- (dtucker) [Makefile.in] Define TEST_SSH_IPV6 in make's arguments as well
[openssh-git.git] / key.c
blob62bf8361d6791caea9bae2be052eb3ae125cc269
1 /* $OpenBSD: key.c,v 1.69 2007/07/12 05:48:05 ray Exp $ */
2 /*
3 * read_bignum():
4 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
6 * As far as I am concerned, the code I have written for this software
7 * can be used freely for any purpose. Any derived versions of this
8 * software must be clearly marked as such, and if the derived work is
9 * incompatible with the protocol description in the RFC file, it must be
10 * called by a name other than "ssh" or "Secure Shell".
13 * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
33 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 #include "includes.h"
38 #include <sys/types.h>
40 #include <openssl/evp.h>
41 #include <openbsd-compat/openssl-compat.h>
43 #include <stdarg.h>
44 #include <stdio.h>
45 #include <string.h>
47 #include "xmalloc.h"
48 #include "key.h"
49 #include "rsa.h"
50 #include "uuencode.h"
51 #include "buffer.h"
52 #include "log.h"
54 Key *
55 key_new(int type)
57 Key *k;
58 RSA *rsa;
59 DSA *dsa;
60 k = xcalloc(1, sizeof(*k));
61 k->type = type;
62 k->dsa = NULL;
63 k->rsa = NULL;
64 switch (k->type) {
65 case KEY_RSA1:
66 case KEY_RSA:
67 if ((rsa = RSA_new()) == NULL)
68 fatal("key_new: RSA_new failed");
69 if ((rsa->n = BN_new()) == NULL)
70 fatal("key_new: BN_new failed");
71 if ((rsa->e = BN_new()) == NULL)
72 fatal("key_new: BN_new failed");
73 k->rsa = rsa;
74 break;
75 case KEY_DSA:
76 if ((dsa = DSA_new()) == NULL)
77 fatal("key_new: DSA_new failed");
78 if ((dsa->p = BN_new()) == NULL)
79 fatal("key_new: BN_new failed");
80 if ((dsa->q = BN_new()) == NULL)
81 fatal("key_new: BN_new failed");
82 if ((dsa->g = BN_new()) == NULL)
83 fatal("key_new: BN_new failed");
84 if ((dsa->pub_key = BN_new()) == NULL)
85 fatal("key_new: BN_new failed");
86 k->dsa = dsa;
87 break;
88 case KEY_UNSPEC:
89 break;
90 default:
91 fatal("key_new: bad key type %d", k->type);
92 break;
94 return k;
97 Key *
98 key_new_private(int type)
100 Key *k = key_new(type);
101 switch (k->type) {
102 case KEY_RSA1:
103 case KEY_RSA:
104 if ((k->rsa->d = BN_new()) == NULL)
105 fatal("key_new_private: BN_new failed");
106 if ((k->rsa->iqmp = BN_new()) == NULL)
107 fatal("key_new_private: BN_new failed");
108 if ((k->rsa->q = BN_new()) == NULL)
109 fatal("key_new_private: BN_new failed");
110 if ((k->rsa->p = BN_new()) == NULL)
111 fatal("key_new_private: BN_new failed");
112 if ((k->rsa->dmq1 = BN_new()) == NULL)
113 fatal("key_new_private: BN_new failed");
114 if ((k->rsa->dmp1 = BN_new()) == NULL)
115 fatal("key_new_private: BN_new failed");
116 break;
117 case KEY_DSA:
118 if ((k->dsa->priv_key = BN_new()) == NULL)
119 fatal("key_new_private: BN_new failed");
120 break;
121 case KEY_UNSPEC:
122 break;
123 default:
124 break;
126 return k;
129 void
130 key_free(Key *k)
132 if (k == NULL)
133 fatal("key_free: key is NULL");
134 switch (k->type) {
135 case KEY_RSA1:
136 case KEY_RSA:
137 if (k->rsa != NULL)
138 RSA_free(k->rsa);
139 k->rsa = NULL;
140 break;
141 case KEY_DSA:
142 if (k->dsa != NULL)
143 DSA_free(k->dsa);
144 k->dsa = NULL;
145 break;
146 case KEY_UNSPEC:
147 break;
148 default:
149 fatal("key_free: bad key type %d", k->type);
150 break;
152 xfree(k);
156 key_equal(const Key *a, const Key *b)
158 if (a == NULL || b == NULL || a->type != b->type)
159 return 0;
160 switch (a->type) {
161 case KEY_RSA1:
162 case KEY_RSA:
163 return a->rsa != NULL && b->rsa != NULL &&
164 BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
165 BN_cmp(a->rsa->n, b->rsa->n) == 0;
166 case KEY_DSA:
167 return a->dsa != NULL && b->dsa != NULL &&
168 BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
169 BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
170 BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
171 BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
172 default:
173 fatal("key_equal: bad key type %d", a->type);
177 u_char*
178 key_fingerprint_raw(const Key *k, enum fp_type dgst_type,
179 u_int *dgst_raw_length)
181 const EVP_MD *md = NULL;
182 EVP_MD_CTX ctx;
183 u_char *blob = NULL;
184 u_char *retval = NULL;
185 u_int len = 0;
186 int nlen, elen;
188 *dgst_raw_length = 0;
190 switch (dgst_type) {
191 case SSH_FP_MD5:
192 md = EVP_md5();
193 break;
194 case SSH_FP_SHA1:
195 md = EVP_sha1();
196 break;
197 default:
198 fatal("key_fingerprint_raw: bad digest type %d",
199 dgst_type);
201 switch (k->type) {
202 case KEY_RSA1:
203 nlen = BN_num_bytes(k->rsa->n);
204 elen = BN_num_bytes(k->rsa->e);
205 len = nlen + elen;
206 blob = xmalloc(len);
207 BN_bn2bin(k->rsa->n, blob);
208 BN_bn2bin(k->rsa->e, blob + nlen);
209 break;
210 case KEY_DSA:
211 case KEY_RSA:
212 key_to_blob(k, &blob, &len);
213 break;
214 case KEY_UNSPEC:
215 return retval;
216 default:
217 fatal("key_fingerprint_raw: bad key type %d", k->type);
218 break;
220 if (blob != NULL) {
221 retval = xmalloc(EVP_MAX_MD_SIZE);
222 EVP_DigestInit(&ctx, md);
223 EVP_DigestUpdate(&ctx, blob, len);
224 EVP_DigestFinal(&ctx, retval, dgst_raw_length);
225 memset(blob, 0, len);
226 xfree(blob);
227 } else {
228 fatal("key_fingerprint_raw: blob is null");
230 return retval;
233 static char *
234 key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
236 char *retval;
237 u_int i;
239 retval = xcalloc(1, dgst_raw_len * 3 + 1);
240 for (i = 0; i < dgst_raw_len; i++) {
241 char hex[4];
242 snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
243 strlcat(retval, hex, dgst_raw_len * 3 + 1);
246 /* Remove the trailing ':' character */
247 retval[(dgst_raw_len * 3) - 1] = '\0';
248 return retval;
251 static char *
252 key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
254 char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
255 char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
256 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
257 u_int i, j = 0, rounds, seed = 1;
258 char *retval;
260 rounds = (dgst_raw_len / 2) + 1;
261 retval = xcalloc((rounds * 6), sizeof(char));
262 retval[j++] = 'x';
263 for (i = 0; i < rounds; i++) {
264 u_int idx0, idx1, idx2, idx3, idx4;
265 if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
266 idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
267 seed) % 6;
268 idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
269 idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
270 (seed / 6)) % 6;
271 retval[j++] = vowels[idx0];
272 retval[j++] = consonants[idx1];
273 retval[j++] = vowels[idx2];
274 if ((i + 1) < rounds) {
275 idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
276 idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
277 retval[j++] = consonants[idx3];
278 retval[j++] = '-';
279 retval[j++] = consonants[idx4];
280 seed = ((seed * 5) +
281 ((((u_int)(dgst_raw[2 * i])) * 7) +
282 ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
284 } else {
285 idx0 = seed % 6;
286 idx1 = 16;
287 idx2 = seed / 6;
288 retval[j++] = vowels[idx0];
289 retval[j++] = consonants[idx1];
290 retval[j++] = vowels[idx2];
293 retval[j++] = 'x';
294 retval[j++] = '\0';
295 return retval;
298 char *
299 key_fingerprint(const Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
301 char *retval = NULL;
302 u_char *dgst_raw;
303 u_int dgst_raw_len;
305 dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
306 if (!dgst_raw)
307 fatal("key_fingerprint: null from key_fingerprint_raw()");
308 switch (dgst_rep) {
309 case SSH_FP_HEX:
310 retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
311 break;
312 case SSH_FP_BUBBLEBABBLE:
313 retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
314 break;
315 default:
316 fatal("key_fingerprint_ex: bad digest representation %d",
317 dgst_rep);
318 break;
320 memset(dgst_raw, 0, dgst_raw_len);
321 xfree(dgst_raw);
322 return retval;
326 * Reads a multiple-precision integer in decimal from the buffer, and advances
327 * the pointer. The integer must already be initialized. This function is
328 * permitted to modify the buffer. This leaves *cpp to point just beyond the
329 * last processed (and maybe modified) character. Note that this may modify
330 * the buffer containing the number.
332 static int
333 read_bignum(char **cpp, BIGNUM * value)
335 char *cp = *cpp;
336 int old;
338 /* Skip any leading whitespace. */
339 for (; *cp == ' ' || *cp == '\t'; cp++)
342 /* Check that it begins with a decimal digit. */
343 if (*cp < '0' || *cp > '9')
344 return 0;
346 /* Save starting position. */
347 *cpp = cp;
349 /* Move forward until all decimal digits skipped. */
350 for (; *cp >= '0' && *cp <= '9'; cp++)
353 /* Save the old terminating character, and replace it by \0. */
354 old = *cp;
355 *cp = 0;
357 /* Parse the number. */
358 if (BN_dec2bn(&value, *cpp) == 0)
359 return 0;
361 /* Restore old terminating character. */
362 *cp = old;
364 /* Move beyond the number and return success. */
365 *cpp = cp;
366 return 1;
369 static int
370 write_bignum(FILE *f, BIGNUM *num)
372 char *buf = BN_bn2dec(num);
373 if (buf == NULL) {
374 error("write_bignum: BN_bn2dec() failed");
375 return 0;
377 fprintf(f, " %s", buf);
378 OPENSSL_free(buf);
379 return 1;
382 /* returns 1 ok, -1 error */
384 key_read(Key *ret, char **cpp)
386 Key *k;
387 int success = -1;
388 char *cp, *space;
389 int len, n, type;
390 u_int bits;
391 u_char *blob;
393 cp = *cpp;
395 switch (ret->type) {
396 case KEY_RSA1:
397 /* Get number of bits. */
398 if (*cp < '0' || *cp > '9')
399 return -1; /* Bad bit count... */
400 for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
401 bits = 10 * bits + *cp - '0';
402 if (bits == 0)
403 return -1;
404 *cpp = cp;
405 /* Get public exponent, public modulus. */
406 if (!read_bignum(cpp, ret->rsa->e))
407 return -1;
408 if (!read_bignum(cpp, ret->rsa->n))
409 return -1;
410 success = 1;
411 break;
412 case KEY_UNSPEC:
413 case KEY_RSA:
414 case KEY_DSA:
415 space = strchr(cp, ' ');
416 if (space == NULL) {
417 debug3("key_read: missing whitespace");
418 return -1;
420 *space = '\0';
421 type = key_type_from_name(cp);
422 *space = ' ';
423 if (type == KEY_UNSPEC) {
424 debug3("key_read: missing keytype");
425 return -1;
427 cp = space+1;
428 if (*cp == '\0') {
429 debug3("key_read: short string");
430 return -1;
432 if (ret->type == KEY_UNSPEC) {
433 ret->type = type;
434 } else if (ret->type != type) {
435 /* is a key, but different type */
436 debug3("key_read: type mismatch");
437 return -1;
439 len = 2*strlen(cp);
440 blob = xmalloc(len);
441 n = uudecode(cp, blob, len);
442 if (n < 0) {
443 error("key_read: uudecode %s failed", cp);
444 xfree(blob);
445 return -1;
447 k = key_from_blob(blob, (u_int)n);
448 xfree(blob);
449 if (k == NULL) {
450 error("key_read: key_from_blob %s failed", cp);
451 return -1;
453 if (k->type != type) {
454 error("key_read: type mismatch: encoding error");
455 key_free(k);
456 return -1;
458 /*XXXX*/
459 if (ret->type == KEY_RSA) {
460 if (ret->rsa != NULL)
461 RSA_free(ret->rsa);
462 ret->rsa = k->rsa;
463 k->rsa = NULL;
464 success = 1;
465 #ifdef DEBUG_PK
466 RSA_print_fp(stderr, ret->rsa, 8);
467 #endif
468 } else {
469 if (ret->dsa != NULL)
470 DSA_free(ret->dsa);
471 ret->dsa = k->dsa;
472 k->dsa = NULL;
473 success = 1;
474 #ifdef DEBUG_PK
475 DSA_print_fp(stderr, ret->dsa, 8);
476 #endif
478 /*XXXX*/
479 key_free(k);
480 if (success != 1)
481 break;
482 /* advance cp: skip whitespace and data */
483 while (*cp == ' ' || *cp == '\t')
484 cp++;
485 while (*cp != '\0' && *cp != ' ' && *cp != '\t')
486 cp++;
487 *cpp = cp;
488 break;
489 default:
490 fatal("key_read: bad key type: %d", ret->type);
491 break;
493 return success;
497 key_write(const Key *key, FILE *f)
499 int n, success = 0;
500 u_int len, bits = 0;
501 u_char *blob;
502 char *uu;
504 if (key->type == KEY_RSA1 && key->rsa != NULL) {
505 /* size of modulus 'n' */
506 bits = BN_num_bits(key->rsa->n);
507 fprintf(f, "%u", bits);
508 if (write_bignum(f, key->rsa->e) &&
509 write_bignum(f, key->rsa->n)) {
510 success = 1;
511 } else {
512 error("key_write: failed for RSA key");
514 } else if ((key->type == KEY_DSA && key->dsa != NULL) ||
515 (key->type == KEY_RSA && key->rsa != NULL)) {
516 key_to_blob(key, &blob, &len);
517 uu = xmalloc(2*len);
518 n = uuencode(blob, len, uu, 2*len);
519 if (n > 0) {
520 fprintf(f, "%s %s", key_ssh_name(key), uu);
521 success = 1;
523 xfree(blob);
524 xfree(uu);
526 return success;
529 const char *
530 key_type(const Key *k)
532 switch (k->type) {
533 case KEY_RSA1:
534 return "RSA1";
535 case KEY_RSA:
536 return "RSA";
537 case KEY_DSA:
538 return "DSA";
540 return "unknown";
543 const char *
544 key_ssh_name(const Key *k)
546 switch (k->type) {
547 case KEY_RSA:
548 return "ssh-rsa";
549 case KEY_DSA:
550 return "ssh-dss";
552 return "ssh-unknown";
555 u_int
556 key_size(const Key *k)
558 switch (k->type) {
559 case KEY_RSA1:
560 case KEY_RSA:
561 return BN_num_bits(k->rsa->n);
562 case KEY_DSA:
563 return BN_num_bits(k->dsa->p);
565 return 0;
568 static RSA *
569 rsa_generate_private_key(u_int bits)
571 RSA *private;
573 private = RSA_generate_key(bits, 35, NULL, NULL);
574 if (private == NULL)
575 fatal("rsa_generate_private_key: key generation failed.");
576 return private;
579 static DSA*
580 dsa_generate_private_key(u_int bits)
582 DSA *private = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL, NULL);
584 if (private == NULL)
585 fatal("dsa_generate_private_key: DSA_generate_parameters failed");
586 if (!DSA_generate_key(private))
587 fatal("dsa_generate_private_key: DSA_generate_key failed.");
588 if (private == NULL)
589 fatal("dsa_generate_private_key: NULL.");
590 return private;
593 Key *
594 key_generate(int type, u_int bits)
596 Key *k = key_new(KEY_UNSPEC);
597 switch (type) {
598 case KEY_DSA:
599 k->dsa = dsa_generate_private_key(bits);
600 break;
601 case KEY_RSA:
602 case KEY_RSA1:
603 k->rsa = rsa_generate_private_key(bits);
604 break;
605 default:
606 fatal("key_generate: unknown type %d", type);
608 k->type = type;
609 return k;
612 Key *
613 key_from_private(const Key *k)
615 Key *n = NULL;
616 switch (k->type) {
617 case KEY_DSA:
618 n = key_new(k->type);
619 if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) ||
620 (BN_copy(n->dsa->q, k->dsa->q) == NULL) ||
621 (BN_copy(n->dsa->g, k->dsa->g) == NULL) ||
622 (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL))
623 fatal("key_from_private: BN_copy failed");
624 break;
625 case KEY_RSA:
626 case KEY_RSA1:
627 n = key_new(k->type);
628 if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) ||
629 (BN_copy(n->rsa->e, k->rsa->e) == NULL))
630 fatal("key_from_private: BN_copy failed");
631 break;
632 default:
633 fatal("key_from_private: unknown type %d", k->type);
634 break;
636 return n;
640 key_type_from_name(char *name)
642 if (strcmp(name, "rsa1") == 0) {
643 return KEY_RSA1;
644 } else if (strcmp(name, "rsa") == 0) {
645 return KEY_RSA;
646 } else if (strcmp(name, "dsa") == 0) {
647 return KEY_DSA;
648 } else if (strcmp(name, "ssh-rsa") == 0) {
649 return KEY_RSA;
650 } else if (strcmp(name, "ssh-dss") == 0) {
651 return KEY_DSA;
653 debug2("key_type_from_name: unknown key type '%s'", name);
654 return KEY_UNSPEC;
658 key_names_valid2(const char *names)
660 char *s, *cp, *p;
662 if (names == NULL || strcmp(names, "") == 0)
663 return 0;
664 s = cp = xstrdup(names);
665 for ((p = strsep(&cp, ",")); p && *p != '\0';
666 (p = strsep(&cp, ","))) {
667 switch (key_type_from_name(p)) {
668 case KEY_RSA1:
669 case KEY_UNSPEC:
670 xfree(s);
671 return 0;
674 debug3("key names ok: [%s]", names);
675 xfree(s);
676 return 1;
679 Key *
680 key_from_blob(const u_char *blob, u_int blen)
682 Buffer b;
683 int rlen, type;
684 char *ktype = NULL;
685 Key *key = NULL;
687 #ifdef DEBUG_PK
688 dump_base64(stderr, blob, blen);
689 #endif
690 buffer_init(&b);
691 buffer_append(&b, blob, blen);
692 if ((ktype = buffer_get_string_ret(&b, NULL)) == NULL) {
693 error("key_from_blob: can't read key type");
694 goto out;
697 type = key_type_from_name(ktype);
699 switch (type) {
700 case KEY_RSA:
701 key = key_new(type);
702 if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
703 buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
704 error("key_from_blob: can't read rsa key");
705 key_free(key);
706 key = NULL;
707 goto out;
709 #ifdef DEBUG_PK
710 RSA_print_fp(stderr, key->rsa, 8);
711 #endif
712 break;
713 case KEY_DSA:
714 key = key_new(type);
715 if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
716 buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
717 buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||
718 buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
719 error("key_from_blob: can't read dsa key");
720 key_free(key);
721 key = NULL;
722 goto out;
724 #ifdef DEBUG_PK
725 DSA_print_fp(stderr, key->dsa, 8);
726 #endif
727 break;
728 case KEY_UNSPEC:
729 key = key_new(type);
730 break;
731 default:
732 error("key_from_blob: cannot handle type %s", ktype);
733 goto out;
735 rlen = buffer_len(&b);
736 if (key != NULL && rlen != 0)
737 error("key_from_blob: remaining bytes in key blob %d", rlen);
738 out:
739 if (ktype != NULL)
740 xfree(ktype);
741 buffer_free(&b);
742 return key;
746 key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
748 Buffer b;
749 int len;
751 if (key == NULL) {
752 error("key_to_blob: key == NULL");
753 return 0;
755 buffer_init(&b);
756 switch (key->type) {
757 case KEY_DSA:
758 buffer_put_cstring(&b, key_ssh_name(key));
759 buffer_put_bignum2(&b, key->dsa->p);
760 buffer_put_bignum2(&b, key->dsa->q);
761 buffer_put_bignum2(&b, key->dsa->g);
762 buffer_put_bignum2(&b, key->dsa->pub_key);
763 break;
764 case KEY_RSA:
765 buffer_put_cstring(&b, key_ssh_name(key));
766 buffer_put_bignum2(&b, key->rsa->e);
767 buffer_put_bignum2(&b, key->rsa->n);
768 break;
769 default:
770 error("key_to_blob: unsupported key type %d", key->type);
771 buffer_free(&b);
772 return 0;
774 len = buffer_len(&b);
775 if (lenp != NULL)
776 *lenp = len;
777 if (blobp != NULL) {
778 *blobp = xmalloc(len);
779 memcpy(*blobp, buffer_ptr(&b), len);
781 memset(buffer_ptr(&b), 0, len);
782 buffer_free(&b);
783 return len;
787 key_sign(
788 const Key *key,
789 u_char **sigp, u_int *lenp,
790 const u_char *data, u_int datalen)
792 switch (key->type) {
793 case KEY_DSA:
794 return ssh_dss_sign(key, sigp, lenp, data, datalen);
795 case KEY_RSA:
796 return ssh_rsa_sign(key, sigp, lenp, data, datalen);
797 default:
798 error("key_sign: invalid key type %d", key->type);
799 return -1;
804 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
805 * and -1 on error.
808 key_verify(
809 const Key *key,
810 const u_char *signature, u_int signaturelen,
811 const u_char *data, u_int datalen)
813 if (signaturelen == 0)
814 return -1;
816 switch (key->type) {
817 case KEY_DSA:
818 return ssh_dss_verify(key, signature, signaturelen, data, datalen);
819 case KEY_RSA:
820 return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
821 default:
822 error("key_verify: invalid key type %d", key->type);
823 return -1;
827 /* Converts a private to a public key */
828 Key *
829 key_demote(const Key *k)
831 Key *pk;
833 pk = xcalloc(1, sizeof(*pk));
834 pk->type = k->type;
835 pk->flags = k->flags;
836 pk->dsa = NULL;
837 pk->rsa = NULL;
839 switch (k->type) {
840 case KEY_RSA1:
841 case KEY_RSA:
842 if ((pk->rsa = RSA_new()) == NULL)
843 fatal("key_demote: RSA_new failed");
844 if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
845 fatal("key_demote: BN_dup failed");
846 if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
847 fatal("key_demote: BN_dup failed");
848 break;
849 case KEY_DSA:
850 if ((pk->dsa = DSA_new()) == NULL)
851 fatal("key_demote: DSA_new failed");
852 if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
853 fatal("key_demote: BN_dup failed");
854 if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
855 fatal("key_demote: BN_dup failed");
856 if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
857 fatal("key_demote: BN_dup failed");
858 if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
859 fatal("key_demote: BN_dup failed");
860 break;
861 default:
862 fatal("key_free: bad key type %d", k->type);
863 break;
866 return (pk);