- djm@cvs.openbsd.org 2009/10/06 04:46:40
[openssh-git.git] / openbsd-compat / sha2.c
blobcf8e0ad667ba68b59b9db3c34f1d11afdab55237
1 /* $OpenBSD: sha2.c,v 1.11 2005/08/08 08:05:35 espie Exp $ */
3 /*
4 * FILE: sha2.c
5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
6 *
7 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * All rights reserved.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
39 #include "includes.h"
41 #include <openssl/opensslv.h>
43 #if !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \
44 (OPENSSL_VERSION_NUMBER >= 0x00907000L)
45 #include <sys/types.h>
46 #include <string.h>
47 #include "sha2.h"
50 * UNROLLED TRANSFORM LOOP NOTE:
51 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
52 * loop version for the hash transform rounds (defined using macros
53 * later in this file). Either define on the command line, for example:
55 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
57 * or define below:
59 * #define SHA2_UNROLL_TRANSFORM
63 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
65 * BYTE_ORDER NOTE:
67 * Please make sure that your system defines BYTE_ORDER. If your
68 * architecture is little-endian, make sure it also defines
69 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
70 * equivilent.
72 * If your system does not define the above, then you can do so by
73 * hand like this:
75 * #define LITTLE_ENDIAN 1234
76 * #define BIG_ENDIAN 4321
78 * And for little-endian machines, add:
80 * #define BYTE_ORDER LITTLE_ENDIAN
82 * Or for big-endian machines:
84 * #define BYTE_ORDER BIG_ENDIAN
86 * The FreeBSD machine this was written on defines BYTE_ORDER
87 * appropriately by including <sys/types.h> (which in turn includes
88 * <machine/endian.h> where the appropriate definitions are actually
89 * made).
91 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
92 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
93 #endif
96 /*** SHA-256/384/512 Various Length Definitions ***********************/
97 /* NOTE: Most of these are in sha2.h */
98 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
99 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
100 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
102 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
103 #define BE_8_TO_32(dst, cp) do { \
104 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \
105 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \
106 } while(0)
108 #define BE_8_TO_64(dst, cp) do { \
109 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \
110 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
111 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
112 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \
113 } while (0)
115 #define BE_64_TO_8(cp, src) do { \
116 (cp)[0] = (src) >> 56; \
117 (cp)[1] = (src) >> 48; \
118 (cp)[2] = (src) >> 40; \
119 (cp)[3] = (src) >> 32; \
120 (cp)[4] = (src) >> 24; \
121 (cp)[5] = (src) >> 16; \
122 (cp)[6] = (src) >> 8; \
123 (cp)[7] = (src); \
124 } while (0)
126 #define BE_32_TO_8(cp, src) do { \
127 (cp)[0] = (src) >> 24; \
128 (cp)[1] = (src) >> 16; \
129 (cp)[2] = (src) >> 8; \
130 (cp)[3] = (src); \
131 } while (0)
134 * Macro for incrementally adding the unsigned 64-bit integer n to the
135 * unsigned 128-bit integer (represented using a two-element array of
136 * 64-bit words):
138 #define ADDINC128(w,n) do { \
139 (w)[0] += (u_int64_t)(n); \
140 if ((w)[0] < (n)) { \
141 (w)[1]++; \
143 } while (0)
145 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
147 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
149 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
150 * S is a ROTATION) because the SHA-256/384/512 description document
151 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
152 * same "backwards" definition.
154 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
155 #define R(b,x) ((x) >> (b))
156 /* 32-bit Rotate-right (used in SHA-256): */
157 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
158 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
159 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
161 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
162 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
163 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
165 /* Four of six logical functions used in SHA-256: */
166 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
167 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
168 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
169 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
171 /* Four of six logical functions used in SHA-384 and SHA-512: */
172 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
173 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
174 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
175 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
178 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
179 /* Hash constant words K for SHA-256: */
180 const static u_int32_t K256[64] = {
181 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
182 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
183 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
184 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
185 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
186 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
187 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
188 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
189 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
190 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
191 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
192 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
193 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
194 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
195 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
196 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
199 /* Initial hash value H for SHA-256: */
200 const static u_int32_t sha256_initial_hash_value[8] = {
201 0x6a09e667UL,
202 0xbb67ae85UL,
203 0x3c6ef372UL,
204 0xa54ff53aUL,
205 0x510e527fUL,
206 0x9b05688cUL,
207 0x1f83d9abUL,
208 0x5be0cd19UL
211 /* Hash constant words K for SHA-384 and SHA-512: */
212 const static u_int64_t K512[80] = {
213 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
214 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
215 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
216 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
217 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
218 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
219 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
220 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
221 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
222 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
223 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
224 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
225 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
226 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
227 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
228 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
229 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
230 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
231 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
232 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
233 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
234 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
235 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
236 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
237 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
238 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
239 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
240 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
241 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
242 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
243 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
244 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
245 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
246 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
247 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
248 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
249 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
250 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
251 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
252 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
255 /* Initial hash value H for SHA-384 */
256 const static u_int64_t sha384_initial_hash_value[8] = {
257 0xcbbb9d5dc1059ed8ULL,
258 0x629a292a367cd507ULL,
259 0x9159015a3070dd17ULL,
260 0x152fecd8f70e5939ULL,
261 0x67332667ffc00b31ULL,
262 0x8eb44a8768581511ULL,
263 0xdb0c2e0d64f98fa7ULL,
264 0x47b5481dbefa4fa4ULL
267 /* Initial hash value H for SHA-512 */
268 const static u_int64_t sha512_initial_hash_value[8] = {
269 0x6a09e667f3bcc908ULL,
270 0xbb67ae8584caa73bULL,
271 0x3c6ef372fe94f82bULL,
272 0xa54ff53a5f1d36f1ULL,
273 0x510e527fade682d1ULL,
274 0x9b05688c2b3e6c1fULL,
275 0x1f83d9abfb41bd6bULL,
276 0x5be0cd19137e2179ULL
280 /*** SHA-256: *********************************************************/
281 void
282 SHA256_Init(SHA256_CTX *context)
284 if (context == NULL)
285 return;
286 memcpy(context->state, sha256_initial_hash_value,
287 sizeof(sha256_initial_hash_value));
288 memset(context->buffer, 0, sizeof(context->buffer));
289 context->bitcount = 0;
292 #ifdef SHA2_UNROLL_TRANSFORM
294 /* Unrolled SHA-256 round macros: */
296 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
297 BE_8_TO_32(W256[j], data); \
298 data += 4; \
299 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
300 (d) += T1; \
301 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
302 j++; \
303 } while(0)
305 #define ROUND256(a,b,c,d,e,f,g,h) do { \
306 s0 = W256[(j+1)&0x0f]; \
307 s0 = sigma0_256(s0); \
308 s1 = W256[(j+14)&0x0f]; \
309 s1 = sigma1_256(s1); \
310 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
311 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
312 (d) += T1; \
313 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
314 j++; \
315 } while(0)
317 void
318 SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
320 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
321 u_int32_t T1, W256[16];
322 int j;
324 /* Initialize registers with the prev. intermediate value */
325 a = state[0];
326 b = state[1];
327 c = state[2];
328 d = state[3];
329 e = state[4];
330 f = state[5];
331 g = state[6];
332 h = state[7];
334 j = 0;
335 do {
336 /* Rounds 0 to 15 (unrolled): */
337 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
338 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
339 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
340 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
341 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
342 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
343 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
344 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
345 } while (j < 16);
347 /* Now for the remaining rounds up to 63: */
348 do {
349 ROUND256(a,b,c,d,e,f,g,h);
350 ROUND256(h,a,b,c,d,e,f,g);
351 ROUND256(g,h,a,b,c,d,e,f);
352 ROUND256(f,g,h,a,b,c,d,e);
353 ROUND256(e,f,g,h,a,b,c,d);
354 ROUND256(d,e,f,g,h,a,b,c);
355 ROUND256(c,d,e,f,g,h,a,b);
356 ROUND256(b,c,d,e,f,g,h,a);
357 } while (j < 64);
359 /* Compute the current intermediate hash value */
360 state[0] += a;
361 state[1] += b;
362 state[2] += c;
363 state[3] += d;
364 state[4] += e;
365 state[5] += f;
366 state[6] += g;
367 state[7] += h;
369 /* Clean up */
370 a = b = c = d = e = f = g = h = T1 = 0;
373 #else /* SHA2_UNROLL_TRANSFORM */
375 void
376 SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
378 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
379 u_int32_t T1, T2, W256[16];
380 int j;
382 /* Initialize registers with the prev. intermediate value */
383 a = state[0];
384 b = state[1];
385 c = state[2];
386 d = state[3];
387 e = state[4];
388 f = state[5];
389 g = state[6];
390 h = state[7];
392 j = 0;
393 do {
394 BE_8_TO_32(W256[j], data);
395 data += 4;
396 /* Apply the SHA-256 compression function to update a..h */
397 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
398 T2 = Sigma0_256(a) + Maj(a, b, c);
399 h = g;
400 g = f;
401 f = e;
402 e = d + T1;
403 d = c;
404 c = b;
405 b = a;
406 a = T1 + T2;
408 j++;
409 } while (j < 16);
411 do {
412 /* Part of the message block expansion: */
413 s0 = W256[(j+1)&0x0f];
414 s0 = sigma0_256(s0);
415 s1 = W256[(j+14)&0x0f];
416 s1 = sigma1_256(s1);
418 /* Apply the SHA-256 compression function to update a..h */
419 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
420 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
421 T2 = Sigma0_256(a) + Maj(a, b, c);
422 h = g;
423 g = f;
424 f = e;
425 e = d + T1;
426 d = c;
427 c = b;
428 b = a;
429 a = T1 + T2;
431 j++;
432 } while (j < 64);
434 /* Compute the current intermediate hash value */
435 state[0] += a;
436 state[1] += b;
437 state[2] += c;
438 state[3] += d;
439 state[4] += e;
440 state[5] += f;
441 state[6] += g;
442 state[7] += h;
444 /* Clean up */
445 a = b = c = d = e = f = g = h = T1 = T2 = 0;
448 #endif /* SHA2_UNROLL_TRANSFORM */
450 void
451 SHA256_Update(SHA256_CTX *context, const u_int8_t *data, size_t len)
453 size_t freespace, usedspace;
455 /* Calling with no data is valid (we do nothing) */
456 if (len == 0)
457 return;
459 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
460 if (usedspace > 0) {
461 /* Calculate how much free space is available in the buffer */
462 freespace = SHA256_BLOCK_LENGTH - usedspace;
464 if (len >= freespace) {
465 /* Fill the buffer completely and process it */
466 memcpy(&context->buffer[usedspace], data, freespace);
467 context->bitcount += freespace << 3;
468 len -= freespace;
469 data += freespace;
470 SHA256_Transform(context->state, context->buffer);
471 } else {
472 /* The buffer is not yet full */
473 memcpy(&context->buffer[usedspace], data, len);
474 context->bitcount += len << 3;
475 /* Clean up: */
476 usedspace = freespace = 0;
477 return;
480 while (len >= SHA256_BLOCK_LENGTH) {
481 /* Process as many complete blocks as we can */
482 SHA256_Transform(context->state, data);
483 context->bitcount += SHA256_BLOCK_LENGTH << 3;
484 len -= SHA256_BLOCK_LENGTH;
485 data += SHA256_BLOCK_LENGTH;
487 if (len > 0) {
488 /* There's left-overs, so save 'em */
489 memcpy(context->buffer, data, len);
490 context->bitcount += len << 3;
492 /* Clean up: */
493 usedspace = freespace = 0;
496 void
497 SHA256_Pad(SHA256_CTX *context)
499 unsigned int usedspace;
501 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
502 if (usedspace > 0) {
503 /* Begin padding with a 1 bit: */
504 context->buffer[usedspace++] = 0x80;
506 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
507 /* Set-up for the last transform: */
508 memset(&context->buffer[usedspace], 0,
509 SHA256_SHORT_BLOCK_LENGTH - usedspace);
510 } else {
511 if (usedspace < SHA256_BLOCK_LENGTH) {
512 memset(&context->buffer[usedspace], 0,
513 SHA256_BLOCK_LENGTH - usedspace);
515 /* Do second-to-last transform: */
516 SHA256_Transform(context->state, context->buffer);
518 /* Prepare for last transform: */
519 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
521 } else {
522 /* Set-up for the last transform: */
523 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
525 /* Begin padding with a 1 bit: */
526 *context->buffer = 0x80;
528 /* Store the length of input data (in bits) in big endian format: */
529 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
530 context->bitcount);
532 /* Final transform: */
533 SHA256_Transform(context->state, context->buffer);
535 /* Clean up: */
536 usedspace = 0;
539 void
540 SHA256_Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA256_CTX *context)
542 SHA256_Pad(context);
544 /* If no digest buffer is passed, we don't bother doing this: */
545 if (digest != NULL) {
546 #if BYTE_ORDER == LITTLE_ENDIAN
547 int i;
549 /* Convert TO host byte order */
550 for (i = 0; i < 8; i++)
551 BE_32_TO_8(digest + i * 4, context->state[i]);
552 #else
553 memcpy(digest, context->state, SHA256_DIGEST_LENGTH);
554 #endif
555 memset(context, 0, sizeof(*context));
560 /*** SHA-512: *********************************************************/
561 void
562 SHA512_Init(SHA512_CTX *context)
564 if (context == NULL)
565 return;
566 memcpy(context->state, sha512_initial_hash_value,
567 sizeof(sha512_initial_hash_value));
568 memset(context->buffer, 0, sizeof(context->buffer));
569 context->bitcount[0] = context->bitcount[1] = 0;
572 #ifdef SHA2_UNROLL_TRANSFORM
574 /* Unrolled SHA-512 round macros: */
576 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
577 BE_8_TO_64(W512[j], data); \
578 data += 8; \
579 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
580 (d) += T1; \
581 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
582 j++; \
583 } while(0)
586 #define ROUND512(a,b,c,d,e,f,g,h) do { \
587 s0 = W512[(j+1)&0x0f]; \
588 s0 = sigma0_512(s0); \
589 s1 = W512[(j+14)&0x0f]; \
590 s1 = sigma1_512(s1); \
591 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
592 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
593 (d) += T1; \
594 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
595 j++; \
596 } while(0)
598 void
599 SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
601 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
602 u_int64_t T1, W512[16];
603 int j;
605 /* Initialize registers with the prev. intermediate value */
606 a = state[0];
607 b = state[1];
608 c = state[2];
609 d = state[3];
610 e = state[4];
611 f = state[5];
612 g = state[6];
613 h = state[7];
615 j = 0;
616 do {
617 /* Rounds 0 to 15 (unrolled): */
618 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
619 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
620 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
621 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
622 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
623 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
624 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
625 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
626 } while (j < 16);
628 /* Now for the remaining rounds up to 79: */
629 do {
630 ROUND512(a,b,c,d,e,f,g,h);
631 ROUND512(h,a,b,c,d,e,f,g);
632 ROUND512(g,h,a,b,c,d,e,f);
633 ROUND512(f,g,h,a,b,c,d,e);
634 ROUND512(e,f,g,h,a,b,c,d);
635 ROUND512(d,e,f,g,h,a,b,c);
636 ROUND512(c,d,e,f,g,h,a,b);
637 ROUND512(b,c,d,e,f,g,h,a);
638 } while (j < 80);
640 /* Compute the current intermediate hash value */
641 state[0] += a;
642 state[1] += b;
643 state[2] += c;
644 state[3] += d;
645 state[4] += e;
646 state[5] += f;
647 state[6] += g;
648 state[7] += h;
650 /* Clean up */
651 a = b = c = d = e = f = g = h = T1 = 0;
654 #else /* SHA2_UNROLL_TRANSFORM */
656 void
657 SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
659 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
660 u_int64_t T1, T2, W512[16];
661 int j;
663 /* Initialize registers with the prev. intermediate value */
664 a = state[0];
665 b = state[1];
666 c = state[2];
667 d = state[3];
668 e = state[4];
669 f = state[5];
670 g = state[6];
671 h = state[7];
673 j = 0;
674 do {
675 BE_8_TO_64(W512[j], data);
676 data += 8;
677 /* Apply the SHA-512 compression function to update a..h */
678 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
679 T2 = Sigma0_512(a) + Maj(a, b, c);
680 h = g;
681 g = f;
682 f = e;
683 e = d + T1;
684 d = c;
685 c = b;
686 b = a;
687 a = T1 + T2;
689 j++;
690 } while (j < 16);
692 do {
693 /* Part of the message block expansion: */
694 s0 = W512[(j+1)&0x0f];
695 s0 = sigma0_512(s0);
696 s1 = W512[(j+14)&0x0f];
697 s1 = sigma1_512(s1);
699 /* Apply the SHA-512 compression function to update a..h */
700 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
701 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
702 T2 = Sigma0_512(a) + Maj(a, b, c);
703 h = g;
704 g = f;
705 f = e;
706 e = d + T1;
707 d = c;
708 c = b;
709 b = a;
710 a = T1 + T2;
712 j++;
713 } while (j < 80);
715 /* Compute the current intermediate hash value */
716 state[0] += a;
717 state[1] += b;
718 state[2] += c;
719 state[3] += d;
720 state[4] += e;
721 state[5] += f;
722 state[6] += g;
723 state[7] += h;
725 /* Clean up */
726 a = b = c = d = e = f = g = h = T1 = T2 = 0;
729 #endif /* SHA2_UNROLL_TRANSFORM */
731 void
732 SHA512_Update(SHA512_CTX *context, const u_int8_t *data, size_t len)
734 size_t freespace, usedspace;
736 /* Calling with no data is valid (we do nothing) */
737 if (len == 0)
738 return;
740 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
741 if (usedspace > 0) {
742 /* Calculate how much free space is available in the buffer */
743 freespace = SHA512_BLOCK_LENGTH - usedspace;
745 if (len >= freespace) {
746 /* Fill the buffer completely and process it */
747 memcpy(&context->buffer[usedspace], data, freespace);
748 ADDINC128(context->bitcount, freespace << 3);
749 len -= freespace;
750 data += freespace;
751 SHA512_Transform(context->state, context->buffer);
752 } else {
753 /* The buffer is not yet full */
754 memcpy(&context->buffer[usedspace], data, len);
755 ADDINC128(context->bitcount, len << 3);
756 /* Clean up: */
757 usedspace = freespace = 0;
758 return;
761 while (len >= SHA512_BLOCK_LENGTH) {
762 /* Process as many complete blocks as we can */
763 SHA512_Transform(context->state, data);
764 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
765 len -= SHA512_BLOCK_LENGTH;
766 data += SHA512_BLOCK_LENGTH;
768 if (len > 0) {
769 /* There's left-overs, so save 'em */
770 memcpy(context->buffer, data, len);
771 ADDINC128(context->bitcount, len << 3);
773 /* Clean up: */
774 usedspace = freespace = 0;
777 void
778 SHA512_Pad(SHA512_CTX *context)
780 unsigned int usedspace;
782 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
783 if (usedspace > 0) {
784 /* Begin padding with a 1 bit: */
785 context->buffer[usedspace++] = 0x80;
787 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
788 /* Set-up for the last transform: */
789 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
790 } else {
791 if (usedspace < SHA512_BLOCK_LENGTH) {
792 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
794 /* Do second-to-last transform: */
795 SHA512_Transform(context->state, context->buffer);
797 /* And set-up for the last transform: */
798 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
800 } else {
801 /* Prepare for final transform: */
802 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
804 /* Begin padding with a 1 bit: */
805 *context->buffer = 0x80;
807 /* Store the length of input data (in bits) in big endian format: */
808 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
809 context->bitcount[1]);
810 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
811 context->bitcount[0]);
813 /* Final transform: */
814 SHA512_Transform(context->state, context->buffer);
816 /* Clean up: */
817 usedspace = 0;
820 void
821 SHA512_Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
823 SHA512_Pad(context);
825 /* If no digest buffer is passed, we don't bother doing this: */
826 if (digest != NULL) {
827 #if BYTE_ORDER == LITTLE_ENDIAN
828 int i;
830 /* Convert TO host byte order */
831 for (i = 0; i < 8; i++)
832 BE_64_TO_8(digest + i * 8, context->state[i]);
833 #else
834 memcpy(digest, context->state, SHA512_DIGEST_LENGTH);
835 #endif
836 memset(context, 0, sizeof(*context));
841 #if 0
842 /*** SHA-384: *********************************************************/
843 void
844 SHA384_Init(SHA384_CTX *context)
846 if (context == NULL)
847 return;
848 memcpy(context->state, sha384_initial_hash_value,
849 sizeof(sha384_initial_hash_value));
850 memset(context->buffer, 0, sizeof(context->buffer));
851 context->bitcount[0] = context->bitcount[1] = 0;
854 __weak_alias(SHA384_Transform, SHA512_Transform);
855 __weak_alias(SHA384_Update, SHA512_Update);
856 __weak_alias(SHA384_Pad, SHA512_Pad);
858 void
859 SHA384_Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA384_CTX *context)
861 SHA384_Pad(context);
863 /* If no digest buffer is passed, we don't bother doing this: */
864 if (digest != NULL) {
865 #if BYTE_ORDER == LITTLE_ENDIAN
866 int i;
868 /* Convert TO host byte order */
869 for (i = 0; i < 6; i++)
870 BE_64_TO_8(digest + i * 8, context->state[i]);
871 #else
872 memcpy(digest, context->state, SHA384_DIGEST_LENGTH);
873 #endif
876 /* Zero out state data */
877 memset(context, 0, sizeof(*context));
879 #endif
881 #endif /* !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \
882 (OPENSSL_VERSION_NUMBER >= 0x00907000L) */