- stevesk@cvs.openbsd.org 2009/12/29 16:38:41
[openssh-git.git] / key.c
blobf2edf6d5d56f725c8a3a1b72d7a7e39b86f2d44a
1 /* $OpenBSD: key.c,v 1.81 2009/12/11 18:16:33 markus Exp $ */
2 /*
3 * read_bignum():
4 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
6 * As far as I am concerned, the code I have written for this software
7 * can be used freely for any purpose. Any derived versions of this
8 * software must be clearly marked as such, and if the derived work is
9 * incompatible with the protocol description in the RFC file, it must be
10 * called by a name other than "ssh" or "Secure Shell".
13 * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
14 * Copyright (c) 2008 Alexander von Gernler. All rights reserved.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
28 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 #include "includes.h"
39 #include <sys/param.h>
40 #include <sys/types.h>
42 #include <openssl/evp.h>
43 #include <openbsd-compat/openssl-compat.h>
45 #include <stdarg.h>
46 #include <stdio.h>
47 #include <string.h>
49 #include "xmalloc.h"
50 #include "key.h"
51 #include "rsa.h"
52 #include "uuencode.h"
53 #include "buffer.h"
54 #include "log.h"
56 Key *
57 key_new(int type)
59 Key *k;
60 RSA *rsa;
61 DSA *dsa;
62 k = xcalloc(1, sizeof(*k));
63 k->type = type;
64 k->dsa = NULL;
65 k->rsa = NULL;
66 switch (k->type) {
67 case KEY_RSA1:
68 case KEY_RSA:
69 if ((rsa = RSA_new()) == NULL)
70 fatal("key_new: RSA_new failed");
71 if ((rsa->n = BN_new()) == NULL)
72 fatal("key_new: BN_new failed");
73 if ((rsa->e = BN_new()) == NULL)
74 fatal("key_new: BN_new failed");
75 k->rsa = rsa;
76 break;
77 case KEY_DSA:
78 if ((dsa = DSA_new()) == NULL)
79 fatal("key_new: DSA_new failed");
80 if ((dsa->p = BN_new()) == NULL)
81 fatal("key_new: BN_new failed");
82 if ((dsa->q = BN_new()) == NULL)
83 fatal("key_new: BN_new failed");
84 if ((dsa->g = BN_new()) == NULL)
85 fatal("key_new: BN_new failed");
86 if ((dsa->pub_key = BN_new()) == NULL)
87 fatal("key_new: BN_new failed");
88 k->dsa = dsa;
89 break;
90 case KEY_UNSPEC:
91 break;
92 default:
93 fatal("key_new: bad key type %d", k->type);
94 break;
96 return k;
99 Key *
100 key_new_private(int type)
102 Key *k = key_new(type);
103 switch (k->type) {
104 case KEY_RSA1:
105 case KEY_RSA:
106 if ((k->rsa->d = BN_new()) == NULL)
107 fatal("key_new_private: BN_new failed");
108 if ((k->rsa->iqmp = BN_new()) == NULL)
109 fatal("key_new_private: BN_new failed");
110 if ((k->rsa->q = BN_new()) == NULL)
111 fatal("key_new_private: BN_new failed");
112 if ((k->rsa->p = BN_new()) == NULL)
113 fatal("key_new_private: BN_new failed");
114 if ((k->rsa->dmq1 = BN_new()) == NULL)
115 fatal("key_new_private: BN_new failed");
116 if ((k->rsa->dmp1 = BN_new()) == NULL)
117 fatal("key_new_private: BN_new failed");
118 break;
119 case KEY_DSA:
120 if ((k->dsa->priv_key = BN_new()) == NULL)
121 fatal("key_new_private: BN_new failed");
122 break;
123 case KEY_UNSPEC:
124 break;
125 default:
126 break;
128 return k;
131 void
132 key_free(Key *k)
134 if (k == NULL)
135 fatal("key_free: key is NULL");
136 switch (k->type) {
137 case KEY_RSA1:
138 case KEY_RSA:
139 if (k->rsa != NULL)
140 RSA_free(k->rsa);
141 k->rsa = NULL;
142 break;
143 case KEY_DSA:
144 if (k->dsa != NULL)
145 DSA_free(k->dsa);
146 k->dsa = NULL;
147 break;
148 case KEY_UNSPEC:
149 break;
150 default:
151 fatal("key_free: bad key type %d", k->type);
152 break;
154 xfree(k);
158 key_equal(const Key *a, const Key *b)
160 if (a == NULL || b == NULL || a->type != b->type)
161 return 0;
162 switch (a->type) {
163 case KEY_RSA1:
164 case KEY_RSA:
165 return a->rsa != NULL && b->rsa != NULL &&
166 BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
167 BN_cmp(a->rsa->n, b->rsa->n) == 0;
168 case KEY_DSA:
169 return a->dsa != NULL && b->dsa != NULL &&
170 BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
171 BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
172 BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
173 BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
174 default:
175 fatal("key_equal: bad key type %d", a->type);
177 /* NOTREACHED */
180 u_char*
181 key_fingerprint_raw(const Key *k, enum fp_type dgst_type,
182 u_int *dgst_raw_length)
184 const EVP_MD *md = NULL;
185 EVP_MD_CTX ctx;
186 u_char *blob = NULL;
187 u_char *retval = NULL;
188 u_int len = 0;
189 int nlen, elen;
191 *dgst_raw_length = 0;
193 switch (dgst_type) {
194 case SSH_FP_MD5:
195 md = EVP_md5();
196 break;
197 case SSH_FP_SHA1:
198 md = EVP_sha1();
199 break;
200 default:
201 fatal("key_fingerprint_raw: bad digest type %d",
202 dgst_type);
204 switch (k->type) {
205 case KEY_RSA1:
206 nlen = BN_num_bytes(k->rsa->n);
207 elen = BN_num_bytes(k->rsa->e);
208 len = nlen + elen;
209 blob = xmalloc(len);
210 BN_bn2bin(k->rsa->n, blob);
211 BN_bn2bin(k->rsa->e, blob + nlen);
212 break;
213 case KEY_DSA:
214 case KEY_RSA:
215 key_to_blob(k, &blob, &len);
216 break;
217 case KEY_UNSPEC:
218 return retval;
219 default:
220 fatal("key_fingerprint_raw: bad key type %d", k->type);
221 break;
223 if (blob != NULL) {
224 retval = xmalloc(EVP_MAX_MD_SIZE);
225 EVP_DigestInit(&ctx, md);
226 EVP_DigestUpdate(&ctx, blob, len);
227 EVP_DigestFinal(&ctx, retval, dgst_raw_length);
228 memset(blob, 0, len);
229 xfree(blob);
230 } else {
231 fatal("key_fingerprint_raw: blob is null");
233 return retval;
236 static char *
237 key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
239 char *retval;
240 u_int i;
242 retval = xcalloc(1, dgst_raw_len * 3 + 1);
243 for (i = 0; i < dgst_raw_len; i++) {
244 char hex[4];
245 snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
246 strlcat(retval, hex, dgst_raw_len * 3 + 1);
249 /* Remove the trailing ':' character */
250 retval[(dgst_raw_len * 3) - 1] = '\0';
251 return retval;
254 static char *
255 key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
257 char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
258 char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
259 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
260 u_int i, j = 0, rounds, seed = 1;
261 char *retval;
263 rounds = (dgst_raw_len / 2) + 1;
264 retval = xcalloc((rounds * 6), sizeof(char));
265 retval[j++] = 'x';
266 for (i = 0; i < rounds; i++) {
267 u_int idx0, idx1, idx2, idx3, idx4;
268 if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
269 idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
270 seed) % 6;
271 idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
272 idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
273 (seed / 6)) % 6;
274 retval[j++] = vowels[idx0];
275 retval[j++] = consonants[idx1];
276 retval[j++] = vowels[idx2];
277 if ((i + 1) < rounds) {
278 idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
279 idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
280 retval[j++] = consonants[idx3];
281 retval[j++] = '-';
282 retval[j++] = consonants[idx4];
283 seed = ((seed * 5) +
284 ((((u_int)(dgst_raw[2 * i])) * 7) +
285 ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
287 } else {
288 idx0 = seed % 6;
289 idx1 = 16;
290 idx2 = seed / 6;
291 retval[j++] = vowels[idx0];
292 retval[j++] = consonants[idx1];
293 retval[j++] = vowels[idx2];
296 retval[j++] = 'x';
297 retval[j++] = '\0';
298 return retval;
302 * Draw an ASCII-Art representing the fingerprint so human brain can
303 * profit from its built-in pattern recognition ability.
304 * This technique is called "random art" and can be found in some
305 * scientific publications like this original paper:
307 * "Hash Visualization: a New Technique to improve Real-World Security",
308 * Perrig A. and Song D., 1999, International Workshop on Cryptographic
309 * Techniques and E-Commerce (CrypTEC '99)
310 * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
312 * The subject came up in a talk by Dan Kaminsky, too.
314 * If you see the picture is different, the key is different.
315 * If the picture looks the same, you still know nothing.
317 * The algorithm used here is a worm crawling over a discrete plane,
318 * leaving a trace (augmenting the field) everywhere it goes.
319 * Movement is taken from dgst_raw 2bit-wise. Bumping into walls
320 * makes the respective movement vector be ignored for this turn.
321 * Graphs are not unambiguous, because circles in graphs can be
322 * walked in either direction.
326 * Field sizes for the random art. Have to be odd, so the starting point
327 * can be in the exact middle of the picture, and FLDBASE should be >=8 .
328 * Else pictures would be too dense, and drawing the frame would
329 * fail, too, because the key type would not fit in anymore.
331 #define FLDBASE 8
332 #define FLDSIZE_Y (FLDBASE + 1)
333 #define FLDSIZE_X (FLDBASE * 2 + 1)
334 static char *
335 key_fingerprint_randomart(u_char *dgst_raw, u_int dgst_raw_len, const Key *k)
338 * Chars to be used after each other every time the worm
339 * intersects with itself. Matter of taste.
341 char *augmentation_string = " .o+=*BOX@%&#/^SE";
342 char *retval, *p;
343 u_char field[FLDSIZE_X][FLDSIZE_Y];
344 u_int i, b;
345 int x, y;
346 size_t len = strlen(augmentation_string) - 1;
348 retval = xcalloc(1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2));
350 /* initialize field */
351 memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char));
352 x = FLDSIZE_X / 2;
353 y = FLDSIZE_Y / 2;
355 /* process raw key */
356 for (i = 0; i < dgst_raw_len; i++) {
357 int input;
358 /* each byte conveys four 2-bit move commands */
359 input = dgst_raw[i];
360 for (b = 0; b < 4; b++) {
361 /* evaluate 2 bit, rest is shifted later */
362 x += (input & 0x1) ? 1 : -1;
363 y += (input & 0x2) ? 1 : -1;
365 /* assure we are still in bounds */
366 x = MAX(x, 0);
367 y = MAX(y, 0);
368 x = MIN(x, FLDSIZE_X - 1);
369 y = MIN(y, FLDSIZE_Y - 1);
371 /* augment the field */
372 if (field[x][y] < len - 2)
373 field[x][y]++;
374 input = input >> 2;
378 /* mark starting point and end point*/
379 field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1;
380 field[x][y] = len;
382 /* fill in retval */
383 snprintf(retval, FLDSIZE_X, "+--[%4s %4u]", key_type(k), key_size(k));
384 p = strchr(retval, '\0');
386 /* output upper border */
387 for (i = p - retval - 1; i < FLDSIZE_X; i++)
388 *p++ = '-';
389 *p++ = '+';
390 *p++ = '\n';
392 /* output content */
393 for (y = 0; y < FLDSIZE_Y; y++) {
394 *p++ = '|';
395 for (x = 0; x < FLDSIZE_X; x++)
396 *p++ = augmentation_string[MIN(field[x][y], len)];
397 *p++ = '|';
398 *p++ = '\n';
401 /* output lower border */
402 *p++ = '+';
403 for (i = 0; i < FLDSIZE_X; i++)
404 *p++ = '-';
405 *p++ = '+';
407 return retval;
410 char *
411 key_fingerprint(const Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
413 char *retval = NULL;
414 u_char *dgst_raw;
415 u_int dgst_raw_len;
417 dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
418 if (!dgst_raw)
419 fatal("key_fingerprint: null from key_fingerprint_raw()");
420 switch (dgst_rep) {
421 case SSH_FP_HEX:
422 retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
423 break;
424 case SSH_FP_BUBBLEBABBLE:
425 retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
426 break;
427 case SSH_FP_RANDOMART:
428 retval = key_fingerprint_randomart(dgst_raw, dgst_raw_len, k);
429 break;
430 default:
431 fatal("key_fingerprint: bad digest representation %d",
432 dgst_rep);
433 break;
435 memset(dgst_raw, 0, dgst_raw_len);
436 xfree(dgst_raw);
437 return retval;
441 * Reads a multiple-precision integer in decimal from the buffer, and advances
442 * the pointer. The integer must already be initialized. This function is
443 * permitted to modify the buffer. This leaves *cpp to point just beyond the
444 * last processed (and maybe modified) character. Note that this may modify
445 * the buffer containing the number.
447 static int
448 read_bignum(char **cpp, BIGNUM * value)
450 char *cp = *cpp;
451 int old;
453 /* Skip any leading whitespace. */
454 for (; *cp == ' ' || *cp == '\t'; cp++)
457 /* Check that it begins with a decimal digit. */
458 if (*cp < '0' || *cp > '9')
459 return 0;
461 /* Save starting position. */
462 *cpp = cp;
464 /* Move forward until all decimal digits skipped. */
465 for (; *cp >= '0' && *cp <= '9'; cp++)
468 /* Save the old terminating character, and replace it by \0. */
469 old = *cp;
470 *cp = 0;
472 /* Parse the number. */
473 if (BN_dec2bn(&value, *cpp) == 0)
474 return 0;
476 /* Restore old terminating character. */
477 *cp = old;
479 /* Move beyond the number and return success. */
480 *cpp = cp;
481 return 1;
484 static int
485 write_bignum(FILE *f, BIGNUM *num)
487 char *buf = BN_bn2dec(num);
488 if (buf == NULL) {
489 error("write_bignum: BN_bn2dec() failed");
490 return 0;
492 fprintf(f, " %s", buf);
493 OPENSSL_free(buf);
494 return 1;
497 /* returns 1 ok, -1 error */
499 key_read(Key *ret, char **cpp)
501 Key *k;
502 int success = -1;
503 char *cp, *space;
504 int len, n, type;
505 u_int bits;
506 u_char *blob;
508 cp = *cpp;
510 switch (ret->type) {
511 case KEY_RSA1:
512 /* Get number of bits. */
513 if (*cp < '0' || *cp > '9')
514 return -1; /* Bad bit count... */
515 for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
516 bits = 10 * bits + *cp - '0';
517 if (bits == 0)
518 return -1;
519 *cpp = cp;
520 /* Get public exponent, public modulus. */
521 if (!read_bignum(cpp, ret->rsa->e))
522 return -1;
523 if (!read_bignum(cpp, ret->rsa->n))
524 return -1;
525 success = 1;
526 break;
527 case KEY_UNSPEC:
528 case KEY_RSA:
529 case KEY_DSA:
530 space = strchr(cp, ' ');
531 if (space == NULL) {
532 debug3("key_read: missing whitespace");
533 return -1;
535 *space = '\0';
536 type = key_type_from_name(cp);
537 *space = ' ';
538 if (type == KEY_UNSPEC) {
539 debug3("key_read: missing keytype");
540 return -1;
542 cp = space+1;
543 if (*cp == '\0') {
544 debug3("key_read: short string");
545 return -1;
547 if (ret->type == KEY_UNSPEC) {
548 ret->type = type;
549 } else if (ret->type != type) {
550 /* is a key, but different type */
551 debug3("key_read: type mismatch");
552 return -1;
554 len = 2*strlen(cp);
555 blob = xmalloc(len);
556 n = uudecode(cp, blob, len);
557 if (n < 0) {
558 error("key_read: uudecode %s failed", cp);
559 xfree(blob);
560 return -1;
562 k = key_from_blob(blob, (u_int)n);
563 xfree(blob);
564 if (k == NULL) {
565 error("key_read: key_from_blob %s failed", cp);
566 return -1;
568 if (k->type != type) {
569 error("key_read: type mismatch: encoding error");
570 key_free(k);
571 return -1;
573 /*XXXX*/
574 if (ret->type == KEY_RSA) {
575 if (ret->rsa != NULL)
576 RSA_free(ret->rsa);
577 ret->rsa = k->rsa;
578 k->rsa = NULL;
579 success = 1;
580 #ifdef DEBUG_PK
581 RSA_print_fp(stderr, ret->rsa, 8);
582 #endif
583 } else {
584 if (ret->dsa != NULL)
585 DSA_free(ret->dsa);
586 ret->dsa = k->dsa;
587 k->dsa = NULL;
588 success = 1;
589 #ifdef DEBUG_PK
590 DSA_print_fp(stderr, ret->dsa, 8);
591 #endif
593 /*XXXX*/
594 key_free(k);
595 if (success != 1)
596 break;
597 /* advance cp: skip whitespace and data */
598 while (*cp == ' ' || *cp == '\t')
599 cp++;
600 while (*cp != '\0' && *cp != ' ' && *cp != '\t')
601 cp++;
602 *cpp = cp;
603 break;
604 default:
605 fatal("key_read: bad key type: %d", ret->type);
606 break;
608 return success;
612 key_write(const Key *key, FILE *f)
614 int n, success = 0;
615 u_int len, bits = 0;
616 u_char *blob;
617 char *uu;
619 if (key->type == KEY_RSA1 && key->rsa != NULL) {
620 /* size of modulus 'n' */
621 bits = BN_num_bits(key->rsa->n);
622 fprintf(f, "%u", bits);
623 if (write_bignum(f, key->rsa->e) &&
624 write_bignum(f, key->rsa->n)) {
625 success = 1;
626 } else {
627 error("key_write: failed for RSA key");
629 } else if ((key->type == KEY_DSA && key->dsa != NULL) ||
630 (key->type == KEY_RSA && key->rsa != NULL)) {
631 key_to_blob(key, &blob, &len);
632 uu = xmalloc(2*len);
633 n = uuencode(blob, len, uu, 2*len);
634 if (n > 0) {
635 fprintf(f, "%s %s", key_ssh_name(key), uu);
636 success = 1;
638 xfree(blob);
639 xfree(uu);
641 return success;
644 const char *
645 key_type(const Key *k)
647 switch (k->type) {
648 case KEY_RSA1:
649 return "RSA1";
650 case KEY_RSA:
651 return "RSA";
652 case KEY_DSA:
653 return "DSA";
655 return "unknown";
658 const char *
659 key_ssh_name(const Key *k)
661 switch (k->type) {
662 case KEY_RSA:
663 return "ssh-rsa";
664 case KEY_DSA:
665 return "ssh-dss";
667 return "ssh-unknown";
670 u_int
671 key_size(const Key *k)
673 switch (k->type) {
674 case KEY_RSA1:
675 case KEY_RSA:
676 return BN_num_bits(k->rsa->n);
677 case KEY_DSA:
678 return BN_num_bits(k->dsa->p);
680 return 0;
683 static RSA *
684 rsa_generate_private_key(u_int bits)
686 RSA *private;
688 private = RSA_generate_key(bits, RSA_F4, NULL, NULL);
689 if (private == NULL)
690 fatal("rsa_generate_private_key: key generation failed.");
691 return private;
694 static DSA*
695 dsa_generate_private_key(u_int bits)
697 DSA *private = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL, NULL);
699 if (private == NULL)
700 fatal("dsa_generate_private_key: DSA_generate_parameters failed");
701 if (!DSA_generate_key(private))
702 fatal("dsa_generate_private_key: DSA_generate_key failed.");
703 if (private == NULL)
704 fatal("dsa_generate_private_key: NULL.");
705 return private;
708 Key *
709 key_generate(int type, u_int bits)
711 Key *k = key_new(KEY_UNSPEC);
712 switch (type) {
713 case KEY_DSA:
714 k->dsa = dsa_generate_private_key(bits);
715 break;
716 case KEY_RSA:
717 case KEY_RSA1:
718 k->rsa = rsa_generate_private_key(bits);
719 break;
720 default:
721 fatal("key_generate: unknown type %d", type);
723 k->type = type;
724 return k;
727 Key *
728 key_from_private(const Key *k)
730 Key *n = NULL;
731 switch (k->type) {
732 case KEY_DSA:
733 n = key_new(k->type);
734 if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) ||
735 (BN_copy(n->dsa->q, k->dsa->q) == NULL) ||
736 (BN_copy(n->dsa->g, k->dsa->g) == NULL) ||
737 (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL))
738 fatal("key_from_private: BN_copy failed");
739 break;
740 case KEY_RSA:
741 case KEY_RSA1:
742 n = key_new(k->type);
743 if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) ||
744 (BN_copy(n->rsa->e, k->rsa->e) == NULL))
745 fatal("key_from_private: BN_copy failed");
746 break;
747 default:
748 fatal("key_from_private: unknown type %d", k->type);
749 break;
751 return n;
755 key_type_from_name(char *name)
757 if (strcmp(name, "rsa1") == 0) {
758 return KEY_RSA1;
759 } else if (strcmp(name, "rsa") == 0) {
760 return KEY_RSA;
761 } else if (strcmp(name, "dsa") == 0) {
762 return KEY_DSA;
763 } else if (strcmp(name, "ssh-rsa") == 0) {
764 return KEY_RSA;
765 } else if (strcmp(name, "ssh-dss") == 0) {
766 return KEY_DSA;
768 debug2("key_type_from_name: unknown key type '%s'", name);
769 return KEY_UNSPEC;
773 key_names_valid2(const char *names)
775 char *s, *cp, *p;
777 if (names == NULL || strcmp(names, "") == 0)
778 return 0;
779 s = cp = xstrdup(names);
780 for ((p = strsep(&cp, ",")); p && *p != '\0';
781 (p = strsep(&cp, ","))) {
782 switch (key_type_from_name(p)) {
783 case KEY_RSA1:
784 case KEY_UNSPEC:
785 xfree(s);
786 return 0;
789 debug3("key names ok: [%s]", names);
790 xfree(s);
791 return 1;
794 Key *
795 key_from_blob(const u_char *blob, u_int blen)
797 Buffer b;
798 int rlen, type;
799 char *ktype = NULL;
800 Key *key = NULL;
802 #ifdef DEBUG_PK
803 dump_base64(stderr, blob, blen);
804 #endif
805 buffer_init(&b);
806 buffer_append(&b, blob, blen);
807 if ((ktype = buffer_get_string_ret(&b, NULL)) == NULL) {
808 error("key_from_blob: can't read key type");
809 goto out;
812 type = key_type_from_name(ktype);
814 switch (type) {
815 case KEY_RSA:
816 key = key_new(type);
817 if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
818 buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
819 error("key_from_blob: can't read rsa key");
820 key_free(key);
821 key = NULL;
822 goto out;
824 #ifdef DEBUG_PK
825 RSA_print_fp(stderr, key->rsa, 8);
826 #endif
827 break;
828 case KEY_DSA:
829 key = key_new(type);
830 if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
831 buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
832 buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||
833 buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
834 error("key_from_blob: can't read dsa key");
835 key_free(key);
836 key = NULL;
837 goto out;
839 #ifdef DEBUG_PK
840 DSA_print_fp(stderr, key->dsa, 8);
841 #endif
842 break;
843 case KEY_UNSPEC:
844 key = key_new(type);
845 break;
846 default:
847 error("key_from_blob: cannot handle type %s", ktype);
848 goto out;
850 rlen = buffer_len(&b);
851 if (key != NULL && rlen != 0)
852 error("key_from_blob: remaining bytes in key blob %d", rlen);
853 out:
854 if (ktype != NULL)
855 xfree(ktype);
856 buffer_free(&b);
857 return key;
861 key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
863 Buffer b;
864 int len;
866 if (key == NULL) {
867 error("key_to_blob: key == NULL");
868 return 0;
870 buffer_init(&b);
871 switch (key->type) {
872 case KEY_DSA:
873 buffer_put_cstring(&b, key_ssh_name(key));
874 buffer_put_bignum2(&b, key->dsa->p);
875 buffer_put_bignum2(&b, key->dsa->q);
876 buffer_put_bignum2(&b, key->dsa->g);
877 buffer_put_bignum2(&b, key->dsa->pub_key);
878 break;
879 case KEY_RSA:
880 buffer_put_cstring(&b, key_ssh_name(key));
881 buffer_put_bignum2(&b, key->rsa->e);
882 buffer_put_bignum2(&b, key->rsa->n);
883 break;
884 default:
885 error("key_to_blob: unsupported key type %d", key->type);
886 buffer_free(&b);
887 return 0;
889 len = buffer_len(&b);
890 if (lenp != NULL)
891 *lenp = len;
892 if (blobp != NULL) {
893 *blobp = xmalloc(len);
894 memcpy(*blobp, buffer_ptr(&b), len);
896 memset(buffer_ptr(&b), 0, len);
897 buffer_free(&b);
898 return len;
902 key_sign(
903 const Key *key,
904 u_char **sigp, u_int *lenp,
905 const u_char *data, u_int datalen)
907 switch (key->type) {
908 case KEY_DSA:
909 return ssh_dss_sign(key, sigp, lenp, data, datalen);
910 case KEY_RSA:
911 return ssh_rsa_sign(key, sigp, lenp, data, datalen);
912 default:
913 error("key_sign: invalid key type %d", key->type);
914 return -1;
919 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
920 * and -1 on error.
923 key_verify(
924 const Key *key,
925 const u_char *signature, u_int signaturelen,
926 const u_char *data, u_int datalen)
928 if (signaturelen == 0)
929 return -1;
931 switch (key->type) {
932 case KEY_DSA:
933 return ssh_dss_verify(key, signature, signaturelen, data, datalen);
934 case KEY_RSA:
935 return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
936 default:
937 error("key_verify: invalid key type %d", key->type);
938 return -1;
942 /* Converts a private to a public key */
943 Key *
944 key_demote(const Key *k)
946 Key *pk;
948 pk = xcalloc(1, sizeof(*pk));
949 pk->type = k->type;
950 pk->flags = k->flags;
951 pk->dsa = NULL;
952 pk->rsa = NULL;
954 switch (k->type) {
955 case KEY_RSA1:
956 case KEY_RSA:
957 if ((pk->rsa = RSA_new()) == NULL)
958 fatal("key_demote: RSA_new failed");
959 if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
960 fatal("key_demote: BN_dup failed");
961 if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
962 fatal("key_demote: BN_dup failed");
963 break;
964 case KEY_DSA:
965 if ((pk->dsa = DSA_new()) == NULL)
966 fatal("key_demote: DSA_new failed");
967 if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
968 fatal("key_demote: BN_dup failed");
969 if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
970 fatal("key_demote: BN_dup failed");
971 if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
972 fatal("key_demote: BN_dup failed");
973 if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
974 fatal("key_demote: BN_dup failed");
975 break;
976 default:
977 fatal("key_free: bad key type %d", k->type);
978 break;
981 return (pk);