Cleanup: Missing TileDiffXY conversion in GenerateTerrain
[openttd-github.git] / src / 3rdparty / monocypher / monocypher-ed25519.cpp
blob4134463b6bce18f1fd4a481244f21f9b2b8989e5
1 // Monocypher version 4.0.2
2 //
3 // This file is dual-licensed. Choose whichever licence you want from
4 // the two licences listed below.
5 //
6 // The first licence is a regular 2-clause BSD licence. The second licence
7 // is the CC-0 from Creative Commons. It is intended to release Monocypher
8 // to the public domain. The BSD licence serves as a fallback option.
9 //
10 // SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0
12 // ------------------------------------------------------------------------
14 // Copyright (c) 2017-2019, Loup Vaillant
15 // All rights reserved.
18 // Redistribution and use in source and binary forms, with or without
19 // modification, are permitted provided that the following conditions are
20 // met:
22 // 1. Redistributions of source code must retain the above copyright
23 // notice, this list of conditions and the following disclaimer.
25 // 2. Redistributions in binary form must reproduce the above copyright
26 // notice, this list of conditions and the following disclaimer in the
27 // documentation and/or other materials provided with the
28 // distribution.
30 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 // ------------------------------------------------------------------------
44 // Written in 2017-2019 by Loup Vaillant
46 // To the extent possible under law, the author(s) have dedicated all copyright
47 // and related neighboring rights to this software to the public domain
48 // worldwide. This software is distributed without any warranty.
50 // You should have received a copy of the CC0 Public Domain Dedication along
51 // with this software. If not, see
52 // <https://creativecommons.org/publicdomain/zero/1.0/>
54 #include "monocypher-ed25519.h"
56 #ifdef MONOCYPHER_CPP_NAMESPACE
57 namespace MONOCYPHER_CPP_NAMESPACE {
58 #endif
60 /////////////////
61 /// Utilities ///
62 /////////////////
63 #define FOR(i, min, max) for (size_t i = min; i < max; i++)
64 #define COPY(dst, src, size) FOR(_i_, 0, size) (dst)[_i_] = (src)[_i_]
65 #define ZERO(buf, size) FOR(_i_, 0, size) (buf)[_i_] = 0
66 #define WIPE_CTX(ctx) crypto_wipe(ctx , sizeof(*(ctx)))
67 #define WIPE_BUFFER(buffer) crypto_wipe(buffer, sizeof(buffer))
68 #define MC_MIN(a, b) ((a) <= (b) ? (a) : (b))
69 typedef uint8_t u8;
70 typedef uint64_t u64;
72 // Returns the smallest positive integer y such that
73 // (x + y) % pow_2 == 0
74 // Basically, it's how many bytes we need to add to "align" x.
75 // Only works when pow_2 is a power of 2.
76 // Note: we use ~x+1 instead of -x to avoid compiler warnings
77 static size_t align(size_t x, size_t pow_2)
79 return (~x + 1) & (pow_2 - 1);
82 static u64 load64_be(const u8 s[8])
84 return((u64)s[0] << 56)
85 | ((u64)s[1] << 48)
86 | ((u64)s[2] << 40)
87 | ((u64)s[3] << 32)
88 | ((u64)s[4] << 24)
89 | ((u64)s[5] << 16)
90 | ((u64)s[6] << 8)
91 | (u64)s[7];
94 static void store64_be(u8 out[8], u64 in)
96 out[0] = (in >> 56) & 0xff;
97 out[1] = (in >> 48) & 0xff;
98 out[2] = (in >> 40) & 0xff;
99 out[3] = (in >> 32) & 0xff;
100 out[4] = (in >> 24) & 0xff;
101 out[5] = (in >> 16) & 0xff;
102 out[6] = (in >> 8) & 0xff;
103 out[7] = in & 0xff;
106 static void load64_be_buf (u64 *dst, const u8 *src, size_t size) {
107 FOR(i, 0, size) { dst[i] = load64_be(src + i*8); }
110 ///////////////
111 /// SHA 512 ///
112 ///////////////
113 static u64 rot(u64 x, int c ) { return (x >> c) | (x << (64 - c)); }
114 static u64 ch (u64 x, u64 y, u64 z) { return (x & y) ^ (~x & z); }
115 static u64 maj(u64 x, u64 y, u64 z) { return (x & y) ^ ( x & z) ^ (y & z); }
116 static u64 big_sigma0(u64 x) { return rot(x, 28) ^ rot(x, 34) ^ rot(x, 39); }
117 static u64 big_sigma1(u64 x) { return rot(x, 14) ^ rot(x, 18) ^ rot(x, 41); }
118 static u64 lit_sigma0(u64 x) { return rot(x, 1) ^ rot(x, 8) ^ (x >> 7); }
119 static u64 lit_sigma1(u64 x) { return rot(x, 19) ^ rot(x, 61) ^ (x >> 6); }
121 static const u64 K[80] = {
122 0x428a2f98d728ae22,0x7137449123ef65cd,0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc,
123 0x3956c25bf348b538,0x59f111f1b605d019,0x923f82a4af194f9b,0xab1c5ed5da6d8118,
124 0xd807aa98a3030242,0x12835b0145706fbe,0x243185be4ee4b28c,0x550c7dc3d5ffb4e2,
125 0x72be5d74f27b896f,0x80deb1fe3b1696b1,0x9bdc06a725c71235,0xc19bf174cf692694,
126 0xe49b69c19ef14ad2,0xefbe4786384f25e3,0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65,
127 0x2de92c6f592b0275,0x4a7484aa6ea6e483,0x5cb0a9dcbd41fbd4,0x76f988da831153b5,
128 0x983e5152ee66dfab,0xa831c66d2db43210,0xb00327c898fb213f,0xbf597fc7beef0ee4,
129 0xc6e00bf33da88fc2,0xd5a79147930aa725,0x06ca6351e003826f,0x142929670a0e6e70,
130 0x27b70a8546d22ffc,0x2e1b21385c26c926,0x4d2c6dfc5ac42aed,0x53380d139d95b3df,
131 0x650a73548baf63de,0x766a0abb3c77b2a8,0x81c2c92e47edaee6,0x92722c851482353b,
132 0xa2bfe8a14cf10364,0xa81a664bbc423001,0xc24b8b70d0f89791,0xc76c51a30654be30,
133 0xd192e819d6ef5218,0xd69906245565a910,0xf40e35855771202a,0x106aa07032bbd1b8,
134 0x19a4c116b8d2d0c8,0x1e376c085141ab53,0x2748774cdf8eeb99,0x34b0bcb5e19b48a8,
135 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb,0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3,
136 0x748f82ee5defb2fc,0x78a5636f43172f60,0x84c87814a1f0ab72,0x8cc702081a6439ec,
137 0x90befffa23631e28,0xa4506cebde82bde9,0xbef9a3f7b2c67915,0xc67178f2e372532b,
138 0xca273eceea26619c,0xd186b8c721c0c207,0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178,
139 0x06f067aa72176fba,0x0a637dc5a2c898a6,0x113f9804bef90dae,0x1b710b35131c471b,
140 0x28db77f523047d84,0x32caab7b40c72493,0x3c9ebe0a15c9bebc,0x431d67c49c100d4c,
141 0x4cc5d4becb3e42b6,0x597f299cfc657e2a,0x5fcb6fab3ad6faec,0x6c44198c4a475817
144 static void sha512_compress(crypto_sha512_ctx *ctx)
146 u64 a = ctx->hash[0]; u64 b = ctx->hash[1];
147 u64 c = ctx->hash[2]; u64 d = ctx->hash[3];
148 u64 e = ctx->hash[4]; u64 f = ctx->hash[5];
149 u64 g = ctx->hash[6]; u64 h = ctx->hash[7];
151 FOR (j, 0, 16) {
152 u64 in = K[j] + ctx->input[j];
153 u64 t1 = big_sigma1(e) + ch (e, f, g) + h + in;
154 u64 t2 = big_sigma0(a) + maj(a, b, c);
155 h = g; g = f; f = e; e = d + t1;
156 d = c; c = b; b = a; a = t1 + t2;
158 size_t i16 = 0;
159 FOR(i, 1, 5) {
160 i16 += 16;
161 FOR (j, 0, 16) {
162 ctx->input[j] += lit_sigma1(ctx->input[(j- 2) & 15]);
163 ctx->input[j] += lit_sigma0(ctx->input[(j-15) & 15]);
164 ctx->input[j] += ctx->input[(j- 7) & 15];
165 u64 in = K[i16 + j] + ctx->input[j];
166 u64 t1 = big_sigma1(e) + ch (e, f, g) + h + in;
167 u64 t2 = big_sigma0(a) + maj(a, b, c);
168 h = g; g = f; f = e; e = d + t1;
169 d = c; c = b; b = a; a = t1 + t2;
173 ctx->hash[0] += a; ctx->hash[1] += b;
174 ctx->hash[2] += c; ctx->hash[3] += d;
175 ctx->hash[4] += e; ctx->hash[5] += f;
176 ctx->hash[6] += g; ctx->hash[7] += h;
179 // Write 1 input byte
180 static void sha512_set_input(crypto_sha512_ctx *ctx, u8 input)
182 size_t word = ctx->input_idx >> 3;
183 size_t byte = ctx->input_idx & 7;
184 ctx->input[word] |= (u64)input << (8 * (7 - byte));
187 // Increment a 128-bit "word".
188 static void sha512_incr(u64 x[2], u64 y)
190 x[1] += y;
191 if (x[1] < y) {
192 x[0]++;
196 void crypto_sha512_init(crypto_sha512_ctx *ctx)
198 ctx->hash[0] = 0x6a09e667f3bcc908;
199 ctx->hash[1] = 0xbb67ae8584caa73b;
200 ctx->hash[2] = 0x3c6ef372fe94f82b;
201 ctx->hash[3] = 0xa54ff53a5f1d36f1;
202 ctx->hash[4] = 0x510e527fade682d1;
203 ctx->hash[5] = 0x9b05688c2b3e6c1f;
204 ctx->hash[6] = 0x1f83d9abfb41bd6b;
205 ctx->hash[7] = 0x5be0cd19137e2179;
206 ctx->input_size[0] = 0;
207 ctx->input_size[1] = 0;
208 ctx->input_idx = 0;
209 ZERO(ctx->input, 16);
212 void crypto_sha512_update(crypto_sha512_ctx *ctx,
213 const u8 *message, size_t message_size)
215 // Avoid undefined NULL pointer increments with empty messages
216 if (message_size == 0) {
217 return;
220 // Align ourselves with word boundaries
221 if ((ctx->input_idx & 7) != 0) {
222 size_t nb_bytes = MC_MIN(align(ctx->input_idx, 8), message_size);
223 FOR (i, 0, nb_bytes) {
224 sha512_set_input(ctx, message[i]);
225 ctx->input_idx++;
227 message += nb_bytes;
228 message_size -= nb_bytes;
231 // Align ourselves with block boundaries
232 if ((ctx->input_idx & 127) != 0) {
233 size_t nb_words = MC_MIN(align(ctx->input_idx, 128), message_size) >> 3;
234 load64_be_buf(ctx->input + (ctx->input_idx >> 3), message, nb_words);
235 ctx->input_idx += nb_words << 3;
236 message += nb_words << 3;
237 message_size -= nb_words << 3;
240 // Compress block if needed
241 if (ctx->input_idx == 128) {
242 sha512_incr(ctx->input_size, 1024); // size is in bits
243 sha512_compress(ctx);
244 ctx->input_idx = 0;
245 ZERO(ctx->input, 16);
248 // Process the message block by block
249 FOR (i, 0, message_size >> 7) { // number of blocks
250 load64_be_buf(ctx->input, message, 16);
251 sha512_incr(ctx->input_size, 1024); // size is in bits
252 sha512_compress(ctx);
253 ctx->input_idx = 0;
254 ZERO(ctx->input, 16);
255 message += 128;
257 message_size &= 127;
259 if (message_size != 0) {
260 // Remaining words
261 size_t nb_words = message_size >> 3;
262 load64_be_buf(ctx->input, message, nb_words);
263 ctx->input_idx += nb_words << 3;
264 message += nb_words << 3;
265 message_size -= nb_words << 3;
267 // Remaining bytes
268 FOR (i, 0, message_size) {
269 sha512_set_input(ctx, message[i]);
270 ctx->input_idx++;
275 void crypto_sha512_final(crypto_sha512_ctx *ctx, u8 hash[64])
277 // Add padding bit
278 if (ctx->input_idx == 0) {
279 ZERO(ctx->input, 16);
281 sha512_set_input(ctx, 128);
283 // Update size
284 sha512_incr(ctx->input_size, ctx->input_idx * 8);
286 // Compress penultimate block (if any)
287 if (ctx->input_idx > 111) {
288 sha512_compress(ctx);
289 ZERO(ctx->input, 14);
291 // Compress last block
292 ctx->input[14] = ctx->input_size[0];
293 ctx->input[15] = ctx->input_size[1];
294 sha512_compress(ctx);
296 // Copy hash to output (big endian)
297 FOR (i, 0, 8) {
298 store64_be(hash + i*8, ctx->hash[i]);
301 WIPE_CTX(ctx);
304 void crypto_sha512(u8 hash[64], const u8 *message, size_t message_size)
306 crypto_sha512_ctx ctx;
307 crypto_sha512_init (&ctx);
308 crypto_sha512_update(&ctx, message, message_size);
309 crypto_sha512_final (&ctx, hash);
312 ////////////////////
313 /// HMAC SHA 512 ///
314 ////////////////////
315 void crypto_sha512_hmac_init(crypto_sha512_hmac_ctx *ctx,
316 const u8 *key, size_t key_size)
318 // hash key if it is too long
319 if (key_size > 128) {
320 crypto_sha512(ctx->key, key, key_size);
321 key = ctx->key;
322 key_size = 64;
324 // Compute inner key: padded key XOR 0x36
325 FOR (i, 0, key_size) { ctx->key[i] = key[i] ^ 0x36; }
326 FOR (i, key_size, 128) { ctx->key[i] = 0x36; }
327 // Start computing inner hash
328 crypto_sha512_init (&ctx->ctx);
329 crypto_sha512_update(&ctx->ctx, ctx->key, 128);
332 void crypto_sha512_hmac_update(crypto_sha512_hmac_ctx *ctx,
333 const u8 *message, size_t message_size)
335 crypto_sha512_update(&ctx->ctx, message, message_size);
338 void crypto_sha512_hmac_final(crypto_sha512_hmac_ctx *ctx, u8 hmac[64])
340 // Finish computing inner hash
341 crypto_sha512_final(&ctx->ctx, hmac);
342 // Compute outer key: padded key XOR 0x5c
343 FOR (i, 0, 128) {
344 ctx->key[i] ^= 0x36 ^ 0x5c;
346 // Compute outer hash
347 crypto_sha512_init (&ctx->ctx);
348 crypto_sha512_update(&ctx->ctx, ctx->key , 128);
349 crypto_sha512_update(&ctx->ctx, hmac, 64);
350 crypto_sha512_final (&ctx->ctx, hmac); // outer hash
351 WIPE_CTX(ctx);
354 void crypto_sha512_hmac(u8 hmac[64], const u8 *key, size_t key_size,
355 const u8 *message, size_t message_size)
357 crypto_sha512_hmac_ctx ctx;
358 crypto_sha512_hmac_init (&ctx, key, key_size);
359 crypto_sha512_hmac_update(&ctx, message, message_size);
360 crypto_sha512_hmac_final (&ctx, hmac);
363 ////////////////////
364 /// HKDF SHA 512 ///
365 ////////////////////
366 void crypto_sha512_hkdf_expand(u8 *okm, size_t okm_size,
367 const u8 *prk, size_t prk_size,
368 const u8 *info, size_t info_size)
370 int not_first = 0;
371 u8 ctr = 1;
372 u8 blk[64];
374 while (okm_size > 0) {
375 size_t out_size = MC_MIN(okm_size, sizeof(blk));
377 crypto_sha512_hmac_ctx ctx;
378 crypto_sha512_hmac_init(&ctx, prk , prk_size);
379 if (not_first) {
380 // For some reason HKDF uses some kind of CBC mode.
381 // For some reason CTR mode alone wasn't enough.
382 // Like what, they didn't trust HMAC in 2010? Really??
383 crypto_sha512_hmac_update(&ctx, blk , sizeof(blk));
385 crypto_sha512_hmac_update(&ctx, info, info_size);
386 crypto_sha512_hmac_update(&ctx, &ctr, 1);
387 crypto_sha512_hmac_final(&ctx, blk);
389 COPY(okm, blk, out_size);
391 not_first = 1;
392 okm += out_size;
393 okm_size -= out_size;
394 ctr++;
398 void crypto_sha512_hkdf(u8 *okm , size_t okm_size,
399 const u8 *ikm , size_t ikm_size,
400 const u8 *salt, size_t salt_size,
401 const u8 *info, size_t info_size)
403 // Extract
404 u8 prk[64];
405 crypto_sha512_hmac(prk, salt, salt_size, ikm, ikm_size);
407 // Expand
408 crypto_sha512_hkdf_expand(okm, okm_size, prk, sizeof(prk), info, info_size);
411 ///////////////
412 /// Ed25519 ///
413 ///////////////
414 void crypto_ed25519_key_pair(u8 secret_key[64], u8 public_key[32], u8 seed[32])
416 u8 a[64];
417 COPY(a, seed, 32); // a[ 0..31] = seed
418 crypto_wipe(seed, 32);
419 COPY(secret_key, a, 32); // secret key = seed
420 crypto_sha512(a, a, 32); // a[ 0..31] = scalar
421 crypto_eddsa_trim_scalar(a, a); // a[ 0..31] = trimmed scalar
422 crypto_eddsa_scalarbase(public_key, a); // public key = [trimmed scalar]B
423 COPY(secret_key + 32, public_key, 32); // secret key includes public half
424 WIPE_BUFFER(a);
427 static void hash_reduce(u8 h[32],
428 const u8 *a, size_t a_size,
429 const u8 *b, size_t b_size,
430 const u8 *c, size_t c_size,
431 const u8 *d, size_t d_size)
433 u8 hash[64];
434 crypto_sha512_ctx ctx;
435 crypto_sha512_init (&ctx);
436 crypto_sha512_update(&ctx, a, a_size);
437 crypto_sha512_update(&ctx, b, b_size);
438 crypto_sha512_update(&ctx, c, c_size);
439 crypto_sha512_update(&ctx, d, d_size);
440 crypto_sha512_final (&ctx, hash);
441 crypto_eddsa_reduce(h, hash);
444 static void ed25519_dom_sign(u8 signature [64], const u8 secret_key[32],
445 const u8 *dom, size_t dom_size,
446 const u8 *message, size_t message_size)
448 u8 a[64]; // secret scalar and prefix
449 u8 r[32]; // secret deterministic "random" nonce
450 u8 h[32]; // publically verifiable hash of the message (not wiped)
451 u8 R[32]; // first half of the signature (allows overlapping inputs)
452 const u8 *pk = secret_key + 32;
454 crypto_sha512(a, secret_key, 32);
455 crypto_eddsa_trim_scalar(a, a);
456 hash_reduce(r, dom, dom_size, a + 32, 32, message, message_size, 0, 0);
457 crypto_eddsa_scalarbase(R, r);
458 hash_reduce(h, dom, dom_size, R, 32, pk, 32, message, message_size);
459 COPY(signature, R, 32);
460 crypto_eddsa_mul_add(signature + 32, h, a, r);
462 WIPE_BUFFER(a);
463 WIPE_BUFFER(r);
466 void crypto_ed25519_sign(u8 signature [64], const u8 secret_key[64],
467 const u8 *message, size_t message_size)
469 ed25519_dom_sign(signature, secret_key, 0, 0, message, message_size);
472 int crypto_ed25519_check(const u8 signature[64], const u8 public_key[32],
473 const u8 *msg, size_t msg_size)
475 u8 h_ram[32];
476 hash_reduce(h_ram, signature, 32, public_key, 32, msg, msg_size, 0, 0);
477 return crypto_eddsa_check_equation(signature, public_key, h_ram);
480 static const u8 domain[34] = "SigEd25519 no Ed25519 collisions\1";
482 void crypto_ed25519_ph_sign(uint8_t signature[64], const uint8_t secret_key[64],
483 const uint8_t message_hash[64])
485 ed25519_dom_sign(signature, secret_key, domain, sizeof(domain),
486 message_hash, 64);
489 int crypto_ed25519_ph_check(const uint8_t sig[64], const uint8_t pk[32],
490 const uint8_t msg_hash[64])
492 u8 h_ram[32];
493 hash_reduce(h_ram, domain, sizeof(domain), sig, 32, pk, 32, msg_hash, 64);
494 return crypto_eddsa_check_equation(sig, pk, h_ram);
498 #ifdef MONOCYPHER_CPP_NAMESPACE
500 #endif