2 * This file is part of OpenTTD.
3 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
4 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
5 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
8 /** @file bitmath_func.hpp Functions related to bit mathematics. */
10 #ifndef BITMATH_FUNC_HPP
11 #define BITMATH_FUNC_HPP
14 * Fetch \a n bits from \a x, started at bit \a s.
16 * This function can be used to fetch \a n bits from the value \a x. The
17 * \a s value set the start position to read. The start position is
18 * count from the LSB and starts at \c 0. The result starts at a
19 * LSB, as this isn't just an and-bitmask but also some
20 * bit-shifting operations. GB(0xFF, 2, 1) will so
21 * return 0x01 (0000 0001) instead of
24 * @param x The value to read some bits.
25 * @param s The start position to read some bits.
26 * @param n The number of bits to read.
27 * @pre n < sizeof(T) * 8
28 * @pre s + n <= sizeof(T) * 8
29 * @return The selected bits, aligned to a LSB.
32 debug_inline
constexpr static uint
GB(const T x
, const uint8_t s
, const uint8_t n
)
34 return (x
>> s
) & (((T
)1U << n
) - 1);
38 * Set \a n bits in \a x starting at bit \a s to \a d
40 * This function sets \a n bits from \a x which started as bit \a s to the value of
41 * \a d. The parameters \a x, \a s and \a n works the same as the parameters of
42 * #GB. The result is saved in \a x again. Unused bits in the window
43 * provided by n are set to 0 if the value of \a d isn't "big" enough.
44 * This is not a bug, its a feature.
46 * @note Parameter \a x must be a variable as the result is saved there.
47 * @note To avoid unexpected results the value of \a d should not use more
48 * space as the provided space of \a n bits (log2)
49 * @param x The variable to change some bits
50 * @param s The start position for the new bits
51 * @param n The size/window for the new bits
52 * @param d The actually new bits to save in the defined position.
53 * @pre n < sizeof(T) * 8
54 * @pre s + n <= sizeof(T) * 8
55 * @return The new value of \a x
57 template <typename T
, typename U
>
58 constexpr T
SB(T
&x
, const uint8_t s
, const uint8_t n
, const U d
)
60 x
&= (T
)(~((((T
)1U << n
) - 1) << s
));
66 * Add \a i to \a n bits of \a x starting at bit \a s.
68 * This adds the value of \a i on \a n bits of \a x starting at bit \a s. The parameters \a x,
69 * \a s, \a i are similar to #GB. Besides, \ a x must be a variable as the result are
70 * saved there. An overflow does not affect the following bits of the given
71 * bit window and is simply ignored.
73 * @note Parameter x must be a variable as the result is saved there.
74 * @param x The variable to add some bits at some position
75 * @param s The start position of the addition
76 * @param n The size/window for the addition
77 * @pre n < sizeof(T) * 8
78 * @pre s + n <= sizeof(T) * 8
79 * @param i The value to add at the given start position in the given window.
80 * @return The new value of \a x
82 template <typename T
, typename U
>
83 constexpr T
AB(T
&x
, const uint8_t s
, const uint8_t n
, const U i
)
85 const T mask
= ((((T
)1U << n
) - 1) << s
);
86 x
= (T
)((x
& ~mask
) | ((x
+ (i
<< s
)) & mask
));
91 * Checks if a bit in a value is set.
93 * This function checks if a bit inside a value is set or not.
94 * The \a y value specific the position of the bit, started at the
95 * LSB and count from \c 0.
97 * @param x The value to check
98 * @param y The position of the bit to check, started from the LSB
99 * @pre y < sizeof(T) * 8
100 * @return True if the bit is set, false else.
102 template <typename T
>
103 debug_inline
constexpr bool HasBit(const T x
, const uint8_t y
)
105 return (x
& ((T
)1U << y
)) != 0;
109 * Set a bit in a variable.
111 * This function sets a bit in a variable. The variable is changed
112 * and the value is also returned. Parameter y defines the bit and
113 * starts at the LSB with 0.
115 * @param x The variable to set a bit
116 * @param y The bit position to set
117 * @pre y < sizeof(T) * 8
118 * @return The new value of the old value with the bit set
120 template <typename T
>
121 constexpr T
SetBit(T
&x
, const uint8_t y
)
123 return x
= (T
)(x
| ((T
)1U << y
));
127 * Sets several bits in a variable.
129 * This macro sets several bits in a variable. The bits to set are provided
130 * by a value. The new value is also returned.
132 * @param x The variable to set some bits
133 * @param y The value with set bits for setting them in the variable
134 * @return The new value of x
136 #define SETBITS(x, y) ((x) |= (y))
139 * Clears a bit in a variable.
141 * This function clears a bit in a variable. The variable is
142 * changed and the value is also returned. Parameter y defines the bit
143 * to clear and starts at the LSB with 0.
145 * @param x The variable to clear the bit
146 * @param y The bit position to clear
147 * @pre y < sizeof(T) * 8
148 * @return The new value of the old value with the bit cleared
150 template <typename T
>
151 constexpr T
ClrBit(T
&x
, const uint8_t y
)
153 return x
= (T
)(x
& ~((T
)1U << y
));
157 * Clears several bits in a variable.
159 * This macro clears several bits in a variable. The bits to clear are
160 * provided by a value. The new value is also returned.
162 * @param x The variable to clear some bits
163 * @param y The value with set bits for clearing them in the variable
164 * @return The new value of x
166 #define CLRBITS(x, y) ((x) &= ~(y))
169 * Toggles a bit in a variable.
171 * This function toggles a bit in a variable. The variable is
172 * changed and the value is also returned. Parameter y defines the bit
173 * to toggle and starts at the LSB with 0.
175 * @param x The variable to toggle the bit
176 * @param y The bit position to toggle
177 * @pre y < sizeof(T) * 8
178 * @return The new value of the old value with the bit toggled
180 template <typename T
>
181 constexpr T
ToggleBit(T
&x
, const uint8_t y
)
183 return x
= (T
)(x
^ ((T
)1U << y
));
187 * Assigns a bit in a variable.
189 * This function assigns a single bit in a variable. The variable is
190 * changed and the value is also returned. Parameter y defines the bit
191 * to assign and starts at the LSB with 0.
193 * @param x The variable to assign the bit
194 * @param y The bit position to assign
195 * @param value The new bit value
196 * @pre y < sizeof(T) * 8
197 * @return The new value of the old value with the bit assigned
199 template <typename T
>
200 constexpr T
AssignBit(T
&x
, const uint8_t y
, bool value
)
202 return SB
<T
>(x
, y
, 1, value
? 1 : 0);
206 * Search the first set bit in a value.
207 * When no bit is set, it returns 0.
209 * @param x The value to search.
210 * @return The position of the first bit set.
212 template <typename T
>
213 constexpr uint8_t FindFirstBit(T x
)
215 if (x
== 0) return 0;
217 if constexpr (std::is_enum_v
<T
>) {
218 return std::countr_zero
<std::underlying_type_t
<T
>>(x
);
220 return std::countr_zero(x
);
225 * Search the last set bit in a value.
226 * When no bit is set, it returns 0.
228 * @param x The value to search.
229 * @return The position of the last bit set.
231 template <typename T
>
232 constexpr uint8_t FindLastBit(T x
)
234 if (x
== 0) return 0;
236 return std::numeric_limits
<T
>::digits
- std::countl_zero(x
) - 1;
240 * Clear the first bit in an integer.
242 * This function returns a value where the first bit (from LSB)
244 * So, 110100 returns 110000, 000001 returns 000000, etc.
246 * @param value The value to clear the first bit
247 * @return The new value with the first bit cleared
249 template <typename T
>
250 constexpr T
KillFirstBit(T value
)
252 return value
&= (T
)(value
- 1);
256 * Counts the number of set bits in a variable.
258 * @param value the value to count the number of bits in.
259 * @return the number of bits.
261 template <typename T
>
262 constexpr uint
CountBits(T value
)
264 if constexpr (std::is_enum_v
<T
>) {
265 return std::popcount
<std::underlying_type_t
<T
>>(value
);
267 return std::popcount(value
);
272 * Test whether \a value has exactly 1 bit set
274 * @param value the value to test.
275 * @return does \a value have exactly 1 bit set?
277 template <typename T
>
278 constexpr bool HasExactlyOneBit(T value
)
280 return value
!= 0 && (value
& (value
- 1)) == 0;
284 * Test whether \a value has at most 1 bit set
286 * @param value the value to test.
287 * @return does \a value have at most 1 bit set?
289 template <typename T
>
290 constexpr bool HasAtMostOneBit(T value
)
292 return (value
& (value
- 1)) == 0;
296 * Iterable ensemble of each set bit in a value.
297 * @tparam Tbitpos Type of the position variable.
298 * @tparam Tbitset Type of the bitset value.
300 template <typename Tbitpos
= uint
, typename Tbitset
= uint
>
301 struct SetBitIterator
{
303 typedef Tbitpos value_type
;
304 typedef value_type
*pointer
;
305 typedef value_type
&reference
;
306 typedef size_t difference_type
;
307 typedef std::forward_iterator_tag iterator_category
;
309 explicit Iterator(Tbitset bitset
) : bitset(bitset
), bitpos(static_cast<Tbitpos
>(0))
314 bool operator==(const Iterator
&other
) const
316 return this->bitset
== other
.bitset
;
318 bool operator!=(const Iterator
&other
) const { return !(*this == other
); }
319 Tbitpos
operator*() const { return this->bitpos
; }
320 Iterator
& operator++() { this->Next(); this->Validate(); return *this; }
327 if (this->bitset
!= 0) {
328 typename
std::make_unsigned
<Tbitset
>::type unsigned_value
= this->bitset
;
329 this->bitpos
= static_cast<Tbitpos
>(FindFirstBit(unsigned_value
));
334 this->bitset
= KillFirstBit(this->bitset
);
338 SetBitIterator(Tbitset bitset
) : bitset(bitset
) {}
339 Iterator
begin() { return Iterator(this->bitset
); }
340 Iterator
end() { return Iterator(static_cast<Tbitset
>(0)); }
341 bool empty() { return this->begin() == this->end(); }
347 #if defined(__APPLE__)
348 /* Make endian swapping use Apple's macros to increase speed
349 * (since it will use hardware swapping if available).
350 * Even though they should return uint16_t and uint32_t, we get
351 * warnings if we don't cast those (why?) */
352 # define BSWAP32(x) (static_cast<uint32_t>(CFSwapInt32(x)))
353 # define BSWAP16(x) (static_cast<uint16_t>(CFSwapInt16(x)))
354 #elif defined(_MSC_VER)
355 /* MSVC has intrinsics for swapping, resulting in faster code */
356 # define BSWAP32(x) (_byteswap_ulong(x))
357 # define BSWAP16(x) (_byteswap_ushort(x))
360 * Perform a 32 bits endianness bitswap on x.
361 * @param x the variable to bitswap
362 * @return the bitswapped value.
364 static inline uint32_t BSWAP32(uint32_t x
)
366 #if !defined(__ICC) && defined(__GNUC__) && ((__GNUC__ > 4) || ((__GNUC__ == 4) && __GNUC_MINOR__ >= 3))
367 /* GCC >= 4.3 provides a builtin, resulting in faster code */
368 return static_cast<uint32_t>(__builtin_bswap32(static_cast<int32_t>(x
)));
370 return ((x
>> 24) & 0xFF) | ((x
>> 8) & 0xFF00) | ((x
<< 8) & 0xFF0000) | ((x
<< 24) & 0xFF000000);
371 #endif /* defined(__GNUC__) */
375 * Perform a 16 bits endianness bitswap on x.
376 * @param x the variable to bitswap
377 * @return the bitswapped value.
379 static inline uint16_t BSWAP16(uint16_t x
)
381 return (x
>> 8) | (x
<< 8);
383 #endif /* __APPLE__ */
385 #endif /* BITMATH_FUNC_HPP */