- stevesk@cvs.openbsd.org 2006/07/22 19:08:54
[openssh-git.git] / moduli.c
blob9d4aedd5b7e1fad308fd2f0b47f62e5d79c4fd54
1 /* $OpenBSD: moduli.c,v 1.14 2006/07/22 19:08:54 stevesk Exp $ */
2 /*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * Two-step process to generate safe primes for DHGEX
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
40 #include "includes.h"
42 #include <sys/types.h>
44 #include <openssl/bn.h>
46 #include <time.h>
48 #include "xmalloc.h"
49 #include "log.h"
52 * File output defines
55 /* need line long enough for largest moduli plus headers */
56 #define QLINESIZE (100+8192)
58 /* Type: decimal.
59 * Specifies the internal structure of the prime modulus.
61 #define QTYPE_UNKNOWN (0)
62 #define QTYPE_UNSTRUCTURED (1)
63 #define QTYPE_SAFE (2)
64 #define QTYPE_SCHNORR (3)
65 #define QTYPE_SOPHIE_GERMAIN (4)
66 #define QTYPE_STRONG (5)
68 /* Tests: decimal (bit field).
69 * Specifies the methods used in checking for primality.
70 * Usually, more than one test is used.
72 #define QTEST_UNTESTED (0x00)
73 #define QTEST_COMPOSITE (0x01)
74 #define QTEST_SIEVE (0x02)
75 #define QTEST_MILLER_RABIN (0x04)
76 #define QTEST_JACOBI (0x08)
77 #define QTEST_ELLIPTIC (0x10)
80 * Size: decimal.
81 * Specifies the number of the most significant bit (0 to M).
82 * WARNING: internally, usually 1 to N.
84 #define QSIZE_MINIMUM (511)
87 * Prime sieving defines
90 /* Constant: assuming 8 bit bytes and 32 bit words */
91 #define SHIFT_BIT (3)
92 #define SHIFT_BYTE (2)
93 #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
94 #define SHIFT_MEGABYTE (20)
95 #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
98 * Using virtual memory can cause thrashing. This should be the largest
99 * number that is supported without a large amount of disk activity --
100 * that would increase the run time from hours to days or weeks!
102 #define LARGE_MINIMUM (8UL) /* megabytes */
105 * Do not increase this number beyond the unsigned integer bit size.
106 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
108 #define LARGE_MAXIMUM (127UL) /* megabytes */
111 * Constant: when used with 32-bit integers, the largest sieve prime
112 * has to be less than 2**32.
114 #define SMALL_MAXIMUM (0xffffffffUL)
116 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
117 #define TINY_NUMBER (1UL<<16)
119 /* Ensure enough bit space for testing 2*q. */
120 #define TEST_MAXIMUM (1UL<<16)
121 #define TEST_MINIMUM (QSIZE_MINIMUM + 1)
122 /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
123 #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
125 /* bit operations on 32-bit words */
126 #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
127 #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
128 #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
131 * Prime testing defines
134 /* Minimum number of primality tests to perform */
135 #define TRIAL_MINIMUM (4)
138 * Sieving data (XXX - move to struct)
141 /* sieve 2**16 */
142 static u_int32_t *TinySieve, tinybits;
144 /* sieve 2**30 in 2**16 parts */
145 static u_int32_t *SmallSieve, smallbits, smallbase;
147 /* sieve relative to the initial value */
148 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
149 static u_int32_t largebits, largememory; /* megabytes */
150 static BIGNUM *largebase;
152 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
153 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
156 * print moduli out in consistent form,
158 static int
159 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
160 u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
162 struct tm *gtm;
163 time_t time_now;
164 int res;
166 time(&time_now);
167 gtm = gmtime(&time_now);
169 res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
170 gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
171 gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
172 otype, otests, otries, osize, ogenerator);
174 if (res < 0)
175 return (-1);
177 if (BN_print_fp(ofile, omodulus) < 1)
178 return (-1);
180 res = fprintf(ofile, "\n");
181 fflush(ofile);
183 return (res > 0 ? 0 : -1);
188 ** Sieve p's and q's with small factors
190 static void
191 sieve_large(u_int32_t s)
193 u_int32_t r, u;
195 debug3("sieve_large %u", s);
196 largetries++;
197 /* r = largebase mod s */
198 r = BN_mod_word(largebase, s);
199 if (r == 0)
200 u = 0; /* s divides into largebase exactly */
201 else
202 u = s - r; /* largebase+u is first entry divisible by s */
204 if (u < largebits * 2) {
206 * The sieve omits p's and q's divisible by 2, so ensure that
207 * largebase+u is odd. Then, step through the sieve in
208 * increments of 2*s
210 if (u & 0x1)
211 u += s; /* Make largebase+u odd, and u even */
213 /* Mark all multiples of 2*s */
214 for (u /= 2; u < largebits; u += s)
215 BIT_SET(LargeSieve, u);
218 /* r = p mod s */
219 r = (2 * r + 1) % s;
220 if (r == 0)
221 u = 0; /* s divides p exactly */
222 else
223 u = s - r; /* p+u is first entry divisible by s */
225 if (u < largebits * 4) {
227 * The sieve omits p's divisible by 4, so ensure that
228 * largebase+u is not. Then, step through the sieve in
229 * increments of 4*s
231 while (u & 0x3) {
232 if (SMALL_MAXIMUM - u < s)
233 return;
234 u += s;
237 /* Mark all multiples of 4*s */
238 for (u /= 4; u < largebits; u += s)
239 BIT_SET(LargeSieve, u);
244 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
245 * to standard output.
246 * The list is checked against small known primes (less than 2**30).
249 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
251 BIGNUM *q;
252 u_int32_t j, r, s, t;
253 u_int32_t smallwords = TINY_NUMBER >> 6;
254 u_int32_t tinywords = TINY_NUMBER >> 6;
255 time_t time_start, time_stop;
256 u_int32_t i;
257 int ret = 0;
259 largememory = memory;
261 if (memory != 0 &&
262 (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
263 error("Invalid memory amount (min %ld, max %ld)",
264 LARGE_MINIMUM, LARGE_MAXIMUM);
265 return (-1);
269 * Set power to the length in bits of the prime to be generated.
270 * This is changed to 1 less than the desired safe prime moduli p.
272 if (power > TEST_MAXIMUM) {
273 error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
274 return (-1);
275 } else if (power < TEST_MINIMUM) {
276 error("Too few bits: %u < %u", power, TEST_MINIMUM);
277 return (-1);
279 power--; /* decrement before squaring */
282 * The density of ordinary primes is on the order of 1/bits, so the
283 * density of safe primes should be about (1/bits)**2. Set test range
284 * to something well above bits**2 to be reasonably sure (but not
285 * guaranteed) of catching at least one safe prime.
287 largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
290 * Need idea of how much memory is available. We don't have to use all
291 * of it.
293 if (largememory > LARGE_MAXIMUM) {
294 logit("Limited memory: %u MB; limit %lu MB",
295 largememory, LARGE_MAXIMUM);
296 largememory = LARGE_MAXIMUM;
299 if (largewords <= (largememory << SHIFT_MEGAWORD)) {
300 logit("Increased memory: %u MB; need %u bytes",
301 largememory, (largewords << SHIFT_BYTE));
302 largewords = (largememory << SHIFT_MEGAWORD);
303 } else if (largememory > 0) {
304 logit("Decreased memory: %u MB; want %u bytes",
305 largememory, (largewords << SHIFT_BYTE));
306 largewords = (largememory << SHIFT_MEGAWORD);
309 TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
310 tinybits = tinywords << SHIFT_WORD;
312 SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
313 smallbits = smallwords << SHIFT_WORD;
316 * dynamically determine available memory
318 while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
319 largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
321 largebits = largewords << SHIFT_WORD;
322 largenumbers = largebits * 2; /* even numbers excluded */
324 /* validation check: count the number of primes tried */
325 largetries = 0;
326 q = BN_new();
329 * Generate random starting point for subprime search, or use
330 * specified parameter.
332 largebase = BN_new();
333 if (start == NULL)
334 BN_rand(largebase, power, 1, 1);
335 else
336 BN_copy(largebase, start);
338 /* ensure odd */
339 BN_set_bit(largebase, 0);
341 time(&time_start);
343 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
344 largenumbers, power);
345 debug2("start point: 0x%s", BN_bn2hex(largebase));
348 * TinySieve
350 for (i = 0; i < tinybits; i++) {
351 if (BIT_TEST(TinySieve, i))
352 continue; /* 2*i+3 is composite */
354 /* The next tiny prime */
355 t = 2 * i + 3;
357 /* Mark all multiples of t */
358 for (j = i + t; j < tinybits; j += t)
359 BIT_SET(TinySieve, j);
361 sieve_large(t);
365 * Start the small block search at the next possible prime. To avoid
366 * fencepost errors, the last pass is skipped.
368 for (smallbase = TINY_NUMBER + 3;
369 smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
370 smallbase += TINY_NUMBER) {
371 for (i = 0; i < tinybits; i++) {
372 if (BIT_TEST(TinySieve, i))
373 continue; /* 2*i+3 is composite */
375 /* The next tiny prime */
376 t = 2 * i + 3;
377 r = smallbase % t;
379 if (r == 0) {
380 s = 0; /* t divides into smallbase exactly */
381 } else {
382 /* smallbase+s is first entry divisible by t */
383 s = t - r;
387 * The sieve omits even numbers, so ensure that
388 * smallbase+s is odd. Then, step through the sieve
389 * in increments of 2*t
391 if (s & 1)
392 s += t; /* Make smallbase+s odd, and s even */
394 /* Mark all multiples of 2*t */
395 for (s /= 2; s < smallbits; s += t)
396 BIT_SET(SmallSieve, s);
400 * SmallSieve
402 for (i = 0; i < smallbits; i++) {
403 if (BIT_TEST(SmallSieve, i))
404 continue; /* 2*i+smallbase is composite */
406 /* The next small prime */
407 sieve_large((2 * i) + smallbase);
410 memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
413 time(&time_stop);
415 logit("%.24s Sieved with %u small primes in %ld seconds",
416 ctime(&time_stop), largetries, (long) (time_stop - time_start));
418 for (j = r = 0; j < largebits; j++) {
419 if (BIT_TEST(LargeSieve, j))
420 continue; /* Definitely composite, skip */
422 debug2("test q = largebase+%u", 2 * j);
423 BN_set_word(q, 2 * j);
424 BN_add(q, q, largebase);
425 if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE,
426 largetries, (power - 1) /* MSB */, (0), q) == -1) {
427 ret = -1;
428 break;
431 r++; /* count q */
434 time(&time_stop);
436 xfree(LargeSieve);
437 xfree(SmallSieve);
438 xfree(TinySieve);
440 logit("%.24s Found %u candidates", ctime(&time_stop), r);
442 return (ret);
446 * perform a Miller-Rabin primality test
447 * on the list of candidates
448 * (checking both q and p)
449 * The result is a list of so-call "safe" primes
452 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
454 BIGNUM *q, *p, *a;
455 BN_CTX *ctx;
456 char *cp, *lp;
457 u_int32_t count_in = 0, count_out = 0, count_possible = 0;
458 u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
459 time_t time_start, time_stop;
460 int res;
462 if (trials < TRIAL_MINIMUM) {
463 error("Minimum primality trials is %d", TRIAL_MINIMUM);
464 return (-1);
467 time(&time_start);
469 p = BN_new();
470 q = BN_new();
471 ctx = BN_CTX_new();
473 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
474 ctime(&time_start), trials, generator_wanted);
476 res = 0;
477 lp = xmalloc(QLINESIZE + 1);
478 while (fgets(lp, QLINESIZE, in) != NULL) {
479 int ll = strlen(lp);
481 count_in++;
482 if (ll < 14 || *lp == '!' || *lp == '#') {
483 debug2("%10u: comment or short line", count_in);
484 continue;
487 /* XXX - fragile parser */
488 /* time */
489 cp = &lp[14]; /* (skip) */
491 /* type */
492 in_type = strtoul(cp, &cp, 10);
494 /* tests */
495 in_tests = strtoul(cp, &cp, 10);
497 if (in_tests & QTEST_COMPOSITE) {
498 debug2("%10u: known composite", count_in);
499 continue;
502 /* tries */
503 in_tries = strtoul(cp, &cp, 10);
505 /* size (most significant bit) */
506 in_size = strtoul(cp, &cp, 10);
508 /* generator (hex) */
509 generator_known = strtoul(cp, &cp, 16);
511 /* Skip white space */
512 cp += strspn(cp, " ");
514 /* modulus (hex) */
515 switch (in_type) {
516 case QTYPE_SOPHIE_GERMAIN:
517 debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
518 a = q;
519 BN_hex2bn(&a, cp);
520 /* p = 2*q + 1 */
521 BN_lshift(p, q, 1);
522 BN_add_word(p, 1);
523 in_size += 1;
524 generator_known = 0;
525 break;
526 case QTYPE_UNSTRUCTURED:
527 case QTYPE_SAFE:
528 case QTYPE_SCHNORR:
529 case QTYPE_STRONG:
530 case QTYPE_UNKNOWN:
531 debug2("%10u: (%u)", count_in, in_type);
532 a = p;
533 BN_hex2bn(&a, cp);
534 /* q = (p-1) / 2 */
535 BN_rshift(q, p, 1);
536 break;
537 default:
538 debug2("Unknown prime type");
539 break;
543 * due to earlier inconsistencies in interpretation, check
544 * the proposed bit size.
546 if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
547 debug2("%10u: bit size %u mismatch", count_in, in_size);
548 continue;
550 if (in_size < QSIZE_MINIMUM) {
551 debug2("%10u: bit size %u too short", count_in, in_size);
552 continue;
555 if (in_tests & QTEST_MILLER_RABIN)
556 in_tries += trials;
557 else
558 in_tries = trials;
561 * guess unknown generator
563 if (generator_known == 0) {
564 if (BN_mod_word(p, 24) == 11)
565 generator_known = 2;
566 else if (BN_mod_word(p, 12) == 5)
567 generator_known = 3;
568 else {
569 u_int32_t r = BN_mod_word(p, 10);
571 if (r == 3 || r == 7)
572 generator_known = 5;
576 * skip tests when desired generator doesn't match
578 if (generator_wanted > 0 &&
579 generator_wanted != generator_known) {
580 debug2("%10u: generator %d != %d",
581 count_in, generator_known, generator_wanted);
582 continue;
586 * Primes with no known generator are useless for DH, so
587 * skip those.
589 if (generator_known == 0) {
590 debug2("%10u: no known generator", count_in);
591 continue;
594 count_possible++;
597 * The (1/4)^N performance bound on Miller-Rabin is
598 * extremely pessimistic, so don't spend a lot of time
599 * really verifying that q is prime until after we know
600 * that p is also prime. A single pass will weed out the
601 * vast majority of composite q's.
603 if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
604 debug("%10u: q failed first possible prime test",
605 count_in);
606 continue;
610 * q is possibly prime, so go ahead and really make sure
611 * that p is prime. If it is, then we can go back and do
612 * the same for q. If p is composite, chances are that
613 * will show up on the first Rabin-Miller iteration so it
614 * doesn't hurt to specify a high iteration count.
616 if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
617 debug("%10u: p is not prime", count_in);
618 continue;
620 debug("%10u: p is almost certainly prime", count_in);
622 /* recheck q more rigorously */
623 if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
624 debug("%10u: q is not prime", count_in);
625 continue;
627 debug("%10u: q is almost certainly prime", count_in);
629 if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
630 in_tries, in_size, generator_known, p)) {
631 res = -1;
632 break;
635 count_out++;
638 time(&time_stop);
639 xfree(lp);
640 BN_free(p);
641 BN_free(q);
642 BN_CTX_free(ctx);
644 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
645 ctime(&time_stop), count_out, count_possible,
646 (long) (time_stop - time_start));
648 return (res);