 UINT64 state
[STREAMS
]; /* on-line state */
324 #if (UMAC_OUTPUT_LEN == 4)
326 static void nh_aux(void *kp
, void *dp
, void *hp
, UINT32 dlen
)
327 /* NH hashing primitive. Previous (partial) hash result is loaded and
328 * then stored via hp pointer. The length of the data pointed at by "dp",
329 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
330 * is expected to be endian compensated in memory at key setup.
335 UINT32
*k
= (UINT32
*)kp
;
336 UINT32
*d
= (UINT32
*)dp
;
337 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
338 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
;
342 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
343 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
344 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
345 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
346 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
347 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
348 h
+= MUL64((k0
+ d0
), (k4
+ d4
));
349 h
+= MUL64((k1
+ d1
), (k5
+ d5
));
350 h
+= MUL64((k2
+ d2
), (k6
+ d6
));
351 h
+= MUL64((k3
+ d3
), (k7
+ d7
));
359 #elif (UMAC_OUTPUT_LEN == 8)
361 static void nh_aux(void *kp
, void *dp
, void *hp
, UINT32 dlen
)
362 /* Same as previous nh_aux, but two streams are handled in one pass,
363 * reading and writing 16 bytes of hash-state per call.
368 UINT32
*k
= (UINT32
*)kp
;
369 UINT32
*d
= (UINT32
*)dp
;
370 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
371 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
,
374 h1
= *((UINT64
*)hp
);
375 h2
= *((UINT64
*)hp
+ 1);
376 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
378 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
379 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
380 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
381 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
382 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
383 k8
= *(k
+8); k9
= *(k
+9); k10
= *(k
+10); k11
= *(k
+11);
385 h1
+= MUL64((k0
+ d0
), (k4
+ d4
));
386 h2
+= MUL64((k4
+ d0
), (k8
+ d4
));
388 h1
+= MUL64((k1
+ d1
), (k5
+ d5
));
389 h2
+= MUL64((k5
+ d1
), (k9
+ d5
));
391 h1
+= MUL64((k2
+ d2
), (k6
+ d6
));
392 h2
+= MUL64((k6
+ d2
), (k10
+ d6
));
394 h1
+= MUL64((k3
+ d3
), (k7
+ d7
));
395 h2
+= MUL64((k7
+ d3
), (k11
+ d7
));
397 k0
= k8
; k1
= k9
; k2
= k10
; k3
= k11
;
402 ((UINT64
*)hp
)[0] = h1
;
403 ((UINT64
*)hp
)[1] = h2
;
406 #elif (UMAC_OUTPUT_LEN == 12)
408 static void nh_aux(void *kp
, void *dp
, void *hp
, UINT32 dlen
)
409 /* Same as previous nh_aux, but two streams are handled in one pass,
410 * reading and writing 24 bytes of hash-state per call.
415 UINT32
*k
= (UINT32
*)kp
;
416 UINT32
*d
= (UINT32
*)dp
;
417 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
418 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
,
419 k8
,k9
,k10
,k11
,k12
,k13
,k14
,k15
;
421 h1
= *((UINT64
*)hp
);
422 h2
= *((UINT64
*)hp
+ 1);
423 h3
= *((UINT64
*)hp
+ 2);
424 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
425 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
427 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
428 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
429 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
430 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
431 k8
= *(k
+8); k9
= *(k
+9); k10
= *(k
+10); k11
= *(k
+11);
432 k12
= *(k
+12); k13
= *(k
+13); k14
= *(k
+14); k15
= *(k
+15);
434 h1
+= MUL64((k0
+ d0
), (k4
+ d4
));
435 h2
+= MUL64((k4
+ d0
), (k8
+ d4
));
436 h3
+= MUL64((k8
+ d0
), (k12
+ d4
));
438 h1
+= MUL64((k1
+ d1
), (k5
+ d5
));
439 h2
+= MUL64((k5
+ d1
), (k9
+ d5
));
440 h3
+= MUL64((k9
+ d1
), (k13
+ d5
));
442 h1
+= MUL64((k2
+ d2
), (k6
+ d6
));
443 h2
+= MUL64((k6
+ d2
), (k10
+ d6
));
444 h3
+= MUL64((k10
+ d2
), (k14
+ d6
));
446 h1
+= MUL64((k3
+ d3
), (k7
+ d7
));
447 h2
+= MUL64((k7
+ d3
), (k11
+ d7
));
448 h3
+= MUL64((k11
+ d3
), (k15
+ d7
));
450 k0
= k8
; k1
= k9
; k2
= k10
; k3
= k11
;
451 k4
= k12
; k5
= k13
; k6
= k14
; k7
= k15
;
456 ((UINT64
*)hp
)[0] = h1
;
457 ((UINT64
*)hp
)[1] = h2
;
458 ((UINT64
*)hp
)[2] = h3
;
461 #elif (UMAC_OUTPUT_LEN == 16)
463 static void nh_aux(void *kp
, void *dp
, void *hp
, UINT32 dlen
)
464 /* Same as previous nh_aux, but two streams are handled in one pass,
465 * reading and writing 24 bytes of hash-state per call.
470 UINT32
*k
= (UINT32
*)kp
;
471 UINT32
*d
= (UINT32
*)dp
;
472 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
473 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
,
474 k8
,k9
,k10
,k11
,k12
,k13
,k14
,k15
,
477 h1
= *((UINT64
*)hp
);
478 h2
= *((UINT64
*)hp
+ 1);
479 h3
= *((UINT64
*)hp
+ 2);
480 h4
= *((UINT64
*)hp
+ 3);
481 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
482 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
484 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
485 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
486 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
487 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
488 k8
= *(k
+8); k9
= *(k
+9); k10
= *(k
+10); k11
= *(k
+11);
489 k12
= *(k
+12); k13
= *(k
+13); k14
= *(k
+14); k15
= *(k
+15);
490 k16
= *(k
+16); k17
= *(k
+17); k18
= *(k
+18); k19
= *(k
+19);
492 h1
+= MUL64((k0
+ d0
), (k4
+ d4
));
493 h2
+= MUL64((k4
+ d0
), (k8
+ d4
));
494 h3
+= MUL64((k8
+ d0
), (k12
+ d4
));
495 h4
+= MUL64((k12
+ d0
), (k16
+ d4
));
497 h1
+= MUL64((k1
+ d1
), (k5
+ d5
));
498 h2
+= MUL64((k5
+ d1
), (k9
+ d5
));
499 h3
+= MUL64((k9
+ d1
), (k13
+ d5
));
500 h4
+= MUL64((k13
+ d1
), (k17
+ d5
));
502 h1
+= MUL64((k2
+ d2
), (k6
+ d6
));
503 h2
+= MUL64((k6
+ d2
), (k10
+ d6
));
504 h3
+= MUL64((k10
+ d2
), (k14
+ d6
));
505 h4
+= MUL64((k14
+ d2
), (k18
+ d6
));
507 h1
+= MUL64((k3
+ d3
), (k7
+ d7
));
508 h2
+= MUL64((k7
+ d3
), (k11
+ d7
));
509 h3
+= MUL64((k11
+ d3
), (k15
+ d7
));
510 h4
+= MUL64((k15
+ d3
), (k19
+ d7
));
512 k0
= k8
; k1
= k9
; k2
= k10
; k3
= k11
;
513 k4
= k12
; k5
= k13
; k6
= k14
; k7
= k15
;
514 k8
= k16
; k9
= k17
; k10
= k18
; k11
= k19
;
519 ((UINT64
*)hp
)[0] = h1
;
520 ((UINT64
*)hp
)[1] = h2
;
521 ((UINT64
*)hp
)[2] = h3
;
522 ((UINT64
*)hp
)[3] = h4
;
525 /* ---------------------------------------------------------------------- */
526 #endif /* UMAC_OUTPUT_LENGTH */
527 /* ---------------------------------------------------------------------- */
530 /* ---------------------------------------------------------------------- */
532 static void nh_transform(nh_ctx
*hc
, UINT8
*buf
, UINT32 nbytes
)
533 /* This function is a wrapper for the primitive NH hash functions. It takes
534 * as argument "hc" the current hash context and a buffer which must be a
535 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
536 * appropriately according to how much message has been hashed already.
541 key
= hc
->nh_key
+ hc
->bytes_hashed
;
542 nh_aux(key
, buf
, hc
->state
, nbytes
);
545 /* ---------------------------------------------------------------------- */
547 static void endian_convert(void *buf
, UWORD bpw
, UINT32 num_bytes
)
548 /* We endian convert the keys on little-endian computers to */
549 /* compensate for the lack of big-endian memory reads during hashing. */
551 UWORD iters
= num_bytes
/ bpw
;
553 UINT32
*p
= (UINT32
*)buf
;
555 *p
= LOAD_UINT32_REVERSED(p
);
558 } else if (bpw
== 8) {
559 UINT32
*p
= (UINT32
*)buf
;
562 t
= LOAD_UINT32_REVERSED(p
+1);
563 p
[1] = LOAD_UINT32_REVERSED(p
);
569 #if (__LITTLE_ENDIAN__)
570 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
572 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
575 /* ---------------------------------------------------------------------- */
577 static void nh_reset(nh_ctx
*hc
)
578 /* Reset nh_ctx to ready for hashing of new data */
580 hc
->bytes_hashed
= 0;
581 hc
->next_data_empty
= 0;
583 #if (UMAC_OUTPUT_LEN >= 8)
586 #if (UMAC_OUTPUT_LEN >= 12)
589 #if (UMAC_OUTPUT_LEN == 16)
595 /* ---------------------------------------------------------------------- */
597 static void nh_init(nh_ctx
*hc
, aes_int_key prf_key
)
598 /* Generate nh_key, endian convert and reset to be ready for hashing. */
600 kdf(hc
->nh_key
, prf_key
, 1, sizeof(hc
->nh_key
));
601 endian_convert_if_le(hc
->nh_key
, 4, sizeof(hc
->nh_key
));
605 /* ---------------------------------------------------------------------- */
607 static void nh_update(nh_ctx
*hc
, UINT8
*buf
, UINT32 nbytes
)
608 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
609 /* even multiple of HASH_BUF_BYTES. */
613 j
= hc
->next_data_empty
;
614 if ((j
+ nbytes
) >= HASH_BUF_BYTES
) {
616 i
= HASH_BUF_BYTES
- j
;
617 memcpy(hc
->data
+j
, buf
, i
);
618 nh_transform(hc
,hc
->data
,HASH_BUF_BYTES
);
621 hc
->bytes_hashed
+= HASH_BUF_BYTES
;
623 if (nbytes
>= HASH_BUF_BYTES
) {
624 i
= nbytes
& ~(HASH_BUF_BYTES
- 1);
625 nh_transform(hc
, buf
, i
);
628 hc
->bytes_hashed
+= i
;
632 memcpy(hc
->data
+ j
, buf
, nbytes
);
633 hc
->next_data_empty
= j
+ nbytes
;
636 /* ---------------------------------------------------------------------- */
638 static void zero_pad(UINT8
*p
, int nbytes
)
640 /* Write "nbytes" of zeroes, beginning at "p" */
641 if (nbytes
>= (int)sizeof(UWORD
)) {
642 while ((ptrdiff_t)p
% sizeof(UWORD
)) {
647 while (nbytes
>= (int)sizeof(UWORD
)) {
649 nbytes
-= sizeof(UWORD
);
660 /* ---------------------------------------------------------------------- */
662 static void nh_final(nh_ctx
*hc
, UINT8
*result
)
663 /* After passing some number of data buffers to nh_update() for integration
664 * into an NH context, nh_final is called to produce a hash result. If any
665 * bytes are in the buffer hc->data, incorporate them into the
666 * NH context. Finally, add into the NH accumulation "state" the total number
667 * of bits hashed. The resulting numbers are written to the buffer "result".
668 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
673 if (hc
->next_data_empty
!= 0) {
674 nh_len
= ((hc
->next_data_empty
+ (L1_PAD_BOUNDARY
- 1)) &
675 ~(L1_PAD_BOUNDARY
- 1));
676 zero_pad(hc
->data
+ hc
->next_data_empty
,
677 nh_len
- hc
->next_data_empty
);
678 nh_transform(hc
, hc
->data
, nh_len
);
679 hc
->bytes_hashed
+= hc
->next_data_empty
;
680 } else if (hc
->bytes_hashed
== 0) {
681 nh_len
= L1_PAD_BOUNDARY
;
682 zero_pad(hc
->data
, L1_PAD_BOUNDARY
);
683 nh_transform(hc
, hc
->data
, nh_len
);
686 nbits
= (hc
->bytes_hashed
<< 3);
687 ((UINT64
*)result
)[0] = ((UINT64
*)hc
->state
)[0] + nbits
;
688 #if (UMAC_OUTPUT_LEN >= 8)
689 ((UINT64
*)result
)[1] = ((UINT64
*)hc
->state
)[1] + nbits
;
691 #if (UMAC_OUTPUT_LEN >= 12)
692 ((UINT64
*)result
)[2] = ((UINT64
*)hc
->state
)[2] + nbits
;
694 #if (UMAC_OUTPUT_LEN == 16)
695 ((UINT64
*)result
)[3] = ((UINT64
*)hc
->state
)[3] + nbits
;
700 /* ---------------------------------------------------------------------- */
702 static void nh(nh_ctx
*hc
, UINT8
*buf
, UINT32 padded_len
,
703 UINT32 unpadded_len
, UINT8
*result
)
704 /* All-in-one nh_update() and nh_final() equivalent.
705 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
711 /* Initialize the hash state */
712 nbits
= (unpadded_len
<< 3);
714 ((UINT64
*)result
)[0] = nbits
;
715 #if (UMAC_OUTPUT_LEN >= 8)
716 ((UINT64
*)result
)[1] = nbits
;
718 #if (UMAC_OUTPUT_LEN >= 12)
719 ((UINT64
*)result
)[2] = nbits
;
721 #if (UMAC_OUTPUT_LEN == 16)
722 ((UINT64
*)result
)[3] = nbits
;
725 nh_aux(hc
->nh_key
, buf
, result
, padded_len
);
728 /* ---------------------------------------------------------------------- */
729 /* ---------------------------------------------------------------------- */
730 /* ----- Begin UHASH Section -------------------------------------------- */
731 /* ---------------------------------------------------------------------- */
732 /* ---------------------------------------------------------------------- */
734 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
735 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
736 * unless the initial data to be hashed is short. After the polynomial-
737 * layer, an inner-product hash is used to produce the final UHASH output.
739 * UHASH provides two interfaces, one all-at-once and another where data
740 * buffers are presented sequentially. In the sequential interface, the
741 * UHASH client calls the routine uhash_update() as many times as necessary.
742 * When there is no more data to be fed to UHASH, the client calls
743 * uhash_final() which
744 * calculates the UHASH output. Before beginning another UHASH calculation
745 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
746 * uhash(), is equivalent to the sequence of calls uhash_update() and
747 * uhash_final(); however it is optimized and should be
748 * used whenever the sequential interface is not necessary.
750 * The routine uhash_init() initializes the uhash_ctx data structure and
751 * must be called once, before any other UHASH routine.
754 /* ---------------------------------------------------------------------- */
755 /* ----- Constants and uhash_ctx ---------------------------------------- */
756 /* ---------------------------------------------------------------------- */
758 /* ---------------------------------------------------------------------- */
759 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
760 /* ---------------------------------------------------------------------- */
762 /* Primes and masks */
763 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
764 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
765 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
768 /* ---------------------------------------------------------------------- */
770 typedef struct uhash_ctx
{
771 nh_ctx hash
; /* Hash context for L1 NH hash */
772 UINT64 poly_key_8
[STREAMS
]; /* p64 poly keys */
773 UINT64 poly_accum
[STREAMS
]; /* poly hash result */
774 UINT64 ip_keys
[STREAMS
*4]; /* Inner-product keys */
775 UINT32 ip_trans
[STREAMS
]; /* Inner-product translation */
776 UINT32 msg_len
; /* Total length of data passed */
779 typedef struct uhash_ctx
*uhash_ctx_t
;
781 /* ---------------------------------------------------------------------- */
784 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
785 * word at a time. As described in the specification, poly32 and poly64
786 * require keys from special domains. The following implementations exploit
787 * the special domains to avoid overflow. The results are not guaranteed to
788 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
789 * patches any errant values.
792 static UINT64
poly64(UINT64 cur
, UINT64 key
, UINT64 data
)
794 UINT32 key_hi
= (UINT32
)(key
>> 32),
795 key_lo
= (UINT32
)key
,
796 cur_hi
= (UINT32
)(cur
>> 32),
797 cur_lo
= (UINT32
)cur
,
802 X
= MUL64(key_hi
, cur_lo
) + MUL64(cur_hi
, key_lo
);
804 x_hi
= (UINT32
)(X
>> 32);
806 res
= (MUL64(key_hi
, cur_hi
) + x_hi
) * 59 + MUL64(key_lo
, cur_lo
);
808 T
= ((UINT64
)x_lo
<< 32);
821 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
822 * implementation does not handle all ramp levels. Because we don't handle
823 * the ramp up to p128 modulus in this implementation, we are limited to
824 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
825 * bytes input to UMAC per tag, ie. 16MB).
827 static void poly_hash(uhash_ctx_t hc
, UINT32 data_in
[])
830 UINT64
*data
=(UINT64
*)data_in
;
832 for (i
= 0; i
< STREAMS
; i
++) {
833 if ((UINT32
)(data
[i
] >> 32) == 0xfffffffful
) {
834 hc
->poly_accum
[i
] = poly64(hc
->poly_accum
[i
],
835 hc
->poly_key_8
[i
], p64
- 1);
836 hc
->poly_accum
[i
] = poly64(hc
->poly_accum
[i
],
837 hc
->poly_key_8
[i
], (data
[i
] - 59));
839 hc
->poly_accum
[i
] = poly64(hc
->poly_accum
[i
],
840 hc
->poly_key_8
[i
], data
[i
]);
846 /* ---------------------------------------------------------------------- */
849 /* The final step in UHASH is an inner-product hash. The poly hash
850 * produces a result not neccesarily WORD_LEN bytes long. The inner-
851 * product hash breaks the polyhash output into 16-bit chunks and
852 * multiplies each with a 36 bit key.
855 static UINT64
ip_aux(UINT64 t
, UINT64
*ipkp
, UINT64 data
)
857 t
= t
+ ipkp
[0] * (UINT64
)(UINT16
)(data
>> 48);
858 t
= t
+ ipkp
[1] * (UINT64
)(UINT16
)(data
>> 32);
859 t
= t
+ ipkp
[2] * (UINT64
)(UINT16
)(data
>> 16);
860 t
= t
+ ipkp
[3] * (UINT64
)(UINT16
)(data
);
865 static UINT32
ip_reduce_p36(UINT64 t
)
867 /* Divisionless modular reduction */
870 ret
= (t
& m36
) + 5 * (t
>> 36);
874 /* return least significant 32 bits */
875 return (UINT32
)(ret
);
879 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
880 * the polyhash stage is skipped and ip_short is applied directly to the
883 static void ip_short(uhash_ctx_t ahc
, UINT8
*nh_res
, u_char
*res
)
886 UINT64
*nhp
= (UINT64
*)nh_res
;
888 t
= ip_aux(0,ahc
->ip_keys
, nhp
[0]);
889 STORE_UINT32_BIG((UINT32
*)res
+0, ip_reduce_p36(t
) ^ ahc
->ip_trans
[0]);
890 #if (UMAC_OUTPUT_LEN >= 8)
891 t
= ip_aux(0,ahc
->ip_keys
+4, nhp
[1]);
892 STORE_UINT32_BIG((UINT32
*)res
+1, ip_reduce_p36(t
) ^ ahc
->ip_trans
[1]);
894 #if (UMAC_OUTPUT_LEN >= 12)
895 t
= ip_aux(0,ahc
->ip_keys
+8, nhp
[2]);
896 STORE_UINT32_BIG((UINT32
*)res
+2, ip_reduce_p36(t
) ^ ahc
->ip_trans
[2]);
898 #if (UMAC_OUTPUT_LEN == 16)
899 t
= ip_aux(0,ahc
->ip_keys
+12, nhp
[3]);
900 STORE_UINT32_BIG((UINT32
*)res
+3, ip_reduce_p36(t
) ^ ahc
->ip_trans
[3]);
904 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
905 * the polyhash stage is not skipped and ip_long is applied to the
908 static void ip_long(uhash_ctx_t ahc
, u_char
*res
)
913 for (i
= 0; i
< STREAMS
; i
++) {
914 /* fix polyhash output not in Z_p64 */
915 if (ahc
->poly_accum
[i
] >= p64
)
916 ahc
->poly_accum
[i
] -= p64
;
917 t
= ip_aux(0,ahc
->ip_keys
+(i
*4), ahc
->poly_accum
[i
]);
918 STORE_UINT32_BIG((UINT32
*)res
+i
,
919 ip_reduce_p36(t
) ^ ahc
->ip_trans
[i
]);
924 /* ---------------------------------------------------------------------- */
926 /* ---------------------------------------------------------------------- */
928 /* Reset uhash context for next hash session */
929 static int uhash_reset(uhash_ctx_t pc
)
933 pc
->poly_accum
[0] = 1;
934 #if (UMAC_OUTPUT_LEN >= 8)
935 pc
->poly_accum
[1] = 1;
937 #if (UMAC_OUTPUT_LEN >= 12)
938 pc
->poly_accum
[2] = 1;
940 #if (UMAC_OUTPUT_LEN == 16)
941 pc
->poly_accum
[3] = 1;
946 /* ---------------------------------------------------------------------- */
948 /* Given a pointer to the internal key needed by kdf() and a uhash context,
949 * initialize the NH context and generate keys needed for poly and inner-
950 * product hashing. All keys are endian adjusted in memory so that native
951 * loads cause correct keys to be in registers during calculation.
953 static void uhash_init(uhash_ctx_t ahc
, aes_int_key prf_key
)
956 UINT8 buf
[(8*STREAMS
+4)*sizeof(UINT64
)];
958 /* Zero the entire uhash context */
959 memset(ahc
, 0, sizeof(uhash_ctx
));
961 /* Initialize the L1 hash */
962 nh_init(&ahc
->hash
, prf_key
);
964 /* Setup L2 hash variables */
965 kdf(buf
, prf_key
, 2, sizeof(buf
)); /* Fill buffer with index 1 key */
966 for (i
= 0; i
< STREAMS
; i
++) {
967 /* Fill keys from the buffer, skipping bytes in the buffer not
968 * used by this implementation. Endian reverse the keys if on a
969 * little-endian computer.
971 memcpy(ahc
->poly_key_8
+i
, buf
+24*i
, 8);
972 endian_convert_if_le(ahc
->poly_key_8
+i
, 8, 8);
973 /* Mask the 64-bit keys to their special domain */
974 ahc
->poly_key_8
[i
] &= ((UINT64
)0x01ffffffu
<< 32) + 0x01ffffffu
;
975 ahc
->poly_accum
[i
] = 1; /* Our polyhash prepends a non-zero word */
978 /* Setup L3-1 hash variables */
979 kdf(buf
, prf_key
, 3, sizeof(buf
)); /* Fill buffer with index 2 key */
980 for (i
= 0; i
< STREAMS
; i
++)
981 memcpy(ahc
->ip_keys
+4*i
, buf
+(8*i
+4)*sizeof(UINT64
),
983 endian_convert_if_le(ahc
->ip_keys
, sizeof(UINT64
),
984 sizeof(ahc
->ip_keys
));
985 for (i
= 0; i
< STREAMS
*4; i
++)
986 ahc
->ip_keys
[i
] %= p36
; /* Bring into Z_p36 */
988 /* Setup L3-2 hash variables */
989 /* Fill buffer with index 4 key */
990 kdf(ahc
->ip_trans
, prf_key
, 4, STREAMS
* sizeof(UINT32
));
991 endian_convert_if_le(ahc
->ip_trans
, sizeof(UINT32
),
992 STREAMS
* sizeof(UINT32
));
995 /* ---------------------------------------------------------------------- */
998 static uhash_ctx_t
uhash_alloc(u_char key
[])
1000 /* Allocate memory and force to a 16-byte boundary. */
1002 u_char bytes_to_add
;
1003 aes_int_key prf_key
;
1005 ctx
= (uhash_ctx_t
)malloc(sizeof(uhash_ctx
)+ALLOC_BOUNDARY
);
1007 if (ALLOC_BOUNDARY
) {
1008 bytes_to_add
= ALLOC_BOUNDARY
-
1009 ((ptrdiff_t)ctx
& (ALLOC_BOUNDARY
-1));
1010 ctx
= (uhash_ctx_t
)((u_char
*)ctx
+ bytes_to_add
);
1011 *((u_char
*)ctx
- 1) = bytes_to_add
;
1013 aes_key_setup(key
,prf_key
);
1014 uhash_init(ctx
, prf_key
);
1020 /* ---------------------------------------------------------------------- */
1023 static int uhash_free(uhash_ctx_t ctx
)
1025 /* Free memory allocated by uhash_alloc */
1026 u_char bytes_to_sub
;
1029 if (ALLOC_BOUNDARY
) {
1030 bytes_to_sub
= *((u_char
*)ctx
- 1);
1031 ctx
= (uhash_ctx_t
)((u_char
*)ctx
- bytes_to_sub
);
1038 /* ---------------------------------------------------------------------- */
1040 static int uhash_update(uhash_ctx_t ctx
, u_char
*input
, long len
)
1041 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1042 * hash each one with NH, calling the polyhash on each NH output.
1045 UWORD bytes_hashed
, bytes_remaining
;
1046 UINT64 result_buf
[STREAMS
];
1047 UINT8
*nh_result
= (UINT8
*)&result_buf
;
1049 if (ctx
->msg_len
+ len
<= L1_KEY_LEN
) {
1050 nh_update(&ctx
->hash
, (UINT8
*)input
, len
);
1051 ctx
->msg_len
+= len
;
1054 bytes_hashed
= ctx
->msg_len
% L1_KEY_LEN
;
1055 if (ctx
->msg_len
== L1_KEY_LEN
)
1056 bytes_hashed
= L1_KEY_LEN
;
1058 if (bytes_hashed
+ len
>= L1_KEY_LEN
) {
1060 /* If some bytes have been passed to the hash function */
1061 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1062 /* bytes to complete the current nh_block. */
1064 bytes_remaining
= (L1_KEY_LEN
- bytes_hashed
);
1065 nh_update(&ctx
->hash
, (UINT8
*)input
, bytes_remaining
);
1066 nh_final(&ctx
->hash
, nh_result
);
1067 ctx
->msg_len
+= bytes_remaining
;
1068 poly_hash(ctx
,(UINT32
*)nh_result
);
1069 len
-= bytes_remaining
;
1070 input
+= bytes_remaining
;
1073 /* Hash directly from input stream if enough bytes */
1074 while (len
>= L1_KEY_LEN
) {
1075 nh(&ctx
->hash
, (UINT8
*)input
, L1_KEY_LEN
,
1076 L1_KEY_LEN
, nh_result
);
1077 ctx
->msg_len
+= L1_KEY_LEN
;
1079 input
+= L1_KEY_LEN
;
1080 poly_hash(ctx
,(UINT32
*)nh_result
);
1084 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1086 nh_update(&ctx
->hash
, (UINT8
*)input
, len
);
1087 ctx
->msg_len
+= len
;
1094 /* ---------------------------------------------------------------------- */
1096 static int uhash_final(uhash_ctx_t ctx
, u_char
*res
)
1097 /* Incorporate any pending data, pad, and generate tag */
1099 UINT64 result_buf
[STREAMS
];
1100 UINT8
*nh_result
= (UINT8
*)&result_buf
;
1102 if (ctx
->msg_len
> L1_KEY_LEN
) {
1103 if (ctx
->msg_len
% L1_KEY_LEN
) {
1104 nh_final(&ctx
->hash
, nh_result
);
1105 poly_hash(ctx
,(UINT32
*)nh_result
);
1109 nh_final(&ctx
->hash
, nh_result
);
1110 ip_short(ctx
,nh_result
, res
);
1116 /* ---------------------------------------------------------------------- */
1119 static int uhash(uhash_ctx_t ahc
, u_char
*msg
, long len
, u_char
*res
)
1120 /* assumes that msg is in a writable buffer of length divisible by */
1121 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1123 UINT8 nh_result
[STREAMS
*sizeof(UINT64
)];
1125 int extra_zeroes_needed
;
1127 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1130 if (len
<= L1_KEY_LEN
) {
1131 if (len
== 0) /* If zero length messages will not */
1132 nh_len
= L1_PAD_BOUNDARY
; /* be seen, comment out this case */
1134 nh_len
= ((len
+ (L1_PAD_BOUNDARY
- 1)) & ~(L1_PAD_BOUNDARY
- 1));
1135 extra_zeroes_needed
= nh_len
- len
;
1136 zero_pad((UINT8
*)msg
+ len
, extra_zeroes_needed
);
1137 nh(&ahc
->hash
, (UINT8
*)msg
, nh_len
, len
, nh_result
);
1138 ip_short(ahc
,nh_result
, res
);
1140 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1141 * output to poly_hash().
1144 nh(&ahc
->hash
, (UINT8
*)msg
, L1_KEY_LEN
, L1_KEY_LEN
, nh_result
);
1145 poly_hash(ahc
,(UINT32
*)nh_result
);
1148 } while (len
>= L1_KEY_LEN
);
1150 nh_len
= ((len
+ (L1_PAD_BOUNDARY
- 1)) & ~(L1_PAD_BOUNDARY
- 1));
1151 extra_zeroes_needed
= nh_len
- len
;
1152 zero_pad((UINT8
*)msg
+ len
, extra_zeroes_needed
);
1153 nh(&ahc
->hash
, (UINT8
*)msg
, nh_len
, len
, nh_result
);
1154 poly_hash(ahc
,(UINT32
*)nh_result
);
1165 /* ---------------------------------------------------------------------- */
1166 /* ---------------------------------------------------------------------- */
1167 /* ----- Begin UMAC Section --------------------------------------------- */
1168 /* ---------------------------------------------------------------------- */
1169 /* ---------------------------------------------------------------------- */
1171 /* The UMAC interface has two interfaces, an all-at-once interface where
1172 * the entire message to be authenticated is passed to UMAC in one buffer,
1173 * and a sequential interface where the message is presented a little at a
1174 * time. The all-at-once is more optimaized than the sequential version and
1175 * should be preferred when the sequential interface is not required.
1178 uhash_ctx hash
; /* Hash function for message compression */
1179 pdf_ctx pdf
; /* PDF for hashed output */
1180 void *free_ptr
; /* Address to free this struct via */
1183 /* ---------------------------------------------------------------------- */
1186 int umac_reset(struct umac_ctx
*ctx
)
1187 /* Reset the hash function to begin a new authentication. */
1189 uhash_reset(&ctx
->hash
);
1194 /* ---------------------------------------------------------------------- */
1196 int umac_delete(struct umac_ctx
*ctx
)
1197 /* Deallocate the ctx structure */
1201 ctx
= (struct umac_ctx
*)ctx
->free_ptr
;
1207 /* ---------------------------------------------------------------------- */
1209 struct umac_ctx
*umac_new(u_char key
[])
1210 /* Dynamically allocate a umac_ctx struct, initialize variables,
1211 * generate subkeys from key. Align to 16-byte boundary.
1214 struct umac_ctx
*ctx
, *octx
;
1215 size_t bytes_to_add
;
1216 aes_int_key prf_key
;
1218 octx
= ctx
= xmalloc(sizeof(*ctx
) + ALLOC_BOUNDARY
);
1220 if (ALLOC_BOUNDARY
) {
1221 bytes_to_add
= ALLOC_BOUNDARY
-
1222 ((ptrdiff_t)ctx
& (ALLOC_BOUNDARY
- 1));
1223 ctx
= (struct umac_ctx
*)((u_char
*)ctx
+ bytes_to_add
);
1225 ctx
->free_ptr
= octx
;
1226 aes_key_setup(key
,prf_key
);
1227 pdf_init(&ctx
->pdf
, prf_key
);
1228 uhash_init(&ctx
->hash
, prf_key
);
1234 /* ---------------------------------------------------------------------- */
1236 int umac_final(struct umac_ctx
*ctx
, u_char tag
[], u_char nonce
[8])
1237 /* Incorporate any pending data, pad, and generate tag */
1239 uhash_final(&ctx
->hash
, (u_char
*)tag
);
1240 pdf_gen_xor(&ctx
->pdf
, (UINT8
*)nonce
, (UINT8
*)tag
);
1245 /* ---------------------------------------------------------------------- */
1247 int umac_update(struct umac_ctx
*ctx
, u_char
*input
, long len
)
1248 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1249 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1250 /* output buffer is full. */
1252 uhash_update(&ctx
->hash
, input
, len
);
1256 /* ---------------------------------------------------------------------- */
1259 int umac(struct umac_ctx
*ctx
, u_char
*input
,
1260 long len
, u_char tag
[],
1262 /* All-in-one version simply calls umac_update() and umac_final(). */
1264 uhash(&ctx
->hash
, input
, len
, (u_char
*)tag
);
1265 pdf_gen_xor(&ctx
->pdf
, (UINT8
*)nonce
, (UINT8
*)tag
);
1271 /* ---------------------------------------------------------------------- */
1272 /* ---------------------------------------------------------------------- */
1273 /* ----- End UMAC Section ----------------------------------------------- */
1274 /* ---------------------------------------------------------------------- */
1275 /* ---------------------------------------------------------------------- */