Delete pointless project file remnants.
[openttd-joker.git] / src / misc / binaryheap.hpp
blob7fbed60590d3490ae78477607fac0b6a54224b8b
1 /* $Id: binaryheap.hpp 24900 2013-01-08 22:46:42Z planetmaker $ */
3 /*
4 * This file is part of OpenTTD.
5 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
6 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
7 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
8 */
10 /** @file binaryheap.hpp Binary heap implementation. */
12 #ifndef BINARYHEAP_HPP
13 #define BINARYHEAP_HPP
15 #include "../core/alloc_func.hpp"
17 /** Enable it if you suspect binary heap doesn't work well */
18 #define BINARYHEAP_CHECK 0
20 #if BINARYHEAP_CHECK
21 /** Check for consistency. */
22 #define CHECK_CONSISTY() this->CheckConsistency()
23 #else
24 /** Don't check for consistency. */
25 #define CHECK_CONSISTY() ;
26 #endif
28 /**
29 * Binary Heap as C++ template.
30 * A carrier which keeps its items automatically holds the smallest item at
31 * the first position. The order of items is maintained by using a binary tree.
32 * The implementation is used for priority queue's.
34 * @par Usage information:
35 * Item of the binary heap should support the 'lower-than' operator '<'.
36 * It is used for comparing items before moving them to their position.
38 * @par
39 * This binary heap allocates just the space for item pointers. The items
40 * are allocated elsewhere.
42 * @par Implementation notes:
43 * Internally the first item is never used, because that simplifies the
44 * implementation.
46 * @par
47 * For further information about the Binary Heap algorithm, see
48 * http://www.policyalmanac.org/games/binaryHeaps.htm
50 * @tparam T Type of the items stored in the binary heap
52 template <class T>
53 class CBinaryHeapT {
54 private:
55 uint items; ///< Number of items in the heap
56 uint capacity; ///< Maximum number of items the heap can hold
57 T **data; ///< The pointer to the heap item pointers
59 public:
60 /**
61 * Create a binary heap.
62 * @param max_items The limit of the heap
64 explicit CBinaryHeapT(uint max_items)
65 : items(0)
66 , capacity(max_items)
68 this->data = MallocT<T *>(max_items + 1);
71 ~CBinaryHeapT()
73 this->Clear();
74 free(this->data);
75 this->data = nullptr;
78 protected:
79 /**
80 * Get position for fixing a gap (downwards).
81 * The gap is moved downwards in the binary tree until it
82 * is in order again.
84 * @param gap The position of the gap
85 * @param item The proposed item for filling the gap
86 * @return The (gap)position where the item fits
88 inline uint HeapifyDown(uint gap, T *item)
90 assert(gap != 0);
92 /* The first child of the gap is at [parent * 2] */
93 uint child = gap * 2;
95 /* while children are valid */
96 while (child <= this->items) {
97 /* choose the smaller child */
98 if (child < this->items && *this->data[child + 1] < *this->data[child]) {
99 child++;
101 /* is it smaller than our parent? */
102 if (!(*this->data[child] < *item)) {
103 /* the smaller child is still bigger or same as parent => we are done */
104 break;
106 /* if smaller child is smaller than parent, it will become new parent */
107 this->data[gap] = this->data[child];
108 gap = child;
109 /* where do we have our new children? */
110 child = gap * 2;
112 return gap;
116 * Get position for fixing a gap (upwards).
117 * The gap is moved upwards in the binary tree until the
118 * is in order again.
120 * @param gap The position of the gap
121 * @param item The proposed item for filling the gap
122 * @return The (gap)position where the item fits
124 inline uint HeapifyUp(uint gap, T *item)
126 assert(gap != 0);
128 uint parent;
130 while (gap > 1) {
131 /* compare [gap] with its parent */
132 parent = gap / 2;
133 if (!(*item < *this->data[parent])) {
134 /* we don't need to continue upstairs */
135 break;
137 this->data[gap] = this->data[parent];
138 gap = parent;
140 return gap;
143 #if BINARYHEAP_CHECK
144 /** Verify the heap consistency */
145 inline void CheckConsistency()
147 for (uint child = 2; child <= this->items; child++) {
148 uint parent = child / 2;
149 assert(!(*this->data[child] < *this->data[parent]));
152 #endif
154 public:
156 * Get the number of items stored in the priority queue.
158 * @return The number of items in the queue
160 inline uint Length() const
162 return this->items;
166 * Test if the priority queue is empty.
168 * @return True if empty
170 inline bool IsEmpty() const
172 return this->items == 0;
176 * Test if the priority queue is full.
178 * @return True if full.
180 inline bool IsFull() const
182 return this->items >= this->capacity;
186 * Get the smallest item in the binary tree.
188 * @return The smallest item, or throw assert if empty.
190 inline T *Begin()
192 assert(!this->IsEmpty());
193 return this->data[1];
197 * Get the LAST item in the binary tree.
199 * @note The last item is not necessary the biggest!
201 * @return The last item
203 inline T *End()
205 return this->data[1 + this->items];
209 * Insert new item into the priority queue, maintaining heap order.
211 * @param new_item The pointer to the new item
213 inline void Include(T *new_item)
215 if (this->IsFull()) {
216 assert(this->capacity < UINT_MAX / 2);
218 this->capacity *= 2;
219 this->data = ReallocT<T*>(this->data, this->capacity + 1);
222 /* Make place for new item. A gap is now at the end of the tree. */
223 uint gap = this->HeapifyUp(++items, new_item);
224 this->data[gap] = new_item;
225 CHECK_CONSISTY();
229 * Remove and return the smallest (and also first) item
230 * from the priority queue.
232 * @return The pointer to the removed item
234 inline T *Shift()
236 assert(!this->IsEmpty());
238 T *first = this->Begin();
240 this->items--;
241 /* at index 1 we have a gap now */
242 T *last = this->End();
243 uint gap = this->HeapifyDown(1, last);
244 /* move last item to the proper place */
245 if (!this->IsEmpty()) this->data[gap] = last;
247 CHECK_CONSISTY();
248 return first;
252 * Remove item at given index from the priority queue.
254 * @param index The position of the item in the heap
256 inline void Remove(uint index)
258 if (index < this->items) {
259 assert(index != 0);
260 this->items--;
261 /* at position index we have a gap now */
263 T *last = this->End();
264 /* Fix binary tree up and downwards */
265 uint gap = this->HeapifyUp(index, last);
266 gap = this->HeapifyDown(gap, last);
267 /* move last item to the proper place */
268 if (!this->IsEmpty()) this->data[gap] = last;
269 } else {
270 assert(index == this->items);
271 this->items--;
273 CHECK_CONSISTY();
277 * Search for an item in the priority queue.
278 * Matching is done by comparing address of the
279 * item.
281 * @param item The reference to the item
282 * @return The index of the item or zero if not found
284 inline uint FindIndex(const T &item) const
286 if (this->IsEmpty()) return 0;
287 for (T **ppI = this->data + 1, **ppLast = ppI + this->items; ppI <= ppLast; ppI++) {
288 if (*ppI == &item) {
289 return ppI - this->data;
292 return 0;
296 * Make the priority queue empty.
297 * All remaining items will remain untouched.
299 inline void Clear()
301 this->items = 0;
305 #endif /* BINARYHEAP_HPP */