- jmc@cvs.openbsd.org 2010/01/13 12:48:34
[openssh-git.git] / openbsd-compat / base64.c
blob9e746671642593537bdcbc0fecfcabd80e9faa0e
1 /* $OpenBSD: base64.c,v 1.5 2006/10/21 09:55:03 otto Exp $ */
3 /*
4 * Copyright (c) 1996 by Internet Software Consortium.
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM DISCLAIMS
11 * ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES
12 * OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE
13 * CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14 * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15 * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
16 * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
17 * SOFTWARE.
21 * Portions Copyright (c) 1995 by International Business Machines, Inc.
23 * International Business Machines, Inc. (hereinafter called IBM) grants
24 * permission under its copyrights to use, copy, modify, and distribute this
25 * Software with or without fee, provided that the above copyright notice and
26 * all paragraphs of this notice appear in all copies, and that the name of IBM
27 * not be used in connection with the marketing of any product incorporating
28 * the Software or modifications thereof, without specific, written prior
29 * permission.
31 * To the extent it has a right to do so, IBM grants an immunity from suit
32 * under its patents, if any, for the use, sale or manufacture of products to
33 * the extent that such products are used for performing Domain Name System
34 * dynamic updates in TCP/IP networks by means of the Software. No immunity is
35 * granted for any product per se or for any other function of any product.
37 * THE SOFTWARE IS PROVIDED "AS IS", AND IBM DISCLAIMS ALL WARRANTIES,
38 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
39 * PARTICULAR PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL,
40 * DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING
41 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE, EVEN
42 * IF IBM IS APPRISED OF THE POSSIBILITY OF SUCH DAMAGES.
45 /* OPENBSD ORIGINAL: lib/libc/net/base64.c */
47 #include "includes.h"
49 #if (!defined(HAVE_B64_NTOP) && !defined(HAVE___B64_NTOP)) || (!defined(HAVE_B64_PTON) && !defined(HAVE___B64_PTON))
51 #include <sys/types.h>
52 #include <sys/param.h>
53 #include <sys/socket.h>
54 #include <netinet/in.h>
55 #include <arpa/inet.h>
57 #include <ctype.h>
58 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>
63 #include "base64.h"
65 static const char Base64[] =
66 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
67 static const char Pad64 = '=';
69 /* (From RFC1521 and draft-ietf-dnssec-secext-03.txt)
70 The following encoding technique is taken from RFC 1521 by Borenstein
71 and Freed. It is reproduced here in a slightly edited form for
72 convenience.
74 A 65-character subset of US-ASCII is used, enabling 6 bits to be
75 represented per printable character. (The extra 65th character, "=",
76 is used to signify a special processing function.)
78 The encoding process represents 24-bit groups of input bits as output
79 strings of 4 encoded characters. Proceeding from left to right, a
80 24-bit input group is formed by concatenating 3 8-bit input groups.
81 These 24 bits are then treated as 4 concatenated 6-bit groups, each
82 of which is translated into a single digit in the base64 alphabet.
84 Each 6-bit group is used as an index into an array of 64 printable
85 characters. The character referenced by the index is placed in the
86 output string.
88 Table 1: The Base64 Alphabet
90 Value Encoding Value Encoding Value Encoding Value Encoding
91 0 A 17 R 34 i 51 z
92 1 B 18 S 35 j 52 0
93 2 C 19 T 36 k 53 1
94 3 D 20 U 37 l 54 2
95 4 E 21 V 38 m 55 3
96 5 F 22 W 39 n 56 4
97 6 G 23 X 40 o 57 5
98 7 H 24 Y 41 p 58 6
99 8 I 25 Z 42 q 59 7
100 9 J 26 a 43 r 60 8
101 10 K 27 b 44 s 61 9
102 11 L 28 c 45 t 62 +
103 12 M 29 d 46 u 63 /
104 13 N 30 e 47 v
105 14 O 31 f 48 w (pad) =
106 15 P 32 g 49 x
107 16 Q 33 h 50 y
109 Special processing is performed if fewer than 24 bits are available
110 at the end of the data being encoded. A full encoding quantum is
111 always completed at the end of a quantity. When fewer than 24 input
112 bits are available in an input group, zero bits are added (on the
113 right) to form an integral number of 6-bit groups. Padding at the
114 end of the data is performed using the '=' character.
116 Since all base64 input is an integral number of octets, only the
117 -------------------------------------------------
118 following cases can arise:
120 (1) the final quantum of encoding input is an integral
121 multiple of 24 bits; here, the final unit of encoded
122 output will be an integral multiple of 4 characters
123 with no "=" padding,
124 (2) the final quantum of encoding input is exactly 8 bits;
125 here, the final unit of encoded output will be two
126 characters followed by two "=" padding characters, or
127 (3) the final quantum of encoding input is exactly 16 bits;
128 here, the final unit of encoded output will be three
129 characters followed by one "=" padding character.
132 #if !defined(HAVE_B64_NTOP) && !defined(HAVE___B64_NTOP)
134 b64_ntop(u_char const *src, size_t srclength, char *target, size_t targsize)
136 size_t datalength = 0;
137 u_char input[3];
138 u_char output[4];
139 u_int i;
141 while (2 < srclength) {
142 input[0] = *src++;
143 input[1] = *src++;
144 input[2] = *src++;
145 srclength -= 3;
147 output[0] = input[0] >> 2;
148 output[1] = ((input[0] & 0x03) << 4) + (input[1] >> 4);
149 output[2] = ((input[1] & 0x0f) << 2) + (input[2] >> 6);
150 output[3] = input[2] & 0x3f;
152 if (datalength + 4 > targsize)
153 return (-1);
154 target[datalength++] = Base64[output[0]];
155 target[datalength++] = Base64[output[1]];
156 target[datalength++] = Base64[output[2]];
157 target[datalength++] = Base64[output[3]];
160 /* Now we worry about padding. */
161 if (0 != srclength) {
162 /* Get what's left. */
163 input[0] = input[1] = input[2] = '\0';
164 for (i = 0; i < srclength; i++)
165 input[i] = *src++;
167 output[0] = input[0] >> 2;
168 output[1] = ((input[0] & 0x03) << 4) + (input[1] >> 4);
169 output[2] = ((input[1] & 0x0f) << 2) + (input[2] >> 6);
171 if (datalength + 4 > targsize)
172 return (-1);
173 target[datalength++] = Base64[output[0]];
174 target[datalength++] = Base64[output[1]];
175 if (srclength == 1)
176 target[datalength++] = Pad64;
177 else
178 target[datalength++] = Base64[output[2]];
179 target[datalength++] = Pad64;
181 if (datalength >= targsize)
182 return (-1);
183 target[datalength] = '\0'; /* Returned value doesn't count \0. */
184 return (datalength);
186 #endif /* !defined(HAVE_B64_NTOP) && !defined(HAVE___B64_NTOP) */
188 #if !defined(HAVE_B64_PTON) && !defined(HAVE___B64_PTON)
190 /* skips all whitespace anywhere.
191 converts characters, four at a time, starting at (or after)
192 src from base - 64 numbers into three 8 bit bytes in the target area.
193 it returns the number of data bytes stored at the target, or -1 on error.
197 b64_pton(char const *src, u_char *target, size_t targsize)
199 u_int tarindex, state;
200 int ch;
201 char *pos;
203 state = 0;
204 tarindex = 0;
206 while ((ch = *src++) != '\0') {
207 if (isspace(ch)) /* Skip whitespace anywhere. */
208 continue;
210 if (ch == Pad64)
211 break;
213 pos = strchr(Base64, ch);
214 if (pos == 0) /* A non-base64 character. */
215 return (-1);
217 switch (state) {
218 case 0:
219 if (target) {
220 if (tarindex >= targsize)
221 return (-1);
222 target[tarindex] = (pos - Base64) << 2;
224 state = 1;
225 break;
226 case 1:
227 if (target) {
228 if (tarindex + 1 >= targsize)
229 return (-1);
230 target[tarindex] |= (pos - Base64) >> 4;
231 target[tarindex+1] = ((pos - Base64) & 0x0f)
232 << 4 ;
234 tarindex++;
235 state = 2;
236 break;
237 case 2:
238 if (target) {
239 if (tarindex + 1 >= targsize)
240 return (-1);
241 target[tarindex] |= (pos - Base64) >> 2;
242 target[tarindex+1] = ((pos - Base64) & 0x03)
243 << 6;
245 tarindex++;
246 state = 3;
247 break;
248 case 3:
249 if (target) {
250 if (tarindex >= targsize)
251 return (-1);
252 target[tarindex] |= (pos - Base64);
254 tarindex++;
255 state = 0;
256 break;
261 * We are done decoding Base-64 chars. Let's see if we ended
262 * on a byte boundary, and/or with erroneous trailing characters.
265 if (ch == Pad64) { /* We got a pad char. */
266 ch = *src++; /* Skip it, get next. */
267 switch (state) {
268 case 0: /* Invalid = in first position */
269 case 1: /* Invalid = in second position */
270 return (-1);
272 case 2: /* Valid, means one byte of info */
273 /* Skip any number of spaces. */
274 for (; ch != '\0'; ch = *src++)
275 if (!isspace(ch))
276 break;
277 /* Make sure there is another trailing = sign. */
278 if (ch != Pad64)
279 return (-1);
280 ch = *src++; /* Skip the = */
281 /* Fall through to "single trailing =" case. */
282 /* FALLTHROUGH */
284 case 3: /* Valid, means two bytes of info */
286 * We know this char is an =. Is there anything but
287 * whitespace after it?
289 for (; ch != '\0'; ch = *src++)
290 if (!isspace(ch))
291 return (-1);
294 * Now make sure for cases 2 and 3 that the "extra"
295 * bits that slopped past the last full byte were
296 * zeros. If we don't check them, they become a
297 * subliminal channel.
299 if (target && target[tarindex] != 0)
300 return (-1);
302 } else {
304 * We ended by seeing the end of the string. Make sure we
305 * have no partial bytes lying around.
307 if (state != 0)
308 return (-1);
311 return (tarindex);
314 #endif /* !defined(HAVE_B64_PTON) && !defined(HAVE___B64_PTON) */
315 #endif