- (dtucker) [regress/keytype.sh] Import new test.
[openssh-git.git] / key.c
blobc71bf5b0a8e89b485e61f2e9b953053fbd0cb899
1 /* $OpenBSD: key.c,v 1.94 2010/10/28 11:22:09 djm Exp $ */
2 /*
3 * read_bignum():
4 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
6 * As far as I am concerned, the code I have written for this software
7 * can be used freely for any purpose. Any derived versions of this
8 * software must be clearly marked as such, and if the derived work is
9 * incompatible with the protocol description in the RFC file, it must be
10 * called by a name other than "ssh" or "Secure Shell".
13 * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
14 * Copyright (c) 2008 Alexander von Gernler. All rights reserved.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
28 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 #include "includes.h"
39 #include <sys/param.h>
40 #include <sys/types.h>
42 #include <openssl/evp.h>
43 #include <openbsd-compat/openssl-compat.h>
45 #include <stdarg.h>
46 #include <stdio.h>
47 #include <string.h>
49 #include "xmalloc.h"
50 #include "key.h"
51 #include "rsa.h"
52 #include "uuencode.h"
53 #include "buffer.h"
54 #include "log.h"
55 #include "misc.h"
56 #include "ssh2.h"
58 static struct KeyCert *
59 cert_new(void)
61 struct KeyCert *cert;
63 cert = xcalloc(1, sizeof(*cert));
64 buffer_init(&cert->certblob);
65 buffer_init(&cert->critical);
66 buffer_init(&cert->extensions);
67 cert->key_id = NULL;
68 cert->principals = NULL;
69 cert->signature_key = NULL;
70 return cert;
73 Key *
74 key_new(int type)
76 Key *k;
77 RSA *rsa;
78 DSA *dsa;
79 k = xcalloc(1, sizeof(*k));
80 k->type = type;
81 k->ecdsa = NULL;
82 k->ecdsa_nid = -1;
83 k->dsa = NULL;
84 k->rsa = NULL;
85 k->cert = NULL;
86 switch (k->type) {
87 case KEY_RSA1:
88 case KEY_RSA:
89 case KEY_RSA_CERT_V00:
90 case KEY_RSA_CERT:
91 if ((rsa = RSA_new()) == NULL)
92 fatal("key_new: RSA_new failed");
93 if ((rsa->n = BN_new()) == NULL)
94 fatal("key_new: BN_new failed");
95 if ((rsa->e = BN_new()) == NULL)
96 fatal("key_new: BN_new failed");
97 k->rsa = rsa;
98 break;
99 case KEY_DSA:
100 case KEY_DSA_CERT_V00:
101 case KEY_DSA_CERT:
102 if ((dsa = DSA_new()) == NULL)
103 fatal("key_new: DSA_new failed");
104 if ((dsa->p = BN_new()) == NULL)
105 fatal("key_new: BN_new failed");
106 if ((dsa->q = BN_new()) == NULL)
107 fatal("key_new: BN_new failed");
108 if ((dsa->g = BN_new()) == NULL)
109 fatal("key_new: BN_new failed");
110 if ((dsa->pub_key = BN_new()) == NULL)
111 fatal("key_new: BN_new failed");
112 k->dsa = dsa;
113 break;
114 #ifdef OPENSSL_HAS_ECC
115 case KEY_ECDSA:
116 case KEY_ECDSA_CERT:
117 /* Cannot do anything until we know the group */
118 break;
119 #endif
120 case KEY_UNSPEC:
121 break;
122 default:
123 fatal("key_new: bad key type %d", k->type);
124 break;
127 if (key_is_cert(k))
128 k->cert = cert_new();
130 return k;
133 void
134 key_add_private(Key *k)
136 switch (k->type) {
137 case KEY_RSA1:
138 case KEY_RSA:
139 case KEY_RSA_CERT_V00:
140 case KEY_RSA_CERT:
141 if ((k->rsa->d = BN_new()) == NULL)
142 fatal("key_new_private: BN_new failed");
143 if ((k->rsa->iqmp = BN_new()) == NULL)
144 fatal("key_new_private: BN_new failed");
145 if ((k->rsa->q = BN_new()) == NULL)
146 fatal("key_new_private: BN_new failed");
147 if ((k->rsa->p = BN_new()) == NULL)
148 fatal("key_new_private: BN_new failed");
149 if ((k->rsa->dmq1 = BN_new()) == NULL)
150 fatal("key_new_private: BN_new failed");
151 if ((k->rsa->dmp1 = BN_new()) == NULL)
152 fatal("key_new_private: BN_new failed");
153 break;
154 case KEY_DSA:
155 case KEY_DSA_CERT_V00:
156 case KEY_DSA_CERT:
157 if ((k->dsa->priv_key = BN_new()) == NULL)
158 fatal("key_new_private: BN_new failed");
159 break;
160 case KEY_ECDSA:
161 case KEY_ECDSA_CERT:
162 /* Cannot do anything until we know the group */
163 break;
164 case KEY_UNSPEC:
165 break;
166 default:
167 break;
171 Key *
172 key_new_private(int type)
174 Key *k = key_new(type);
176 key_add_private(k);
177 return k;
180 static void
181 cert_free(struct KeyCert *cert)
183 u_int i;
185 buffer_free(&cert->certblob);
186 buffer_free(&cert->critical);
187 buffer_free(&cert->extensions);
188 if (cert->key_id != NULL)
189 xfree(cert->key_id);
190 for (i = 0; i < cert->nprincipals; i++)
191 xfree(cert->principals[i]);
192 if (cert->principals != NULL)
193 xfree(cert->principals);
194 if (cert->signature_key != NULL)
195 key_free(cert->signature_key);
198 void
199 key_free(Key *k)
201 if (k == NULL)
202 fatal("key_free: key is NULL");
203 switch (k->type) {
204 case KEY_RSA1:
205 case KEY_RSA:
206 case KEY_RSA_CERT_V00:
207 case KEY_RSA_CERT:
208 if (k->rsa != NULL)
209 RSA_free(k->rsa);
210 k->rsa = NULL;
211 break;
212 case KEY_DSA:
213 case KEY_DSA_CERT_V00:
214 case KEY_DSA_CERT:
215 if (k->dsa != NULL)
216 DSA_free(k->dsa);
217 k->dsa = NULL;
218 break;
219 #ifdef OPENSSL_HAS_ECC
220 case KEY_ECDSA:
221 case KEY_ECDSA_CERT:
222 if (k->ecdsa != NULL)
223 EC_KEY_free(k->ecdsa);
224 k->ecdsa = NULL;
225 break;
226 #endif
227 case KEY_UNSPEC:
228 break;
229 default:
230 fatal("key_free: bad key type %d", k->type);
231 break;
233 if (key_is_cert(k)) {
234 if (k->cert != NULL)
235 cert_free(k->cert);
236 k->cert = NULL;
239 xfree(k);
242 static int
243 cert_compare(struct KeyCert *a, struct KeyCert *b)
245 if (a == NULL && b == NULL)
246 return 1;
247 if (a == NULL || b == NULL)
248 return 0;
249 if (buffer_len(&a->certblob) != buffer_len(&b->certblob))
250 return 0;
251 if (timingsafe_bcmp(buffer_ptr(&a->certblob), buffer_ptr(&b->certblob),
252 buffer_len(&a->certblob)) != 0)
253 return 0;
254 return 1;
258 * Compare public portions of key only, allowing comparisons between
259 * certificates and plain keys too.
262 key_equal_public(const Key *a, const Key *b)
264 #ifdef OPENSSL_HAS_ECC
265 BN_CTX *bnctx;
266 #endif
268 if (a == NULL || b == NULL ||
269 key_type_plain(a->type) != key_type_plain(b->type))
270 return 0;
272 switch (a->type) {
273 case KEY_RSA1:
274 case KEY_RSA_CERT_V00:
275 case KEY_RSA_CERT:
276 case KEY_RSA:
277 return a->rsa != NULL && b->rsa != NULL &&
278 BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
279 BN_cmp(a->rsa->n, b->rsa->n) == 0;
280 case KEY_DSA_CERT_V00:
281 case KEY_DSA_CERT:
282 case KEY_DSA:
283 return a->dsa != NULL && b->dsa != NULL &&
284 BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
285 BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
286 BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
287 BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
288 #ifdef OPENSSL_HAS_ECC
289 case KEY_ECDSA_CERT:
290 case KEY_ECDSA:
291 if (a->ecdsa == NULL || b->ecdsa == NULL ||
292 EC_KEY_get0_public_key(a->ecdsa) == NULL ||
293 EC_KEY_get0_public_key(b->ecdsa) == NULL)
294 return 0;
295 if ((bnctx = BN_CTX_new()) == NULL)
296 fatal("%s: BN_CTX_new failed", __func__);
297 if (EC_GROUP_cmp(EC_KEY_get0_group(a->ecdsa),
298 EC_KEY_get0_group(b->ecdsa), bnctx) != 0 ||
299 EC_POINT_cmp(EC_KEY_get0_group(a->ecdsa),
300 EC_KEY_get0_public_key(a->ecdsa),
301 EC_KEY_get0_public_key(b->ecdsa), bnctx) != 0) {
302 BN_CTX_free(bnctx);
303 return 0;
305 BN_CTX_free(bnctx);
306 return 1;
307 #endif /* OPENSSL_HAS_ECC */
308 default:
309 fatal("key_equal: bad key type %d", a->type);
311 /* NOTREACHED */
315 key_equal(const Key *a, const Key *b)
317 if (a == NULL || b == NULL || a->type != b->type)
318 return 0;
319 if (key_is_cert(a)) {
320 if (!cert_compare(a->cert, b->cert))
321 return 0;
323 return key_equal_public(a, b);
326 u_char*
327 key_fingerprint_raw(Key *k, enum fp_type dgst_type, u_int *dgst_raw_length)
329 const EVP_MD *md = NULL;
330 EVP_MD_CTX ctx;
331 u_char *blob = NULL;
332 u_char *retval = NULL;
333 u_int len = 0;
334 int nlen, elen, otype;
336 *dgst_raw_length = 0;
338 switch (dgst_type) {
339 case SSH_FP_MD5:
340 md = EVP_md5();
341 break;
342 case SSH_FP_SHA1:
343 md = EVP_sha1();
344 break;
345 default:
346 fatal("key_fingerprint_raw: bad digest type %d",
347 dgst_type);
349 switch (k->type) {
350 case KEY_RSA1:
351 nlen = BN_num_bytes(k->rsa->n);
352 elen = BN_num_bytes(k->rsa->e);
353 len = nlen + elen;
354 blob = xmalloc(len);
355 BN_bn2bin(k->rsa->n, blob);
356 BN_bn2bin(k->rsa->e, blob + nlen);
357 break;
358 case KEY_DSA:
359 case KEY_ECDSA:
360 case KEY_RSA:
361 key_to_blob(k, &blob, &len);
362 break;
363 case KEY_DSA_CERT_V00:
364 case KEY_RSA_CERT_V00:
365 case KEY_DSA_CERT:
366 case KEY_ECDSA_CERT:
367 case KEY_RSA_CERT:
368 /* We want a fingerprint of the _key_ not of the cert */
369 otype = k->type;
370 k->type = key_type_plain(k->type);
371 key_to_blob(k, &blob, &len);
372 k->type = otype;
373 break;
374 case KEY_UNSPEC:
375 return retval;
376 default:
377 fatal("key_fingerprint_raw: bad key type %d", k->type);
378 break;
380 if (blob != NULL) {
381 retval = xmalloc(EVP_MAX_MD_SIZE);
382 EVP_DigestInit(&ctx, md);
383 EVP_DigestUpdate(&ctx, blob, len);
384 EVP_DigestFinal(&ctx, retval, dgst_raw_length);
385 memset(blob, 0, len);
386 xfree(blob);
387 } else {
388 fatal("key_fingerprint_raw: blob is null");
390 return retval;
393 static char *
394 key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
396 char *retval;
397 u_int i;
399 retval = xcalloc(1, dgst_raw_len * 3 + 1);
400 for (i = 0; i < dgst_raw_len; i++) {
401 char hex[4];
402 snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
403 strlcat(retval, hex, dgst_raw_len * 3 + 1);
406 /* Remove the trailing ':' character */
407 retval[(dgst_raw_len * 3) - 1] = '\0';
408 return retval;
411 static char *
412 key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
414 char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
415 char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
416 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
417 u_int i, j = 0, rounds, seed = 1;
418 char *retval;
420 rounds = (dgst_raw_len / 2) + 1;
421 retval = xcalloc((rounds * 6), sizeof(char));
422 retval[j++] = 'x';
423 for (i = 0; i < rounds; i++) {
424 u_int idx0, idx1, idx2, idx3, idx4;
425 if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
426 idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
427 seed) % 6;
428 idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
429 idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
430 (seed / 6)) % 6;
431 retval[j++] = vowels[idx0];
432 retval[j++] = consonants[idx1];
433 retval[j++] = vowels[idx2];
434 if ((i + 1) < rounds) {
435 idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
436 idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
437 retval[j++] = consonants[idx3];
438 retval[j++] = '-';
439 retval[j++] = consonants[idx4];
440 seed = ((seed * 5) +
441 ((((u_int)(dgst_raw[2 * i])) * 7) +
442 ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
444 } else {
445 idx0 = seed % 6;
446 idx1 = 16;
447 idx2 = seed / 6;
448 retval[j++] = vowels[idx0];
449 retval[j++] = consonants[idx1];
450 retval[j++] = vowels[idx2];
453 retval[j++] = 'x';
454 retval[j++] = '\0';
455 return retval;
459 * Draw an ASCII-Art representing the fingerprint so human brain can
460 * profit from its built-in pattern recognition ability.
461 * This technique is called "random art" and can be found in some
462 * scientific publications like this original paper:
464 * "Hash Visualization: a New Technique to improve Real-World Security",
465 * Perrig A. and Song D., 1999, International Workshop on Cryptographic
466 * Techniques and E-Commerce (CrypTEC '99)
467 * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
469 * The subject came up in a talk by Dan Kaminsky, too.
471 * If you see the picture is different, the key is different.
472 * If the picture looks the same, you still know nothing.
474 * The algorithm used here is a worm crawling over a discrete plane,
475 * leaving a trace (augmenting the field) everywhere it goes.
476 * Movement is taken from dgst_raw 2bit-wise. Bumping into walls
477 * makes the respective movement vector be ignored for this turn.
478 * Graphs are not unambiguous, because circles in graphs can be
479 * walked in either direction.
483 * Field sizes for the random art. Have to be odd, so the starting point
484 * can be in the exact middle of the picture, and FLDBASE should be >=8 .
485 * Else pictures would be too dense, and drawing the frame would
486 * fail, too, because the key type would not fit in anymore.
488 #define FLDBASE 8
489 #define FLDSIZE_Y (FLDBASE + 1)
490 #define FLDSIZE_X (FLDBASE * 2 + 1)
491 static char *
492 key_fingerprint_randomart(u_char *dgst_raw, u_int dgst_raw_len, const Key *k)
495 * Chars to be used after each other every time the worm
496 * intersects with itself. Matter of taste.
498 char *augmentation_string = " .o+=*BOX@%&#/^SE";
499 char *retval, *p;
500 u_char field[FLDSIZE_X][FLDSIZE_Y];
501 u_int i, b;
502 int x, y;
503 size_t len = strlen(augmentation_string) - 1;
505 retval = xcalloc(1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2));
507 /* initialize field */
508 memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char));
509 x = FLDSIZE_X / 2;
510 y = FLDSIZE_Y / 2;
512 /* process raw key */
513 for (i = 0; i < dgst_raw_len; i++) {
514 int input;
515 /* each byte conveys four 2-bit move commands */
516 input = dgst_raw[i];
517 for (b = 0; b < 4; b++) {
518 /* evaluate 2 bit, rest is shifted later */
519 x += (input & 0x1) ? 1 : -1;
520 y += (input & 0x2) ? 1 : -1;
522 /* assure we are still in bounds */
523 x = MAX(x, 0);
524 y = MAX(y, 0);
525 x = MIN(x, FLDSIZE_X - 1);
526 y = MIN(y, FLDSIZE_Y - 1);
528 /* augment the field */
529 if (field[x][y] < len - 2)
530 field[x][y]++;
531 input = input >> 2;
535 /* mark starting point and end point*/
536 field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1;
537 field[x][y] = len;
539 /* fill in retval */
540 snprintf(retval, FLDSIZE_X, "+--[%4s %4u]", key_type(k), key_size(k));
541 p = strchr(retval, '\0');
543 /* output upper border */
544 for (i = p - retval - 1; i < FLDSIZE_X; i++)
545 *p++ = '-';
546 *p++ = '+';
547 *p++ = '\n';
549 /* output content */
550 for (y = 0; y < FLDSIZE_Y; y++) {
551 *p++ = '|';
552 for (x = 0; x < FLDSIZE_X; x++)
553 *p++ = augmentation_string[MIN(field[x][y], len)];
554 *p++ = '|';
555 *p++ = '\n';
558 /* output lower border */
559 *p++ = '+';
560 for (i = 0; i < FLDSIZE_X; i++)
561 *p++ = '-';
562 *p++ = '+';
564 return retval;
567 char *
568 key_fingerprint(Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
570 char *retval = NULL;
571 u_char *dgst_raw;
572 u_int dgst_raw_len;
574 dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
575 if (!dgst_raw)
576 fatal("key_fingerprint: null from key_fingerprint_raw()");
577 switch (dgst_rep) {
578 case SSH_FP_HEX:
579 retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
580 break;
581 case SSH_FP_BUBBLEBABBLE:
582 retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
583 break;
584 case SSH_FP_RANDOMART:
585 retval = key_fingerprint_randomart(dgst_raw, dgst_raw_len, k);
586 break;
587 default:
588 fatal("key_fingerprint: bad digest representation %d",
589 dgst_rep);
590 break;
592 memset(dgst_raw, 0, dgst_raw_len);
593 xfree(dgst_raw);
594 return retval;
598 * Reads a multiple-precision integer in decimal from the buffer, and advances
599 * the pointer. The integer must already be initialized. This function is
600 * permitted to modify the buffer. This leaves *cpp to point just beyond the
601 * last processed (and maybe modified) character. Note that this may modify
602 * the buffer containing the number.
604 static int
605 read_bignum(char **cpp, BIGNUM * value)
607 char *cp = *cpp;
608 int old;
610 /* Skip any leading whitespace. */
611 for (; *cp == ' ' || *cp == '\t'; cp++)
614 /* Check that it begins with a decimal digit. */
615 if (*cp < '0' || *cp > '9')
616 return 0;
618 /* Save starting position. */
619 *cpp = cp;
621 /* Move forward until all decimal digits skipped. */
622 for (; *cp >= '0' && *cp <= '9'; cp++)
625 /* Save the old terminating character, and replace it by \0. */
626 old = *cp;
627 *cp = 0;
629 /* Parse the number. */
630 if (BN_dec2bn(&value, *cpp) == 0)
631 return 0;
633 /* Restore old terminating character. */
634 *cp = old;
636 /* Move beyond the number and return success. */
637 *cpp = cp;
638 return 1;
641 static int
642 write_bignum(FILE *f, BIGNUM *num)
644 char *buf = BN_bn2dec(num);
645 if (buf == NULL) {
646 error("write_bignum: BN_bn2dec() failed");
647 return 0;
649 fprintf(f, " %s", buf);
650 OPENSSL_free(buf);
651 return 1;
654 /* returns 1 ok, -1 error */
656 key_read(Key *ret, char **cpp)
658 Key *k;
659 int success = -1;
660 char *cp, *space;
661 int len, n, type;
662 u_int bits;
663 u_char *blob;
664 #ifdef OPENSSL_HAS_ECC
665 int curve_nid = -1;
666 #endif
668 cp = *cpp;
670 switch (ret->type) {
671 case KEY_RSA1:
672 /* Get number of bits. */
673 if (*cp < '0' || *cp > '9')
674 return -1; /* Bad bit count... */
675 for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
676 bits = 10 * bits + *cp - '0';
677 if (bits == 0)
678 return -1;
679 *cpp = cp;
680 /* Get public exponent, public modulus. */
681 if (!read_bignum(cpp, ret->rsa->e))
682 return -1;
683 if (!read_bignum(cpp, ret->rsa->n))
684 return -1;
685 /* validate the claimed number of bits */
686 if ((u_int)BN_num_bits(ret->rsa->n) != bits) {
687 verbose("key_read: claimed key size %d does not match "
688 "actual %d", bits, BN_num_bits(ret->rsa->n));
689 return -1;
691 success = 1;
692 break;
693 case KEY_UNSPEC:
694 case KEY_RSA:
695 case KEY_DSA:
696 case KEY_ECDSA:
697 case KEY_DSA_CERT_V00:
698 case KEY_RSA_CERT_V00:
699 case KEY_DSA_CERT:
700 case KEY_ECDSA_CERT:
701 case KEY_RSA_CERT:
702 space = strchr(cp, ' ');
703 if (space == NULL) {
704 debug3("key_read: missing whitespace");
705 return -1;
707 *space = '\0';
708 type = key_type_from_name(cp);
709 #ifdef OPENSSL_HAS_ECC
710 if (key_type_plain(type) == KEY_ECDSA &&
711 (curve_nid = key_ecdsa_nid_from_name(cp)) == -1) {
712 debug("key_read: invalid curve");
713 return -1;
715 #endif
716 *space = ' ';
717 if (type == KEY_UNSPEC) {
718 debug3("key_read: missing keytype");
719 return -1;
721 cp = space+1;
722 if (*cp == '\0') {
723 debug3("key_read: short string");
724 return -1;
726 if (ret->type == KEY_UNSPEC) {
727 ret->type = type;
728 } else if (ret->type != type) {
729 /* is a key, but different type */
730 debug3("key_read: type mismatch");
731 return -1;
733 len = 2*strlen(cp);
734 blob = xmalloc(len);
735 n = uudecode(cp, blob, len);
736 if (n < 0) {
737 error("key_read: uudecode %s failed", cp);
738 xfree(blob);
739 return -1;
741 k = key_from_blob(blob, (u_int)n);
742 xfree(blob);
743 if (k == NULL) {
744 error("key_read: key_from_blob %s failed", cp);
745 return -1;
747 if (k->type != type) {
748 error("key_read: type mismatch: encoding error");
749 key_free(k);
750 return -1;
752 #ifdef OPENSSL_HAS_ECC
753 if (key_type_plain(type) == KEY_ECDSA &&
754 curve_nid != k->ecdsa_nid) {
755 error("key_read: type mismatch: EC curve mismatch");
756 key_free(k);
757 return -1;
759 #endif
760 /*XXXX*/
761 if (key_is_cert(ret)) {
762 if (!key_is_cert(k)) {
763 error("key_read: loaded key is not a cert");
764 key_free(k);
765 return -1;
767 if (ret->cert != NULL)
768 cert_free(ret->cert);
769 ret->cert = k->cert;
770 k->cert = NULL;
772 if (key_type_plain(ret->type) == KEY_RSA) {
773 if (ret->rsa != NULL)
774 RSA_free(ret->rsa);
775 ret->rsa = k->rsa;
776 k->rsa = NULL;
777 #ifdef DEBUG_PK
778 RSA_print_fp(stderr, ret->rsa, 8);
779 #endif
781 if (key_type_plain(ret->type) == KEY_DSA) {
782 if (ret->dsa != NULL)
783 DSA_free(ret->dsa);
784 ret->dsa = k->dsa;
785 k->dsa = NULL;
786 #ifdef DEBUG_PK
787 DSA_print_fp(stderr, ret->dsa, 8);
788 #endif
790 #ifdef OPENSSL_HAS_ECC
791 if (key_type_plain(ret->type) == KEY_ECDSA) {
792 if (ret->ecdsa != NULL)
793 EC_KEY_free(ret->ecdsa);
794 ret->ecdsa = k->ecdsa;
795 ret->ecdsa_nid = k->ecdsa_nid;
796 k->ecdsa = NULL;
797 k->ecdsa_nid = -1;
798 #ifdef DEBUG_PK
799 key_dump_ec_key(ret->ecdsa);
800 #endif
802 #endif
803 success = 1;
804 /*XXXX*/
805 key_free(k);
806 if (success != 1)
807 break;
808 /* advance cp: skip whitespace and data */
809 while (*cp == ' ' || *cp == '\t')
810 cp++;
811 while (*cp != '\0' && *cp != ' ' && *cp != '\t')
812 cp++;
813 *cpp = cp;
814 break;
815 default:
816 fatal("key_read: bad key type: %d", ret->type);
817 break;
819 return success;
823 key_write(const Key *key, FILE *f)
825 int n, success = 0;
826 u_int len, bits = 0;
827 u_char *blob;
828 char *uu;
830 if (key_is_cert(key)) {
831 if (key->cert == NULL) {
832 error("%s: no cert data", __func__);
833 return 0;
835 if (buffer_len(&key->cert->certblob) == 0) {
836 error("%s: no signed certificate blob", __func__);
837 return 0;
841 switch (key->type) {
842 case KEY_RSA1:
843 if (key->rsa == NULL)
844 return 0;
845 /* size of modulus 'n' */
846 bits = BN_num_bits(key->rsa->n);
847 fprintf(f, "%u", bits);
848 if (write_bignum(f, key->rsa->e) &&
849 write_bignum(f, key->rsa->n))
850 return 1;
851 error("key_write: failed for RSA key");
852 return 0;
853 case KEY_DSA:
854 case KEY_DSA_CERT_V00:
855 case KEY_DSA_CERT:
856 if (key->dsa == NULL)
857 return 0;
858 break;
859 #ifdef OPENSSL_HAS_ECC
860 case KEY_ECDSA:
861 case KEY_ECDSA_CERT:
862 if (key->ecdsa == NULL)
863 return 0;
864 break;
865 #endif
866 case KEY_RSA:
867 case KEY_RSA_CERT_V00:
868 case KEY_RSA_CERT:
869 if (key->rsa == NULL)
870 return 0;
871 break;
872 default:
873 return 0;
876 key_to_blob(key, &blob, &len);
877 uu = xmalloc(2*len);
878 n = uuencode(blob, len, uu, 2*len);
879 if (n > 0) {
880 fprintf(f, "%s %s", key_ssh_name(key), uu);
881 success = 1;
883 xfree(blob);
884 xfree(uu);
886 return success;
889 const char *
890 key_type(const Key *k)
892 switch (k->type) {
893 case KEY_RSA1:
894 return "RSA1";
895 case KEY_RSA:
896 return "RSA";
897 case KEY_DSA:
898 return "DSA";
899 #ifdef OPENSSL_HAS_ECC
900 case KEY_ECDSA:
901 return "ECDSA";
902 #endif
903 case KEY_RSA_CERT_V00:
904 return "RSA-CERT-V00";
905 case KEY_DSA_CERT_V00:
906 return "DSA-CERT-V00";
907 case KEY_RSA_CERT:
908 return "RSA-CERT";
909 case KEY_DSA_CERT:
910 return "DSA-CERT";
911 #ifdef OPENSSL_HAS_ECC
912 case KEY_ECDSA_CERT:
913 return "ECDSA-CERT";
914 #endif
916 return "unknown";
919 const char *
920 key_cert_type(const Key *k)
922 switch (k->cert->type) {
923 case SSH2_CERT_TYPE_USER:
924 return "user";
925 case SSH2_CERT_TYPE_HOST:
926 return "host";
927 default:
928 return "unknown";
932 static const char *
933 key_ssh_name_from_type_nid(int type, int nid)
935 switch (type) {
936 case KEY_RSA:
937 return "ssh-rsa";
938 case KEY_DSA:
939 return "ssh-dss";
940 case KEY_RSA_CERT_V00:
941 return "ssh-rsa-cert-v00@openssh.com";
942 case KEY_DSA_CERT_V00:
943 return "ssh-dss-cert-v00@openssh.com";
944 case KEY_RSA_CERT:
945 return "ssh-rsa-cert-v01@openssh.com";
946 case KEY_DSA_CERT:
947 return "ssh-dss-cert-v01@openssh.com";
948 #ifdef OPENSSL_HAS_ECC
949 case KEY_ECDSA:
950 switch (nid) {
951 case NID_X9_62_prime256v1:
952 return "ecdsa-sha2-nistp256";
953 case NID_secp384r1:
954 return "ecdsa-sha2-nistp384";
955 case NID_secp521r1:
956 return "ecdsa-sha2-nistp521";
957 default:
958 break;
960 break;
961 case KEY_ECDSA_CERT:
962 switch (nid) {
963 case NID_X9_62_prime256v1:
964 return "ecdsa-sha2-nistp256-cert-v01@openssh.com";
965 case NID_secp384r1:
966 return "ecdsa-sha2-nistp384-cert-v01@openssh.com";
967 case NID_secp521r1:
968 return "ecdsa-sha2-nistp521-cert-v01@openssh.com";
969 default:
970 break;
972 break;
973 #endif /* OPENSSL_HAS_ECC */
975 return "ssh-unknown";
978 const char *
979 key_ssh_name(const Key *k)
981 return key_ssh_name_from_type_nid(k->type, k->ecdsa_nid);
984 const char *
985 key_ssh_name_plain(const Key *k)
987 return key_ssh_name_from_type_nid(key_type_plain(k->type),
988 k->ecdsa_nid);
991 u_int
992 key_size(const Key *k)
994 switch (k->type) {
995 case KEY_RSA1:
996 case KEY_RSA:
997 case KEY_RSA_CERT_V00:
998 case KEY_RSA_CERT:
999 return BN_num_bits(k->rsa->n);
1000 case KEY_DSA:
1001 case KEY_DSA_CERT_V00:
1002 case KEY_DSA_CERT:
1003 return BN_num_bits(k->dsa->p);
1004 #ifdef OPENSSL_HAS_ECC
1005 case KEY_ECDSA:
1006 case KEY_ECDSA_CERT:
1007 return key_curve_nid_to_bits(k->ecdsa_nid);
1008 #endif
1010 return 0;
1013 static RSA *
1014 rsa_generate_private_key(u_int bits)
1016 RSA *private;
1018 private = RSA_generate_key(bits, RSA_F4, NULL, NULL);
1019 if (private == NULL)
1020 fatal("rsa_generate_private_key: key generation failed.");
1021 return private;
1024 static DSA*
1025 dsa_generate_private_key(u_int bits)
1027 DSA *private = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL, NULL);
1029 if (private == NULL)
1030 fatal("dsa_generate_private_key: DSA_generate_parameters failed");
1031 if (!DSA_generate_key(private))
1032 fatal("dsa_generate_private_key: DSA_generate_key failed.");
1033 if (private == NULL)
1034 fatal("dsa_generate_private_key: NULL.");
1035 return private;
1039 key_ecdsa_bits_to_nid(int bits)
1041 switch (bits) {
1042 #ifdef OPENSSL_HAS_ECC
1043 case 256:
1044 return NID_X9_62_prime256v1;
1045 case 384:
1046 return NID_secp384r1;
1047 case 521:
1048 return NID_secp521r1;
1049 #endif
1050 default:
1051 return -1;
1055 #ifdef OPENSSL_HAS_ECC
1057 key_ecdsa_key_to_nid(EC_KEY *k)
1059 EC_GROUP *eg;
1060 int nids[] = {
1061 NID_X9_62_prime256v1,
1062 NID_secp384r1,
1063 NID_secp521r1,
1066 int nid;
1067 u_int i;
1068 BN_CTX *bnctx;
1069 const EC_GROUP *g = EC_KEY_get0_group(k);
1072 * The group may be stored in a ASN.1 encoded private key in one of two
1073 * ways: as a "named group", which is reconstituted by ASN.1 object ID
1074 * or explicit group parameters encoded into the key blob. Only the
1075 * "named group" case sets the group NID for us, but we can figure
1076 * it out for the other case by comparing against all the groups that
1077 * are supported.
1079 if ((nid = EC_GROUP_get_curve_name(g)) > 0)
1080 return nid;
1081 if ((bnctx = BN_CTX_new()) == NULL)
1082 fatal("%s: BN_CTX_new() failed", __func__);
1083 for (i = 0; nids[i] != -1; i++) {
1084 if ((eg = EC_GROUP_new_by_curve_name(nids[i])) == NULL)
1085 fatal("%s: EC_GROUP_new_by_curve_name failed",
1086 __func__);
1087 if (EC_GROUP_cmp(g, eg, bnctx) == 0)
1088 break;
1089 EC_GROUP_free(eg);
1091 BN_CTX_free(bnctx);
1092 debug3("%s: nid = %d", __func__, nids[i]);
1093 if (nids[i] != -1) {
1094 /* Use the group with the NID attached */
1095 EC_GROUP_set_asn1_flag(eg, OPENSSL_EC_NAMED_CURVE);
1096 if (EC_KEY_set_group(k, eg) != 1)
1097 fatal("%s: EC_KEY_set_group", __func__);
1099 return nids[i];
1102 static EC_KEY*
1103 ecdsa_generate_private_key(u_int bits, int *nid)
1105 EC_KEY *private;
1107 if ((*nid = key_ecdsa_bits_to_nid(bits)) == -1)
1108 fatal("%s: invalid key length", __func__);
1109 if ((private = EC_KEY_new_by_curve_name(*nid)) == NULL)
1110 fatal("%s: EC_KEY_new_by_curve_name failed", __func__);
1111 if (EC_KEY_generate_key(private) != 1)
1112 fatal("%s: EC_KEY_generate_key failed", __func__);
1113 EC_KEY_set_asn1_flag(private, OPENSSL_EC_NAMED_CURVE);
1114 return private;
1116 #endif /* OPENSSL_HAS_ECC */
1118 Key *
1119 key_generate(int type, u_int bits)
1121 Key *k = key_new(KEY_UNSPEC);
1122 switch (type) {
1123 case KEY_DSA:
1124 k->dsa = dsa_generate_private_key(bits);
1125 break;
1126 #ifdef OPENSSL_HAS_ECC
1127 case KEY_ECDSA:
1128 k->ecdsa = ecdsa_generate_private_key(bits, &k->ecdsa_nid);
1129 break;
1130 #endif
1131 case KEY_RSA:
1132 case KEY_RSA1:
1133 k->rsa = rsa_generate_private_key(bits);
1134 break;
1135 case KEY_RSA_CERT_V00:
1136 case KEY_DSA_CERT_V00:
1137 case KEY_RSA_CERT:
1138 case KEY_DSA_CERT:
1139 fatal("key_generate: cert keys cannot be generated directly");
1140 default:
1141 fatal("key_generate: unknown type %d", type);
1143 k->type = type;
1144 return k;
1147 void
1148 key_cert_copy(const Key *from_key, struct Key *to_key)
1150 u_int i;
1151 const struct KeyCert *from;
1152 struct KeyCert *to;
1154 if (to_key->cert != NULL) {
1155 cert_free(to_key->cert);
1156 to_key->cert = NULL;
1159 if ((from = from_key->cert) == NULL)
1160 return;
1162 to = to_key->cert = cert_new();
1164 buffer_append(&to->certblob, buffer_ptr(&from->certblob),
1165 buffer_len(&from->certblob));
1167 buffer_append(&to->critical,
1168 buffer_ptr(&from->critical), buffer_len(&from->critical));
1169 buffer_append(&to->extensions,
1170 buffer_ptr(&from->extensions), buffer_len(&from->extensions));
1172 to->serial = from->serial;
1173 to->type = from->type;
1174 to->key_id = from->key_id == NULL ? NULL : xstrdup(from->key_id);
1175 to->valid_after = from->valid_after;
1176 to->valid_before = from->valid_before;
1177 to->signature_key = from->signature_key == NULL ?
1178 NULL : key_from_private(from->signature_key);
1180 to->nprincipals = from->nprincipals;
1181 if (to->nprincipals > CERT_MAX_PRINCIPALS)
1182 fatal("%s: nprincipals (%u) > CERT_MAX_PRINCIPALS (%u)",
1183 __func__, to->nprincipals, CERT_MAX_PRINCIPALS);
1184 if (to->nprincipals > 0) {
1185 to->principals = xcalloc(from->nprincipals,
1186 sizeof(*to->principals));
1187 for (i = 0; i < to->nprincipals; i++)
1188 to->principals[i] = xstrdup(from->principals[i]);
1192 Key *
1193 key_from_private(const Key *k)
1195 Key *n = NULL;
1196 switch (k->type) {
1197 case KEY_DSA:
1198 case KEY_DSA_CERT_V00:
1199 case KEY_DSA_CERT:
1200 n = key_new(k->type);
1201 if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) ||
1202 (BN_copy(n->dsa->q, k->dsa->q) == NULL) ||
1203 (BN_copy(n->dsa->g, k->dsa->g) == NULL) ||
1204 (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL))
1205 fatal("key_from_private: BN_copy failed");
1206 break;
1207 #ifdef OPENSSL_HAS_ECC
1208 case KEY_ECDSA:
1209 case KEY_ECDSA_CERT:
1210 n = key_new(k->type);
1211 n->ecdsa_nid = k->ecdsa_nid;
1212 if ((n->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid)) == NULL)
1213 fatal("%s: EC_KEY_new_by_curve_name failed", __func__);
1214 if (EC_KEY_set_public_key(n->ecdsa,
1215 EC_KEY_get0_public_key(k->ecdsa)) != 1)
1216 fatal("%s: EC_KEY_set_public_key failed", __func__);
1217 break;
1218 #endif
1219 case KEY_RSA:
1220 case KEY_RSA1:
1221 case KEY_RSA_CERT_V00:
1222 case KEY_RSA_CERT:
1223 n = key_new(k->type);
1224 if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) ||
1225 (BN_copy(n->rsa->e, k->rsa->e) == NULL))
1226 fatal("key_from_private: BN_copy failed");
1227 break;
1228 default:
1229 fatal("key_from_private: unknown type %d", k->type);
1230 break;
1232 if (key_is_cert(k))
1233 key_cert_copy(k, n);
1234 return n;
1238 key_type_from_name(char *name)
1240 if (strcmp(name, "rsa1") == 0) {
1241 return KEY_RSA1;
1242 } else if (strcmp(name, "rsa") == 0) {
1243 return KEY_RSA;
1244 } else if (strcmp(name, "dsa") == 0) {
1245 return KEY_DSA;
1246 } else if (strcmp(name, "ssh-rsa") == 0) {
1247 return KEY_RSA;
1248 } else if (strcmp(name, "ssh-dss") == 0) {
1249 return KEY_DSA;
1250 #ifdef OPENSSL_HAS_ECC
1251 } else if (strcmp(name, "ecdsa") == 0 ||
1252 strcmp(name, "ecdsa-sha2-nistp256") == 0 ||
1253 strcmp(name, "ecdsa-sha2-nistp384") == 0 ||
1254 strcmp(name, "ecdsa-sha2-nistp521") == 0) {
1255 return KEY_ECDSA;
1256 #endif
1257 } else if (strcmp(name, "ssh-rsa-cert-v00@openssh.com") == 0) {
1258 return KEY_RSA_CERT_V00;
1259 } else if (strcmp(name, "ssh-dss-cert-v00@openssh.com") == 0) {
1260 return KEY_DSA_CERT_V00;
1261 } else if (strcmp(name, "ssh-rsa-cert-v01@openssh.com") == 0) {
1262 return KEY_RSA_CERT;
1263 } else if (strcmp(name, "ssh-dss-cert-v01@openssh.com") == 0) {
1264 return KEY_DSA_CERT;
1265 #ifdef OPENSSL_HAS_ECC
1266 } else if (strcmp(name, "ecdsa-sha2-nistp256-cert-v01@openssh.com") == 0 ||
1267 strcmp(name, "ecdsa-sha2-nistp384-cert-v01@openssh.com") == 0 ||
1268 strcmp(name, "ecdsa-sha2-nistp521-cert-v01@openssh.com") == 0) {
1269 return KEY_ECDSA_CERT;
1270 #endif
1273 debug2("key_type_from_name: unknown key type '%s'", name);
1274 return KEY_UNSPEC;
1278 key_ecdsa_nid_from_name(const char *name)
1280 #ifdef OPENSSL_HAS_ECC
1281 if (strcmp(name, "ecdsa-sha2-nistp256") == 0 ||
1282 strcmp(name, "ecdsa-sha2-nistp256-cert-v01@openssh.com") == 0)
1283 return NID_X9_62_prime256v1;
1284 if (strcmp(name, "ecdsa-sha2-nistp384") == 0 ||
1285 strcmp(name, "ecdsa-sha2-nistp384-cert-v01@openssh.com") == 0)
1286 return NID_secp384r1;
1287 if (strcmp(name, "ecdsa-sha2-nistp521") == 0 ||
1288 strcmp(name, "ecdsa-sha2-nistp521-cert-v01@openssh.com") == 0)
1289 return NID_secp521r1;
1290 #endif /* OPENSSL_HAS_ECC */
1292 debug2("%s: unknown/non-ECDSA key type '%s'", __func__, name);
1293 return -1;
1297 key_names_valid2(const char *names)
1299 char *s, *cp, *p;
1301 if (names == NULL || strcmp(names, "") == 0)
1302 return 0;
1303 s = cp = xstrdup(names);
1304 for ((p = strsep(&cp, ",")); p && *p != '\0';
1305 (p = strsep(&cp, ","))) {
1306 switch (key_type_from_name(p)) {
1307 case KEY_RSA1:
1308 case KEY_UNSPEC:
1309 xfree(s);
1310 return 0;
1313 debug3("key names ok: [%s]", names);
1314 xfree(s);
1315 return 1;
1318 static int
1319 cert_parse(Buffer *b, Key *key, const u_char *blob, u_int blen)
1321 u_char *principals, *critical, *exts, *sig_key, *sig;
1322 u_int signed_len, plen, clen, sklen, slen, kidlen, elen;
1323 Buffer tmp;
1324 char *principal;
1325 int ret = -1;
1326 int v00 = key->type == KEY_DSA_CERT_V00 ||
1327 key->type == KEY_RSA_CERT_V00;
1329 buffer_init(&tmp);
1331 /* Copy the entire key blob for verification and later serialisation */
1332 buffer_append(&key->cert->certblob, blob, blen);
1334 elen = 0; /* Not touched for v00 certs */
1335 principals = exts = critical = sig_key = sig = NULL;
1336 if ((!v00 && buffer_get_int64_ret(&key->cert->serial, b) != 0) ||
1337 buffer_get_int_ret(&key->cert->type, b) != 0 ||
1338 (key->cert->key_id = buffer_get_cstring_ret(b, &kidlen)) == NULL ||
1339 (principals = buffer_get_string_ret(b, &plen)) == NULL ||
1340 buffer_get_int64_ret(&key->cert->valid_after, b) != 0 ||
1341 buffer_get_int64_ret(&key->cert->valid_before, b) != 0 ||
1342 (critical = buffer_get_string_ret(b, &clen)) == NULL ||
1343 (!v00 && (exts = buffer_get_string_ret(b, &elen)) == NULL) ||
1344 (v00 && buffer_get_string_ptr_ret(b, NULL) == NULL) || /* nonce */
1345 buffer_get_string_ptr_ret(b, NULL) == NULL || /* reserved */
1346 (sig_key = buffer_get_string_ret(b, &sklen)) == NULL) {
1347 error("%s: parse error", __func__);
1348 goto out;
1351 if (kidlen != strlen(key->cert->key_id)) {
1352 error("%s: key ID contains \\0 character", __func__);
1353 goto out;
1356 /* Signature is left in the buffer so we can calculate this length */
1357 signed_len = buffer_len(&key->cert->certblob) - buffer_len(b);
1359 if ((sig = buffer_get_string_ret(b, &slen)) == NULL) {
1360 error("%s: parse error", __func__);
1361 goto out;
1364 if (key->cert->type != SSH2_CERT_TYPE_USER &&
1365 key->cert->type != SSH2_CERT_TYPE_HOST) {
1366 error("Unknown certificate type %u", key->cert->type);
1367 goto out;
1370 buffer_append(&tmp, principals, plen);
1371 while (buffer_len(&tmp) > 0) {
1372 if (key->cert->nprincipals >= CERT_MAX_PRINCIPALS) {
1373 error("%s: Too many principals", __func__);
1374 goto out;
1376 if ((principal = buffer_get_cstring_ret(&tmp, &plen)) == NULL) {
1377 error("%s: Principals data invalid", __func__);
1378 goto out;
1380 key->cert->principals = xrealloc(key->cert->principals,
1381 key->cert->nprincipals + 1, sizeof(*key->cert->principals));
1382 key->cert->principals[key->cert->nprincipals++] = principal;
1385 buffer_clear(&tmp);
1387 buffer_append(&key->cert->critical, critical, clen);
1388 buffer_append(&tmp, critical, clen);
1389 /* validate structure */
1390 while (buffer_len(&tmp) != 0) {
1391 if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL ||
1392 buffer_get_string_ptr_ret(&tmp, NULL) == NULL) {
1393 error("%s: critical option data invalid", __func__);
1394 goto out;
1397 buffer_clear(&tmp);
1399 buffer_append(&key->cert->extensions, exts, elen);
1400 buffer_append(&tmp, exts, elen);
1401 /* validate structure */
1402 while (buffer_len(&tmp) != 0) {
1403 if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL ||
1404 buffer_get_string_ptr_ret(&tmp, NULL) == NULL) {
1405 error("%s: extension data invalid", __func__);
1406 goto out;
1409 buffer_clear(&tmp);
1411 if ((key->cert->signature_key = key_from_blob(sig_key,
1412 sklen)) == NULL) {
1413 error("%s: Signature key invalid", __func__);
1414 goto out;
1416 if (key->cert->signature_key->type != KEY_RSA &&
1417 key->cert->signature_key->type != KEY_DSA &&
1418 key->cert->signature_key->type != KEY_ECDSA) {
1419 error("%s: Invalid signature key type %s (%d)", __func__,
1420 key_type(key->cert->signature_key),
1421 key->cert->signature_key->type);
1422 goto out;
1425 switch (key_verify(key->cert->signature_key, sig, slen,
1426 buffer_ptr(&key->cert->certblob), signed_len)) {
1427 case 1:
1428 ret = 0;
1429 break; /* Good signature */
1430 case 0:
1431 error("%s: Invalid signature on certificate", __func__);
1432 goto out;
1433 case -1:
1434 error("%s: Certificate signature verification failed",
1435 __func__);
1436 goto out;
1439 out:
1440 buffer_free(&tmp);
1441 if (principals != NULL)
1442 xfree(principals);
1443 if (critical != NULL)
1444 xfree(critical);
1445 if (exts != NULL)
1446 xfree(exts);
1447 if (sig_key != NULL)
1448 xfree(sig_key);
1449 if (sig != NULL)
1450 xfree(sig);
1451 return ret;
1454 Key *
1455 key_from_blob(const u_char *blob, u_int blen)
1457 Buffer b;
1458 int rlen, type;
1459 char *ktype = NULL, *curve = NULL;
1460 Key *key = NULL;
1461 #ifdef OPENSSL_HAS_ECC
1462 EC_POINT *q = NULL;
1463 int nid = -1;
1464 #endif
1466 #ifdef DEBUG_PK
1467 dump_base64(stderr, blob, blen);
1468 #endif
1469 buffer_init(&b);
1470 buffer_append(&b, blob, blen);
1471 if ((ktype = buffer_get_cstring_ret(&b, NULL)) == NULL) {
1472 error("key_from_blob: can't read key type");
1473 goto out;
1476 type = key_type_from_name(ktype);
1477 #ifdef OPENSSL_HAS_ECC
1478 if (key_type_plain(type) == KEY_ECDSA)
1479 nid = key_ecdsa_nid_from_name(ktype);
1480 #endif
1482 switch (type) {
1483 case KEY_RSA_CERT:
1484 (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1485 /* FALLTHROUGH */
1486 case KEY_RSA:
1487 case KEY_RSA_CERT_V00:
1488 key = key_new(type);
1489 if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
1490 buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
1491 error("key_from_blob: can't read rsa key");
1492 badkey:
1493 key_free(key);
1494 key = NULL;
1495 goto out;
1497 #ifdef DEBUG_PK
1498 RSA_print_fp(stderr, key->rsa, 8);
1499 #endif
1500 break;
1501 case KEY_DSA_CERT:
1502 (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1503 /* FALLTHROUGH */
1504 case KEY_DSA:
1505 case KEY_DSA_CERT_V00:
1506 key = key_new(type);
1507 if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
1508 buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
1509 buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||
1510 buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
1511 error("key_from_blob: can't read dsa key");
1512 goto badkey;
1514 #ifdef DEBUG_PK
1515 DSA_print_fp(stderr, key->dsa, 8);
1516 #endif
1517 break;
1518 #ifdef OPENSSL_HAS_ECC
1519 case KEY_ECDSA_CERT:
1520 (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1521 /* FALLTHROUGH */
1522 case KEY_ECDSA:
1523 key = key_new(type);
1524 key->ecdsa_nid = nid;
1525 if ((curve = buffer_get_string_ret(&b, NULL)) == NULL) {
1526 error("key_from_blob: can't read ecdsa curve");
1527 goto badkey;
1529 if (key->ecdsa_nid != key_curve_name_to_nid(curve)) {
1530 error("key_from_blob: ecdsa curve doesn't match type");
1531 goto badkey;
1533 if (key->ecdsa != NULL)
1534 EC_KEY_free(key->ecdsa);
1535 if ((key->ecdsa = EC_KEY_new_by_curve_name(key->ecdsa_nid))
1536 == NULL)
1537 fatal("key_from_blob: EC_KEY_new_by_curve_name failed");
1538 if ((q = EC_POINT_new(EC_KEY_get0_group(key->ecdsa))) == NULL)
1539 fatal("key_from_blob: EC_POINT_new failed");
1540 if (buffer_get_ecpoint_ret(&b, EC_KEY_get0_group(key->ecdsa),
1541 q) == -1) {
1542 error("key_from_blob: can't read ecdsa key point");
1543 goto badkey;
1545 if (key_ec_validate_public(EC_KEY_get0_group(key->ecdsa),
1546 q) != 0)
1547 goto badkey;
1548 if (EC_KEY_set_public_key(key->ecdsa, q) != 1)
1549 fatal("key_from_blob: EC_KEY_set_public_key failed");
1550 #ifdef DEBUG_PK
1551 key_dump_ec_point(EC_KEY_get0_group(key->ecdsa), q);
1552 #endif
1553 break;
1554 #endif /* OPENSSL_HAS_ECC */
1555 case KEY_UNSPEC:
1556 key = key_new(type);
1557 break;
1558 default:
1559 error("key_from_blob: cannot handle type %s", ktype);
1560 goto out;
1562 if (key_is_cert(key) && cert_parse(&b, key, blob, blen) == -1) {
1563 error("key_from_blob: can't parse cert data");
1564 goto badkey;
1566 rlen = buffer_len(&b);
1567 if (key != NULL && rlen != 0)
1568 error("key_from_blob: remaining bytes in key blob %d", rlen);
1569 out:
1570 if (ktype != NULL)
1571 xfree(ktype);
1572 if (curve != NULL)
1573 xfree(curve);
1574 #ifdef OPENSSL_HAS_ECC
1575 if (q != NULL)
1576 EC_POINT_free(q);
1577 #endif
1578 buffer_free(&b);
1579 return key;
1583 key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
1585 Buffer b;
1586 int len;
1588 if (key == NULL) {
1589 error("key_to_blob: key == NULL");
1590 return 0;
1592 buffer_init(&b);
1593 switch (key->type) {
1594 case KEY_DSA_CERT_V00:
1595 case KEY_RSA_CERT_V00:
1596 case KEY_DSA_CERT:
1597 case KEY_ECDSA_CERT:
1598 case KEY_RSA_CERT:
1599 /* Use the existing blob */
1600 buffer_append(&b, buffer_ptr(&key->cert->certblob),
1601 buffer_len(&key->cert->certblob));
1602 break;
1603 case KEY_DSA:
1604 buffer_put_cstring(&b, key_ssh_name(key));
1605 buffer_put_bignum2(&b, key->dsa->p);
1606 buffer_put_bignum2(&b, key->dsa->q);
1607 buffer_put_bignum2(&b, key->dsa->g);
1608 buffer_put_bignum2(&b, key->dsa->pub_key);
1609 break;
1610 #ifdef OPENSSL_HAS_ECC
1611 case KEY_ECDSA:
1612 buffer_put_cstring(&b, key_ssh_name(key));
1613 buffer_put_cstring(&b, key_curve_nid_to_name(key->ecdsa_nid));
1614 buffer_put_ecpoint(&b, EC_KEY_get0_group(key->ecdsa),
1615 EC_KEY_get0_public_key(key->ecdsa));
1616 break;
1617 #endif
1618 case KEY_RSA:
1619 buffer_put_cstring(&b, key_ssh_name(key));
1620 buffer_put_bignum2(&b, key->rsa->e);
1621 buffer_put_bignum2(&b, key->rsa->n);
1622 break;
1623 default:
1624 error("key_to_blob: unsupported key type %d", key->type);
1625 buffer_free(&b);
1626 return 0;
1628 len = buffer_len(&b);
1629 if (lenp != NULL)
1630 *lenp = len;
1631 if (blobp != NULL) {
1632 *blobp = xmalloc(len);
1633 memcpy(*blobp, buffer_ptr(&b), len);
1635 memset(buffer_ptr(&b), 0, len);
1636 buffer_free(&b);
1637 return len;
1641 key_sign(
1642 const Key *key,
1643 u_char **sigp, u_int *lenp,
1644 const u_char *data, u_int datalen)
1646 switch (key->type) {
1647 case KEY_DSA_CERT_V00:
1648 case KEY_DSA_CERT:
1649 case KEY_DSA:
1650 return ssh_dss_sign(key, sigp, lenp, data, datalen);
1651 #ifdef OPENSSL_HAS_ECC
1652 case KEY_ECDSA_CERT:
1653 case KEY_ECDSA:
1654 return ssh_ecdsa_sign(key, sigp, lenp, data, datalen);
1655 #endif
1656 case KEY_RSA_CERT_V00:
1657 case KEY_RSA_CERT:
1658 case KEY_RSA:
1659 return ssh_rsa_sign(key, sigp, lenp, data, datalen);
1660 default:
1661 error("key_sign: invalid key type %d", key->type);
1662 return -1;
1667 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
1668 * and -1 on error.
1671 key_verify(
1672 const Key *key,
1673 const u_char *signature, u_int signaturelen,
1674 const u_char *data, u_int datalen)
1676 if (signaturelen == 0)
1677 return -1;
1679 switch (key->type) {
1680 case KEY_DSA_CERT_V00:
1681 case KEY_DSA_CERT:
1682 case KEY_DSA:
1683 return ssh_dss_verify(key, signature, signaturelen, data, datalen);
1684 #ifdef OPENSSL_HAS_ECC
1685 case KEY_ECDSA_CERT:
1686 case KEY_ECDSA:
1687 return ssh_ecdsa_verify(key, signature, signaturelen, data, datalen);
1688 #endif
1689 case KEY_RSA_CERT_V00:
1690 case KEY_RSA_CERT:
1691 case KEY_RSA:
1692 return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
1693 default:
1694 error("key_verify: invalid key type %d", key->type);
1695 return -1;
1699 /* Converts a private to a public key */
1700 Key *
1701 key_demote(const Key *k)
1703 Key *pk;
1705 pk = xcalloc(1, sizeof(*pk));
1706 pk->type = k->type;
1707 pk->flags = k->flags;
1708 pk->ecdsa_nid = k->ecdsa_nid;
1709 pk->dsa = NULL;
1710 pk->ecdsa = NULL;
1711 pk->rsa = NULL;
1713 switch (k->type) {
1714 case KEY_RSA_CERT_V00:
1715 case KEY_RSA_CERT:
1716 key_cert_copy(k, pk);
1717 /* FALLTHROUGH */
1718 case KEY_RSA1:
1719 case KEY_RSA:
1720 if ((pk->rsa = RSA_new()) == NULL)
1721 fatal("key_demote: RSA_new failed");
1722 if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
1723 fatal("key_demote: BN_dup failed");
1724 if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
1725 fatal("key_demote: BN_dup failed");
1726 break;
1727 case KEY_DSA_CERT_V00:
1728 case KEY_DSA_CERT:
1729 key_cert_copy(k, pk);
1730 /* FALLTHROUGH */
1731 case KEY_DSA:
1732 if ((pk->dsa = DSA_new()) == NULL)
1733 fatal("key_demote: DSA_new failed");
1734 if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
1735 fatal("key_demote: BN_dup failed");
1736 if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
1737 fatal("key_demote: BN_dup failed");
1738 if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
1739 fatal("key_demote: BN_dup failed");
1740 if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
1741 fatal("key_demote: BN_dup failed");
1742 break;
1743 #ifdef OPENSSL_HAS_ECC
1744 case KEY_ECDSA_CERT:
1745 key_cert_copy(k, pk);
1746 /* FALLTHROUGH */
1747 case KEY_ECDSA:
1748 if ((pk->ecdsa = EC_KEY_new_by_curve_name(pk->ecdsa_nid)) == NULL)
1749 fatal("key_demote: EC_KEY_new_by_curve_name failed");
1750 if (EC_KEY_set_public_key(pk->ecdsa,
1751 EC_KEY_get0_public_key(k->ecdsa)) != 1)
1752 fatal("key_demote: EC_KEY_set_public_key failed");
1753 break;
1754 #endif
1755 default:
1756 fatal("key_free: bad key type %d", k->type);
1757 break;
1760 return (pk);
1764 key_is_cert(const Key *k)
1766 if (k == NULL)
1767 return 0;
1768 switch (k->type) {
1769 case KEY_RSA_CERT_V00:
1770 case KEY_DSA_CERT_V00:
1771 case KEY_RSA_CERT:
1772 case KEY_DSA_CERT:
1773 case KEY_ECDSA_CERT:
1774 return 1;
1775 default:
1776 return 0;
1780 /* Return the cert-less equivalent to a certified key type */
1782 key_type_plain(int type)
1784 switch (type) {
1785 case KEY_RSA_CERT_V00:
1786 case KEY_RSA_CERT:
1787 return KEY_RSA;
1788 case KEY_DSA_CERT_V00:
1789 case KEY_DSA_CERT:
1790 return KEY_DSA;
1791 case KEY_ECDSA_CERT:
1792 return KEY_ECDSA;
1793 default:
1794 return type;
1798 /* Convert a KEY_RSA or KEY_DSA to their _CERT equivalent */
1800 key_to_certified(Key *k, int legacy)
1802 switch (k->type) {
1803 case KEY_RSA:
1804 k->cert = cert_new();
1805 k->type = legacy ? KEY_RSA_CERT_V00 : KEY_RSA_CERT;
1806 return 0;
1807 case KEY_DSA:
1808 k->cert = cert_new();
1809 k->type = legacy ? KEY_DSA_CERT_V00 : KEY_DSA_CERT;
1810 return 0;
1811 case KEY_ECDSA:
1812 k->cert = cert_new();
1813 k->type = KEY_ECDSA_CERT;
1814 return 0;
1815 default:
1816 error("%s: key has incorrect type %s", __func__, key_type(k));
1817 return -1;
1821 /* Convert a KEY_RSA_CERT or KEY_DSA_CERT to their raw key equivalent */
1823 key_drop_cert(Key *k)
1825 switch (k->type) {
1826 case KEY_RSA_CERT_V00:
1827 case KEY_RSA_CERT:
1828 cert_free(k->cert);
1829 k->type = KEY_RSA;
1830 return 0;
1831 case KEY_DSA_CERT_V00:
1832 case KEY_DSA_CERT:
1833 cert_free(k->cert);
1834 k->type = KEY_DSA;
1835 return 0;
1836 case KEY_ECDSA_CERT:
1837 cert_free(k->cert);
1838 k->type = KEY_ECDSA;
1839 return 0;
1840 default:
1841 error("%s: key has incorrect type %s", __func__, key_type(k));
1842 return -1;
1847 * Sign a KEY_RSA_CERT, KEY_DSA_CERT or KEY_ECDSA_CERT, (re-)generating
1848 * the signed certblob
1851 key_certify(Key *k, Key *ca)
1853 Buffer principals;
1854 u_char *ca_blob, *sig_blob, nonce[32];
1855 u_int i, ca_len, sig_len;
1857 if (k->cert == NULL) {
1858 error("%s: key lacks cert info", __func__);
1859 return -1;
1862 if (!key_is_cert(k)) {
1863 error("%s: certificate has unknown type %d", __func__,
1864 k->cert->type);
1865 return -1;
1868 if (ca->type != KEY_RSA && ca->type != KEY_DSA &&
1869 ca->type != KEY_ECDSA) {
1870 error("%s: CA key has unsupported type %s", __func__,
1871 key_type(ca));
1872 return -1;
1875 key_to_blob(ca, &ca_blob, &ca_len);
1877 buffer_clear(&k->cert->certblob);
1878 buffer_put_cstring(&k->cert->certblob, key_ssh_name(k));
1880 /* -v01 certs put nonce first */
1881 if (!key_cert_is_legacy(k)) {
1882 arc4random_buf(&nonce, sizeof(nonce));
1883 buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce));
1886 switch (k->type) {
1887 case KEY_DSA_CERT_V00:
1888 case KEY_DSA_CERT:
1889 buffer_put_bignum2(&k->cert->certblob, k->dsa->p);
1890 buffer_put_bignum2(&k->cert->certblob, k->dsa->q);
1891 buffer_put_bignum2(&k->cert->certblob, k->dsa->g);
1892 buffer_put_bignum2(&k->cert->certblob, k->dsa->pub_key);
1893 break;
1894 #ifdef OPENSSL_HAS_ECC
1895 case KEY_ECDSA_CERT:
1896 buffer_put_cstring(&k->cert->certblob,
1897 key_curve_nid_to_name(k->ecdsa_nid));
1898 buffer_put_ecpoint(&k->cert->certblob,
1899 EC_KEY_get0_group(k->ecdsa),
1900 EC_KEY_get0_public_key(k->ecdsa));
1901 break;
1902 #endif
1903 case KEY_RSA_CERT_V00:
1904 case KEY_RSA_CERT:
1905 buffer_put_bignum2(&k->cert->certblob, k->rsa->e);
1906 buffer_put_bignum2(&k->cert->certblob, k->rsa->n);
1907 break;
1908 default:
1909 error("%s: key has incorrect type %s", __func__, key_type(k));
1910 buffer_clear(&k->cert->certblob);
1911 xfree(ca_blob);
1912 return -1;
1915 /* -v01 certs have a serial number next */
1916 if (!key_cert_is_legacy(k))
1917 buffer_put_int64(&k->cert->certblob, k->cert->serial);
1919 buffer_put_int(&k->cert->certblob, k->cert->type);
1920 buffer_put_cstring(&k->cert->certblob, k->cert->key_id);
1922 buffer_init(&principals);
1923 for (i = 0; i < k->cert->nprincipals; i++)
1924 buffer_put_cstring(&principals, k->cert->principals[i]);
1925 buffer_put_string(&k->cert->certblob, buffer_ptr(&principals),
1926 buffer_len(&principals));
1927 buffer_free(&principals);
1929 buffer_put_int64(&k->cert->certblob, k->cert->valid_after);
1930 buffer_put_int64(&k->cert->certblob, k->cert->valid_before);
1931 buffer_put_string(&k->cert->certblob,
1932 buffer_ptr(&k->cert->critical), buffer_len(&k->cert->critical));
1934 /* -v01 certs have non-critical options here */
1935 if (!key_cert_is_legacy(k)) {
1936 buffer_put_string(&k->cert->certblob,
1937 buffer_ptr(&k->cert->extensions),
1938 buffer_len(&k->cert->extensions));
1941 /* -v00 certs put the nonce at the end */
1942 if (key_cert_is_legacy(k))
1943 buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce));
1945 buffer_put_string(&k->cert->certblob, NULL, 0); /* reserved */
1946 buffer_put_string(&k->cert->certblob, ca_blob, ca_len);
1947 xfree(ca_blob);
1949 /* Sign the whole mess */
1950 if (key_sign(ca, &sig_blob, &sig_len, buffer_ptr(&k->cert->certblob),
1951 buffer_len(&k->cert->certblob)) != 0) {
1952 error("%s: signature operation failed", __func__);
1953 buffer_clear(&k->cert->certblob);
1954 return -1;
1956 /* Append signature and we are done */
1957 buffer_put_string(&k->cert->certblob, sig_blob, sig_len);
1958 xfree(sig_blob);
1960 return 0;
1964 key_cert_check_authority(const Key *k, int want_host, int require_principal,
1965 const char *name, const char **reason)
1967 u_int i, principal_matches;
1968 time_t now = time(NULL);
1970 if (want_host) {
1971 if (k->cert->type != SSH2_CERT_TYPE_HOST) {
1972 *reason = "Certificate invalid: not a host certificate";
1973 return -1;
1975 } else {
1976 if (k->cert->type != SSH2_CERT_TYPE_USER) {
1977 *reason = "Certificate invalid: not a user certificate";
1978 return -1;
1981 if (now < 0) {
1982 error("%s: system clock lies before epoch", __func__);
1983 *reason = "Certificate invalid: not yet valid";
1984 return -1;
1986 if ((u_int64_t)now < k->cert->valid_after) {
1987 *reason = "Certificate invalid: not yet valid";
1988 return -1;
1990 if ((u_int64_t)now >= k->cert->valid_before) {
1991 *reason = "Certificate invalid: expired";
1992 return -1;
1994 if (k->cert->nprincipals == 0) {
1995 if (require_principal) {
1996 *reason = "Certificate lacks principal list";
1997 return -1;
1999 } else if (name != NULL) {
2000 principal_matches = 0;
2001 for (i = 0; i < k->cert->nprincipals; i++) {
2002 if (strcmp(name, k->cert->principals[i]) == 0) {
2003 principal_matches = 1;
2004 break;
2007 if (!principal_matches) {
2008 *reason = "Certificate invalid: name is not a listed "
2009 "principal";
2010 return -1;
2013 return 0;
2017 key_cert_is_legacy(Key *k)
2019 switch (k->type) {
2020 case KEY_DSA_CERT_V00:
2021 case KEY_RSA_CERT_V00:
2022 return 1;
2023 default:
2024 return 0;
2028 /* XXX: these are really begging for a table-driven approach */
2030 key_curve_name_to_nid(const char *name)
2032 #ifdef OPENSSL_HAS_ECC
2033 if (strcmp(name, "nistp256") == 0)
2034 return NID_X9_62_prime256v1;
2035 else if (strcmp(name, "nistp384") == 0)
2036 return NID_secp384r1;
2037 else if (strcmp(name, "nistp521") == 0)
2038 return NID_secp521r1;
2039 #endif
2041 debug("%s: unsupported EC curve name \"%.100s\"", __func__, name);
2042 return -1;
2045 u_int
2046 key_curve_nid_to_bits(int nid)
2048 switch (nid) {
2049 #ifdef OPENSSL_HAS_ECC
2050 case NID_X9_62_prime256v1:
2051 return 256;
2052 case NID_secp384r1:
2053 return 384;
2054 case NID_secp521r1:
2055 return 521;
2056 #endif
2057 default:
2058 error("%s: unsupported EC curve nid %d", __func__, nid);
2059 return 0;
2063 const char *
2064 key_curve_nid_to_name(int nid)
2066 #ifdef OPENSSL_HAS_ECC
2067 if (nid == NID_X9_62_prime256v1)
2068 return "nistp256";
2069 else if (nid == NID_secp384r1)
2070 return "nistp384";
2071 else if (nid == NID_secp521r1)
2072 return "nistp521";
2073 #endif
2074 error("%s: unsupported EC curve nid %d", __func__, nid);
2075 return NULL;
2078 #ifdef OPENSSL_HAS_ECC
2079 const EVP_MD *
2080 key_ec_nid_to_evpmd(int nid)
2082 int kbits = key_curve_nid_to_bits(nid);
2084 if (kbits == 0)
2085 fatal("%s: invalid nid %d", __func__, nid);
2086 /* RFC5656 section 6.2.1 */
2087 if (kbits <= 256)
2088 return EVP_sha256();
2089 else if (kbits <= 384)
2090 return EVP_sha384();
2091 else
2092 return EVP_sha512();
2096 key_ec_validate_public(const EC_GROUP *group, const EC_POINT *public)
2098 BN_CTX *bnctx;
2099 EC_POINT *nq = NULL;
2100 BIGNUM *order, *x, *y, *tmp;
2101 int ret = -1;
2103 if ((bnctx = BN_CTX_new()) == NULL)
2104 fatal("%s: BN_CTX_new failed", __func__);
2105 BN_CTX_start(bnctx);
2108 * We shouldn't ever hit this case because bignum_get_ecpoint()
2109 * refuses to load GF2m points.
2111 if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
2112 NID_X9_62_prime_field) {
2113 error("%s: group is not a prime field", __func__);
2114 goto out;
2117 /* Q != infinity */
2118 if (EC_POINT_is_at_infinity(group, public)) {
2119 error("%s: received degenerate public key (infinity)",
2120 __func__);
2121 goto out;
2124 if ((x = BN_CTX_get(bnctx)) == NULL ||
2125 (y = BN_CTX_get(bnctx)) == NULL ||
2126 (order = BN_CTX_get(bnctx)) == NULL ||
2127 (tmp = BN_CTX_get(bnctx)) == NULL)
2128 fatal("%s: BN_CTX_get failed", __func__);
2130 /* log2(x) > log2(order)/2, log2(y) > log2(order)/2 */
2131 if (EC_GROUP_get_order(group, order, bnctx) != 1)
2132 fatal("%s: EC_GROUP_get_order failed", __func__);
2133 if (EC_POINT_get_affine_coordinates_GFp(group, public,
2134 x, y, bnctx) != 1)
2135 fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__);
2136 if (BN_num_bits(x) <= BN_num_bits(order) / 2) {
2137 error("%s: public key x coordinate too small: "
2138 "bits(x) = %d, bits(order)/2 = %d", __func__,
2139 BN_num_bits(x), BN_num_bits(order) / 2);
2140 goto out;
2142 if (BN_num_bits(y) <= BN_num_bits(order) / 2) {
2143 error("%s: public key y coordinate too small: "
2144 "bits(y) = %d, bits(order)/2 = %d", __func__,
2145 BN_num_bits(x), BN_num_bits(order) / 2);
2146 goto out;
2149 /* nQ == infinity (n == order of subgroup) */
2150 if ((nq = EC_POINT_new(group)) == NULL)
2151 fatal("%s: BN_CTX_tmp failed", __func__);
2152 if (EC_POINT_mul(group, nq, NULL, public, order, bnctx) != 1)
2153 fatal("%s: EC_GROUP_mul failed", __func__);
2154 if (EC_POINT_is_at_infinity(group, nq) != 1) {
2155 error("%s: received degenerate public key (nQ != infinity)",
2156 __func__);
2157 goto out;
2160 /* x < order - 1, y < order - 1 */
2161 if (!BN_sub(tmp, order, BN_value_one()))
2162 fatal("%s: BN_sub failed", __func__);
2163 if (BN_cmp(x, tmp) >= 0) {
2164 error("%s: public key x coordinate >= group order - 1",
2165 __func__);
2166 goto out;
2168 if (BN_cmp(y, tmp) >= 0) {
2169 error("%s: public key y coordinate >= group order - 1",
2170 __func__);
2171 goto out;
2173 ret = 0;
2174 out:
2175 BN_CTX_free(bnctx);
2176 EC_POINT_free(nq);
2177 return ret;
2181 key_ec_validate_private(const EC_KEY *key)
2183 BN_CTX *bnctx;
2184 BIGNUM *order, *tmp;
2185 int ret = -1;
2187 if ((bnctx = BN_CTX_new()) == NULL)
2188 fatal("%s: BN_CTX_new failed", __func__);
2189 BN_CTX_start(bnctx);
2191 if ((order = BN_CTX_get(bnctx)) == NULL ||
2192 (tmp = BN_CTX_get(bnctx)) == NULL)
2193 fatal("%s: BN_CTX_get failed", __func__);
2195 /* log2(private) > log2(order)/2 */
2196 if (EC_GROUP_get_order(EC_KEY_get0_group(key), order, bnctx) != 1)
2197 fatal("%s: EC_GROUP_get_order failed", __func__);
2198 if (BN_num_bits(EC_KEY_get0_private_key(key)) <=
2199 BN_num_bits(order) / 2) {
2200 error("%s: private key too small: "
2201 "bits(y) = %d, bits(order)/2 = %d", __func__,
2202 BN_num_bits(EC_KEY_get0_private_key(key)),
2203 BN_num_bits(order) / 2);
2204 goto out;
2207 /* private < order - 1 */
2208 if (!BN_sub(tmp, order, BN_value_one()))
2209 fatal("%s: BN_sub failed", __func__);
2210 if (BN_cmp(EC_KEY_get0_private_key(key), tmp) >= 0) {
2211 error("%s: private key >= group order - 1", __func__);
2212 goto out;
2214 ret = 0;
2215 out:
2216 BN_CTX_free(bnctx);
2217 return ret;
2220 #if defined(DEBUG_KEXECDH) || defined(DEBUG_PK)
2221 void
2222 key_dump_ec_point(const EC_GROUP *group, const EC_POINT *point)
2224 BIGNUM *x, *y;
2225 BN_CTX *bnctx;
2227 if (point == NULL) {
2228 fputs("point=(NULL)\n", stderr);
2229 return;
2231 if ((bnctx = BN_CTX_new()) == NULL)
2232 fatal("%s: BN_CTX_new failed", __func__);
2233 BN_CTX_start(bnctx);
2234 if ((x = BN_CTX_get(bnctx)) == NULL || (y = BN_CTX_get(bnctx)) == NULL)
2235 fatal("%s: BN_CTX_get failed", __func__);
2236 if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
2237 NID_X9_62_prime_field)
2238 fatal("%s: group is not a prime field", __func__);
2239 if (EC_POINT_get_affine_coordinates_GFp(group, point, x, y, bnctx) != 1)
2240 fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__);
2241 fputs("x=", stderr);
2242 BN_print_fp(stderr, x);
2243 fputs("\ny=", stderr);
2244 BN_print_fp(stderr, y);
2245 fputs("\n", stderr);
2246 BN_CTX_free(bnctx);
2249 void
2250 key_dump_ec_key(const EC_KEY *key)
2252 const BIGNUM *exponent;
2254 key_dump_ec_point(EC_KEY_get0_group(key), EC_KEY_get0_public_key(key));
2255 fputs("exponent=", stderr);
2256 if ((exponent = EC_KEY_get0_private_key(key)) == NULL)
2257 fputs("(NULL)", stderr);
2258 else
2259 BN_print_fp(stderr, EC_KEY_get0_private_key(key));
2260 fputs("\n", stderr);
2262 #endif /* defined(DEBUG_KEXECDH) || defined(DEBUG_PK) */
2263 #endif /* OPENSSL_HAS_ECC */