1 /* $OpenBSD: moduli.c,v 1.14 2006/07/22 19:08:54 stevesk Exp $ */
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * Two-step process to generate safe primes for DHGEX
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
42 #include <sys/types.h>
44 #include <openssl/bn.h>
55 /* need line long enough for largest moduli plus headers */
56 #define QLINESIZE (100+8192)
59 * Specifies the internal structure of the prime modulus.
61 #define QTYPE_UNKNOWN (0)
62 #define QTYPE_UNSTRUCTURED (1)
63 #define QTYPE_SAFE (2)
64 #define QTYPE_SCHNORR (3)
65 #define QTYPE_SOPHIE_GERMAIN (4)
66 #define QTYPE_STRONG (5)
68 /* Tests: decimal (bit field).
69 * Specifies the methods used in checking for primality.
70 * Usually, more than one test is used.
72 #define QTEST_UNTESTED (0x00)
73 #define QTEST_COMPOSITE (0x01)
74 #define QTEST_SIEVE (0x02)
75 #define QTEST_MILLER_RABIN (0x04)
76 #define QTEST_JACOBI (0x08)
77 #define QTEST_ELLIPTIC (0x10)
81 * Specifies the number of the most significant bit (0 to M).
82 * WARNING: internally, usually 1 to N.
84 #define QSIZE_MINIMUM (511)
87 * Prime sieving defines
90 /* Constant: assuming 8 bit bytes and 32 bit words */
92 #define SHIFT_BYTE (2)
93 #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
94 #define SHIFT_MEGABYTE (20)
95 #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
98 * Using virtual memory can cause thrashing. This should be the largest
99 * number that is supported without a large amount of disk activity --
100 * that would increase the run time from hours to days or weeks!
102 #define LARGE_MINIMUM (8UL) /* megabytes */
105 * Do not increase this number beyond the unsigned integer bit size.
106 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
108 #define LARGE_MAXIMUM (127UL) /* megabytes */
111 * Constant: when used with 32-bit integers, the largest sieve prime
112 * has to be less than 2**32.
114 #define SMALL_MAXIMUM (0xffffffffUL)
116 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
117 #define TINY_NUMBER (1UL<<16)
119 /* Ensure enough bit space for testing 2*q. */
120 #define TEST_MAXIMUM (1UL<<16)
121 #define TEST_MINIMUM (QSIZE_MINIMUM + 1)
122 /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
123 #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
125 /* bit operations on 32-bit words */
126 #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
127 #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
128 #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
131 * Prime testing defines
134 /* Minimum number of primality tests to perform */
135 #define TRIAL_MINIMUM (4)
138 * Sieving data (XXX - move to struct)
142 static u_int32_t
*TinySieve
, tinybits
;
144 /* sieve 2**30 in 2**16 parts */
145 static u_int32_t
*SmallSieve
, smallbits
, smallbase
;
147 /* sieve relative to the initial value */
148 static u_int32_t
*LargeSieve
, largewords
, largetries
, largenumbers
;
149 static u_int32_t largebits
, largememory
; /* megabytes */
150 static BIGNUM
*largebase
;
152 int gen_candidates(FILE *, u_int32_t
, u_int32_t
, BIGNUM
*);
153 int prime_test(FILE *, FILE *, u_int32_t
, u_int32_t
);
156 * print moduli out in consistent form,
159 qfileout(FILE * ofile
, u_int32_t otype
, u_int32_t otests
, u_int32_t otries
,
160 u_int32_t osize
, u_int32_t ogenerator
, BIGNUM
* omodulus
)
167 gtm
= gmtime(&time_now
);
169 res
= fprintf(ofile
, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
170 gtm
->tm_year
+ 1900, gtm
->tm_mon
+ 1, gtm
->tm_mday
,
171 gtm
->tm_hour
, gtm
->tm_min
, gtm
->tm_sec
,
172 otype
, otests
, otries
, osize
, ogenerator
);
177 if (BN_print_fp(ofile
, omodulus
) < 1)
180 res
= fprintf(ofile
, "\n");
183 return (res
> 0 ? 0 : -1);
188 ** Sieve p's and q's with small factors
191 sieve_large(u_int32_t s
)
195 debug3("sieve_large %u", s
);
197 /* r = largebase mod s */
198 r
= BN_mod_word(largebase
, s
);
200 u
= 0; /* s divides into largebase exactly */
202 u
= s
- r
; /* largebase+u is first entry divisible by s */
204 if (u
< largebits
* 2) {
206 * The sieve omits p's and q's divisible by 2, so ensure that
207 * largebase+u is odd. Then, step through the sieve in
211 u
+= s
; /* Make largebase+u odd, and u even */
213 /* Mark all multiples of 2*s */
214 for (u
/= 2; u
< largebits
; u
+= s
)
215 BIT_SET(LargeSieve
, u
);
221 u
= 0; /* s divides p exactly */
223 u
= s
- r
; /* p+u is first entry divisible by s */
225 if (u
< largebits
* 4) {
227 * The sieve omits p's divisible by 4, so ensure that
228 * largebase+u is not. Then, step through the sieve in
232 if (SMALL_MAXIMUM
- u
< s
)
237 /* Mark all multiples of 4*s */
238 for (u
/= 4; u
< largebits
; u
+= s
)
239 BIT_SET(LargeSieve
, u
);
244 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
245 * to standard output.
246 * The list is checked against small known primes (less than 2**30).
249 gen_candidates(FILE *out
, u_int32_t memory
, u_int32_t power
, BIGNUM
*start
)
252 u_int32_t j
, r
, s
, t
;
253 u_int32_t smallwords
= TINY_NUMBER
>> 6;
254 u_int32_t tinywords
= TINY_NUMBER
>> 6;
255 time_t time_start
, time_stop
;
259 largememory
= memory
;
262 (memory
< LARGE_MINIMUM
|| memory
> LARGE_MAXIMUM
)) {
263 error("Invalid memory amount (min %ld, max %ld)",
264 LARGE_MINIMUM
, LARGE_MAXIMUM
);
269 * Set power to the length in bits of the prime to be generated.
270 * This is changed to 1 less than the desired safe prime moduli p.
272 if (power
> TEST_MAXIMUM
) {
273 error("Too many bits: %u > %lu", power
, TEST_MAXIMUM
);
275 } else if (power
< TEST_MINIMUM
) {
276 error("Too few bits: %u < %u", power
, TEST_MINIMUM
);
279 power
--; /* decrement before squaring */
282 * The density of ordinary primes is on the order of 1/bits, so the
283 * density of safe primes should be about (1/bits)**2. Set test range
284 * to something well above bits**2 to be reasonably sure (but not
285 * guaranteed) of catching at least one safe prime.
287 largewords
= ((power
* power
) >> (SHIFT_WORD
- TEST_POWER
));
290 * Need idea of how much memory is available. We don't have to use all
293 if (largememory
> LARGE_MAXIMUM
) {
294 logit("Limited memory: %u MB; limit %lu MB",
295 largememory
, LARGE_MAXIMUM
);
296 largememory
= LARGE_MAXIMUM
;
299 if (largewords
<= (largememory
<< SHIFT_MEGAWORD
)) {
300 logit("Increased memory: %u MB; need %u bytes",
301 largememory
, (largewords
<< SHIFT_BYTE
));
302 largewords
= (largememory
<< SHIFT_MEGAWORD
);
303 } else if (largememory
> 0) {
304 logit("Decreased memory: %u MB; want %u bytes",
305 largememory
, (largewords
<< SHIFT_BYTE
));
306 largewords
= (largememory
<< SHIFT_MEGAWORD
);
309 TinySieve
= xcalloc(tinywords
, sizeof(u_int32_t
));
310 tinybits
= tinywords
<< SHIFT_WORD
;
312 SmallSieve
= xcalloc(smallwords
, sizeof(u_int32_t
));
313 smallbits
= smallwords
<< SHIFT_WORD
;
316 * dynamically determine available memory
318 while ((LargeSieve
= calloc(largewords
, sizeof(u_int32_t
))) == NULL
)
319 largewords
-= (1L << (SHIFT_MEGAWORD
- 2)); /* 1/4 MB chunks */
321 largebits
= largewords
<< SHIFT_WORD
;
322 largenumbers
= largebits
* 2; /* even numbers excluded */
324 /* validation check: count the number of primes tried */
329 * Generate random starting point for subprime search, or use
330 * specified parameter.
332 largebase
= BN_new();
334 BN_rand(largebase
, power
, 1, 1);
336 BN_copy(largebase
, start
);
339 BN_set_bit(largebase
, 0);
343 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start
),
344 largenumbers
, power
);
345 debug2("start point: 0x%s", BN_bn2hex(largebase
));
350 for (i
= 0; i
< tinybits
; i
++) {
351 if (BIT_TEST(TinySieve
, i
))
352 continue; /* 2*i+3 is composite */
354 /* The next tiny prime */
357 /* Mark all multiples of t */
358 for (j
= i
+ t
; j
< tinybits
; j
+= t
)
359 BIT_SET(TinySieve
, j
);
365 * Start the small block search at the next possible prime. To avoid
366 * fencepost errors, the last pass is skipped.
368 for (smallbase
= TINY_NUMBER
+ 3;
369 smallbase
< (SMALL_MAXIMUM
- TINY_NUMBER
);
370 smallbase
+= TINY_NUMBER
) {
371 for (i
= 0; i
< tinybits
; i
++) {
372 if (BIT_TEST(TinySieve
, i
))
373 continue; /* 2*i+3 is composite */
375 /* The next tiny prime */
380 s
= 0; /* t divides into smallbase exactly */
382 /* smallbase+s is first entry divisible by t */
387 * The sieve omits even numbers, so ensure that
388 * smallbase+s is odd. Then, step through the sieve
389 * in increments of 2*t
392 s
+= t
; /* Make smallbase+s odd, and s even */
394 /* Mark all multiples of 2*t */
395 for (s
/= 2; s
< smallbits
; s
+= t
)
396 BIT_SET(SmallSieve
, s
);
402 for (i
= 0; i
< smallbits
; i
++) {
403 if (BIT_TEST(SmallSieve
, i
))
404 continue; /* 2*i+smallbase is composite */
406 /* The next small prime */
407 sieve_large((2 * i
) + smallbase
);
410 memset(SmallSieve
, 0, smallwords
<< SHIFT_BYTE
);
415 logit("%.24s Sieved with %u small primes in %ld seconds",
416 ctime(&time_stop
), largetries
, (long) (time_stop
- time_start
));
418 for (j
= r
= 0; j
< largebits
; j
++) {
419 if (BIT_TEST(LargeSieve
, j
))
420 continue; /* Definitely composite, skip */
422 debug2("test q = largebase+%u", 2 * j
);
423 BN_set_word(q
, 2 * j
);
424 BN_add(q
, q
, largebase
);
425 if (qfileout(out
, QTYPE_SOPHIE_GERMAIN
, QTEST_SIEVE
,
426 largetries
, (power
- 1) /* MSB */, (0), q
) == -1) {
440 logit("%.24s Found %u candidates", ctime(&time_stop
), r
);
446 * perform a Miller-Rabin primality test
447 * on the list of candidates
448 * (checking both q and p)
449 * The result is a list of so-call "safe" primes
452 prime_test(FILE *in
, FILE *out
, u_int32_t trials
, u_int32_t generator_wanted
)
457 u_int32_t count_in
= 0, count_out
= 0, count_possible
= 0;
458 u_int32_t generator_known
, in_tests
, in_tries
, in_type
, in_size
;
459 time_t time_start
, time_stop
;
462 if (trials
< TRIAL_MINIMUM
) {
463 error("Minimum primality trials is %d", TRIAL_MINIMUM
);
473 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
474 ctime(&time_start
), trials
, generator_wanted
);
477 lp
= xmalloc(QLINESIZE
+ 1);
478 while (fgets(lp
, QLINESIZE
, in
) != NULL
) {
482 if (ll
< 14 || *lp
== '!' || *lp
== '#') {
483 debug2("%10u: comment or short line", count_in
);
487 /* XXX - fragile parser */
489 cp
= &lp
[14]; /* (skip) */
492 in_type
= strtoul(cp
, &cp
, 10);
495 in_tests
= strtoul(cp
, &cp
, 10);
497 if (in_tests
& QTEST_COMPOSITE
) {
498 debug2("%10u: known composite", count_in
);
503 in_tries
= strtoul(cp
, &cp
, 10);
505 /* size (most significant bit) */
506 in_size
= strtoul(cp
, &cp
, 10);
508 /* generator (hex) */
509 generator_known
= strtoul(cp
, &cp
, 16);
511 /* Skip white space */
512 cp
+= strspn(cp
, " ");
516 case QTYPE_SOPHIE_GERMAIN
:
517 debug2("%10u: (%u) Sophie-Germain", count_in
, in_type
);
526 case QTYPE_UNSTRUCTURED
:
531 debug2("%10u: (%u)", count_in
, in_type
);
538 debug2("Unknown prime type");
543 * due to earlier inconsistencies in interpretation, check
544 * the proposed bit size.
546 if ((u_int32_t
)BN_num_bits(p
) != (in_size
+ 1)) {
547 debug2("%10u: bit size %u mismatch", count_in
, in_size
);
550 if (in_size
< QSIZE_MINIMUM
) {
551 debug2("%10u: bit size %u too short", count_in
, in_size
);
555 if (in_tests
& QTEST_MILLER_RABIN
)
561 * guess unknown generator
563 if (generator_known
== 0) {
564 if (BN_mod_word(p
, 24) == 11)
566 else if (BN_mod_word(p
, 12) == 5)
569 u_int32_t r
= BN_mod_word(p
, 10);
571 if (r
== 3 || r
== 7)
576 * skip tests when desired generator doesn't match
578 if (generator_wanted
> 0 &&
579 generator_wanted
!= generator_known
) {
580 debug2("%10u: generator %d != %d",
581 count_in
, generator_known
, generator_wanted
);
586 * Primes with no known generator are useless for DH, so
589 if (generator_known
== 0) {
590 debug2("%10u: no known generator", count_in
);
597 * The (1/4)^N performance bound on Miller-Rabin is
598 * extremely pessimistic, so don't spend a lot of time
599 * really verifying that q is prime until after we know
600 * that p is also prime. A single pass will weed out the
601 * vast majority of composite q's.
603 if (BN_is_prime(q
, 1, NULL
, ctx
, NULL
) <= 0) {
604 debug("%10u: q failed first possible prime test",
610 * q is possibly prime, so go ahead and really make sure
611 * that p is prime. If it is, then we can go back and do
612 * the same for q. If p is composite, chances are that
613 * will show up on the first Rabin-Miller iteration so it
614 * doesn't hurt to specify a high iteration count.
616 if (!BN_is_prime(p
, trials
, NULL
, ctx
, NULL
)) {
617 debug("%10u: p is not prime", count_in
);
620 debug("%10u: p is almost certainly prime", count_in
);
622 /* recheck q more rigorously */
623 if (!BN_is_prime(q
, trials
- 1, NULL
, ctx
, NULL
)) {
624 debug("%10u: q is not prime", count_in
);
627 debug("%10u: q is almost certainly prime", count_in
);
629 if (qfileout(out
, QTYPE_SAFE
, (in_tests
| QTEST_MILLER_RABIN
),
630 in_tries
, in_size
, generator_known
, p
)) {
644 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
645 ctime(&time_stop
), count_out
, count_possible
,
646 (long) (time_stop
- time_start
));