1 /* $OpenBSD: moduli.c,v 1.22 2010/11/10 01:33:07 djm Exp $ */
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * Two-step process to generate safe primes for DHGEX
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
42 #include <sys/types.h>
44 #include <openssl/bn.h>
45 #include <openssl/dh.h>
57 #include "openbsd-compat/openssl-compat.h"
63 /* need line long enough for largest moduli plus headers */
64 #define QLINESIZE (100+8192)
68 * Specifies the number of the most significant bit (0 to M).
69 * WARNING: internally, usually 1 to N.
71 #define QSIZE_MINIMUM (511)
74 * Prime sieving defines
77 /* Constant: assuming 8 bit bytes and 32 bit words */
79 #define SHIFT_BYTE (2)
80 #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
81 #define SHIFT_MEGABYTE (20)
82 #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
85 * Using virtual memory can cause thrashing. This should be the largest
86 * number that is supported without a large amount of disk activity --
87 * that would increase the run time from hours to days or weeks!
89 #define LARGE_MINIMUM (8UL) /* megabytes */
92 * Do not increase this number beyond the unsigned integer bit size.
93 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
95 #define LARGE_MAXIMUM (127UL) /* megabytes */
98 * Constant: when used with 32-bit integers, the largest sieve prime
99 * has to be less than 2**32.
101 #define SMALL_MAXIMUM (0xffffffffUL)
103 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
104 #define TINY_NUMBER (1UL<<16)
106 /* Ensure enough bit space for testing 2*q. */
107 #define TEST_MAXIMUM (1UL<<16)
108 #define TEST_MINIMUM (QSIZE_MINIMUM + 1)
109 /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
110 #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
112 /* bit operations on 32-bit words */
113 #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
114 #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
115 #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
118 * Prime testing defines
121 /* Minimum number of primality tests to perform */
122 #define TRIAL_MINIMUM (4)
125 * Sieving data (XXX - move to struct)
129 static u_int32_t
*TinySieve
, tinybits
;
131 /* sieve 2**30 in 2**16 parts */
132 static u_int32_t
*SmallSieve
, smallbits
, smallbase
;
134 /* sieve relative to the initial value */
135 static u_int32_t
*LargeSieve
, largewords
, largetries
, largenumbers
;
136 static u_int32_t largebits
, largememory
; /* megabytes */
137 static BIGNUM
*largebase
;
139 int gen_candidates(FILE *, u_int32_t
, u_int32_t
, BIGNUM
*);
140 int prime_test(FILE *, FILE *, u_int32_t
, u_int32_t
);
143 * print moduli out in consistent form,
146 qfileout(FILE * ofile
, u_int32_t otype
, u_int32_t otests
, u_int32_t otries
,
147 u_int32_t osize
, u_int32_t ogenerator
, BIGNUM
* omodulus
)
154 gtm
= gmtime(&time_now
);
156 res
= fprintf(ofile
, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
157 gtm
->tm_year
+ 1900, gtm
->tm_mon
+ 1, gtm
->tm_mday
,
158 gtm
->tm_hour
, gtm
->tm_min
, gtm
->tm_sec
,
159 otype
, otests
, otries
, osize
, ogenerator
);
164 if (BN_print_fp(ofile
, omodulus
) < 1)
167 res
= fprintf(ofile
, "\n");
170 return (res
> 0 ? 0 : -1);
175 ** Sieve p's and q's with small factors
178 sieve_large(u_int32_t s
)
182 debug3("sieve_large %u", s
);
184 /* r = largebase mod s */
185 r
= BN_mod_word(largebase
, s
);
187 u
= 0; /* s divides into largebase exactly */
189 u
= s
- r
; /* largebase+u is first entry divisible by s */
191 if (u
< largebits
* 2) {
193 * The sieve omits p's and q's divisible by 2, so ensure that
194 * largebase+u is odd. Then, step through the sieve in
198 u
+= s
; /* Make largebase+u odd, and u even */
200 /* Mark all multiples of 2*s */
201 for (u
/= 2; u
< largebits
; u
+= s
)
202 BIT_SET(LargeSieve
, u
);
208 u
= 0; /* s divides p exactly */
210 u
= s
- r
; /* p+u is first entry divisible by s */
212 if (u
< largebits
* 4) {
214 * The sieve omits p's divisible by 4, so ensure that
215 * largebase+u is not. Then, step through the sieve in
219 if (SMALL_MAXIMUM
- u
< s
)
224 /* Mark all multiples of 4*s */
225 for (u
/= 4; u
< largebits
; u
+= s
)
226 BIT_SET(LargeSieve
, u
);
231 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
232 * to standard output.
233 * The list is checked against small known primes (less than 2**30).
236 gen_candidates(FILE *out
, u_int32_t memory
, u_int32_t power
, BIGNUM
*start
)
239 u_int32_t j
, r
, s
, t
;
240 u_int32_t smallwords
= TINY_NUMBER
>> 6;
241 u_int32_t tinywords
= TINY_NUMBER
>> 6;
242 time_t time_start
, time_stop
;
246 largememory
= memory
;
249 (memory
< LARGE_MINIMUM
|| memory
> LARGE_MAXIMUM
)) {
250 error("Invalid memory amount (min %ld, max %ld)",
251 LARGE_MINIMUM
, LARGE_MAXIMUM
);
256 * Set power to the length in bits of the prime to be generated.
257 * This is changed to 1 less than the desired safe prime moduli p.
259 if (power
> TEST_MAXIMUM
) {
260 error("Too many bits: %u > %lu", power
, TEST_MAXIMUM
);
262 } else if (power
< TEST_MINIMUM
) {
263 error("Too few bits: %u < %u", power
, TEST_MINIMUM
);
266 power
--; /* decrement before squaring */
269 * The density of ordinary primes is on the order of 1/bits, so the
270 * density of safe primes should be about (1/bits)**2. Set test range
271 * to something well above bits**2 to be reasonably sure (but not
272 * guaranteed) of catching at least one safe prime.
274 largewords
= ((power
* power
) >> (SHIFT_WORD
- TEST_POWER
));
277 * Need idea of how much memory is available. We don't have to use all
280 if (largememory
> LARGE_MAXIMUM
) {
281 logit("Limited memory: %u MB; limit %lu MB",
282 largememory
, LARGE_MAXIMUM
);
283 largememory
= LARGE_MAXIMUM
;
286 if (largewords
<= (largememory
<< SHIFT_MEGAWORD
)) {
287 logit("Increased memory: %u MB; need %u bytes",
288 largememory
, (largewords
<< SHIFT_BYTE
));
289 largewords
= (largememory
<< SHIFT_MEGAWORD
);
290 } else if (largememory
> 0) {
291 logit("Decreased memory: %u MB; want %u bytes",
292 largememory
, (largewords
<< SHIFT_BYTE
));
293 largewords
= (largememory
<< SHIFT_MEGAWORD
);
296 TinySieve
= xcalloc(tinywords
, sizeof(u_int32_t
));
297 tinybits
= tinywords
<< SHIFT_WORD
;
299 SmallSieve
= xcalloc(smallwords
, sizeof(u_int32_t
));
300 smallbits
= smallwords
<< SHIFT_WORD
;
303 * dynamically determine available memory
305 while ((LargeSieve
= calloc(largewords
, sizeof(u_int32_t
))) == NULL
)
306 largewords
-= (1L << (SHIFT_MEGAWORD
- 2)); /* 1/4 MB chunks */
308 largebits
= largewords
<< SHIFT_WORD
;
309 largenumbers
= largebits
* 2; /* even numbers excluded */
311 /* validation check: count the number of primes tried */
313 if ((q
= BN_new()) == NULL
)
314 fatal("BN_new failed");
317 * Generate random starting point for subprime search, or use
318 * specified parameter.
320 if ((largebase
= BN_new()) == NULL
)
321 fatal("BN_new failed");
323 if (BN_rand(largebase
, power
, 1, 1) == 0)
324 fatal("BN_rand failed");
326 if (BN_copy(largebase
, start
) == NULL
)
327 fatal("BN_copy: failed");
331 if (BN_set_bit(largebase
, 0) == 0)
332 fatal("BN_set_bit: failed");
336 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start
),
337 largenumbers
, power
);
338 debug2("start point: 0x%s", BN_bn2hex(largebase
));
343 for (i
= 0; i
< tinybits
; i
++) {
344 if (BIT_TEST(TinySieve
, i
))
345 continue; /* 2*i+3 is composite */
347 /* The next tiny prime */
350 /* Mark all multiples of t */
351 for (j
= i
+ t
; j
< tinybits
; j
+= t
)
352 BIT_SET(TinySieve
, j
);
358 * Start the small block search at the next possible prime. To avoid
359 * fencepost errors, the last pass is skipped.
361 for (smallbase
= TINY_NUMBER
+ 3;
362 smallbase
< (SMALL_MAXIMUM
- TINY_NUMBER
);
363 smallbase
+= TINY_NUMBER
) {
364 for (i
= 0; i
< tinybits
; i
++) {
365 if (BIT_TEST(TinySieve
, i
))
366 continue; /* 2*i+3 is composite */
368 /* The next tiny prime */
373 s
= 0; /* t divides into smallbase exactly */
375 /* smallbase+s is first entry divisible by t */
380 * The sieve omits even numbers, so ensure that
381 * smallbase+s is odd. Then, step through the sieve
382 * in increments of 2*t
385 s
+= t
; /* Make smallbase+s odd, and s even */
387 /* Mark all multiples of 2*t */
388 for (s
/= 2; s
< smallbits
; s
+= t
)
389 BIT_SET(SmallSieve
, s
);
395 for (i
= 0; i
< smallbits
; i
++) {
396 if (BIT_TEST(SmallSieve
, i
))
397 continue; /* 2*i+smallbase is composite */
399 /* The next small prime */
400 sieve_large((2 * i
) + smallbase
);
403 memset(SmallSieve
, 0, smallwords
<< SHIFT_BYTE
);
408 logit("%.24s Sieved with %u small primes in %ld seconds",
409 ctime(&time_stop
), largetries
, (long) (time_stop
- time_start
));
411 for (j
= r
= 0; j
< largebits
; j
++) {
412 if (BIT_TEST(LargeSieve
, j
))
413 continue; /* Definitely composite, skip */
415 debug2("test q = largebase+%u", 2 * j
);
416 if (BN_set_word(q
, 2 * j
) == 0)
417 fatal("BN_set_word failed");
418 if (BN_add(q
, q
, largebase
) == 0)
419 fatal("BN_add failed");
420 if (qfileout(out
, MODULI_TYPE_SOPHIE_GERMAIN
,
421 MODULI_TESTS_SIEVE
, largetries
,
422 (power
- 1) /* MSB */, (0), q
) == -1) {
436 logit("%.24s Found %u candidates", ctime(&time_stop
), r
);
442 * perform a Miller-Rabin primality test
443 * on the list of candidates
444 * (checking both q and p)
445 * The result is a list of so-call "safe" primes
448 prime_test(FILE *in
, FILE *out
, u_int32_t trials
, u_int32_t generator_wanted
)
453 u_int32_t count_in
= 0, count_out
= 0, count_possible
= 0;
454 u_int32_t generator_known
, in_tests
, in_tries
, in_type
, in_size
;
455 time_t time_start
, time_stop
;
458 if (trials
< TRIAL_MINIMUM
) {
459 error("Minimum primality trials is %d", TRIAL_MINIMUM
);
465 if ((p
= BN_new()) == NULL
)
466 fatal("BN_new failed");
467 if ((q
= BN_new()) == NULL
)
468 fatal("BN_new failed");
469 if ((ctx
= BN_CTX_new()) == NULL
)
470 fatal("BN_CTX_new failed");
472 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
473 ctime(&time_start
), trials
, generator_wanted
);
476 lp
= xmalloc(QLINESIZE
+ 1);
477 while (fgets(lp
, QLINESIZE
+ 1, in
) != NULL
) {
479 if (strlen(lp
) < 14 || *lp
== '!' || *lp
== '#') {
480 debug2("%10u: comment or short line", count_in
);
484 /* XXX - fragile parser */
486 cp
= &lp
[14]; /* (skip) */
489 in_type
= strtoul(cp
, &cp
, 10);
492 in_tests
= strtoul(cp
, &cp
, 10);
494 if (in_tests
& MODULI_TESTS_COMPOSITE
) {
495 debug2("%10u: known composite", count_in
);
500 in_tries
= strtoul(cp
, &cp
, 10);
502 /* size (most significant bit) */
503 in_size
= strtoul(cp
, &cp
, 10);
505 /* generator (hex) */
506 generator_known
= strtoul(cp
, &cp
, 16);
508 /* Skip white space */
509 cp
+= strspn(cp
, " ");
513 case MODULI_TYPE_SOPHIE_GERMAIN
:
514 debug2("%10u: (%u) Sophie-Germain", count_in
, in_type
);
516 if (BN_hex2bn(&a
, cp
) == 0)
517 fatal("BN_hex2bn failed");
519 if (BN_lshift(p
, q
, 1) == 0)
520 fatal("BN_lshift failed");
521 if (BN_add_word(p
, 1) == 0)
522 fatal("BN_add_word failed");
526 case MODULI_TYPE_UNSTRUCTURED
:
527 case MODULI_TYPE_SAFE
:
528 case MODULI_TYPE_SCHNORR
:
529 case MODULI_TYPE_STRONG
:
530 case MODULI_TYPE_UNKNOWN
:
531 debug2("%10u: (%u)", count_in
, in_type
);
533 if (BN_hex2bn(&a
, cp
) == 0)
534 fatal("BN_hex2bn failed");
536 if (BN_rshift(q
, p
, 1) == 0)
537 fatal("BN_rshift failed");
540 debug2("Unknown prime type");
545 * due to earlier inconsistencies in interpretation, check
546 * the proposed bit size.
548 if ((u_int32_t
)BN_num_bits(p
) != (in_size
+ 1)) {
549 debug2("%10u: bit size %u mismatch", count_in
, in_size
);
552 if (in_size
< QSIZE_MINIMUM
) {
553 debug2("%10u: bit size %u too short", count_in
, in_size
);
557 if (in_tests
& MODULI_TESTS_MILLER_RABIN
)
563 * guess unknown generator
565 if (generator_known
== 0) {
566 if (BN_mod_word(p
, 24) == 11)
568 else if (BN_mod_word(p
, 12) == 5)
571 u_int32_t r
= BN_mod_word(p
, 10);
573 if (r
== 3 || r
== 7)
578 * skip tests when desired generator doesn't match
580 if (generator_wanted
> 0 &&
581 generator_wanted
!= generator_known
) {
582 debug2("%10u: generator %d != %d",
583 count_in
, generator_known
, generator_wanted
);
588 * Primes with no known generator are useless for DH, so
591 if (generator_known
== 0) {
592 debug2("%10u: no known generator", count_in
);
599 * The (1/4)^N performance bound on Miller-Rabin is
600 * extremely pessimistic, so don't spend a lot of time
601 * really verifying that q is prime until after we know
602 * that p is also prime. A single pass will weed out the
603 * vast majority of composite q's.
605 if (BN_is_prime_ex(q
, 1, ctx
, NULL
) <= 0) {
606 debug("%10u: q failed first possible prime test",
612 * q is possibly prime, so go ahead and really make sure
613 * that p is prime. If it is, then we can go back and do
614 * the same for q. If p is composite, chances are that
615 * will show up on the first Rabin-Miller iteration so it
616 * doesn't hurt to specify a high iteration count.
618 if (!BN_is_prime_ex(p
, trials
, ctx
, NULL
)) {
619 debug("%10u: p is not prime", count_in
);
622 debug("%10u: p is almost certainly prime", count_in
);
624 /* recheck q more rigorously */
625 if (!BN_is_prime_ex(q
, trials
- 1, ctx
, NULL
)) {
626 debug("%10u: q is not prime", count_in
);
629 debug("%10u: q is almost certainly prime", count_in
);
631 if (qfileout(out
, MODULI_TYPE_SAFE
,
632 in_tests
| MODULI_TESTS_MILLER_RABIN
,
633 in_tries
, in_size
, generator_known
, p
)) {
647 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
648 ctime(&time_stop
), count_out
, count_possible
,
649 (long) (time_stop
- time_start
));