2 * This file is part of OpenTTD.
3 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
4 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
5 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
8 /** @file math_func.hpp Integer math functions */
13 #include "strong_typedef_type.hpp"
16 * Returns the absolute value of (scalar) variable.
18 * @note assumes variable to be signed
19 * @param a The value we want to unsign
20 * @return The unsigned value
23 constexpr T
abs(const T a
)
25 return (a
< static_cast<T
>(0)) ? -a
: a
;
29 * Return the smallest multiple of n equal or greater than x
31 * @note n must be a power of 2
32 * @param x The min value
33 * @param n The base of the number we are searching
34 * @return The smallest multiple of n equal or greater than x
37 constexpr T
Align(const T x
, uint n
)
39 assert((n
& (n
- 1)) == 0 && n
!= 0);
41 return static_cast<T
>((x
+ n
) & ~static_cast<T
>(n
));
45 * Return the smallest multiple of n equal or greater than x
46 * Applies to pointers only
48 * @note n must be a power of 2
49 * @param x The min value
50 * @param n The base of the number we are searching
51 * @return The smallest multiple of n equal or greater than x
55 constexpr T
*AlignPtr(T
*x
, uint n
)
57 static_assert(sizeof(uintptr_t) == sizeof(void *));
58 return reinterpret_cast<T
*>(Align(reinterpret_cast<uintptr_t>(x
), n
));
62 * Clamp a value between an interval.
64 * This function returns a value which is between the given interval of
65 * min and max. If the given value is in this interval the value itself
66 * is returned otherwise the border of the interval is returned, according
67 * which side of the interval was 'left'.
69 * @note The min value must be less or equal of max or you get some
71 * @param a The value to clamp/truncate.
72 * @param min The minimum of the interval.
73 * @param max the maximum of the interval.
74 * @returns A value between min and max which is closest to a.
75 * @see ClampU(uint, uint, uint)
76 * @see Clamp(int, int, int)
79 constexpr T
Clamp(const T a
, const T min
, const T max
)
82 if (a
<= min
) return min
;
83 if (a
>= max
) return max
;
88 * Clamp a value between an interval.
90 * This function returns a value which is between the given interval of
91 * min and max. If the given value is in this interval the value itself
92 * is returned otherwise the border of the interval is returned, according
93 * which side of the interval was 'left'.
95 * @note If the min value is greater than the max, return value is the average of the min and max.
96 * @param a The value to clamp/truncate.
97 * @param min The minimum of the interval.
98 * @param max the maximum of the interval.
99 * @returns A value between min and max which is closest to a.
101 template <typename T
>
102 constexpr T
SoftClamp(const T a
, const T min
, const T max
)
105 using U
= std::make_unsigned_t
<T
>;
106 return min
- (U(min
) - max
) / 2;
108 if (a
<= min
) return min
;
109 if (a
>= max
) return max
;
114 * Clamp an integer between an interval.
116 * This function returns a value which is between the given interval of
117 * min and max. If the given value is in this interval the value itself
118 * is returned otherwise the border of the interval is returned, according
119 * which side of the interval was 'left'.
121 * @note The min value must be less or equal of max or you get some
122 * unexpected results.
123 * @param a The value to clamp/truncate.
124 * @param min The minimum of the interval.
125 * @param max the maximum of the interval.
126 * @returns A value between min and max which is closest to a.
127 * @see ClampU(uint, uint, uint)
129 constexpr int Clamp(const int a
, const int min
, const int max
)
131 return Clamp
<int>(a
, min
, max
);
135 * Clamp an unsigned integer between an interval.
137 * This function returns a value which is between the given interval of
138 * min and max. If the given value is in this interval the value itself
139 * is returned otherwise the border of the interval is returned, according
140 * which side of the interval was 'left'.
142 * @note The min value must be less or equal of max or you get some
143 * unexpected results.
144 * @param a The value to clamp/truncate.
145 * @param min The minimum of the interval.
146 * @param max the maximum of the interval.
147 * @returns A value between min and max which is closest to a.
148 * @see Clamp(int, int, int)
150 constexpr uint
ClampU(const uint a
, const uint min
, const uint max
)
152 return Clamp
<uint
>(a
, min
, max
);
156 * Clamp the given value down to lie within the requested type.
158 * For example ClampTo<uint8_t> will return a value clamped to the range of 0
159 * to 255. Anything smaller will become 0, anything larger will become 255.
161 * @param a The 64-bit value to clamp.
162 * @return The 64-bit value reduced to a value within the given allowed range
163 * for the return type.
164 * @see Clamp(int, int, int)
166 template <typename To
, typename From
, std::enable_if_t
<std::is_integral
<From
>::value
, int> = 0>
167 constexpr To
ClampTo(From value
)
169 static_assert(std::numeric_limits
<To
>::is_integer
, "Do not clamp from non-integer values");
170 static_assert(std::numeric_limits
<From
>::is_integer
, "Do not clamp to non-integer values");
172 if constexpr (sizeof(To
) >= sizeof(From
) && std::numeric_limits
<To
>::is_signed
== std::numeric_limits
<From
>::is_signed
) {
173 /* Same signedness and To type is larger or equal than From type, no clamping is required. */
174 return static_cast<To
>(value
);
177 if constexpr (sizeof(To
) > sizeof(From
) && std::numeric_limits
<To
>::is_signed
) {
178 /* Signed destination and a larger To type, no clamping is required. */
179 return static_cast<To
>(value
);
182 /* Get the bigger of the two types based on essentially the number of bits. */
183 using BiggerType
= typename
std::conditional
<sizeof(From
) >= sizeof(To
), From
, To
>::type
;
185 if constexpr (std::numeric_limits
<To
>::is_signed
) {
186 /* The output is a signed number. */
187 if constexpr (std::numeric_limits
<From
>::is_signed
) {
188 /* Both input and output are signed. */
189 return static_cast<To
>(std::clamp
<BiggerType
>(value
,
190 std::numeric_limits
<To
>::lowest(), std::numeric_limits
<To
>::max()));
193 /* The input is unsigned, so skip the minimum check and use unsigned variant of the biggest type as intermediate type. */
194 using BiggerUnsignedType
= typename
std::make_unsigned
<BiggerType
>::type
;
195 return static_cast<To
>(std::min
<BiggerUnsignedType
>(std::numeric_limits
<To
>::max(), value
));
198 /* The output is unsigned. */
200 if constexpr (std::numeric_limits
<From
>::is_signed
) {
201 /* Input is signed; account for the negative numbers in the input. */
202 if constexpr (sizeof(To
) >= sizeof(From
)) {
203 /* If the output type is larger or equal to the input type, then only clamp the negative numbers. */
204 return static_cast<To
>(std::max
<From
>(value
, 0));
207 /* The output type is smaller than the input type. */
208 using BiggerSignedType
= typename
std::make_signed
<BiggerType
>::type
;
209 return static_cast<To
>(std::clamp
<BiggerSignedType
>(value
,
210 std::numeric_limits
<To
>::lowest(), std::numeric_limits
<To
>::max()));
213 /* The input and output are unsigned, just clamp at the high side. */
214 return static_cast<To
>(std::min
<BiggerType
>(value
, std::numeric_limits
<To
>::max()));
218 * Specialization of ClampTo for #StrongType::Typedef.
220 template <typename To
, typename From
, std::enable_if_t
<std::is_base_of
<StrongTypedefBase
, From
>::value
, int> = 0>
221 constexpr To
ClampTo(From value
)
223 return ClampTo
<To
>(value
.base());
227 * Returns the (absolute) difference between two (scalar) variables
229 * @param a The first scalar
230 * @param b The second scalar
231 * @return The absolute difference between the given scalars
233 template <typename T
>
234 constexpr T
Delta(const T a
, const T b
)
236 return (a
< b
) ? b
- a
: a
- b
;
240 * Checks if a value is between a window started at some base point.
242 * This function checks if the value x is between the value of base
243 * and base+size. If x equals base this returns true. If x equals
244 * base+size this returns false.
246 * @param x The value to check
247 * @param base The base value of the interval
248 * @param size The size of the interval
249 * @return True if the value is in the interval, false else.
251 template <typename T
>
252 constexpr bool IsInsideBS(const T x
, const size_t base
, const size_t size
)
254 return static_cast<size_t>(x
- base
) < size
;
258 * Checks if a value is in an interval.
260 * Returns true if a value is in the interval of [min, max).
262 * @param x The value to check
263 * @param min The minimum of the interval
264 * @param max The maximum of the interval
267 template <typename T
, std::enable_if_t
<std::disjunction_v
<std::is_convertible
<T
, size_t>, std::is_base_of
<StrongTypedefBase
, T
>>, int> = 0>
268 constexpr bool IsInsideMM(const T x
, const size_t min
, const size_t max
) noexcept
270 if constexpr (std::is_base_of_v
<StrongTypedefBase
, T
>) {
271 return static_cast<size_t>(x
.base() - min
) < (max
- min
);
273 return static_cast<size_t>(x
- min
) < (max
- min
);
278 * Type safe swap operation
279 * @param a variable to swap with b
280 * @param b variable to swap with a
282 template <typename T
>
283 constexpr void Swap(T
&a
, T
&b
)
291 * Converts a "fract" value 0..255 to "percent" value 0..100
292 * @param i value to convert, range 0..255
293 * @return value in range 0..100
295 constexpr uint
ToPercent8(uint i
)
302 * Converts a "fract" value 0..65535 to "percent" value 0..100
303 * @param i value to convert, range 0..65535
304 * @return value in range 0..100
306 constexpr uint
ToPercent16(uint i
)
309 return i
* 101 >> 16;
312 int DivideApprox(int a
, int b
);
315 * Computes ceil(a / b) for non-negative a and b.
317 * @param b Denominator
318 * @return Quotient, rounded up
320 constexpr uint
CeilDiv(uint a
, uint b
)
322 return (a
+ b
- 1) / b
;
326 * Computes ceil(a / b) * b for non-negative a and b.
328 * @param b Denominator
329 * @return a rounded up to the nearest multiple of b.
331 constexpr uint
Ceil(uint a
, uint b
)
333 return CeilDiv(a
, b
) * b
;
337 * Computes round(a / b) for signed a and unsigned b.
339 * @param b Denominator
340 * @return Quotient, rounded to nearest
342 constexpr int RoundDivSU(int a
, uint b
)
345 /* 0.5 is rounded to 1 */
346 return (a
+ static_cast<int>(b
) / 2) / static_cast<int>(b
);
348 /* -0.5 is rounded to 0 */
349 return (a
- (static_cast<int>(b
) - 1) / 2) / static_cast<int>(b
);
354 * Computes ten to the given power.
355 * @param power The power of ten to get.
356 * @return The power of ten.
358 constexpr uint64_t PowerOfTen(int power
)
360 assert(power
>= 0 && power
<= 20 /* digits in uint64_t */);
362 for (int i
= 0; i
< power
; i
++) result
*= 10;
366 uint32_t IntSqrt(uint32_t num
);
368 #endif /* MATH_FUNC_HPP */