(svn r27950) -Merge: Documentation updates from 1.7 branch
[openttd.git] / src / linkgraph / mcf.cpp
blobecdf792afed6e7bf1a34dcc348909294b6f1ec32
1 /** @file mcf.cpp Definition of Multi-Commodity-Flow solver. */
3 #include "../stdafx.h"
4 #include "../core/math_func.hpp"
5 #include "mcf.h"
6 #include <set>
8 #include "../safeguards.h"
10 typedef std::map<NodeID, Path *> PathViaMap;
12 /**
13 * Distance-based annotation for use in the Dijkstra algorithm. This is close
14 * to the original meaning of "annotation" in this context. Paths are rated
15 * according to the sum of distances of their edges.
17 class DistanceAnnotation : public Path {
18 public:
20 /**
21 * Constructor.
22 * @param n ID of node to be annotated.
23 * @param source If the node is the source of its path.
25 DistanceAnnotation(NodeID n, bool source = false) : Path(n, source) {}
27 bool IsBetter(const DistanceAnnotation *base, uint cap, int free_cap, uint dist) const;
29 /**
30 * Return the actual value of the annotation, in this case the distance.
31 * @return Distance.
33 inline uint GetAnnotation() const { return this->distance; }
35 /**
36 * Update the cached annotation value
38 inline void UpdateAnnotation() { }
40 /**
41 * Comparator for std containers.
43 struct Comparator {
44 bool operator()(const DistanceAnnotation *x, const DistanceAnnotation *y) const;
48 /**
49 * Capacity-based annotation for use in the Dijkstra algorithm. This annotation
50 * rates paths according to the maximum capacity of their edges. The Dijkstra
51 * algorithm still gives meaningful results like this as the capacity of a path
52 * can only decrease or stay the same if you add more edges.
54 class CapacityAnnotation : public Path {
55 int cached_annotation;
57 public:
59 /**
60 * Constructor.
61 * @param n ID of node to be annotated.
62 * @param source If the node is the source of its path.
64 CapacityAnnotation(NodeID n, bool source = false) : Path(n, source) {}
66 bool IsBetter(const CapacityAnnotation *base, uint cap, int free_cap, uint dist) const;
68 /**
69 * Return the actual value of the annotation, in this case the capacity.
70 * @return Capacity.
72 inline int GetAnnotation() const { return this->cached_annotation; }
74 /**
75 * Update the cached annotation value
77 inline void UpdateAnnotation()
79 this->cached_annotation = this->GetCapacityRatio();
82 /**
83 * Comparator for std containers.
85 struct Comparator {
86 bool operator()(const CapacityAnnotation *x, const CapacityAnnotation *y) const;
90 /**
91 * Iterator class for getting the edges in the order of their next_edge
92 * members.
94 class GraphEdgeIterator {
95 private:
96 LinkGraphJob &job; ///< Job being executed
97 EdgeIterator i; ///< Iterator pointing to current edge.
98 EdgeIterator end; ///< Iterator pointing beyond last edge.
100 public:
103 * Construct a GraphEdgeIterator.
104 * @param job Job to iterate on.
106 GraphEdgeIterator(LinkGraphJob &job) : job(job),
107 i(NULL, NULL, INVALID_NODE), end(NULL, NULL, INVALID_NODE)
111 * Setup the node to start iterating at.
112 * @param source Unused.
113 * @param node Node to start iterating at.
115 void SetNode(NodeID source, NodeID node)
117 this->i = this->job[node].Begin();
118 this->end = this->job[node].End();
122 * Retrieve the ID of the node the next edge points to.
123 * @return Next edge's target node ID or INVALID_NODE.
125 NodeID Next()
127 return this->i != this->end ? (this->i++)->first : INVALID_NODE;
132 * Iterator class for getting edges from a FlowStatMap.
134 class FlowEdgeIterator {
135 private:
136 LinkGraphJob &job; ///< Link graph job we're working with.
138 /** Lookup table for getting NodeIDs from StationIDs. */
139 std::vector<NodeID> station_to_node;
141 /** Current iterator in the shares map. */
142 FlowStat::SharesMap::const_iterator it;
144 /** End of the shares map. */
145 FlowStat::SharesMap::const_iterator end;
146 public:
149 * Constructor.
150 * @param job Link graph job to work with.
152 FlowEdgeIterator(LinkGraphJob &job) : job(job)
154 for (NodeID i = 0; i < job.Size(); ++i) {
155 StationID st = job[i].Station();
156 if (st >= this->station_to_node.size()) {
157 this->station_to_node.resize(st + 1);
159 this->station_to_node[st] = i;
164 * Setup the node to retrieve edges from.
165 * @param source Root of the current path tree.
166 * @param node Current node to be checked for outgoing flows.
168 void SetNode(NodeID source, NodeID node)
170 const FlowStatMap &flows = this->job[node].Flows();
171 FlowStatMap::const_iterator it = flows.find(this->job[source].Station());
172 if (it != flows.end()) {
173 this->it = it->second.GetShares()->begin();
174 this->end = it->second.GetShares()->end();
175 } else {
176 this->it = FlowStat::empty_sharesmap.begin();
177 this->end = FlowStat::empty_sharesmap.end();
182 * Get the next node for which a flow exists.
183 * @return ID of next node with flow.
185 NodeID Next()
187 if (this->it == this->end) return INVALID_NODE;
188 return this->station_to_node[(this->it++)->second];
193 * Determines if an extension to the given Path with the given parameters is
194 * better than this path.
195 * @param base Other path.
196 * @param cap Capacity of the new edge to be added to base.
197 * @param dist Distance of the new edge.
198 * @return True if base + the new edge would be better than the path associated
199 * with this annotation.
201 bool DistanceAnnotation::IsBetter(const DistanceAnnotation *base, uint cap,
202 int free_cap, uint dist) const
204 /* If any of the paths is disconnected, the other one is better. If both
205 * are disconnected, this path is better.*/
206 if (base->distance == UINT_MAX) {
207 return false;
208 } else if (this->distance == UINT_MAX) {
209 return true;
212 if (free_cap > 0 && base->free_capacity > 0) {
213 /* If both paths have capacity left, compare their distances.
214 * If the other path has capacity left and this one hasn't, the
215 * other one's better (thus, return true). */
216 return this->free_capacity > 0 ? (base->distance + dist < this->distance) : true;
217 } else {
218 /* If the other path doesn't have capacity left, but this one has,
219 * the other one is worse (thus, return false).
220 * If both paths are out of capacity, do the regular distance
221 * comparison. */
222 return this->free_capacity > 0 ? false : (base->distance + dist < this->distance);
227 * Determines if an extension to the given Path with the given parameters is
228 * better than this path.
229 * @param base Other path.
230 * @param cap Capacity of the new edge to be added to base.
231 * @param dist Distance of the new edge.
232 * @return True if base + the new edge would be better than the path associated
233 * with this annotation.
235 bool CapacityAnnotation::IsBetter(const CapacityAnnotation *base, uint cap,
236 int free_cap, uint dist) const
238 int min_cap = Path::GetCapacityRatio(min(base->free_capacity, free_cap), min(base->capacity, cap));
239 int this_cap = this->GetCapacityRatio();
240 if (min_cap == this_cap) {
241 /* If the capacities are the same and the other path isn't disconnected
242 * choose the shorter path. */
243 return base->distance == UINT_MAX ? false : (base->distance + dist < this->distance);
244 } else {
245 return min_cap > this_cap;
250 * A slightly modified Dijkstra algorithm. Grades the paths not necessarily by
251 * distance, but by the value Tannotation computes. It uses the max_saturation
252 * setting to artificially decrease capacities.
253 * @tparam Tannotation Annotation to be used.
254 * @tparam Tedge_iterator Iterator to be used for getting outgoing edges.
255 * @param source_node Node where the algorithm starts.
256 * @param paths Container for the paths to be calculated.
258 template<class Tannotation, class Tedge_iterator>
259 void MultiCommodityFlow::Dijkstra(NodeID source_node, PathVector &paths)
261 typedef std::set<Tannotation *, typename Tannotation::Comparator> AnnoSet;
262 Tedge_iterator iter(this->job);
263 uint size = this->job.Size();
264 AnnoSet annos;
265 paths.resize(size, NULL);
266 for (NodeID node = 0; node < size; ++node) {
267 Tannotation *anno = new Tannotation(node, node == source_node);
268 anno->UpdateAnnotation();
269 annos.insert(anno);
270 paths[node] = anno;
272 while (!annos.empty()) {
273 typename AnnoSet::iterator i = annos.begin();
274 Tannotation *source = *i;
275 annos.erase(i);
276 NodeID from = source->GetNode();
277 iter.SetNode(source_node, from);
278 for (NodeID to = iter.Next(); to != INVALID_NODE; to = iter.Next()) {
279 if (to == from) continue; // Not a real edge but a consumption sign.
280 Edge edge = this->job[from][to];
281 uint capacity = edge.Capacity();
282 if (this->max_saturation != UINT_MAX) {
283 capacity *= this->max_saturation;
284 capacity /= 100;
285 if (capacity == 0) capacity = 1;
287 /* punish in-between stops a little */
288 uint distance = DistanceMaxPlusManhattan(this->job[from].XY(), this->job[to].XY()) + 1;
289 Tannotation *dest = static_cast<Tannotation *>(paths[to]);
290 if (dest->IsBetter(source, capacity, capacity - edge.Flow(), distance)) {
291 annos.erase(dest);
292 dest->Fork(source, capacity, capacity - edge.Flow(), distance);
293 dest->UpdateAnnotation();
294 annos.insert(dest);
301 * Clean up paths that lead nowhere and the root path.
302 * @param source_id ID of the root node.
303 * @param paths Paths to be cleaned up.
305 void MultiCommodityFlow::CleanupPaths(NodeID source_id, PathVector &paths)
307 Path *source = paths[source_id];
308 paths[source_id] = NULL;
309 for (PathVector::iterator i = paths.begin(); i != paths.end(); ++i) {
310 Path *path = *i;
311 if (path == NULL) continue;
312 if (path->GetParent() == source) path->Detach();
313 while (path != source && path != NULL && path->GetFlow() == 0) {
314 Path *parent = path->GetParent();
315 path->Detach();
316 if (path->GetNumChildren() == 0) {
317 paths[path->GetNode()] = NULL;
318 delete path;
320 path = parent;
323 delete source;
324 paths.clear();
328 * Push flow along a path and update the unsatisfied_demand of the associated
329 * edge.
330 * @param edge Edge whose ends the path connects.
331 * @param path End of the path the flow should be pushed on.
332 * @param accuracy Accuracy of the calculation.
333 * @param max_saturation If < UINT_MAX only push flow up to the given
334 * saturation, otherwise the path can be "overloaded".
336 uint MultiCommodityFlow::PushFlow(Edge &edge, Path *path, uint accuracy,
337 uint max_saturation)
339 assert(edge.UnsatisfiedDemand() > 0);
340 uint flow = Clamp(edge.Demand() / accuracy, 1, edge.UnsatisfiedDemand());
341 flow = path->AddFlow(flow, this->job, max_saturation);
342 edge.SatisfyDemand(flow);
343 return flow;
347 * Find the flow along a cycle including cycle_begin in path.
348 * @param path Set of paths that form the cycle.
349 * @param cycle_begin Path to start at.
350 * @return Flow along the cycle.
352 uint MCF1stPass::FindCycleFlow(const PathVector &path, const Path *cycle_begin)
354 uint flow = UINT_MAX;
355 const Path *cycle_end = cycle_begin;
356 do {
357 flow = min(flow, cycle_begin->GetFlow());
358 cycle_begin = path[cycle_begin->GetNode()];
359 } while (cycle_begin != cycle_end);
360 return flow;
364 * Eliminate a cycle of the given flow in the given set of paths.
365 * @param path Set of paths containing the cycle.
366 * @param cycle_begin Part of the cycle to start at.
367 * @param flow Flow along the cycle.
369 void MCF1stPass::EliminateCycle(PathVector &path, Path *cycle_begin, uint flow)
371 Path *cycle_end = cycle_begin;
372 do {
373 NodeID prev = cycle_begin->GetNode();
374 cycle_begin->ReduceFlow(flow);
375 if (cycle_begin->GetFlow() == 0) {
376 PathList &node_paths = this->job[cycle_begin->GetParent()->GetNode()].Paths();
377 for (PathList::iterator i = node_paths.begin(); i != node_paths.end(); ++i) {
378 if (*i == cycle_begin) {
379 node_paths.erase(i);
380 node_paths.push_back(cycle_begin);
381 break;
385 cycle_begin = path[prev];
386 Edge edge = this->job[prev][cycle_begin->GetNode()];
387 edge.RemoveFlow(flow);
388 } while (cycle_begin != cycle_end);
392 * Eliminate cycles for origin_id in the graph. Start searching at next_id and
393 * work recursively. Also "summarize" paths: Add up the flows along parallel
394 * paths in one.
395 * @param path Paths checked in parent calls to this method.
396 * @param origin_id Origin of the paths to be checked.
397 * @param next_id Next node to be checked.
398 * @return If any cycles have been found and eliminated.
400 bool MCF1stPass::EliminateCycles(PathVector &path, NodeID origin_id, NodeID next_id)
402 Path *at_next_pos = path[next_id];
404 /* this node has already been searched */
405 if (at_next_pos == Path::invalid_path) return false;
407 if (at_next_pos == NULL) {
408 /* Summarize paths; add up the paths with the same source and next hop
409 * in one path each. */
410 PathList &paths = this->job[next_id].Paths();
411 PathViaMap next_hops;
412 for (PathList::iterator i = paths.begin(); i != paths.end();) {
413 Path *new_child = *i;
414 uint new_flow = new_child->GetFlow();
415 if (new_flow == 0) break;
416 if (new_child->GetOrigin() == origin_id) {
417 PathViaMap::iterator via_it = next_hops.find(new_child->GetNode());
418 if (via_it == next_hops.end()) {
419 next_hops[new_child->GetNode()] = new_child;
420 ++i;
421 } else {
422 Path *child = via_it->second;
423 child->AddFlow(new_flow);
424 new_child->ReduceFlow(new_flow);
426 /* We might hit end() with with the ++ here and skip the
427 * newly push_back'ed path. That's good as the flow of that
428 * path is 0 anyway. */
429 paths.erase(i++);
430 paths.push_back(new_child);
432 } else {
433 ++i;
436 bool found = false;
437 /* Search the next hops for nodes we have already visited */
438 for (PathViaMap::iterator via_it = next_hops.begin();
439 via_it != next_hops.end(); ++via_it) {
440 Path *child = via_it->second;
441 if (child->GetFlow() > 0) {
442 /* Push one child into the path vector and search this child's
443 * children. */
444 path[next_id] = child;
445 found = this->EliminateCycles(path, origin_id, child->GetNode()) || found;
448 /* All paths departing from this node have been searched. Mark as
449 * resolved if no cycles found. If cycles were found further cycles
450 * could be found in this branch, thus it has to be searched again next
451 * time we spot it.
453 path[next_id] = found ? NULL : Path::invalid_path;
454 return found;
457 /* This node has already been visited => we have a cycle.
458 * Backtrack to find the exact flow. */
459 uint flow = this->FindCycleFlow(path, at_next_pos);
460 if (flow > 0) {
461 this->EliminateCycle(path, at_next_pos, flow);
462 return true;
465 return false;
469 * Eliminate all cycles in the graph. Check paths starting at each node for
470 * potential cycles.
471 * @return If any cycles have been found and eliminated.
473 bool MCF1stPass::EliminateCycles()
475 bool cycles_found = false;
476 uint size = this->job.Size();
477 PathVector path(size, NULL);
478 for (NodeID node = 0; node < size; ++node) {
479 /* Starting at each node in the graph find all cycles involving this
480 * node. */
481 std::fill(path.begin(), path.end(), (Path *)NULL);
482 cycles_found |= this->EliminateCycles(path, node, node);
484 return cycles_found;
488 * Run the first pass of the MCF calculation.
489 * @param job Link graph job to calculate.
491 MCF1stPass::MCF1stPass(LinkGraphJob &job) : MultiCommodityFlow(job)
493 PathVector paths;
494 uint size = job.Size();
495 uint accuracy = job.Settings().accuracy;
496 bool more_loops;
498 do {
499 more_loops = false;
500 for (NodeID source = 0; source < size; ++source) {
501 /* First saturate the shortest paths. */
502 this->Dijkstra<DistanceAnnotation, GraphEdgeIterator>(source, paths);
504 for (NodeID dest = 0; dest < size; ++dest) {
505 Edge edge = job[source][dest];
506 if (edge.UnsatisfiedDemand() > 0) {
507 Path *path = paths[dest];
508 assert(path != NULL);
509 /* Generally only allow paths that don't exceed the
510 * available capacity. But if no demand has been assigned
511 * yet, make an exception and allow any valid path *once*. */
512 if (path->GetFreeCapacity() > 0 && this->PushFlow(edge, path,
513 accuracy, this->max_saturation) > 0) {
514 /* If a path has been found there is a chance we can
515 * find more. */
516 more_loops = more_loops || (edge.UnsatisfiedDemand() > 0);
517 } else if (edge.UnsatisfiedDemand() == edge.Demand() &&
518 path->GetFreeCapacity() > INT_MIN) {
519 this->PushFlow(edge, path, accuracy, UINT_MAX);
523 this->CleanupPaths(source, paths);
525 } while (more_loops || this->EliminateCycles());
529 * Run the second pass of the MCF calculation which assigns all remaining
530 * demands to existing paths.
531 * @param job Link graph job to calculate.
533 MCF2ndPass::MCF2ndPass(LinkGraphJob &job) : MultiCommodityFlow(job)
535 this->max_saturation = UINT_MAX; // disable artificial cap on saturation
536 PathVector paths;
537 uint size = job.Size();
538 uint accuracy = job.Settings().accuracy;
539 bool demand_left = true;
540 while (demand_left) {
541 demand_left = false;
542 for (NodeID source = 0; source < size; ++source) {
543 this->Dijkstra<CapacityAnnotation, FlowEdgeIterator>(source, paths);
544 for (NodeID dest = 0; dest < size; ++dest) {
545 Edge edge = this->job[source][dest];
546 Path *path = paths[dest];
547 if (edge.UnsatisfiedDemand() > 0 && path->GetFreeCapacity() > INT_MIN) {
548 this->PushFlow(edge, path, accuracy, UINT_MAX);
549 if (edge.UnsatisfiedDemand() > 0) demand_left = true;
552 this->CleanupPaths(source, paths);
558 * Relation that creates a weak order without duplicates.
559 * Avoid accidentally deleting different paths of the same capacity/distance in
560 * a set. When the annotation is the same node IDs are compared, so there are
561 * no equal ranges.
562 * @tparam T Type to be compared on.
563 * @param x_anno First value.
564 * @param y_anno Second value.
565 * @param x Node id associated with the first value.
566 * @param y Node id associated with the second value.
568 template <typename T>
569 bool Greater(T x_anno, T y_anno, NodeID x, NodeID y)
571 if (x_anno > y_anno) return true;
572 if (x_anno < y_anno) return false;
573 return x > y;
577 * Compare two capacity annotations.
578 * @param x First capacity annotation.
579 * @param y Second capacity annotation.
580 * @return If x is better than y.
582 bool CapacityAnnotation::Comparator::operator()(const CapacityAnnotation *x,
583 const CapacityAnnotation *y) const
585 return x != y && Greater<int>(x->GetAnnotation(), y->GetAnnotation(),
586 x->GetNode(), y->GetNode());
590 * Compare two distance annotations.
591 * @param x First distance annotation.
592 * @param y Second distance annotation.
593 * @return If x is better than y.
595 bool DistanceAnnotation::Comparator::operator()(const DistanceAnnotation *x,
596 const DistanceAnnotation *y) const
598 return x != y && !Greater<uint>(x->GetAnnotation(), y->GetAnnotation(),
599 x->GetNode(), y->GetNode());