1 /* $OpenBSD: sha2.c,v 1.11 2005/08/08 08:05:35 espie Exp $ */
5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
7 * Copyright (c) 2000-2001, Aaron D. Gifford
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
41 #include <openssl/opensslv.h>
43 #if !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \
44 (OPENSSL_VERSION_NUMBER >= 0x00907000L)
45 #include <sys/types.h>
50 * UNROLLED TRANSFORM LOOP NOTE:
51 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
52 * loop version for the hash transform rounds (defined using macros
53 * later in this file). Either define on the command line, for example:
55 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
59 * #define SHA2_UNROLL_TRANSFORM
63 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
67 * Please make sure that your system defines BYTE_ORDER. If your
68 * architecture is little-endian, make sure it also defines
69 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
72 * If your system does not define the above, then you can do so by
75 * #define LITTLE_ENDIAN 1234
76 * #define BIG_ENDIAN 4321
78 * And for little-endian machines, add:
80 * #define BYTE_ORDER LITTLE_ENDIAN
82 * Or for big-endian machines:
84 * #define BYTE_ORDER BIG_ENDIAN
86 * The FreeBSD machine this was written on defines BYTE_ORDER
87 * appropriately by including <sys/types.h> (which in turn includes
88 * <machine/endian.h> where the appropriate definitions are actually
91 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
92 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
96 /*** SHA-256/384/512 Various Length Definitions ***********************/
97 /* NOTE: Most of these are in sha2.h */
98 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
99 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
100 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
102 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
103 #define BE_8_TO_32(dst, cp) do { \
104 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \
105 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \
108 #define BE_8_TO_64(dst, cp) do { \
109 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \
110 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
111 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
112 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \
115 #define BE_64_TO_8(cp, src) do { \
116 (cp)[0] = (src) >> 56; \
117 (cp)[1] = (src) >> 48; \
118 (cp)[2] = (src) >> 40; \
119 (cp)[3] = (src) >> 32; \
120 (cp)[4] = (src) >> 24; \
121 (cp)[5] = (src) >> 16; \
122 (cp)[6] = (src) >> 8; \
126 #define BE_32_TO_8(cp, src) do { \
127 (cp)[0] = (src) >> 24; \
128 (cp)[1] = (src) >> 16; \
129 (cp)[2] = (src) >> 8; \
134 * Macro for incrementally adding the unsigned 64-bit integer n to the
135 * unsigned 128-bit integer (represented using a two-element array of
138 #define ADDINC128(w,n) do { \
139 (w)[0] += (u_int64_t)(n); \
140 if ((w)[0] < (n)) { \
145 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
147 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
149 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
150 * S is a ROTATION) because the SHA-256/384/512 description document
151 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
152 * same "backwards" definition.
154 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
155 #define R(b,x) ((x) >> (b))
156 /* 32-bit Rotate-right (used in SHA-256): */
157 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
158 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
159 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
161 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
162 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
163 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
165 /* Four of six logical functions used in SHA-256: */
166 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
167 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
168 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
169 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
171 /* Four of six logical functions used in SHA-384 and SHA-512: */
172 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
173 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
174 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
175 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
178 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
179 /* Hash constant words K for SHA-256: */
180 const static u_int32_t K256
[64] = {
181 0x428a2f98UL
, 0x71374491UL
, 0xb5c0fbcfUL
, 0xe9b5dba5UL
,
182 0x3956c25bUL
, 0x59f111f1UL
, 0x923f82a4UL
, 0xab1c5ed5UL
,
183 0xd807aa98UL
, 0x12835b01UL
, 0x243185beUL
, 0x550c7dc3UL
,
184 0x72be5d74UL
, 0x80deb1feUL
, 0x9bdc06a7UL
, 0xc19bf174UL
,
185 0xe49b69c1UL
, 0xefbe4786UL
, 0x0fc19dc6UL
, 0x240ca1ccUL
,
186 0x2de92c6fUL
, 0x4a7484aaUL
, 0x5cb0a9dcUL
, 0x76f988daUL
,
187 0x983e5152UL
, 0xa831c66dUL
, 0xb00327c8UL
, 0xbf597fc7UL
,
188 0xc6e00bf3UL
, 0xd5a79147UL
, 0x06ca6351UL
, 0x14292967UL
,
189 0x27b70a85UL
, 0x2e1b2138UL
, 0x4d2c6dfcUL
, 0x53380d13UL
,
190 0x650a7354UL
, 0x766a0abbUL
, 0x81c2c92eUL
, 0x92722c85UL
,
191 0xa2bfe8a1UL
, 0xa81a664bUL
, 0xc24b8b70UL
, 0xc76c51a3UL
,
192 0xd192e819UL
, 0xd6990624UL
, 0xf40e3585UL
, 0x106aa070UL
,
193 0x19a4c116UL
, 0x1e376c08UL
, 0x2748774cUL
, 0x34b0bcb5UL
,
194 0x391c0cb3UL
, 0x4ed8aa4aUL
, 0x5b9cca4fUL
, 0x682e6ff3UL
,
195 0x748f82eeUL
, 0x78a5636fUL
, 0x84c87814UL
, 0x8cc70208UL
,
196 0x90befffaUL
, 0xa4506cebUL
, 0xbef9a3f7UL
, 0xc67178f2UL
199 /* Initial hash value H for SHA-256: */
200 const static u_int32_t sha256_initial_hash_value
[8] = {
211 /* Hash constant words K for SHA-384 and SHA-512: */
212 const static u_int64_t K512
[80] = {
213 0x428a2f98d728ae22ULL
, 0x7137449123ef65cdULL
,
214 0xb5c0fbcfec4d3b2fULL
, 0xe9b5dba58189dbbcULL
,
215 0x3956c25bf348b538ULL
, 0x59f111f1b605d019ULL
,
216 0x923f82a4af194f9bULL
, 0xab1c5ed5da6d8118ULL
,
217 0xd807aa98a3030242ULL
, 0x12835b0145706fbeULL
,
218 0x243185be4ee4b28cULL
, 0x550c7dc3d5ffb4e2ULL
,
219 0x72be5d74f27b896fULL
, 0x80deb1fe3b1696b1ULL
,
220 0x9bdc06a725c71235ULL
, 0xc19bf174cf692694ULL
,
221 0xe49b69c19ef14ad2ULL
, 0xefbe4786384f25e3ULL
,
222 0x0fc19dc68b8cd5b5ULL
, 0x240ca1cc77ac9c65ULL
,
223 0x2de92c6f592b0275ULL
, 0x4a7484aa6ea6e483ULL
,
224 0x5cb0a9dcbd41fbd4ULL
, 0x76f988da831153b5ULL
,
225 0x983e5152ee66dfabULL
, 0xa831c66d2db43210ULL
,
226 0xb00327c898fb213fULL
, 0xbf597fc7beef0ee4ULL
,
227 0xc6e00bf33da88fc2ULL
, 0xd5a79147930aa725ULL
,
228 0x06ca6351e003826fULL
, 0x142929670a0e6e70ULL
,
229 0x27b70a8546d22ffcULL
, 0x2e1b21385c26c926ULL
,
230 0x4d2c6dfc5ac42aedULL
, 0x53380d139d95b3dfULL
,
231 0x650a73548baf63deULL
, 0x766a0abb3c77b2a8ULL
,
232 0x81c2c92e47edaee6ULL
, 0x92722c851482353bULL
,
233 0xa2bfe8a14cf10364ULL
, 0xa81a664bbc423001ULL
,
234 0xc24b8b70d0f89791ULL
, 0xc76c51a30654be30ULL
,
235 0xd192e819d6ef5218ULL
, 0xd69906245565a910ULL
,
236 0xf40e35855771202aULL
, 0x106aa07032bbd1b8ULL
,
237 0x19a4c116b8d2d0c8ULL
, 0x1e376c085141ab53ULL
,
238 0x2748774cdf8eeb99ULL
, 0x34b0bcb5e19b48a8ULL
,
239 0x391c0cb3c5c95a63ULL
, 0x4ed8aa4ae3418acbULL
,
240 0x5b9cca4f7763e373ULL
, 0x682e6ff3d6b2b8a3ULL
,
241 0x748f82ee5defb2fcULL
, 0x78a5636f43172f60ULL
,
242 0x84c87814a1f0ab72ULL
, 0x8cc702081a6439ecULL
,
243 0x90befffa23631e28ULL
, 0xa4506cebde82bde9ULL
,
244 0xbef9a3f7b2c67915ULL
, 0xc67178f2e372532bULL
,
245 0xca273eceea26619cULL
, 0xd186b8c721c0c207ULL
,
246 0xeada7dd6cde0eb1eULL
, 0xf57d4f7fee6ed178ULL
,
247 0x06f067aa72176fbaULL
, 0x0a637dc5a2c898a6ULL
,
248 0x113f9804bef90daeULL
, 0x1b710b35131c471bULL
,
249 0x28db77f523047d84ULL
, 0x32caab7b40c72493ULL
,
250 0x3c9ebe0a15c9bebcULL
, 0x431d67c49c100d4cULL
,
251 0x4cc5d4becb3e42b6ULL
, 0x597f299cfc657e2aULL
,
252 0x5fcb6fab3ad6faecULL
, 0x6c44198c4a475817ULL
255 /* Initial hash value H for SHA-384 */
256 const static u_int64_t sha384_initial_hash_value
[8] = {
257 0xcbbb9d5dc1059ed8ULL
,
258 0x629a292a367cd507ULL
,
259 0x9159015a3070dd17ULL
,
260 0x152fecd8f70e5939ULL
,
261 0x67332667ffc00b31ULL
,
262 0x8eb44a8768581511ULL
,
263 0xdb0c2e0d64f98fa7ULL
,
264 0x47b5481dbefa4fa4ULL
267 /* Initial hash value H for SHA-512 */
268 const static u_int64_t sha512_initial_hash_value
[8] = {
269 0x6a09e667f3bcc908ULL
,
270 0xbb67ae8584caa73bULL
,
271 0x3c6ef372fe94f82bULL
,
272 0xa54ff53a5f1d36f1ULL
,
273 0x510e527fade682d1ULL
,
274 0x9b05688c2b3e6c1fULL
,
275 0x1f83d9abfb41bd6bULL
,
276 0x5be0cd19137e2179ULL
280 /*** SHA-256: *********************************************************/
282 SHA256_Init(SHA256_CTX
*context
)
286 memcpy(context
->state
, sha256_initial_hash_value
,
287 sizeof(sha256_initial_hash_value
));
288 memset(context
->buffer
, 0, sizeof(context
->buffer
));
289 context
->bitcount
= 0;
292 #ifdef SHA2_UNROLL_TRANSFORM
294 /* Unrolled SHA-256 round macros: */
296 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
297 BE_8_TO_32(W256[j], data); \
299 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
301 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
305 #define ROUND256(a,b,c,d,e,f,g,h) do { \
306 s0 = W256[(j+1)&0x0f]; \
307 s0 = sigma0_256(s0); \
308 s1 = W256[(j+14)&0x0f]; \
309 s1 = sigma1_256(s1); \
310 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
311 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
313 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
318 SHA256_Transform(u_int32_t state
[8], const u_int8_t data
[SHA256_BLOCK_LENGTH
])
320 u_int32_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
321 u_int32_t T1
, W256
[16];
324 /* Initialize registers with the prev. intermediate value */
336 /* Rounds 0 to 15 (unrolled): */
337 ROUND256_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
338 ROUND256_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
339 ROUND256_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
340 ROUND256_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
341 ROUND256_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
342 ROUND256_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
343 ROUND256_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
344 ROUND256_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
347 /* Now for the remaining rounds up to 63: */
349 ROUND256(a
,b
,c
,d
,e
,f
,g
,h
);
350 ROUND256(h
,a
,b
,c
,d
,e
,f
,g
);
351 ROUND256(g
,h
,a
,b
,c
,d
,e
,f
);
352 ROUND256(f
,g
,h
,a
,b
,c
,d
,e
);
353 ROUND256(e
,f
,g
,h
,a
,b
,c
,d
);
354 ROUND256(d
,e
,f
,g
,h
,a
,b
,c
);
355 ROUND256(c
,d
,e
,f
,g
,h
,a
,b
);
356 ROUND256(b
,c
,d
,e
,f
,g
,h
,a
);
359 /* Compute the current intermediate hash value */
370 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
373 #else /* SHA2_UNROLL_TRANSFORM */
376 SHA256_Transform(u_int32_t state
[8], const u_int8_t data
[SHA256_BLOCK_LENGTH
])
378 u_int32_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
379 u_int32_t T1
, T2
, W256
[16];
382 /* Initialize registers with the prev. intermediate value */
394 BE_8_TO_32(W256
[j
], data
);
396 /* Apply the SHA-256 compression function to update a..h */
397 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + W256
[j
];
398 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
412 /* Part of the message block expansion: */
413 s0
= W256
[(j
+1)&0x0f];
415 s1
= W256
[(j
+14)&0x0f];
418 /* Apply the SHA-256 compression function to update a..h */
419 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] +
420 (W256
[j
&0x0f] += s1
+ W256
[(j
+9)&0x0f] + s0
);
421 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
434 /* Compute the current intermediate hash value */
445 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
448 #endif /* SHA2_UNROLL_TRANSFORM */
451 SHA256_Update(SHA256_CTX
*context
, const u_int8_t
*data
, size_t len
)
453 size_t freespace
, usedspace
;
455 /* Calling with no data is valid (we do nothing) */
459 usedspace
= (context
->bitcount
>> 3) % SHA256_BLOCK_LENGTH
;
461 /* Calculate how much free space is available in the buffer */
462 freespace
= SHA256_BLOCK_LENGTH
- usedspace
;
464 if (len
>= freespace
) {
465 /* Fill the buffer completely and process it */
466 memcpy(&context
->buffer
[usedspace
], data
, freespace
);
467 context
->bitcount
+= freespace
<< 3;
470 SHA256_Transform(context
->state
, context
->buffer
);
472 /* The buffer is not yet full */
473 memcpy(&context
->buffer
[usedspace
], data
, len
);
474 context
->bitcount
+= len
<< 3;
476 usedspace
= freespace
= 0;
480 while (len
>= SHA256_BLOCK_LENGTH
) {
481 /* Process as many complete blocks as we can */
482 SHA256_Transform(context
->state
, data
);
483 context
->bitcount
+= SHA256_BLOCK_LENGTH
<< 3;
484 len
-= SHA256_BLOCK_LENGTH
;
485 data
+= SHA256_BLOCK_LENGTH
;
488 /* There's left-overs, so save 'em */
489 memcpy(context
->buffer
, data
, len
);
490 context
->bitcount
+= len
<< 3;
493 usedspace
= freespace
= 0;
497 SHA256_Pad(SHA256_CTX
*context
)
499 unsigned int usedspace
;
501 usedspace
= (context
->bitcount
>> 3) % SHA256_BLOCK_LENGTH
;
503 /* Begin padding with a 1 bit: */
504 context
->buffer
[usedspace
++] = 0x80;
506 if (usedspace
<= SHA256_SHORT_BLOCK_LENGTH
) {
507 /* Set-up for the last transform: */
508 memset(&context
->buffer
[usedspace
], 0,
509 SHA256_SHORT_BLOCK_LENGTH
- usedspace
);
511 if (usedspace
< SHA256_BLOCK_LENGTH
) {
512 memset(&context
->buffer
[usedspace
], 0,
513 SHA256_BLOCK_LENGTH
- usedspace
);
515 /* Do second-to-last transform: */
516 SHA256_Transform(context
->state
, context
->buffer
);
518 /* Prepare for last transform: */
519 memset(context
->buffer
, 0, SHA256_SHORT_BLOCK_LENGTH
);
522 /* Set-up for the last transform: */
523 memset(context
->buffer
, 0, SHA256_SHORT_BLOCK_LENGTH
);
525 /* Begin padding with a 1 bit: */
526 *context
->buffer
= 0x80;
528 /* Store the length of input data (in bits) in big endian format: */
529 BE_64_TO_8(&context
->buffer
[SHA256_SHORT_BLOCK_LENGTH
],
532 /* Final transform: */
533 SHA256_Transform(context
->state
, context
->buffer
);
540 SHA256_Final(u_int8_t digest
[SHA256_DIGEST_LENGTH
], SHA256_CTX
*context
)
544 /* If no digest buffer is passed, we don't bother doing this: */
545 if (digest
!= NULL
) {
546 #if BYTE_ORDER == LITTLE_ENDIAN
549 /* Convert TO host byte order */
550 for (i
= 0; i
< 8; i
++)
551 BE_32_TO_8(digest
+ i
* 4, context
->state
[i
]);
553 memcpy(digest
, context
->state
, SHA256_DIGEST_LENGTH
);
555 memset(context
, 0, sizeof(*context
));
560 /*** SHA-512: *********************************************************/
562 SHA512_Init(SHA512_CTX
*context
)
566 memcpy(context
->state
, sha512_initial_hash_value
,
567 sizeof(sha512_initial_hash_value
));
568 memset(context
->buffer
, 0, sizeof(context
->buffer
));
569 context
->bitcount
[0] = context
->bitcount
[1] = 0;
572 #ifdef SHA2_UNROLL_TRANSFORM
574 /* Unrolled SHA-512 round macros: */
576 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
577 BE_8_TO_64(W512[j], data); \
579 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
581 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
586 #define ROUND512(a,b,c,d,e,f,g,h) do { \
587 s0 = W512[(j+1)&0x0f]; \
588 s0 = sigma0_512(s0); \
589 s1 = W512[(j+14)&0x0f]; \
590 s1 = sigma1_512(s1); \
591 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
592 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
594 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
599 SHA512_Transform(u_int64_t state
[8], const u_int8_t data
[SHA512_BLOCK_LENGTH
])
601 u_int64_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
602 u_int64_t T1
, W512
[16];
605 /* Initialize registers with the prev. intermediate value */
617 /* Rounds 0 to 15 (unrolled): */
618 ROUND512_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
619 ROUND512_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
620 ROUND512_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
621 ROUND512_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
622 ROUND512_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
623 ROUND512_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
624 ROUND512_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
625 ROUND512_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
628 /* Now for the remaining rounds up to 79: */
630 ROUND512(a
,b
,c
,d
,e
,f
,g
,h
);
631 ROUND512(h
,a
,b
,c
,d
,e
,f
,g
);
632 ROUND512(g
,h
,a
,b
,c
,d
,e
,f
);
633 ROUND512(f
,g
,h
,a
,b
,c
,d
,e
);
634 ROUND512(e
,f
,g
,h
,a
,b
,c
,d
);
635 ROUND512(d
,e
,f
,g
,h
,a
,b
,c
);
636 ROUND512(c
,d
,e
,f
,g
,h
,a
,b
);
637 ROUND512(b
,c
,d
,e
,f
,g
,h
,a
);
640 /* Compute the current intermediate hash value */
651 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
654 #else /* SHA2_UNROLL_TRANSFORM */
657 SHA512_Transform(u_int64_t state
[8], const u_int8_t data
[SHA512_BLOCK_LENGTH
])
659 u_int64_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
660 u_int64_t T1
, T2
, W512
[16];
663 /* Initialize registers with the prev. intermediate value */
675 BE_8_TO_64(W512
[j
], data
);
677 /* Apply the SHA-512 compression function to update a..h */
678 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + W512
[j
];
679 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
693 /* Part of the message block expansion: */
694 s0
= W512
[(j
+1)&0x0f];
696 s1
= W512
[(j
+14)&0x0f];
699 /* Apply the SHA-512 compression function to update a..h */
700 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] +
701 (W512
[j
&0x0f] += s1
+ W512
[(j
+9)&0x0f] + s0
);
702 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
715 /* Compute the current intermediate hash value */
726 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
729 #endif /* SHA2_UNROLL_TRANSFORM */
732 SHA512_Update(SHA512_CTX
*context
, const u_int8_t
*data
, size_t len
)
734 size_t freespace
, usedspace
;
736 /* Calling with no data is valid (we do nothing) */
740 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
742 /* Calculate how much free space is available in the buffer */
743 freespace
= SHA512_BLOCK_LENGTH
- usedspace
;
745 if (len
>= freespace
) {
746 /* Fill the buffer completely and process it */
747 memcpy(&context
->buffer
[usedspace
], data
, freespace
);
748 ADDINC128(context
->bitcount
, freespace
<< 3);
751 SHA512_Transform(context
->state
, context
->buffer
);
753 /* The buffer is not yet full */
754 memcpy(&context
->buffer
[usedspace
], data
, len
);
755 ADDINC128(context
->bitcount
, len
<< 3);
757 usedspace
= freespace
= 0;
761 while (len
>= SHA512_BLOCK_LENGTH
) {
762 /* Process as many complete blocks as we can */
763 SHA512_Transform(context
->state
, data
);
764 ADDINC128(context
->bitcount
, SHA512_BLOCK_LENGTH
<< 3);
765 len
-= SHA512_BLOCK_LENGTH
;
766 data
+= SHA512_BLOCK_LENGTH
;
769 /* There's left-overs, so save 'em */
770 memcpy(context
->buffer
, data
, len
);
771 ADDINC128(context
->bitcount
, len
<< 3);
774 usedspace
= freespace
= 0;
778 SHA512_Pad(SHA512_CTX
*context
)
780 unsigned int usedspace
;
782 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
784 /* Begin padding with a 1 bit: */
785 context
->buffer
[usedspace
++] = 0x80;
787 if (usedspace
<= SHA512_SHORT_BLOCK_LENGTH
) {
788 /* Set-up for the last transform: */
789 memset(&context
->buffer
[usedspace
], 0, SHA512_SHORT_BLOCK_LENGTH
- usedspace
);
791 if (usedspace
< SHA512_BLOCK_LENGTH
) {
792 memset(&context
->buffer
[usedspace
], 0, SHA512_BLOCK_LENGTH
- usedspace
);
794 /* Do second-to-last transform: */
795 SHA512_Transform(context
->state
, context
->buffer
);
797 /* And set-up for the last transform: */
798 memset(context
->buffer
, 0, SHA512_BLOCK_LENGTH
- 2);
801 /* Prepare for final transform: */
802 memset(context
->buffer
, 0, SHA512_SHORT_BLOCK_LENGTH
);
804 /* Begin padding with a 1 bit: */
805 *context
->buffer
= 0x80;
807 /* Store the length of input data (in bits) in big endian format: */
808 BE_64_TO_8(&context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
],
809 context
->bitcount
[1]);
810 BE_64_TO_8(&context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
+ 8],
811 context
->bitcount
[0]);
813 /* Final transform: */
814 SHA512_Transform(context
->state
, context
->buffer
);
821 SHA512_Final(u_int8_t digest
[SHA512_DIGEST_LENGTH
], SHA512_CTX
*context
)
825 /* If no digest buffer is passed, we don't bother doing this: */
826 if (digest
!= NULL
) {
827 #if BYTE_ORDER == LITTLE_ENDIAN
830 /* Convert TO host byte order */
831 for (i
= 0; i
< 8; i
++)
832 BE_64_TO_8(digest
+ i
* 8, context
->state
[i
]);
834 memcpy(digest
, context
->state
, SHA512_DIGEST_LENGTH
);
836 memset(context
, 0, sizeof(*context
));
842 /*** SHA-384: *********************************************************/
844 SHA384_Init(SHA384_CTX
*context
)
848 memcpy(context
->state
, sha384_initial_hash_value
,
849 sizeof(sha384_initial_hash_value
));
850 memset(context
->buffer
, 0, sizeof(context
->buffer
));
851 context
->bitcount
[0] = context
->bitcount
[1] = 0;
854 __weak_alias(SHA384_Transform
, SHA512_Transform
);
855 __weak_alias(SHA384_Update
, SHA512_Update
);
856 __weak_alias(SHA384_Pad
, SHA512_Pad
);
859 SHA384_Final(u_int8_t digest
[SHA384_DIGEST_LENGTH
], SHA384_CTX
*context
)
863 /* If no digest buffer is passed, we don't bother doing this: */
864 if (digest
!= NULL
) {
865 #if BYTE_ORDER == LITTLE_ENDIAN
868 /* Convert TO host byte order */
869 for (i
= 0; i
< 6; i
++)
870 BE_64_TO_8(digest
+ i
* 8, context
->state
[i
]);
872 memcpy(digest
, context
->state
, SHA384_DIGEST_LENGTH
);
876 /* Zero out state data */
877 memset(context
, 0, sizeof(*context
));
881 #endif /* !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \
882 (OPENSSL_VERSION_NUMBER >= 0x00907000L) */