fix id
[openssh-git.git] / openbsd-compat / sys-queue.h
blob5cf0587bd1c2e511a609c0f913df52b32307f4b2
1 /* $OpenBSD: queue.h,v 1.32 2007/04/30 18:42:34 pedro Exp $ */
2 /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
4 /*
5 * Copyright (c) 1991, 1993
6 * The Regents of the University of California. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * @(#)queue.h 8.5 (Berkeley) 8/20/94
35 /* OPENBSD ORIGINAL: sys/sys/queue.h */
37 #ifndef _FAKE_QUEUE_H_
38 #define _FAKE_QUEUE_H_
41 * Require for OS/X and other platforms that have old/broken/incomplete
42 * <sys/queue.h>.
44 #undef SLIST_HEAD
45 #undef SLIST_HEAD_INITIALIZER
46 #undef SLIST_ENTRY
47 #undef SLIST_FOREACH_PREVPTR
48 #undef SLIST_FIRST
49 #undef SLIST_END
50 #undef SLIST_EMPTY
51 #undef SLIST_NEXT
52 #undef SLIST_FOREACH
53 #undef SLIST_INIT
54 #undef SLIST_INSERT_AFTER
55 #undef SLIST_INSERT_HEAD
56 #undef SLIST_REMOVE_HEAD
57 #undef SLIST_REMOVE
58 #undef SLIST_REMOVE_NEXT
59 #undef LIST_HEAD
60 #undef LIST_HEAD_INITIALIZER
61 #undef LIST_ENTRY
62 #undef LIST_FIRST
63 #undef LIST_END
64 #undef LIST_EMPTY
65 #undef LIST_NEXT
66 #undef LIST_FOREACH
67 #undef LIST_INIT
68 #undef LIST_INSERT_AFTER
69 #undef LIST_INSERT_BEFORE
70 #undef LIST_INSERT_HEAD
71 #undef LIST_REMOVE
72 #undef LIST_REPLACE
73 #undef SIMPLEQ_HEAD
74 #undef SIMPLEQ_HEAD_INITIALIZER
75 #undef SIMPLEQ_ENTRY
76 #undef SIMPLEQ_FIRST
77 #undef SIMPLEQ_END
78 #undef SIMPLEQ_EMPTY
79 #undef SIMPLEQ_NEXT
80 #undef SIMPLEQ_FOREACH
81 #undef SIMPLEQ_INIT
82 #undef SIMPLEQ_INSERT_HEAD
83 #undef SIMPLEQ_INSERT_TAIL
84 #undef SIMPLEQ_INSERT_AFTER
85 #undef SIMPLEQ_REMOVE_HEAD
86 #undef TAILQ_HEAD
87 #undef TAILQ_HEAD_INITIALIZER
88 #undef TAILQ_ENTRY
89 #undef TAILQ_FIRST
90 #undef TAILQ_END
91 #undef TAILQ_NEXT
92 #undef TAILQ_LAST
93 #undef TAILQ_PREV
94 #undef TAILQ_EMPTY
95 #undef TAILQ_FOREACH
96 #undef TAILQ_FOREACH_REVERSE
97 #undef TAILQ_INIT
98 #undef TAILQ_INSERT_HEAD
99 #undef TAILQ_INSERT_TAIL
100 #undef TAILQ_INSERT_AFTER
101 #undef TAILQ_INSERT_BEFORE
102 #undef TAILQ_REMOVE
103 #undef TAILQ_REPLACE
104 #undef CIRCLEQ_HEAD
105 #undef CIRCLEQ_HEAD_INITIALIZER
106 #undef CIRCLEQ_ENTRY
107 #undef CIRCLEQ_FIRST
108 #undef CIRCLEQ_LAST
109 #undef CIRCLEQ_END
110 #undef CIRCLEQ_NEXT
111 #undef CIRCLEQ_PREV
112 #undef CIRCLEQ_EMPTY
113 #undef CIRCLEQ_FOREACH
114 #undef CIRCLEQ_FOREACH_REVERSE
115 #undef CIRCLEQ_INIT
116 #undef CIRCLEQ_INSERT_AFTER
117 #undef CIRCLEQ_INSERT_BEFORE
118 #undef CIRCLEQ_INSERT_HEAD
119 #undef CIRCLEQ_INSERT_TAIL
120 #undef CIRCLEQ_REMOVE
121 #undef CIRCLEQ_REPLACE
124 * This file defines five types of data structures: singly-linked lists,
125 * lists, simple queues, tail queues, and circular queues.
128 * A singly-linked list is headed by a single forward pointer. The elements
129 * are singly linked for minimum space and pointer manipulation overhead at
130 * the expense of O(n) removal for arbitrary elements. New elements can be
131 * added to the list after an existing element or at the head of the list.
132 * Elements being removed from the head of the list should use the explicit
133 * macro for this purpose for optimum efficiency. A singly-linked list may
134 * only be traversed in the forward direction. Singly-linked lists are ideal
135 * for applications with large datasets and few or no removals or for
136 * implementing a LIFO queue.
138 * A list is headed by a single forward pointer (or an array of forward
139 * pointers for a hash table header). The elements are doubly linked
140 * so that an arbitrary element can be removed without a need to
141 * traverse the list. New elements can be added to the list before
142 * or after an existing element or at the head of the list. A list
143 * may only be traversed in the forward direction.
145 * A simple queue is headed by a pair of pointers, one the head of the
146 * list and the other to the tail of the list. The elements are singly
147 * linked to save space, so elements can only be removed from the
148 * head of the list. New elements can be added to the list before or after
149 * an existing element, at the head of the list, or at the end of the
150 * list. A simple queue may only be traversed in the forward direction.
152 * A tail queue is headed by a pair of pointers, one to the head of the
153 * list and the other to the tail of the list. The elements are doubly
154 * linked so that an arbitrary element can be removed without a need to
155 * traverse the list. New elements can be added to the list before or
156 * after an existing element, at the head of the list, or at the end of
157 * the list. A tail queue may be traversed in either direction.
159 * A circle queue is headed by a pair of pointers, one to the head of the
160 * list and the other to the tail of the list. The elements are doubly
161 * linked so that an arbitrary element can be removed without a need to
162 * traverse the list. New elements can be added to the list before or after
163 * an existing element, at the head of the list, or at the end of the list.
164 * A circle queue may be traversed in either direction, but has a more
165 * complex end of list detection.
167 * For details on the use of these macros, see the queue(3) manual page.
170 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
171 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
172 #else
173 #define _Q_INVALIDATE(a)
174 #endif
177 * Singly-linked List definitions.
179 #define SLIST_HEAD(name, type) \
180 struct name { \
181 struct type *slh_first; /* first element */ \
184 #define SLIST_HEAD_INITIALIZER(head) \
185 { NULL }
187 #define SLIST_ENTRY(type) \
188 struct { \
189 struct type *sle_next; /* next element */ \
193 * Singly-linked List access methods.
195 #define SLIST_FIRST(head) ((head)->slh_first)
196 #define SLIST_END(head) NULL
197 #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
198 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
200 #define SLIST_FOREACH(var, head, field) \
201 for((var) = SLIST_FIRST(head); \
202 (var) != SLIST_END(head); \
203 (var) = SLIST_NEXT(var, field))
205 #define SLIST_FOREACH_PREVPTR(var, varp, head, field) \
206 for ((varp) = &SLIST_FIRST((head)); \
207 ((var) = *(varp)) != SLIST_END(head); \
208 (varp) = &SLIST_NEXT((var), field))
211 * Singly-linked List functions.
213 #define SLIST_INIT(head) { \
214 SLIST_FIRST(head) = SLIST_END(head); \
217 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
218 (elm)->field.sle_next = (slistelm)->field.sle_next; \
219 (slistelm)->field.sle_next = (elm); \
220 } while (0)
222 #define SLIST_INSERT_HEAD(head, elm, field) do { \
223 (elm)->field.sle_next = (head)->slh_first; \
224 (head)->slh_first = (elm); \
225 } while (0)
227 #define SLIST_REMOVE_NEXT(head, elm, field) do { \
228 (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
229 } while (0)
231 #define SLIST_REMOVE_HEAD(head, field) do { \
232 (head)->slh_first = (head)->slh_first->field.sle_next; \
233 } while (0)
235 #define SLIST_REMOVE(head, elm, type, field) do { \
236 if ((head)->slh_first == (elm)) { \
237 SLIST_REMOVE_HEAD((head), field); \
238 } else { \
239 struct type *curelm = (head)->slh_first; \
241 while (curelm->field.sle_next != (elm)) \
242 curelm = curelm->field.sle_next; \
243 curelm->field.sle_next = \
244 curelm->field.sle_next->field.sle_next; \
245 _Q_INVALIDATE((elm)->field.sle_next); \
247 } while (0)
250 * List definitions.
252 #define LIST_HEAD(name, type) \
253 struct name { \
254 struct type *lh_first; /* first element */ \
257 #define LIST_HEAD_INITIALIZER(head) \
258 { NULL }
260 #define LIST_ENTRY(type) \
261 struct { \
262 struct type *le_next; /* next element */ \
263 struct type **le_prev; /* address of previous next element */ \
267 * List access methods
269 #define LIST_FIRST(head) ((head)->lh_first)
270 #define LIST_END(head) NULL
271 #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
272 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
274 #define LIST_FOREACH(var, head, field) \
275 for((var) = LIST_FIRST(head); \
276 (var)!= LIST_END(head); \
277 (var) = LIST_NEXT(var, field))
280 * List functions.
282 #define LIST_INIT(head) do { \
283 LIST_FIRST(head) = LIST_END(head); \
284 } while (0)
286 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
287 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
288 (listelm)->field.le_next->field.le_prev = \
289 &(elm)->field.le_next; \
290 (listelm)->field.le_next = (elm); \
291 (elm)->field.le_prev = &(listelm)->field.le_next; \
292 } while (0)
294 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
295 (elm)->field.le_prev = (listelm)->field.le_prev; \
296 (elm)->field.le_next = (listelm); \
297 *(listelm)->field.le_prev = (elm); \
298 (listelm)->field.le_prev = &(elm)->field.le_next; \
299 } while (0)
301 #define LIST_INSERT_HEAD(head, elm, field) do { \
302 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
303 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
304 (head)->lh_first = (elm); \
305 (elm)->field.le_prev = &(head)->lh_first; \
306 } while (0)
308 #define LIST_REMOVE(elm, field) do { \
309 if ((elm)->field.le_next != NULL) \
310 (elm)->field.le_next->field.le_prev = \
311 (elm)->field.le_prev; \
312 *(elm)->field.le_prev = (elm)->field.le_next; \
313 _Q_INVALIDATE((elm)->field.le_prev); \
314 _Q_INVALIDATE((elm)->field.le_next); \
315 } while (0)
317 #define LIST_REPLACE(elm, elm2, field) do { \
318 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
319 (elm2)->field.le_next->field.le_prev = \
320 &(elm2)->field.le_next; \
321 (elm2)->field.le_prev = (elm)->field.le_prev; \
322 *(elm2)->field.le_prev = (elm2); \
323 _Q_INVALIDATE((elm)->field.le_prev); \
324 _Q_INVALIDATE((elm)->field.le_next); \
325 } while (0)
328 * Simple queue definitions.
330 #define SIMPLEQ_HEAD(name, type) \
331 struct name { \
332 struct type *sqh_first; /* first element */ \
333 struct type **sqh_last; /* addr of last next element */ \
336 #define SIMPLEQ_HEAD_INITIALIZER(head) \
337 { NULL, &(head).sqh_first }
339 #define SIMPLEQ_ENTRY(type) \
340 struct { \
341 struct type *sqe_next; /* next element */ \
345 * Simple queue access methods.
347 #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
348 #define SIMPLEQ_END(head) NULL
349 #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
350 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
352 #define SIMPLEQ_FOREACH(var, head, field) \
353 for((var) = SIMPLEQ_FIRST(head); \
354 (var) != SIMPLEQ_END(head); \
355 (var) = SIMPLEQ_NEXT(var, field))
358 * Simple queue functions.
360 #define SIMPLEQ_INIT(head) do { \
361 (head)->sqh_first = NULL; \
362 (head)->sqh_last = &(head)->sqh_first; \
363 } while (0)
365 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
366 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
367 (head)->sqh_last = &(elm)->field.sqe_next; \
368 (head)->sqh_first = (elm); \
369 } while (0)
371 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
372 (elm)->field.sqe_next = NULL; \
373 *(head)->sqh_last = (elm); \
374 (head)->sqh_last = &(elm)->field.sqe_next; \
375 } while (0)
377 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
378 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
379 (head)->sqh_last = &(elm)->field.sqe_next; \
380 (listelm)->field.sqe_next = (elm); \
381 } while (0)
383 #define SIMPLEQ_REMOVE_HEAD(head, field) do { \
384 if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
385 (head)->sqh_last = &(head)->sqh_first; \
386 } while (0)
389 * Tail queue definitions.
391 #define TAILQ_HEAD(name, type) \
392 struct name { \
393 struct type *tqh_first; /* first element */ \
394 struct type **tqh_last; /* addr of last next element */ \
397 #define TAILQ_HEAD_INITIALIZER(head) \
398 { NULL, &(head).tqh_first }
400 #define TAILQ_ENTRY(type) \
401 struct { \
402 struct type *tqe_next; /* next element */ \
403 struct type **tqe_prev; /* address of previous next element */ \
407 * tail queue access methods
409 #define TAILQ_FIRST(head) ((head)->tqh_first)
410 #define TAILQ_END(head) NULL
411 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
412 #define TAILQ_LAST(head, headname) \
413 (*(((struct headname *)((head)->tqh_last))->tqh_last))
414 /* XXX */
415 #define TAILQ_PREV(elm, headname, field) \
416 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
417 #define TAILQ_EMPTY(head) \
418 (TAILQ_FIRST(head) == TAILQ_END(head))
420 #define TAILQ_FOREACH(var, head, field) \
421 for((var) = TAILQ_FIRST(head); \
422 (var) != TAILQ_END(head); \
423 (var) = TAILQ_NEXT(var, field))
425 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
426 for((var) = TAILQ_LAST(head, headname); \
427 (var) != TAILQ_END(head); \
428 (var) = TAILQ_PREV(var, headname, field))
431 * Tail queue functions.
433 #define TAILQ_INIT(head) do { \
434 (head)->tqh_first = NULL; \
435 (head)->tqh_last = &(head)->tqh_first; \
436 } while (0)
438 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
439 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
440 (head)->tqh_first->field.tqe_prev = \
441 &(elm)->field.tqe_next; \
442 else \
443 (head)->tqh_last = &(elm)->field.tqe_next; \
444 (head)->tqh_first = (elm); \
445 (elm)->field.tqe_prev = &(head)->tqh_first; \
446 } while (0)
448 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
449 (elm)->field.tqe_next = NULL; \
450 (elm)->field.tqe_prev = (head)->tqh_last; \
451 *(head)->tqh_last = (elm); \
452 (head)->tqh_last = &(elm)->field.tqe_next; \
453 } while (0)
455 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
456 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
457 (elm)->field.tqe_next->field.tqe_prev = \
458 &(elm)->field.tqe_next; \
459 else \
460 (head)->tqh_last = &(elm)->field.tqe_next; \
461 (listelm)->field.tqe_next = (elm); \
462 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
463 } while (0)
465 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
466 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
467 (elm)->field.tqe_next = (listelm); \
468 *(listelm)->field.tqe_prev = (elm); \
469 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
470 } while (0)
472 #define TAILQ_REMOVE(head, elm, field) do { \
473 if (((elm)->field.tqe_next) != NULL) \
474 (elm)->field.tqe_next->field.tqe_prev = \
475 (elm)->field.tqe_prev; \
476 else \
477 (head)->tqh_last = (elm)->field.tqe_prev; \
478 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
479 _Q_INVALIDATE((elm)->field.tqe_prev); \
480 _Q_INVALIDATE((elm)->field.tqe_next); \
481 } while (0)
483 #define TAILQ_REPLACE(head, elm, elm2, field) do { \
484 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
485 (elm2)->field.tqe_next->field.tqe_prev = \
486 &(elm2)->field.tqe_next; \
487 else \
488 (head)->tqh_last = &(elm2)->field.tqe_next; \
489 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
490 *(elm2)->field.tqe_prev = (elm2); \
491 _Q_INVALIDATE((elm)->field.tqe_prev); \
492 _Q_INVALIDATE((elm)->field.tqe_next); \
493 } while (0)
496 * Circular queue definitions.
498 #define CIRCLEQ_HEAD(name, type) \
499 struct name { \
500 struct type *cqh_first; /* first element */ \
501 struct type *cqh_last; /* last element */ \
504 #define CIRCLEQ_HEAD_INITIALIZER(head) \
505 { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
507 #define CIRCLEQ_ENTRY(type) \
508 struct { \
509 struct type *cqe_next; /* next element */ \
510 struct type *cqe_prev; /* previous element */ \
514 * Circular queue access methods
516 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
517 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
518 #define CIRCLEQ_END(head) ((void *)(head))
519 #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
520 #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
521 #define CIRCLEQ_EMPTY(head) \
522 (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
524 #define CIRCLEQ_FOREACH(var, head, field) \
525 for((var) = CIRCLEQ_FIRST(head); \
526 (var) != CIRCLEQ_END(head); \
527 (var) = CIRCLEQ_NEXT(var, field))
529 #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
530 for((var) = CIRCLEQ_LAST(head); \
531 (var) != CIRCLEQ_END(head); \
532 (var) = CIRCLEQ_PREV(var, field))
535 * Circular queue functions.
537 #define CIRCLEQ_INIT(head) do { \
538 (head)->cqh_first = CIRCLEQ_END(head); \
539 (head)->cqh_last = CIRCLEQ_END(head); \
540 } while (0)
542 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
543 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
544 (elm)->field.cqe_prev = (listelm); \
545 if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
546 (head)->cqh_last = (elm); \
547 else \
548 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
549 (listelm)->field.cqe_next = (elm); \
550 } while (0)
552 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
553 (elm)->field.cqe_next = (listelm); \
554 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
555 if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
556 (head)->cqh_first = (elm); \
557 else \
558 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
559 (listelm)->field.cqe_prev = (elm); \
560 } while (0)
562 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
563 (elm)->field.cqe_next = (head)->cqh_first; \
564 (elm)->field.cqe_prev = CIRCLEQ_END(head); \
565 if ((head)->cqh_last == CIRCLEQ_END(head)) \
566 (head)->cqh_last = (elm); \
567 else \
568 (head)->cqh_first->field.cqe_prev = (elm); \
569 (head)->cqh_first = (elm); \
570 } while (0)
572 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
573 (elm)->field.cqe_next = CIRCLEQ_END(head); \
574 (elm)->field.cqe_prev = (head)->cqh_last; \
575 if ((head)->cqh_first == CIRCLEQ_END(head)) \
576 (head)->cqh_first = (elm); \
577 else \
578 (head)->cqh_last->field.cqe_next = (elm); \
579 (head)->cqh_last = (elm); \
580 } while (0)
582 #define CIRCLEQ_REMOVE(head, elm, field) do { \
583 if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
584 (head)->cqh_last = (elm)->field.cqe_prev; \
585 else \
586 (elm)->field.cqe_next->field.cqe_prev = \
587 (elm)->field.cqe_prev; \
588 if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
589 (head)->cqh_first = (elm)->field.cqe_next; \
590 else \
591 (elm)->field.cqe_prev->field.cqe_next = \
592 (elm)->field.cqe_next; \
593 _Q_INVALIDATE((elm)->field.cqe_prev); \
594 _Q_INVALIDATE((elm)->field.cqe_next); \
595 } while (0)
597 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
598 if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
599 CIRCLEQ_END(head)) \
600 (head).cqh_last = (elm2); \
601 else \
602 (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
603 if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
604 CIRCLEQ_END(head)) \
605 (head).cqh_first = (elm2); \
606 else \
607 (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
608 _Q_INVALIDATE((elm)->field.cqe_prev); \
609 _Q_INVALIDATE((elm)->field.cqe_next); \
610 } while (0)
612 #endif /* !_FAKE_QUEUE_H_ */