README: update latest release of clang
[pet.git] / scan.cc
blobece2b07f3d6c6ca3c497a5fd6660e8662357d24e
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2015 Ecole Normale Superieure. All rights reserved.
4 * Copyright 2015-2017 Sven Verdoolaege. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
19 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
22 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
23 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
24 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
25 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * The views and conclusions contained in the software and documentation
31 * are those of the authors and should not be interpreted as
32 * representing official policies, either expressed or implied, of
33 * Leiden University.
34 */
36 #include "config.h"
38 #include <string.h>
39 #include <set>
40 #include <map>
41 #include <iostream>
42 #include <sstream>
43 #include <llvm/Support/raw_ostream.h>
44 #include <clang/AST/ASTContext.h>
45 #include <clang/AST/ASTDiagnostic.h>
46 #include <clang/AST/Attr.h>
47 #include <clang/AST/Expr.h>
48 #include <clang/AST/RecursiveASTVisitor.h>
50 #include <isl/id.h>
51 #include <isl/space.h>
52 #include <isl/aff.h>
53 #include <isl/set.h>
54 #include <isl/union_set.h>
56 #include "aff.h"
57 #include "array.h"
58 #include "clang_compatibility.h"
59 #include "clang.h"
60 #include "context.h"
61 #include "expr.h"
62 #include "expr_plus.h"
63 #include "id.h"
64 #include "inliner.h"
65 #include "inlined_calls.h"
66 #include "killed_locals.h"
67 #include "nest.h"
68 #include "options.h"
69 #include "scan.h"
70 #include "scop.h"
71 #include "scop_plus.h"
72 #include "substituter.h"
73 #include "tree.h"
74 #include "tree2scop.h"
76 using namespace std;
77 using namespace clang;
79 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
81 switch (kind) {
82 case UO_Minus:
83 return pet_op_minus;
84 case UO_Not:
85 return pet_op_not;
86 case UO_LNot:
87 return pet_op_lnot;
88 case UO_PostInc:
89 return pet_op_post_inc;
90 case UO_PostDec:
91 return pet_op_post_dec;
92 case UO_PreInc:
93 return pet_op_pre_inc;
94 case UO_PreDec:
95 return pet_op_pre_dec;
96 default:
97 return pet_op_last;
101 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
103 switch (kind) {
104 case BO_AddAssign:
105 return pet_op_add_assign;
106 case BO_SubAssign:
107 return pet_op_sub_assign;
108 case BO_MulAssign:
109 return pet_op_mul_assign;
110 case BO_DivAssign:
111 return pet_op_div_assign;
112 case BO_AndAssign:
113 return pet_op_and_assign;
114 case BO_XorAssign:
115 return pet_op_xor_assign;
116 case BO_OrAssign:
117 return pet_op_or_assign;
118 case BO_Assign:
119 return pet_op_assign;
120 case BO_Add:
121 return pet_op_add;
122 case BO_Sub:
123 return pet_op_sub;
124 case BO_Mul:
125 return pet_op_mul;
126 case BO_Div:
127 return pet_op_div;
128 case BO_Rem:
129 return pet_op_mod;
130 case BO_Shl:
131 return pet_op_shl;
132 case BO_Shr:
133 return pet_op_shr;
134 case BO_EQ:
135 return pet_op_eq;
136 case BO_NE:
137 return pet_op_ne;
138 case BO_LE:
139 return pet_op_le;
140 case BO_GE:
141 return pet_op_ge;
142 case BO_LT:
143 return pet_op_lt;
144 case BO_GT:
145 return pet_op_gt;
146 case BO_And:
147 return pet_op_and;
148 case BO_Xor:
149 return pet_op_xor;
150 case BO_Or:
151 return pet_op_or;
152 case BO_LAnd:
153 return pet_op_land;
154 case BO_LOr:
155 return pet_op_lor;
156 default:
157 return pet_op_last;
161 #ifdef GETTYPEINFORETURNSTYPEINFO
163 static int size_in_bytes(ASTContext &context, QualType type)
165 return context.getTypeInfo(type).Width / 8;
168 #else
170 static int size_in_bytes(ASTContext &context, QualType type)
172 return context.getTypeInfo(type).first / 8;
175 #endif
177 /* Check if the element type corresponding to the given array type
178 * has a const qualifier.
180 static bool const_base(QualType qt)
182 const Type *type = qt.getTypePtr();
184 if (type->isPointerType())
185 return const_base(type->getPointeeType());
186 if (type->isArrayType()) {
187 const ArrayType *atype;
188 type = type->getCanonicalTypeInternal().getTypePtr();
189 atype = cast<ArrayType>(type);
190 return const_base(atype->getElementType());
193 return qt.isConstQualified();
196 PetScan::~PetScan()
198 std::map<const Type *, pet_expr *>::iterator it;
199 std::map<FunctionDecl *, pet_function_summary *>::iterator it_s;
201 for (it = type_size.begin(); it != type_size.end(); ++it)
202 pet_expr_free(it->second);
203 for (it_s = summary_cache.begin(); it_s != summary_cache.end(); ++it_s)
204 pet_function_summary_free(it_s->second);
206 isl_id_to_pet_expr_free(id_size);
207 isl_union_map_free(value_bounds);
210 /* Report a diagnostic on the range "range", unless autodetect is set.
212 void PetScan::report(SourceRange range, unsigned id)
214 if (options->autodetect)
215 return;
217 SourceLocation loc = range.getBegin();
218 DiagnosticsEngine &diag = PP.getDiagnostics();
219 DiagnosticBuilder B = diag.Report(loc, id) << range;
222 /* Report a diagnostic on "stmt", unless autodetect is set.
224 void PetScan::report(Stmt *stmt, unsigned id)
226 report(stmt->getSourceRange(), id);
229 /* Report a diagnostic on "decl", unless autodetect is set.
231 void PetScan::report(Decl *decl, unsigned id)
233 report(decl->getSourceRange(), id);
236 /* Called if we found something we (currently) cannot handle.
237 * We'll provide more informative warnings later.
239 * We only actually complain if autodetect is false.
241 void PetScan::unsupported(Stmt *stmt)
243 DiagnosticsEngine &diag = PP.getDiagnostics();
244 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
245 "unsupported");
246 report(stmt, id);
249 /* Report an unsupported unary operator, unless autodetect is set.
251 void PetScan::report_unsupported_unary_operator(Stmt *stmt)
253 DiagnosticsEngine &diag = PP.getDiagnostics();
254 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
255 "this type of unary operator is not supported");
256 report(stmt, id);
259 /* Report an unsupported binary operator, unless autodetect is set.
261 void PetScan::report_unsupported_binary_operator(Stmt *stmt)
263 DiagnosticsEngine &diag = PP.getDiagnostics();
264 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
265 "this type of binary operator is not supported");
266 report(stmt, id);
269 /* Report an unsupported statement type, unless autodetect is set.
271 void PetScan::report_unsupported_statement_type(Stmt *stmt)
273 DiagnosticsEngine &diag = PP.getDiagnostics();
274 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
275 "this type of statement is not supported");
276 report(stmt, id);
279 /* Report a missing prototype, unless autodetect is set.
281 void PetScan::report_prototype_required(Stmt *stmt)
283 DiagnosticsEngine &diag = PP.getDiagnostics();
284 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
285 "prototype required");
286 report(stmt, id);
289 /* Report a missing increment, unless autodetect is set.
291 void PetScan::report_missing_increment(Stmt *stmt)
293 DiagnosticsEngine &diag = PP.getDiagnostics();
294 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
295 "missing increment");
296 report(stmt, id);
299 /* Report a missing summary function, unless autodetect is set.
301 void PetScan::report_missing_summary_function(Stmt *stmt)
303 DiagnosticsEngine &diag = PP.getDiagnostics();
304 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
305 "missing summary function");
306 report(stmt, id);
309 /* Report a missing summary function body, unless autodetect is set.
311 void PetScan::report_missing_summary_function_body(Stmt *stmt)
313 DiagnosticsEngine &diag = PP.getDiagnostics();
314 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
315 "missing summary function body");
316 report(stmt, id);
319 /* Report an unsupported argument in a call to an inlined function,
320 * unless autodetect is set.
322 void PetScan::report_unsupported_inline_function_argument(Stmt *stmt)
324 DiagnosticsEngine &diag = PP.getDiagnostics();
325 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
326 "unsupported inline function call argument");
327 report(stmt, id);
330 /* Report an unsupported type of declaration, unless autodetect is set.
332 void PetScan::report_unsupported_declaration(Decl *decl)
334 DiagnosticsEngine &diag = PP.getDiagnostics();
335 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
336 "unsupported declaration");
337 report(decl, id);
340 /* Report an unbalanced pair of scop/endscop pragmas, unless autodetect is set.
342 void PetScan::report_unbalanced_pragmas(SourceLocation scop,
343 SourceLocation endscop)
345 if (options->autodetect)
346 return;
348 DiagnosticsEngine &diag = PP.getDiagnostics();
350 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
351 "unbalanced endscop pragma");
352 DiagnosticBuilder B2 = diag.Report(endscop, id);
355 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Note,
356 "corresponding scop pragma");
357 DiagnosticBuilder B = diag.Report(scop, id);
361 /* Report a return statement in an unsupported context,
362 * unless autodetect is set.
364 void PetScan::report_unsupported_return(Stmt *stmt)
366 DiagnosticsEngine &diag = PP.getDiagnostics();
367 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
368 "return statements not supported in this context");
369 report(stmt, id);
372 /* Report a return statement that does not appear at the end of a function,
373 * unless autodetect is set.
375 void PetScan::report_return_not_at_end_of_function(Stmt *stmt)
377 DiagnosticsEngine &diag = PP.getDiagnostics();
378 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
379 "return statement must be final statement in function");
380 report(stmt, id);
383 /* Extract an integer from "val", which is assumed to be non-negative.
385 static __isl_give isl_val *extract_unsigned(isl_ctx *ctx,
386 const llvm::APInt &val)
388 unsigned n;
389 const uint64_t *data;
391 data = val.getRawData();
392 n = val.getNumWords();
393 return isl_val_int_from_chunks(ctx, n, sizeof(uint64_t), data);
396 /* Extract an integer from "val". If "is_signed" is set, then "val"
397 * is signed. Otherwise it it unsigned.
399 static __isl_give isl_val *extract_int(isl_ctx *ctx, bool is_signed,
400 llvm::APInt val)
402 int is_negative = is_signed && val.isNegative();
403 isl_val *v;
405 if (is_negative)
406 val = -val;
408 v = extract_unsigned(ctx, val);
410 if (is_negative)
411 v = isl_val_neg(v);
412 return v;
415 /* Extract an integer from "expr".
417 __isl_give isl_val *PetScan::extract_int(isl_ctx *ctx, IntegerLiteral *expr)
419 const Type *type = expr->getType().getTypePtr();
420 bool is_signed = type->hasSignedIntegerRepresentation();
422 return ::extract_int(ctx, is_signed, expr->getValue());
425 /* Extract an integer from "expr".
426 * Return NULL if "expr" does not (obviously) represent an integer.
428 __isl_give isl_val *PetScan::extract_int(clang::ParenExpr *expr)
430 return extract_int(expr->getSubExpr());
433 /* Extract an integer from "expr".
434 * Return NULL if "expr" does not (obviously) represent an integer.
436 __isl_give isl_val *PetScan::extract_int(clang::Expr *expr)
438 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
439 return extract_int(ctx, cast<IntegerLiteral>(expr));
440 if (expr->getStmtClass() == Stmt::ParenExprClass)
441 return extract_int(cast<ParenExpr>(expr));
443 unsupported(expr);
444 return NULL;
447 /* Extract a pet_expr from the APInt "val", which is assumed
448 * to be non-negative.
450 __isl_give pet_expr *PetScan::extract_expr(const llvm::APInt &val)
452 return pet_expr_new_int(extract_unsigned(ctx, val));
455 /* Return the number of bits needed to represent the type of "decl",
456 * if it is an integer type. Otherwise return 0.
457 * If qt is signed then return the opposite of the number of bits.
459 static int get_type_size(ValueDecl *decl)
461 return pet_clang_get_type_size(decl->getType(), decl->getASTContext());
464 /* Bound parameter "pos" of "set" to the possible values of "decl".
466 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
467 unsigned pos, ValueDecl *decl)
469 int type_size;
470 isl_ctx *ctx;
471 isl_val *bound;
473 ctx = isl_set_get_ctx(set);
474 type_size = get_type_size(decl);
475 if (type_size == 0)
476 isl_die(ctx, isl_error_invalid, "not an integer type",
477 return isl_set_free(set));
478 if (type_size > 0) {
479 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
480 bound = isl_val_int_from_ui(ctx, type_size);
481 bound = isl_val_2exp(bound);
482 bound = isl_val_sub_ui(bound, 1);
483 set = isl_set_upper_bound_val(set, isl_dim_param, pos, bound);
484 } else {
485 bound = isl_val_int_from_ui(ctx, -type_size - 1);
486 bound = isl_val_2exp(bound);
487 bound = isl_val_sub_ui(bound, 1);
488 set = isl_set_upper_bound_val(set, isl_dim_param, pos,
489 isl_val_copy(bound));
490 bound = isl_val_neg(bound);
491 bound = isl_val_sub_ui(bound, 1);
492 set = isl_set_lower_bound_val(set, isl_dim_param, pos, bound);
495 return set;
498 __isl_give pet_expr *PetScan::extract_index_expr(ImplicitCastExpr *expr)
500 return extract_index_expr(expr->getSubExpr());
503 /* Construct a pet_expr representing an index expression for an access
504 * to the variable referenced by "expr".
506 * If "expr" references an enum constant, then return an integer expression
507 * instead, representing the value of the enum constant.
509 __isl_give pet_expr *PetScan::extract_index_expr(DeclRefExpr *expr)
511 return extract_index_expr(expr->getDecl());
514 /* Construct a pet_expr representing an index expression for an access
515 * to the variable "decl".
517 * If "decl" is an enum constant, then we return an integer expression
518 * instead, representing the value of the enum constant.
520 __isl_give pet_expr *PetScan::extract_index_expr(ValueDecl *decl)
522 isl_id *id;
524 if (isa<EnumConstantDecl>(decl))
525 return extract_expr(cast<EnumConstantDecl>(decl));
527 id = pet_id_from_decl(ctx, decl);
528 return pet_id_create_index_expr(id);
531 /* Construct a pet_expr representing the index expression "expr"
532 * Return NULL on error.
534 * If "expr" is a reference to an enum constant, then return
535 * an integer expression instead, representing the value of the enum constant.
537 __isl_give pet_expr *PetScan::extract_index_expr(Expr *expr)
539 switch (expr->getStmtClass()) {
540 case Stmt::ImplicitCastExprClass:
541 return extract_index_expr(cast<ImplicitCastExpr>(expr));
542 case Stmt::DeclRefExprClass:
543 return extract_index_expr(cast<DeclRefExpr>(expr));
544 case Stmt::ArraySubscriptExprClass:
545 return extract_index_expr(cast<ArraySubscriptExpr>(expr));
546 case Stmt::IntegerLiteralClass:
547 return extract_expr(cast<IntegerLiteral>(expr));
548 case Stmt::MemberExprClass:
549 return extract_index_expr(cast<MemberExpr>(expr));
550 default:
551 unsupported(expr);
553 return NULL;
556 /* Extract an index expression from the given array subscript expression.
558 * We first extract an index expression from the base.
559 * This will result in an index expression with a range that corresponds
560 * to the earlier indices.
561 * We then extract the current index and let
562 * pet_expr_access_subscript combine the two.
564 __isl_give pet_expr *PetScan::extract_index_expr(ArraySubscriptExpr *expr)
566 Expr *base = expr->getBase();
567 Expr *idx = expr->getIdx();
568 pet_expr *index;
569 pet_expr *base_expr;
571 base_expr = extract_index_expr(base);
572 index = extract_expr(idx);
574 base_expr = pet_expr_access_subscript(base_expr, index);
576 return base_expr;
579 /* Extract an index expression from a member expression.
581 * If the base access (to the structure containing the member)
582 * is of the form
584 * A[..]
586 * and the member is called "f", then the member access is of
587 * the form
589 * A_f[A[..] -> f[]]
591 * If the member access is to an anonymous struct, then simply return
593 * A[..]
595 * If the member access in the source code is of the form
597 * A->f
599 * then it is treated as
601 * A[0].f
603 __isl_give pet_expr *PetScan::extract_index_expr(MemberExpr *expr)
605 Expr *base = expr->getBase();
606 FieldDecl *field = cast<FieldDecl>(expr->getMemberDecl());
607 pet_expr *base_index;
608 isl_id *id;
610 base_index = extract_index_expr(base);
612 if (expr->isArrow()) {
613 pet_expr *index = pet_expr_new_int(isl_val_zero(ctx));
614 base_index = pet_expr_access_subscript(base_index, index);
617 if (field->isAnonymousStructOrUnion())
618 return base_index;
620 id = pet_id_from_decl(ctx, field);
622 return pet_expr_access_member(base_index, id);
625 /* Mark the given access pet_expr as a write.
627 static __isl_give pet_expr *mark_write(__isl_take pet_expr *access)
629 access = pet_expr_access_set_write(access, 1);
630 access = pet_expr_access_set_read(access, 0);
632 return access;
635 /* Mark the given (read) access pet_expr as also possibly being written.
636 * That is, initialize the may write access relation from the may read relation
637 * and initialize the must write access relation to the empty relation.
639 static __isl_give pet_expr *mark_may_write(__isl_take pet_expr *expr)
641 isl_union_map *access;
642 isl_union_map *empty;
644 access = pet_expr_access_get_dependent_access(expr,
645 pet_expr_access_may_read);
646 empty = isl_union_map_empty(isl_union_map_get_space(access));
647 expr = pet_expr_access_set_access(expr, pet_expr_access_may_write,
648 access);
649 expr = pet_expr_access_set_access(expr, pet_expr_access_must_write,
650 empty);
652 return expr;
655 /* Construct a pet_expr representing a unary operator expression.
657 __isl_give pet_expr *PetScan::extract_expr(UnaryOperator *expr)
659 int type_size;
660 pet_expr *arg;
661 enum pet_op_type op;
663 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
664 if (op == pet_op_last) {
665 report_unsupported_unary_operator(expr);
666 return NULL;
669 arg = extract_expr(expr->getSubExpr());
671 if (expr->isIncrementDecrementOp() &&
672 pet_expr_get_type(arg) == pet_expr_access) {
673 arg = mark_write(arg);
674 arg = pet_expr_access_set_read(arg, 1);
677 type_size = pet_clang_get_type_size(expr->getType(), ast_context);
678 return pet_expr_new_unary(type_size, op, arg);
681 /* Construct a pet_expr representing a binary operator expression.
683 * If the top level operator is an assignment and the LHS is an access,
684 * then we mark that access as a write. If the operator is a compound
685 * assignment, the access is marked as both a read and a write.
687 __isl_give pet_expr *PetScan::extract_expr(BinaryOperator *expr)
689 int type_size;
690 pet_expr *lhs, *rhs;
691 enum pet_op_type op;
693 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
694 if (op == pet_op_last) {
695 report_unsupported_binary_operator(expr);
696 return NULL;
699 lhs = extract_expr(expr->getLHS());
700 rhs = extract_expr(expr->getRHS());
702 if (expr->isAssignmentOp() &&
703 pet_expr_get_type(lhs) == pet_expr_access) {
704 lhs = mark_write(lhs);
705 if (expr->isCompoundAssignmentOp())
706 lhs = pet_expr_access_set_read(lhs, 1);
709 type_size = pet_clang_get_type_size(expr->getType(), ast_context);
710 return pet_expr_new_binary(type_size, op, lhs, rhs);
713 /* Construct a pet_tree for a variable declaration and
714 * add the declaration to the list of declarations
715 * inside the current compound statement.
717 __isl_give pet_tree *PetScan::extract(Decl *decl)
719 VarDecl *vd;
720 pet_expr *lhs, *rhs;
721 pet_tree *tree;
723 if (!isa<VarDecl>(decl)) {
724 report_unsupported_declaration(decl);
725 return NULL;
728 vd = cast<VarDecl>(decl);
729 declarations.push_back(vd);
731 lhs = extract_access_expr(vd);
732 lhs = mark_write(lhs);
733 if (!vd->getInit())
734 tree = pet_tree_new_decl(lhs);
735 else {
736 rhs = extract_expr(vd->getInit());
737 tree = pet_tree_new_decl_init(lhs, rhs);
740 return tree;
743 /* Construct a pet_tree for a variable declaration statement.
744 * If the declaration statement declares multiple variables,
745 * then return a group of pet_trees, one for each declared variable.
747 __isl_give pet_tree *PetScan::extract(DeclStmt *stmt)
749 pet_tree *tree;
750 unsigned n;
752 if (!stmt->isSingleDecl()) {
753 const DeclGroup &group = stmt->getDeclGroup().getDeclGroup();
754 n = group.size();
755 tree = pet_tree_new_block(ctx, 0, n);
757 for (unsigned i = 0; i < n; ++i) {
758 pet_tree *tree_i;
759 pet_loc *loc;
761 tree_i = extract(group[i]);
762 loc = construct_pet_loc(group[i]->getSourceRange(),
763 false);
764 tree_i = pet_tree_set_loc(tree_i, loc);
765 tree = pet_tree_block_add_child(tree, tree_i);
768 return tree;
771 return extract(stmt->getSingleDecl());
774 /* Construct a pet_expr representing a conditional operation.
776 __isl_give pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
778 pet_expr *cond, *lhs, *rhs;
780 cond = extract_expr(expr->getCond());
781 lhs = extract_expr(expr->getTrueExpr());
782 rhs = extract_expr(expr->getFalseExpr());
784 return pet_expr_new_ternary(cond, lhs, rhs);
787 __isl_give pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
789 return extract_expr(expr->getSubExpr());
792 /* Construct a pet_expr representing a floating point value.
794 * If the floating point literal does not appear in a macro,
795 * then we use the original representation in the source code
796 * as the string representation. Otherwise, we use the pretty
797 * printer to produce a string representation.
799 __isl_give pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
801 double d;
802 string s;
803 const LangOptions &LO = PP.getLangOpts();
804 SourceLocation loc = expr->getLocation();
806 if (!loc.isMacroID()) {
807 SourceManager &SM = PP.getSourceManager();
808 unsigned len = Lexer::MeasureTokenLength(loc, SM, LO);
809 s = string(SM.getCharacterData(loc), len);
810 } else {
811 llvm::raw_string_ostream S(s);
812 expr->printPretty(S, 0, PrintingPolicy(LO));
813 S.str();
815 d = expr->getValueAsApproximateDouble();
816 return pet_expr_new_double(ctx, d, s.c_str());
819 /* Extract an index expression from "expr" and then convert it into
820 * an access pet_expr.
822 * If "expr" is a reference to an enum constant, then return
823 * an integer expression instead, representing the value of the enum constant.
825 __isl_give pet_expr *PetScan::extract_access_expr(Expr *expr)
827 pet_expr *index;
829 index = extract_index_expr(expr);
831 if (pet_expr_get_type(index) == pet_expr_int)
832 return index;
834 return pet_expr_access_from_index(expr->getType(), index, ast_context);
837 /* Extract an index expression from "decl" and then convert it into
838 * an access pet_expr.
840 __isl_give pet_expr *PetScan::extract_access_expr(ValueDecl *decl)
842 return pet_expr_access_from_index(decl->getType(),
843 extract_index_expr(decl), ast_context);
846 __isl_give pet_expr *PetScan::extract_expr(ParenExpr *expr)
848 return extract_expr(expr->getSubExpr());
851 /* Extract an assume statement from the argument "expr"
852 * of a __builtin_assume or __pencil_assume statement.
854 __isl_give pet_expr *PetScan::extract_assume(Expr *expr)
856 return pet_expr_new_unary(0, pet_op_assume, extract_expr(expr));
859 /* If "expr" is an address-of operator, then return its argument.
860 * Otherwise, return NULL.
862 static Expr *extract_addr_of_arg(Expr *expr)
864 UnaryOperator *op;
866 if (expr->getStmtClass() != Stmt::UnaryOperatorClass)
867 return NULL;
868 op = cast<UnaryOperator>(expr);
869 if (op->getOpcode() != UO_AddrOf)
870 return NULL;
871 return op->getSubExpr();
874 /* Construct a pet_expr corresponding to the function call argument "expr".
875 * The argument appears in position "pos" of a call to function "fd".
877 * If we are passing along a pointer to an array element
878 * or an entire row or even higher dimensional slice of an array,
879 * then the function being called may write into the array.
881 * We assume here that if the function is declared to take a pointer
882 * to a const type, then the function may only perform a read
883 * and that otherwise, it may either perform a read or a write (or both).
884 * We only perform this check if "detect_writes" is set.
886 __isl_give pet_expr *PetScan::extract_argument(FunctionDecl *fd, int pos,
887 Expr *expr, bool detect_writes)
889 Expr *arg;
890 pet_expr *res;
891 int is_addr = 0, is_partial = 0;
893 expr = pet_clang_strip_casts(expr);
894 arg = extract_addr_of_arg(expr);
895 if (arg) {
896 is_addr = 1;
897 expr = arg;
899 res = extract_expr(expr);
900 if (!res)
901 return NULL;
902 if (pet_clang_array_depth(expr->getType()) > 0)
903 is_partial = 1;
904 if (detect_writes && (is_addr || is_partial) &&
905 pet_expr_get_type(res) == pet_expr_access) {
906 ParmVarDecl *parm;
907 if (!fd->hasPrototype()) {
908 report_prototype_required(expr);
909 return pet_expr_free(res);
911 parm = fd->getParamDecl(pos);
912 if (!const_base(parm->getType()))
913 res = mark_may_write(res);
916 if (is_addr)
917 res = pet_expr_new_unary(0, pet_op_address_of, res);
918 return res;
921 /* Find the first FunctionDecl with the given name.
922 * "call" is the corresponding call expression and is only used
923 * for reporting errors.
925 * Return NULL on error.
927 FunctionDecl *PetScan::find_decl_from_name(CallExpr *call, string name)
929 TranslationUnitDecl *tu = ast_context.getTranslationUnitDecl();
930 DeclContext::decl_iterator begin = tu->decls_begin();
931 DeclContext::decl_iterator end = tu->decls_end();
932 for (DeclContext::decl_iterator i = begin; i != end; ++i) {
933 FunctionDecl *fd = dyn_cast<FunctionDecl>(*i);
934 if (!fd)
935 continue;
936 if (fd->getName().str().compare(name) != 0)
937 continue;
938 if (fd->hasBody())
939 return fd;
940 report_missing_summary_function_body(call);
941 return NULL;
943 report_missing_summary_function(call);
944 return NULL;
947 /* Return the FunctionDecl for the summary function associated to the
948 * function called by "call".
950 * In particular, if the pencil option is set, then
951 * search for an annotate attribute formatted as
952 * "pencil_access(name)", where "name" is the name of the summary function.
954 * If no summary function was specified, then return the FunctionDecl
955 * that is actually being called.
957 * Return NULL on error.
959 FunctionDecl *PetScan::get_summary_function(CallExpr *call)
961 FunctionDecl *decl = call->getDirectCallee();
962 if (!decl)
963 return NULL;
965 if (!options->pencil)
966 return decl;
968 specific_attr_iterator<AnnotateAttr> begin, end, i;
969 begin = decl->specific_attr_begin<AnnotateAttr>();
970 end = decl->specific_attr_end<AnnotateAttr>();
971 for (i = begin; i != end; ++i) {
972 string attr = (*i)->getAnnotation().str();
974 const char prefix[] = "pencil_access(";
975 size_t start = attr.find(prefix);
976 if (start == string::npos)
977 continue;
978 start += strlen(prefix);
979 string name = attr.substr(start, attr.find(')') - start);
981 return find_decl_from_name(call, name);
984 return decl;
987 /* Is "name" the name of an assume statement?
988 * "pencil" indicates whether pencil builtins and pragmas should be supported.
989 * "__builtin_assume" is always accepted.
990 * If "pencil" is set, then "__pencil_assume" is also accepted.
992 static bool is_assume(int pencil, const string &name)
994 if (name == "__builtin_assume")
995 return true;
996 return pencil && name == "__pencil_assume";
999 /* Construct a pet_expr representing a function call.
1001 * If this->call2id is not NULL and it contains a mapping for this call,
1002 * then this means that the corresponding function has been inlined.
1003 * Return a pet_expr that reads from the variable that
1004 * stores the return value of the inlined call.
1006 * In the special case of a "call" to __builtin_assume or __pencil_assume,
1007 * construct an assume expression instead.
1009 * In the case of a "call" to __pencil_kill, the arguments
1010 * are neither read nor written (only killed), so there
1011 * is no need to check for writes to these arguments.
1013 * __pencil_assume and __pencil_kill are only recognized
1014 * when the pencil option is set.
1016 __isl_give pet_expr *PetScan::extract_expr(CallExpr *expr)
1018 pet_expr *res = NULL;
1019 FunctionDecl *fd;
1020 string name;
1021 unsigned n_arg;
1022 bool is_kill;
1024 if (call2id && call2id->find(expr) != call2id->end())
1025 return pet_expr_access_from_id(isl_id_copy(call2id[0][expr]),
1026 ast_context);
1028 fd = expr->getDirectCallee();
1029 if (!fd) {
1030 unsupported(expr);
1031 return NULL;
1034 name = fd->getDeclName().getAsString();
1035 n_arg = expr->getNumArgs();
1037 if (n_arg == 1 && is_assume(options->pencil, name))
1038 return extract_assume(expr->getArg(0));
1039 is_kill = options->pencil && name == "__pencil_kill";
1041 res = pet_expr_new_call(ctx, name.c_str(), n_arg);
1042 if (!res)
1043 return NULL;
1045 for (unsigned i = 0; i < n_arg; ++i) {
1046 Expr *arg = expr->getArg(i);
1047 res = pet_expr_set_arg(res, i,
1048 PetScan::extract_argument(fd, i, arg, !is_kill));
1051 fd = get_summary_function(expr);
1052 if (!fd)
1053 return pet_expr_free(res);
1055 res = set_summary(res, fd);
1057 return res;
1060 /* Construct a pet_expr representing a (C style) cast.
1062 __isl_give pet_expr *PetScan::extract_expr(CStyleCastExpr *expr)
1064 pet_expr *arg;
1065 QualType type;
1067 arg = extract_expr(expr->getSubExpr());
1068 if (!arg)
1069 return NULL;
1071 type = expr->getTypeAsWritten();
1072 return pet_expr_new_cast(type.getAsString().c_str(), arg);
1075 /* Construct a pet_expr representing an integer.
1077 __isl_give pet_expr *PetScan::extract_expr(IntegerLiteral *expr)
1079 return pet_expr_new_int(extract_int(expr));
1082 /* Construct a pet_expr representing the integer enum constant "ecd".
1084 __isl_give pet_expr *PetScan::extract_expr(EnumConstantDecl *ecd)
1086 isl_val *v;
1087 const llvm::APSInt &init = ecd->getInitVal();
1088 v = ::extract_int(ctx, init.isSigned(), init);
1089 return pet_expr_new_int(v);
1092 /* Try and construct a pet_expr representing "expr".
1094 __isl_give pet_expr *PetScan::extract_expr(Expr *expr)
1096 switch (expr->getStmtClass()) {
1097 case Stmt::UnaryOperatorClass:
1098 return extract_expr(cast<UnaryOperator>(expr));
1099 case Stmt::CompoundAssignOperatorClass:
1100 case Stmt::BinaryOperatorClass:
1101 return extract_expr(cast<BinaryOperator>(expr));
1102 case Stmt::ImplicitCastExprClass:
1103 return extract_expr(cast<ImplicitCastExpr>(expr));
1104 case Stmt::ArraySubscriptExprClass:
1105 case Stmt::DeclRefExprClass:
1106 case Stmt::MemberExprClass:
1107 return extract_access_expr(expr);
1108 case Stmt::IntegerLiteralClass:
1109 return extract_expr(cast<IntegerLiteral>(expr));
1110 case Stmt::FloatingLiteralClass:
1111 return extract_expr(cast<FloatingLiteral>(expr));
1112 case Stmt::ParenExprClass:
1113 return extract_expr(cast<ParenExpr>(expr));
1114 case Stmt::ConditionalOperatorClass:
1115 return extract_expr(cast<ConditionalOperator>(expr));
1116 case Stmt::CallExprClass:
1117 return extract_expr(cast<CallExpr>(expr));
1118 case Stmt::CStyleCastExprClass:
1119 return extract_expr(cast<CStyleCastExpr>(expr));
1120 default:
1121 unsupported(expr);
1123 return NULL;
1126 /* Check if the given initialization statement is an assignment.
1127 * If so, return that assignment. Otherwise return NULL.
1129 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1131 BinaryOperator *ass;
1133 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1134 return NULL;
1136 ass = cast<BinaryOperator>(init);
1137 if (ass->getOpcode() != BO_Assign)
1138 return NULL;
1140 return ass;
1143 /* Check if the given initialization statement is a declaration
1144 * of a single variable.
1145 * If so, return that declaration. Otherwise return NULL.
1147 Decl *PetScan::initialization_declaration(Stmt *init)
1149 DeclStmt *decl;
1151 if (init->getStmtClass() != Stmt::DeclStmtClass)
1152 return NULL;
1154 decl = cast<DeclStmt>(init);
1156 if (!decl->isSingleDecl())
1157 return NULL;
1159 return decl->getSingleDecl();
1162 /* Given the assignment operator in the initialization of a for loop,
1163 * extract the induction variable, i.e., the (integer)variable being
1164 * assigned.
1166 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1168 Expr *lhs;
1169 DeclRefExpr *ref;
1170 ValueDecl *decl;
1171 const Type *type;
1173 lhs = init->getLHS();
1174 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1175 unsupported(init);
1176 return NULL;
1179 ref = cast<DeclRefExpr>(lhs);
1180 decl = ref->getDecl();
1181 type = decl->getType().getTypePtr();
1183 if (!type->isIntegerType()) {
1184 unsupported(lhs);
1185 return NULL;
1188 return decl;
1191 /* Given the initialization statement of a for loop and the single
1192 * declaration in this initialization statement,
1193 * extract the induction variable, i.e., the (integer) variable being
1194 * declared.
1196 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1198 VarDecl *vd;
1200 vd = cast<VarDecl>(decl);
1202 const QualType type = vd->getType();
1203 if (!type->isIntegerType()) {
1204 unsupported(init);
1205 return NULL;
1208 if (!vd->getInit()) {
1209 unsupported(init);
1210 return NULL;
1213 return vd;
1216 /* Check that op is of the form iv++ or iv--.
1217 * Return a pet_expr representing "1" or "-1" accordingly.
1219 __isl_give pet_expr *PetScan::extract_unary_increment(
1220 clang::UnaryOperator *op, clang::ValueDecl *iv)
1222 Expr *sub;
1223 DeclRefExpr *ref;
1224 isl_val *v;
1226 if (!op->isIncrementDecrementOp()) {
1227 unsupported(op);
1228 return NULL;
1231 sub = op->getSubExpr();
1232 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1233 unsupported(op);
1234 return NULL;
1237 ref = cast<DeclRefExpr>(sub);
1238 if (ref->getDecl() != iv) {
1239 unsupported(op);
1240 return NULL;
1243 if (op->isIncrementOp())
1244 v = isl_val_one(ctx);
1245 else
1246 v = isl_val_negone(ctx);
1248 return pet_expr_new_int(v);
1251 /* Check if op is of the form
1253 * iv = expr
1255 * and return the increment "expr - iv" as a pet_expr.
1257 __isl_give pet_expr *PetScan::extract_binary_increment(BinaryOperator *op,
1258 clang::ValueDecl *iv)
1260 int type_size;
1261 Expr *lhs;
1262 DeclRefExpr *ref;
1263 pet_expr *expr, *expr_iv;
1265 if (op->getOpcode() != BO_Assign) {
1266 unsupported(op);
1267 return NULL;
1270 lhs = op->getLHS();
1271 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1272 unsupported(op);
1273 return NULL;
1276 ref = cast<DeclRefExpr>(lhs);
1277 if (ref->getDecl() != iv) {
1278 unsupported(op);
1279 return NULL;
1282 expr = extract_expr(op->getRHS());
1283 expr_iv = extract_expr(lhs);
1285 type_size = pet_clang_get_type_size(iv->getType(), ast_context);
1286 return pet_expr_new_binary(type_size, pet_op_sub, expr, expr_iv);
1289 /* Check that op is of the form iv += cst or iv -= cst
1290 * and return a pet_expr corresponding to cst or -cst accordingly.
1292 __isl_give pet_expr *PetScan::extract_compound_increment(
1293 CompoundAssignOperator *op, clang::ValueDecl *iv)
1295 Expr *lhs;
1296 DeclRefExpr *ref;
1297 bool neg = false;
1298 pet_expr *expr;
1299 BinaryOperatorKind opcode;
1301 opcode = op->getOpcode();
1302 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1303 unsupported(op);
1304 return NULL;
1306 if (opcode == BO_SubAssign)
1307 neg = true;
1309 lhs = op->getLHS();
1310 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1311 unsupported(op);
1312 return NULL;
1315 ref = cast<DeclRefExpr>(lhs);
1316 if (ref->getDecl() != iv) {
1317 unsupported(op);
1318 return NULL;
1321 expr = extract_expr(op->getRHS());
1322 if (neg) {
1323 int type_size;
1324 type_size = pet_clang_get_type_size(op->getType(), ast_context);
1325 expr = pet_expr_new_unary(type_size, pet_op_minus, expr);
1328 return expr;
1331 /* Check that the increment of the given for loop increments
1332 * (or decrements) the induction variable "iv" and return
1333 * the increment as a pet_expr if successful.
1335 __isl_give pet_expr *PetScan::extract_increment(clang::ForStmt *stmt,
1336 ValueDecl *iv)
1338 Stmt *inc = stmt->getInc();
1340 if (!inc) {
1341 report_missing_increment(stmt);
1342 return NULL;
1345 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1346 return extract_unary_increment(cast<UnaryOperator>(inc), iv);
1347 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1348 return extract_compound_increment(
1349 cast<CompoundAssignOperator>(inc), iv);
1350 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1351 return extract_binary_increment(cast<BinaryOperator>(inc), iv);
1353 unsupported(inc);
1354 return NULL;
1357 /* Construct a pet_tree for a while loop.
1359 * If we were only able to extract part of the body, then simply
1360 * return that part.
1362 __isl_give pet_tree *PetScan::extract(WhileStmt *stmt)
1364 pet_expr *pe_cond;
1365 pet_tree *tree;
1367 tree = extract(stmt->getBody());
1368 if (partial)
1369 return tree;
1370 pe_cond = extract_expr(stmt->getCond());
1371 tree = pet_tree_new_while(pe_cond, tree);
1373 return tree;
1376 /* Construct a pet_tree for a for statement.
1377 * The for loop is required to be of one of the following forms
1379 * for (i = init; condition; ++i)
1380 * for (i = init; condition; --i)
1381 * for (i = init; condition; i += constant)
1382 * for (i = init; condition; i -= constant)
1384 * We extract a pet_tree for the body and then include it in a pet_tree
1385 * of type pet_tree_for.
1387 * As a special case, we also allow a for loop of the form
1389 * for (;;)
1391 * in which case we return a pet_tree of type pet_tree_infinite_loop.
1393 * If we were only able to extract part of the body, then simply
1394 * return that part.
1396 __isl_give pet_tree *PetScan::extract_for(ForStmt *stmt)
1398 BinaryOperator *ass;
1399 Decl *decl;
1400 Stmt *init;
1401 Expr *rhs;
1402 ValueDecl *iv;
1403 pet_tree *tree;
1404 int independent;
1405 int declared;
1406 pet_expr *pe_init, *pe_inc, *pe_iv, *pe_cond;
1408 independent = is_current_stmt_marked_independent();
1410 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc()) {
1411 tree = extract(stmt->getBody());
1412 if (partial)
1413 return tree;
1414 tree = pet_tree_new_infinite_loop(tree);
1415 return tree;
1418 init = stmt->getInit();
1419 if (!init) {
1420 unsupported(stmt);
1421 return NULL;
1423 if ((ass = initialization_assignment(init)) != NULL) {
1424 iv = extract_induction_variable(ass);
1425 if (!iv)
1426 return NULL;
1427 rhs = ass->getRHS();
1428 } else if ((decl = initialization_declaration(init)) != NULL) {
1429 VarDecl *var = extract_induction_variable(init, decl);
1430 if (!var)
1431 return NULL;
1432 iv = var;
1433 rhs = var->getInit();
1434 } else {
1435 unsupported(stmt->getInit());
1436 return NULL;
1439 declared = !initialization_assignment(stmt->getInit());
1440 tree = extract(stmt->getBody());
1441 if (partial)
1442 return tree;
1443 pe_iv = extract_access_expr(iv);
1444 pe_iv = mark_write(pe_iv);
1445 pe_init = extract_expr(rhs);
1446 if (!stmt->getCond())
1447 pe_cond = pet_expr_new_int(isl_val_one(ctx));
1448 else
1449 pe_cond = extract_expr(stmt->getCond());
1450 pe_inc = extract_increment(stmt, iv);
1451 tree = pet_tree_new_for(independent, declared, pe_iv, pe_init, pe_cond,
1452 pe_inc, tree);
1453 return tree;
1456 /* Store the names of the variables declared in decl_context
1457 * in the set declared_names. Make sure to only do this once by
1458 * setting declared_names_collected.
1460 void PetScan::collect_declared_names()
1462 DeclContext *DC = decl_context;
1463 DeclContext::decl_iterator it;
1465 if (declared_names_collected)
1466 return;
1468 for (it = DC->decls_begin(); it != DC->decls_end(); ++it) {
1469 Decl *D = *it;
1470 NamedDecl *named;
1472 if (!isa<NamedDecl>(D))
1473 continue;
1474 named = cast<NamedDecl>(D);
1475 declared_names.insert(named->getName().str());
1478 declared_names_collected = true;
1481 /* Add the names in "names" that are not also in this->declared_names
1482 * to this->used_names.
1483 * It is up to the caller to make sure that declared_names has been
1484 * populated, if needed.
1486 void PetScan::add_new_used_names(const std::set<std::string> &names)
1488 std::set<std::string>::const_iterator it;
1490 for (it = names.begin(); it != names.end(); ++it) {
1491 if (declared_names.find(*it) != declared_names.end())
1492 continue;
1493 used_names.insert(*it);
1497 /* Is the name "name" used in any declaration other than "decl"?
1499 * If the name was found to be in use before, the consider it to be in use.
1500 * Otherwise, check the DeclContext of the function containing the scop
1501 * as well as all ancestors of this DeclContext for declarations
1502 * other than "decl" that declare something called "name".
1504 bool PetScan::name_in_use(const string &name, Decl *decl)
1506 DeclContext *DC;
1507 DeclContext::decl_iterator it;
1509 if (used_names.find(name) != used_names.end())
1510 return true;
1512 for (DC = decl_context; DC; DC = DC->getParent()) {
1513 for (it = DC->decls_begin(); it != DC->decls_end(); ++it) {
1514 Decl *D = *it;
1515 NamedDecl *named;
1517 if (D == decl)
1518 continue;
1519 if (!isa<NamedDecl>(D))
1520 continue;
1521 named = cast<NamedDecl>(D);
1522 if (named->getName().str() == name)
1523 return true;
1527 return false;
1530 /* Generate a new name based on "name" that is not in use.
1531 * Do so by adding a suffix _i, with i an integer.
1533 string PetScan::generate_new_name(const string &name)
1535 string new_name;
1537 do {
1538 std::ostringstream oss;
1539 oss << name << "_" << n_rename++;
1540 new_name = oss.str();
1541 } while (name_in_use(new_name, NULL));
1543 return new_name;
1546 /* Try and construct a pet_tree corresponding to a compound statement.
1548 * "skip_declarations" is set if we should skip initial declarations
1549 * in the children of the compound statements.
1551 * Collect a new set of declarations for the current compound statement.
1552 * If any of the names in these declarations is also used by another
1553 * declaration reachable from the current function, then rename it
1554 * to a name that is not already in use.
1555 * In particular, keep track of the old and new names in a pet_substituter
1556 * and apply the substitutions to the pet_tree corresponding to the
1557 * compound statement.
1559 __isl_give pet_tree *PetScan::extract(CompoundStmt *stmt,
1560 bool skip_declarations)
1562 pet_tree *tree;
1563 std::vector<VarDecl *> saved_declarations;
1564 std::vector<VarDecl *>::iterator it;
1565 pet_substituter substituter;
1567 saved_declarations = declarations;
1568 declarations.clear();
1569 tree = extract(stmt->children(), true, skip_declarations, stmt);
1570 for (it = declarations.begin(); it != declarations.end(); ++it) {
1571 isl_id *id;
1572 pet_expr *expr;
1573 VarDecl *decl = *it;
1574 string name = decl->getName().str();
1575 bool in_use = name_in_use(name, decl);
1577 used_names.insert(name);
1578 if (!in_use)
1579 continue;
1581 name = generate_new_name(name);
1582 id = pet_id_from_name_and_decl(ctx, name.c_str(), decl);
1583 expr = pet_expr_access_from_id(id, ast_context);
1584 id = pet_id_from_decl(ctx, decl);
1585 substituter.add_sub(id, expr);
1586 used_names.insert(name);
1588 tree = substituter.substitute(tree);
1589 declarations = saved_declarations;
1591 return tree;
1594 /* Return the file offset of the expansion location of "Loc".
1596 static unsigned getExpansionOffset(SourceManager &SM, SourceLocation Loc)
1598 return SM.getFileOffset(SM.getExpansionLoc(Loc));
1601 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
1603 /* Return a SourceLocation for the location after the first semicolon
1604 * after "loc". If Lexer::findLocationAfterToken is available, we simply
1605 * call it and also skip trailing spaces and newline.
1607 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
1608 const LangOptions &LO)
1610 return Lexer::findLocationAfterToken(loc, tok::semi, SM, LO, true);
1613 #else
1615 /* Return a SourceLocation for the location after the first semicolon
1616 * after "loc". If Lexer::findLocationAfterToken is not available,
1617 * we look in the underlying character data for the first semicolon.
1619 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
1620 const LangOptions &LO)
1622 const char *semi;
1623 const char *s = SM.getCharacterData(loc);
1625 semi = strchr(s, ';');
1626 if (!semi)
1627 return SourceLocation();
1628 return loc.getFileLocWithOffset(semi + 1 - s);
1631 #endif
1633 /* If the token at "loc" is the first token on the line, then return
1634 * a location referring to the start of the line and set *indent
1635 * to the indentation of "loc"
1636 * Otherwise, return "loc" and set *indent to "".
1638 * This function is used to extend a scop to the start of the line
1639 * if the first token of the scop is also the first token on the line.
1641 * We look for the first token on the line. If its location is equal to "loc",
1642 * then the latter is the location of the first token on the line.
1644 static SourceLocation move_to_start_of_line_if_first_token(SourceLocation loc,
1645 SourceManager &SM, const LangOptions &LO, char **indent)
1647 std::pair<FileID, unsigned> file_offset_pair;
1648 llvm::StringRef file;
1649 const char *pos;
1650 Token tok;
1651 SourceLocation token_loc, line_loc;
1652 int col;
1653 const char *s;
1655 loc = SM.getExpansionLoc(loc);
1656 col = SM.getExpansionColumnNumber(loc);
1657 line_loc = loc.getLocWithOffset(1 - col);
1658 file_offset_pair = SM.getDecomposedLoc(line_loc);
1659 file = SM.getBufferData(file_offset_pair.first, NULL);
1660 pos = file.data() + file_offset_pair.second;
1662 Lexer lexer(SM.getLocForStartOfFile(file_offset_pair.first), LO,
1663 file.begin(), pos, file.end());
1664 lexer.LexFromRawLexer(tok);
1665 token_loc = tok.getLocation();
1667 s = SM.getCharacterData(line_loc);
1668 *indent = strndup(s, token_loc == loc ? col - 1 : 0);
1670 if (token_loc == loc)
1671 return line_loc;
1672 else
1673 return loc;
1676 /* Construct a pet_loc corresponding to the region covered by "range".
1677 * If "skip_semi" is set, then we assume "range" is followed by
1678 * a semicolon and also include this semicolon.
1680 __isl_give pet_loc *PetScan::construct_pet_loc(SourceRange range,
1681 bool skip_semi)
1683 SourceLocation loc = range.getBegin();
1684 SourceManager &SM = PP.getSourceManager();
1685 const LangOptions &LO = PP.getLangOpts();
1686 int line = PP.getSourceManager().getExpansionLineNumber(loc);
1687 unsigned start, end;
1688 char *indent;
1690 loc = move_to_start_of_line_if_first_token(loc, SM, LO, &indent);
1691 start = getExpansionOffset(SM, loc);
1692 loc = range.getEnd();
1693 if (skip_semi)
1694 loc = location_after_semi(loc, SM, LO);
1695 else
1696 loc = PP.getLocForEndOfToken(loc);
1697 end = getExpansionOffset(SM, loc);
1699 return pet_loc_alloc(ctx, start, end, line, indent);
1702 /* Convert a top-level pet_expr to an expression pet_tree.
1704 __isl_give pet_tree *PetScan::extract(__isl_take pet_expr *expr,
1705 SourceRange range, bool skip_semi)
1707 pet_loc *loc;
1708 pet_tree *tree;
1710 tree = pet_tree_new_expr(expr);
1711 loc = construct_pet_loc(range, skip_semi);
1712 tree = pet_tree_set_loc(tree, loc);
1714 return tree;
1717 /* Construct a pet_tree for an if statement.
1719 __isl_give pet_tree *PetScan::extract(IfStmt *stmt)
1721 pet_expr *pe_cond;
1722 pet_tree *tree, *tree_else;
1724 pe_cond = extract_expr(stmt->getCond());
1725 tree = extract(stmt->getThen());
1726 if (stmt->getElse()) {
1727 tree_else = extract(stmt->getElse());
1728 if (options->autodetect) {
1729 if (tree && !tree_else) {
1730 partial = true;
1731 pet_expr_free(pe_cond);
1732 return tree;
1734 if (!tree && tree_else) {
1735 partial = true;
1736 pet_expr_free(pe_cond);
1737 return tree_else;
1740 tree = pet_tree_new_if_else(pe_cond, tree, tree_else);
1741 } else
1742 tree = pet_tree_new_if(pe_cond, tree);
1743 return tree;
1746 /* Is "parent" a compound statement that has "stmt" as its final child?
1748 static bool final_in_compound(ReturnStmt *stmt, Stmt *parent)
1750 CompoundStmt *c;
1752 c = dyn_cast<CompoundStmt>(parent);
1753 if (c) {
1754 StmtIterator i;
1755 Stmt *last;
1756 StmtRange range = c->children();
1758 for (i = range.first; i != range.second; ++i)
1759 last = *i;
1760 return last == stmt;
1762 return false;
1765 /* Try and construct a pet_tree for a return statement "stmt".
1767 * Return statements are only allowed in a context where
1768 * this->return_root has been set.
1769 * Furthermore, "stmt" should appear as the last child
1770 * in the compound statement this->return_root.
1772 __isl_give pet_tree *PetScan::extract(ReturnStmt *stmt)
1774 pet_expr *val;
1776 if (!return_root) {
1777 report_unsupported_return(stmt);
1778 return NULL;
1780 if (!final_in_compound(stmt, return_root)) {
1781 report_return_not_at_end_of_function(stmt);
1782 return NULL;
1785 val = extract_expr(stmt->getRetValue());
1786 return pet_tree_new_return(val);
1789 /* Try and construct a pet_tree for a label statement.
1791 __isl_give pet_tree *PetScan::extract(LabelStmt *stmt)
1793 isl_id *label;
1794 pet_tree *tree;
1796 label = isl_id_alloc(ctx, stmt->getName(), NULL);
1798 tree = extract(stmt->getSubStmt());
1799 tree = pet_tree_set_label(tree, label);
1800 return tree;
1803 /* Update the location of "tree" to include the source range of "stmt".
1805 * Actually, we create a new location based on the source range of "stmt" and
1806 * then extend this new location to include the region of the original location.
1807 * This ensures that the line number of the final location refers to "stmt".
1809 __isl_give pet_tree *PetScan::update_loc(__isl_take pet_tree *tree, Stmt *stmt)
1811 pet_loc *loc, *tree_loc;
1813 tree_loc = pet_tree_get_loc(tree);
1814 loc = construct_pet_loc(stmt->getSourceRange(), false);
1815 loc = pet_loc_update_start_end_from_loc(loc, tree_loc);
1816 pet_loc_free(tree_loc);
1818 tree = pet_tree_set_loc(tree, loc);
1819 return tree;
1822 /* Is "expr" of a type that can be converted to an access expression?
1824 static bool is_access_expr_type(Expr *expr)
1826 switch (expr->getStmtClass()) {
1827 case Stmt::ArraySubscriptExprClass:
1828 case Stmt::DeclRefExprClass:
1829 case Stmt::MemberExprClass:
1830 return true;
1831 default:
1832 return false;
1836 /* Tell the pet_inliner "inliner" about the formal arguments
1837 * in "fd" and the corresponding actual arguments in "call".
1838 * Return 0 if this was successful and -1 otherwise.
1840 * Any pointer argument is treated as an array.
1841 * The other arguments are treated as scalars.
1843 * In case of scalars, there is no restriction on the actual argument.
1844 * This actual argument is assigned to a variable with a name
1845 * that is derived from the name of the corresponding formal argument,
1846 * but made not to conflict with any variable names that are
1847 * already in use.
1849 * In case of arrays, the actual argument needs to be an expression
1850 * of a type that can be converted to an access expression or the address
1851 * of such an expression, ignoring implicit and redundant casts.
1853 int PetScan::set_inliner_arguments(pet_inliner &inliner, CallExpr *call,
1854 FunctionDecl *fd)
1856 unsigned n;
1858 n = fd->getNumParams();
1859 for (unsigned i = 0; i < n; ++i) {
1860 ParmVarDecl *parm = fd->getParamDecl(i);
1861 QualType type = parm->getType();
1862 Expr *arg, *sub;
1863 pet_expr *expr;
1864 int is_addr = 0;
1866 arg = call->getArg(i);
1867 if (pet_clang_array_depth(type) == 0) {
1868 string name = parm->getName().str();
1869 if (name_in_use(name, NULL))
1870 name = generate_new_name(name);
1871 used_names.insert(name);
1872 inliner.add_scalar_arg(parm, name, extract_expr(arg));
1873 continue;
1875 arg = pet_clang_strip_casts(arg);
1876 sub = extract_addr_of_arg(arg);
1877 if (sub) {
1878 is_addr = 1;
1879 arg = pet_clang_strip_casts(sub);
1881 if (!is_access_expr_type(arg)) {
1882 report_unsupported_inline_function_argument(arg);
1883 return -1;
1885 expr = extract_access_expr(arg);
1886 if (!expr)
1887 return -1;
1888 inliner.add_array_arg(parm, expr, is_addr);
1891 return 0;
1894 /* Internal data structure for PetScan::substitute_array_sizes.
1895 * ps is the PetScan on which the method was called.
1896 * substituter is the substituter that is used to substitute variables
1897 * in the size expressions.
1899 struct pet_substitute_array_sizes_data {
1900 PetScan *ps;
1901 pet_substituter *substituter;
1904 extern "C" {
1905 static int substitute_array_size(__isl_keep pet_tree *tree, void *user);
1908 /* If "tree" is a declaration, then perform the substitutions
1909 * in data->substituter on its size expression and store the result
1910 * in the size expression cache of data->ps such that the modified expression
1911 * will be used in subsequent calls to get_array_size.
1913 static int substitute_array_size(__isl_keep pet_tree *tree, void *user)
1915 struct pet_substitute_array_sizes_data *data;
1916 isl_id *id;
1917 pet_expr *var, *size;
1919 if (!pet_tree_is_decl(tree))
1920 return 0;
1922 data = (struct pet_substitute_array_sizes_data *) user;
1923 var = pet_tree_decl_get_var(tree);
1924 id = pet_expr_access_get_id(var);
1925 pet_expr_free(var);
1927 size = data->ps->get_array_size(id);
1928 size = data->substituter->substitute(size);
1929 data->ps->set_array_size(id, size);
1931 return 0;
1934 /* Perform the substitutions in "substituter" on all the arrays declared
1935 * inside "tree" and store the results in the size expression cache
1936 * such that the modified expressions will be used in subsequent calls
1937 * to get_array_size.
1939 int PetScan::substitute_array_sizes(__isl_keep pet_tree *tree,
1940 pet_substituter *substituter)
1942 struct pet_substitute_array_sizes_data data = { this, substituter };
1944 return pet_tree_foreach_sub_tree(tree, &substitute_array_size, &data);
1947 /* Try and construct a pet_tree from the body of "fd" using the actual
1948 * arguments in "call" in place of the formal arguments.
1949 * "fd" is assumed to point to the declaration with a function body.
1950 * In particular, construct a block that consists of assignments
1951 * of (parts of) the actual arguments to temporary variables
1952 * followed by the inlined function body with the formal arguments
1953 * replaced by (expressions containing) these temporary variables.
1954 * If "return_id" is set, then it is used to store the return value
1955 * of the inlined function.
1957 * The actual inlining is taken care of by the pet_inliner object.
1958 * This function merely calls set_inliner_arguments to tell
1959 * the pet_inliner about the actual arguments, extracts a pet_tree
1960 * from the body of the called function and then passes this pet_tree
1961 * to the pet_inliner.
1962 * The body of the called function is allowed to have a return statement
1963 * at the end.
1964 * The substitutions performed by the inliner are also applied
1965 * to the size expressions of the arrays declared in the inlined
1966 * function. These size expressions are not stored in the tree
1967 * itself, but rather in the size expression cache.
1969 * During the extraction of the function body, all variables names
1970 * that are declared in the calling function as well all variable
1971 * names that are known to be in use are considered to be in use
1972 * in the called function to ensure that there is no naming conflict.
1973 * Similarly, the additional names that are in use in the called function
1974 * are considered to be in use in the calling function as well.
1976 * The location of the pet_tree is reset to the call site to ensure
1977 * that the extent of the scop does not include the body of the called
1978 * function.
1980 __isl_give pet_tree *PetScan::extract_inlined_call(CallExpr *call,
1981 FunctionDecl *fd, __isl_keep isl_id *return_id)
1983 int save_autodetect;
1984 pet_tree *tree;
1985 pet_loc *tree_loc;
1986 pet_inliner inliner(ctx, n_arg, ast_context);
1988 if (set_inliner_arguments(inliner, call, fd) < 0)
1989 return NULL;
1991 save_autodetect = options->autodetect;
1992 options->autodetect = 0;
1993 PetScan body_scan(PP, ast_context, fd, loc, options,
1994 isl_union_map_copy(value_bounds), independent);
1995 collect_declared_names();
1996 body_scan.add_new_used_names(declared_names);
1997 body_scan.add_new_used_names(used_names);
1998 body_scan.return_root = fd->getBody();
1999 tree = body_scan.extract(fd->getBody(), false);
2000 add_new_used_names(body_scan.used_names);
2001 options->autodetect = save_autodetect;
2003 tree_loc = construct_pet_loc(call->getSourceRange(), true);
2004 tree = pet_tree_set_loc(tree, tree_loc);
2006 substitute_array_sizes(tree, &inliner);
2008 return inliner.inline_tree(tree, return_id);
2011 /* Try and construct a pet_tree corresponding
2012 * to the expression statement "stmt".
2014 * First look for function calls that have corresponding bodies
2015 * marked "inline". Extract the inlined functions in a pet_inlined_calls
2016 * object. Then extract the statement itself, replacing calls
2017 * to inlined function by accesses to the corresponding return variables, and
2018 * return the combined result.
2019 * If the outer expression is itself a call to an inlined function,
2020 * then it already appears as one of the inlined functions and
2021 * no separate pet_tree needs to be extracted for "stmt" itself.
2023 __isl_give pet_tree *PetScan::extract_expr_stmt(Stmt *stmt)
2025 pet_expr *expr;
2026 pet_tree *tree;
2027 pet_inlined_calls ic(this);
2029 ic.collect(stmt);
2030 if (ic.calls.size() >= 1 && ic.calls[0] == stmt) {
2031 tree = pet_tree_new_block(ctx, 0, 0);
2032 } else {
2033 call2id = &ic.call2id;
2034 expr = extract_expr(cast<Expr>(stmt));
2035 tree = extract(expr, stmt->getSourceRange(), true);
2036 call2id = NULL;
2038 tree = ic.add_inlined(tree);
2039 return tree;
2042 /* Try and construct a pet_tree corresponding to "stmt".
2044 * If "stmt" is a compound statement, then "skip_declarations"
2045 * indicates whether we should skip initial declarations in the
2046 * compound statement.
2048 * If the constructed pet_tree is not a (possibly) partial representation
2049 * of "stmt", we update start and end of the pet_scop to those of "stmt".
2050 * In particular, if skip_declarations is set, then we may have skipped
2051 * declarations inside "stmt" and so the pet_scop may not represent
2052 * the entire "stmt".
2053 * Note that this function may be called with "stmt" referring to the entire
2054 * body of the function, including the outer braces. In such cases,
2055 * skip_declarations will be set and the braces will not be taken into
2056 * account in tree->loc.
2058 __isl_give pet_tree *PetScan::extract(Stmt *stmt, bool skip_declarations)
2060 pet_tree *tree;
2062 set_current_stmt(stmt);
2064 if (isa<Expr>(stmt))
2065 return extract_expr_stmt(cast<Expr>(stmt));
2067 switch (stmt->getStmtClass()) {
2068 case Stmt::WhileStmtClass:
2069 tree = extract(cast<WhileStmt>(stmt));
2070 break;
2071 case Stmt::ForStmtClass:
2072 tree = extract_for(cast<ForStmt>(stmt));
2073 break;
2074 case Stmt::IfStmtClass:
2075 tree = extract(cast<IfStmt>(stmt));
2076 break;
2077 case Stmt::CompoundStmtClass:
2078 tree = extract(cast<CompoundStmt>(stmt), skip_declarations);
2079 break;
2080 case Stmt::LabelStmtClass:
2081 tree = extract(cast<LabelStmt>(stmt));
2082 break;
2083 case Stmt::ContinueStmtClass:
2084 tree = pet_tree_new_continue(ctx);
2085 break;
2086 case Stmt::BreakStmtClass:
2087 tree = pet_tree_new_break(ctx);
2088 break;
2089 case Stmt::DeclStmtClass:
2090 tree = extract(cast<DeclStmt>(stmt));
2091 break;
2092 case Stmt::NullStmtClass:
2093 tree = pet_tree_new_block(ctx, 0, 0);
2094 break;
2095 case Stmt::ReturnStmtClass:
2096 tree = extract(cast<ReturnStmt>(stmt));
2097 break;
2098 default:
2099 report_unsupported_statement_type(stmt);
2100 return NULL;
2103 if (partial || skip_declarations)
2104 return tree;
2106 return update_loc(tree, stmt);
2109 /* Given a sequence of statements "stmt_range" of which the first "n_decl"
2110 * are declarations and of which the remaining statements are represented
2111 * by "tree", try and extend "tree" to include the last sequence of
2112 * the initial declarations that can be completely extracted.
2114 * We start collecting the initial declarations and start over
2115 * whenever we come across a declaration that we cannot extract.
2116 * If we have been able to extract any declarations, then we
2117 * copy over the contents of "tree" at the end of the declarations.
2118 * Otherwise, we simply return the original "tree".
2120 __isl_give pet_tree *PetScan::insert_initial_declarations(
2121 __isl_take pet_tree *tree, int n_decl, StmtRange stmt_range)
2123 StmtIterator i;
2124 pet_tree *res;
2125 int n_stmt;
2126 int is_block;
2127 int j;
2129 n_stmt = pet_tree_block_n_child(tree);
2130 is_block = pet_tree_block_get_block(tree);
2131 res = pet_tree_new_block(ctx, is_block, n_decl + n_stmt);
2133 for (i = stmt_range.first; n_decl; ++i, --n_decl) {
2134 Stmt *child = *i;
2135 pet_tree *tree_i;
2137 tree_i = extract(child);
2138 if (tree_i && !partial) {
2139 res = pet_tree_block_add_child(res, tree_i);
2140 continue;
2142 pet_tree_free(tree_i);
2143 partial = false;
2144 if (pet_tree_block_n_child(res) == 0)
2145 continue;
2146 pet_tree_free(res);
2147 res = pet_tree_new_block(ctx, is_block, n_decl + n_stmt);
2150 if (pet_tree_block_n_child(res) == 0) {
2151 pet_tree_free(res);
2152 return tree;
2155 for (j = 0; j < n_stmt; ++j) {
2156 pet_tree *tree_i;
2158 tree_i = pet_tree_block_get_child(tree, j);
2159 res = pet_tree_block_add_child(res, tree_i);
2161 pet_tree_free(tree);
2163 return res;
2166 /* Try and construct a pet_tree corresponding to (part of)
2167 * a sequence of statements.
2169 * "block" is set if the sequence represents the children of
2170 * a compound statement.
2171 * "skip_declarations" is set if we should skip initial declarations
2172 * in the sequence of statements.
2173 * "parent" is the statement that has stmt_range as (some of) its children.
2175 * If autodetect is set, then we allow the extraction of only a subrange
2176 * of the sequence of statements. However, if there is at least one
2177 * kill and there is some subsequent statement for which we could not
2178 * construct a tree, then turn off the "block" property of the tree
2179 * such that no extra kill will be introduced at the end of the (partial)
2180 * block. If, on the other hand, the final range contains
2181 * no statements, then we discard the entire range.
2182 * If only a subrange of the sequence was extracted, but each statement
2183 * in the sequence was extracted completely, and if there are some
2184 * variable declarations in the sequence before or inside
2185 * the extracted subrange, then check if any of these variables are
2186 * not used after the extracted subrange. If so, add kills to these
2187 * variables.
2189 * If the entire range was extracted, apart from some initial declarations,
2190 * then we try and extend the range with the latest of those initial
2191 * declarations.
2193 __isl_give pet_tree *PetScan::extract(StmtRange stmt_range, bool block,
2194 bool skip_declarations, Stmt *parent)
2196 StmtIterator i;
2197 int j, skip;
2198 bool has_kills = false;
2199 bool partial_range = false;
2200 bool outer_partial = false;
2201 pet_tree *tree;
2202 SourceManager &SM = PP.getSourceManager();
2203 pet_killed_locals kl(SM);
2204 unsigned range_start, range_end;
2206 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j)
2209 tree = pet_tree_new_block(ctx, block, j);
2211 skip = 0;
2212 i = stmt_range.first;
2213 if (skip_declarations)
2214 for (; i != stmt_range.second; ++i) {
2215 if ((*i)->getStmtClass() != Stmt::DeclStmtClass)
2216 break;
2217 if (options->autodetect)
2218 kl.add_locals(cast<DeclStmt>(*i));
2219 ++skip;
2222 for (; i != stmt_range.second; ++i) {
2223 Stmt *child = *i;
2224 pet_tree *tree_i;
2226 tree_i = extract(child);
2227 if (pet_tree_block_n_child(tree) != 0 && partial) {
2228 pet_tree_free(tree_i);
2229 break;
2231 if (child->getStmtClass() == Stmt::DeclStmtClass) {
2232 if (options->autodetect)
2233 kl.add_locals(cast<DeclStmt>(child));
2234 if (tree_i && block)
2235 has_kills = true;
2237 if (options->autodetect) {
2238 if (tree_i) {
2239 range_end = getExpansionOffset(SM,
2240 end_loc(child));
2241 if (pet_tree_block_n_child(tree) == 0)
2242 range_start = getExpansionOffset(SM,
2243 begin_loc(child));
2244 tree = pet_tree_block_add_child(tree, tree_i);
2245 } else {
2246 partial_range = true;
2248 if (pet_tree_block_n_child(tree) != 0 && !tree_i)
2249 outer_partial = partial = true;
2250 } else {
2251 tree = pet_tree_block_add_child(tree, tree_i);
2254 if (partial || !tree)
2255 break;
2258 if (!tree)
2259 return NULL;
2261 if (partial) {
2262 if (has_kills)
2263 tree = pet_tree_block_set_block(tree, 0);
2264 if (outer_partial) {
2265 kl.remove_accessed_after(parent,
2266 range_start, range_end);
2267 tree = add_kills(tree, kl.locals);
2269 } else if (partial_range) {
2270 if (pet_tree_block_n_child(tree) == 0) {
2271 pet_tree_free(tree);
2272 return NULL;
2274 partial = true;
2275 } else if (skip > 0)
2276 tree = insert_initial_declarations(tree, skip, stmt_range);
2278 return tree;
2281 extern "C" {
2282 static __isl_give pet_expr *get_array_size(__isl_keep pet_expr *access,
2283 void *user);
2284 static struct pet_array *extract_array(__isl_keep pet_expr *access,
2285 __isl_keep pet_context *pc, void *user);
2288 /* Construct a pet_expr that holds the sizes of the array accessed
2289 * by "access".
2290 * This function is used as a callback to pet_context_add_parameters,
2291 * which is also passed a pointer to the PetScan object.
2293 static __isl_give pet_expr *get_array_size(__isl_keep pet_expr *access,
2294 void *user)
2296 PetScan *ps = (PetScan *) user;
2297 isl_id *id;
2298 pet_expr *size;
2300 id = pet_expr_access_get_id(access);
2301 size = ps->get_array_size(id);
2302 isl_id_free(id);
2304 return size;
2307 /* Construct and return a pet_array corresponding to the variable
2308 * accessed by "access".
2309 * This function is used as a callback to pet_scop_from_pet_tree,
2310 * which is also passed a pointer to the PetScan object.
2312 static struct pet_array *extract_array(__isl_keep pet_expr *access,
2313 __isl_keep pet_context *pc, void *user)
2315 PetScan *ps = (PetScan *) user;
2316 isl_id *id;
2317 pet_array *array;
2319 id = pet_expr_access_get_id(access);
2320 array = ps->extract_array(id, NULL, pc);
2321 isl_id_free(id);
2323 return array;
2326 /* Extract a function summary from the body of "fd".
2328 * We extract a scop from the function body in a context with as
2329 * parameters the integer arguments of the function.
2330 * We turn off autodetection (in case it was set) to ensure that
2331 * the entire function body is considered.
2332 * We then collect the accessed array elements and attach them
2333 * to the corresponding array arguments, taking into account
2334 * that the function body may access members of array elements.
2335 * The function body is allowed to have a return statement at the end.
2337 * The reason for representing the integer arguments as parameters in
2338 * the context is that if we were to instead start with a context
2339 * with the function arguments as initial dimensions, then we would not
2340 * be able to refer to them from the array extents, without turning
2341 * array extents into maps.
2343 * The result is stored in the summary_cache cache so that we can reuse
2344 * it if this method gets called on the same function again later on.
2346 __isl_give pet_function_summary *PetScan::get_summary(FunctionDecl *fd)
2348 isl_space *space;
2349 isl_set *domain;
2350 pet_context *pc;
2351 pet_tree *tree;
2352 pet_function_summary *summary;
2353 unsigned n;
2354 ScopLoc loc;
2355 int save_autodetect;
2356 struct pet_scop *scop;
2357 int int_size;
2358 isl_union_set *may_read, *may_write, *must_write;
2359 isl_union_map *to_inner;
2361 if (summary_cache.find(fd) != summary_cache.end())
2362 return pet_function_summary_copy(summary_cache[fd]);
2364 space = isl_space_set_alloc(ctx, 0, 0);
2366 n = fd->getNumParams();
2367 summary = pet_function_summary_alloc(ctx, n);
2368 for (unsigned i = 0; i < n; ++i) {
2369 ParmVarDecl *parm = fd->getParamDecl(i);
2370 QualType type = parm->getType();
2371 isl_id *id;
2373 if (!type->isIntegerType())
2374 continue;
2375 id = pet_id_from_decl(ctx, parm);
2376 space = isl_space_insert_dims(space, isl_dim_param, 0, 1);
2377 space = isl_space_set_dim_id(space, isl_dim_param, 0,
2378 isl_id_copy(id));
2379 summary = pet_function_summary_set_int(summary, i, id);
2382 save_autodetect = options->autodetect;
2383 options->autodetect = 0;
2384 PetScan body_scan(PP, ast_context, fd, loc, options,
2385 isl_union_map_copy(value_bounds), independent);
2387 body_scan.return_root = fd->getBody();
2388 tree = body_scan.extract(fd->getBody(), false);
2390 domain = isl_set_universe(space);
2391 pc = pet_context_alloc(domain);
2392 pc = pet_context_add_parameters(pc, tree,
2393 &::get_array_size, &body_scan);
2394 int_size = size_in_bytes(ast_context, ast_context.IntTy);
2395 scop = pet_scop_from_pet_tree(tree, int_size,
2396 &::extract_array, &body_scan, pc);
2397 scop = scan_arrays(scop, pc);
2398 may_read = isl_union_map_range(pet_scop_get_may_reads(scop));
2399 may_write = isl_union_map_range(pet_scop_get_may_writes(scop));
2400 must_write = isl_union_map_range(pet_scop_get_must_writes(scop));
2401 to_inner = pet_scop_compute_outer_to_inner(scop);
2402 pet_scop_free(scop);
2404 for (unsigned i = 0; i < n; ++i) {
2405 ParmVarDecl *parm = fd->getParamDecl(i);
2406 QualType type = parm->getType();
2407 struct pet_array *array;
2408 isl_space *space;
2409 isl_union_set *data_set;
2410 isl_union_set *may_read_i, *may_write_i, *must_write_i;
2412 if (pet_clang_array_depth(type) == 0)
2413 continue;
2415 array = body_scan.extract_array(parm, NULL, pc);
2416 space = array ? isl_set_get_space(array->extent) : NULL;
2417 pet_array_free(array);
2418 data_set = isl_union_set_from_set(isl_set_universe(space));
2419 data_set = isl_union_set_apply(data_set,
2420 isl_union_map_copy(to_inner));
2421 may_read_i = isl_union_set_intersect(
2422 isl_union_set_copy(may_read),
2423 isl_union_set_copy(data_set));
2424 may_write_i = isl_union_set_intersect(
2425 isl_union_set_copy(may_write),
2426 isl_union_set_copy(data_set));
2427 must_write_i = isl_union_set_intersect(
2428 isl_union_set_copy(must_write), data_set);
2429 summary = pet_function_summary_set_array(summary, i,
2430 may_read_i, may_write_i, must_write_i);
2433 isl_union_set_free(may_read);
2434 isl_union_set_free(may_write);
2435 isl_union_set_free(must_write);
2436 isl_union_map_free(to_inner);
2438 options->autodetect = save_autodetect;
2439 pet_context_free(pc);
2441 summary_cache[fd] = pet_function_summary_copy(summary);
2443 return summary;
2446 /* If "fd" has a function body, then extract a function summary from
2447 * this body and attach it to the call expression "expr".
2449 * Even if a function body is available, "fd" itself may point
2450 * to a declaration without function body. We therefore first
2451 * replace it by the declaration that comes with a body (if any).
2453 __isl_give pet_expr *PetScan::set_summary(__isl_take pet_expr *expr,
2454 FunctionDecl *fd)
2456 pet_function_summary *summary;
2458 if (!expr)
2459 return NULL;
2460 fd = pet_clang_find_function_decl_with_body(fd);
2461 if (!fd)
2462 return expr;
2464 summary = get_summary(fd);
2466 expr = pet_expr_call_set_summary(expr, summary);
2468 return expr;
2471 /* Extract a pet_scop from "tree".
2473 * We simply call pet_scop_from_pet_tree with the appropriate arguments and
2474 * then add pet_arrays for all accessed arrays.
2475 * We populate the pet_context with assignments for all parameters used
2476 * inside "tree" or any of the size expressions for the arrays accessed
2477 * by "tree" so that they can be used in affine expressions.
2479 struct pet_scop *PetScan::extract_scop(__isl_take pet_tree *tree)
2481 int int_size;
2482 isl_set *domain;
2483 pet_context *pc;
2484 pet_scop *scop;
2486 int_size = size_in_bytes(ast_context, ast_context.IntTy);
2488 domain = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
2489 pc = pet_context_alloc(domain);
2490 pc = pet_context_add_parameters(pc, tree, &::get_array_size, this);
2491 scop = pet_scop_from_pet_tree(tree, int_size,
2492 &::extract_array, this, pc);
2493 scop = scan_arrays(scop, pc);
2494 pet_context_free(pc);
2496 return scop;
2499 /* Add a call to __pencil_kill to the end of "tree" that kills
2500 * all the variables in "locals" and return the result.
2502 * No location is added to the kill because the most natural
2503 * location would lie outside the scop. Attaching such a location
2504 * to this tree would extend the scope of the final result
2505 * to include the location.
2507 __isl_give pet_tree *PetScan::add_kills(__isl_take pet_tree *tree,
2508 set<ValueDecl *> locals)
2510 int i;
2511 pet_expr *expr;
2512 pet_tree *kill, *block;
2513 set<ValueDecl *>::iterator it;
2515 if (locals.size() == 0)
2516 return tree;
2517 expr = pet_expr_new_call(ctx, "__pencil_kill", locals.size());
2518 i = 0;
2519 for (it = locals.begin(); it != locals.end(); ++it) {
2520 pet_expr *arg;
2521 arg = extract_access_expr(*it);
2522 expr = pet_expr_set_arg(expr, i++, arg);
2524 kill = pet_tree_new_expr(expr);
2525 block = pet_tree_new_block(ctx, 0, 2);
2526 block = pet_tree_block_add_child(block, tree);
2527 block = pet_tree_block_add_child(block, kill);
2529 return block;
2532 /* Check if the scop marked by the user is exactly this Stmt
2533 * or part of this Stmt.
2534 * If so, return a pet_scop corresponding to the marked region.
2535 * Otherwise, return NULL.
2537 * If the scop is not further nested inside a child of "stmt",
2538 * then check if there are any variable declarations before the scop
2539 * inside "stmt". If so, and if these variables are not used
2540 * after the scop, then add kills to the variables.
2542 * If the scop starts in the middle of one of the children, without
2543 * also ending in that child, then report an error.
2545 struct pet_scop *PetScan::scan(Stmt *stmt)
2547 SourceManager &SM = PP.getSourceManager();
2548 unsigned start_off, end_off;
2549 pet_tree *tree;
2551 start_off = getExpansionOffset(SM, begin_loc(stmt));
2552 end_off = getExpansionOffset(SM, end_loc(stmt));
2554 if (start_off > loc.end)
2555 return NULL;
2556 if (end_off < loc.start)
2557 return NULL;
2559 if (start_off >= loc.start && end_off <= loc.end)
2560 return extract_scop(extract(stmt));
2562 pet_killed_locals kl(SM);
2563 StmtIterator start;
2564 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
2565 Stmt *child = *start;
2566 if (!child)
2567 continue;
2568 start_off = getExpansionOffset(SM, begin_loc(child));
2569 end_off = getExpansionOffset(SM, end_loc(child));
2570 if (start_off < loc.start && end_off >= loc.end)
2571 return scan(child);
2572 if (start_off >= loc.start)
2573 break;
2574 if (loc.start < end_off) {
2575 report_unbalanced_pragmas(loc.scop, loc.endscop);
2576 return NULL;
2578 if (isa<DeclStmt>(child))
2579 kl.add_locals(cast<DeclStmt>(child));
2582 StmtIterator end;
2583 for (end = start; end != stmt->child_end(); ++end) {
2584 Stmt *child = *end;
2585 start_off = SM.getFileOffset(begin_loc(child));
2586 if (start_off >= loc.end)
2587 break;
2590 kl.remove_accessed_after(stmt, loc.start, loc.end);
2592 tree = extract(StmtRange(start, end), false, false, stmt);
2593 tree = add_kills(tree, kl.locals);
2594 return extract_scop(tree);
2597 /* Set the size of index "pos" of "array" to "size".
2598 * In particular, add a constraint of the form
2600 * i_pos < size
2602 * to array->extent and a constraint of the form
2604 * size >= 0
2606 * to array->context.
2608 * The domain of "size" is assumed to be zero-dimensional.
2610 static struct pet_array *update_size(struct pet_array *array, int pos,
2611 __isl_take isl_pw_aff *size)
2613 isl_set *valid;
2614 isl_set *univ;
2615 isl_set *bound;
2616 isl_space *dim;
2617 isl_aff *aff;
2618 isl_pw_aff *index;
2619 isl_id *id;
2621 if (!array)
2622 goto error;
2624 valid = isl_set_params(isl_pw_aff_nonneg_set(isl_pw_aff_copy(size)));
2625 array->context = isl_set_intersect(array->context, valid);
2627 dim = isl_set_get_space(array->extent);
2628 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2629 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
2630 univ = isl_set_universe(isl_aff_get_domain_space(aff));
2631 index = isl_pw_aff_alloc(univ, aff);
2633 size = isl_pw_aff_add_dims(size, isl_dim_in,
2634 isl_set_dim(array->extent, isl_dim_set));
2635 id = isl_set_get_tuple_id(array->extent);
2636 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
2637 bound = isl_pw_aff_lt_set(index, size);
2639 array->extent = isl_set_intersect(array->extent, bound);
2641 if (!array->context || !array->extent)
2642 return pet_array_free(array);
2644 return array;
2645 error:
2646 isl_pw_aff_free(size);
2647 return NULL;
2650 #ifdef HAVE_DECAYEDTYPE
2652 /* If "qt" is a decayed type, then set *decayed to true and
2653 * return the original type.
2655 static QualType undecay(QualType qt, bool *decayed)
2657 const Type *type = qt.getTypePtr();
2659 *decayed = isa<DecayedType>(type);
2660 if (*decayed)
2661 qt = cast<DecayedType>(type)->getOriginalType();
2662 return qt;
2665 #else
2667 /* If "qt" is a decayed type, then set *decayed to true and
2668 * return the original type.
2669 * Since this version of clang does not define a DecayedType,
2670 * we cannot obtain the original type even if it had been decayed and
2671 * we set *decayed to false.
2673 static QualType undecay(QualType qt, bool *decayed)
2675 *decayed = false;
2676 return qt;
2679 #endif
2681 /* Figure out the size of the array at position "pos" and all
2682 * subsequent positions from "qt" and update the corresponding
2683 * argument of "expr" accordingly.
2685 * The initial type (when pos is zero) may be a pointer type decayed
2686 * from an array type, if this initial type is the type of a function
2687 * argument. This only happens if the original array type has
2688 * a constant size in the outer dimension as otherwise we get
2689 * a VariableArrayType. Try and obtain this original type (if available) and
2690 * take the outer array size into account if it was marked static.
2692 __isl_give pet_expr *PetScan::set_upper_bounds(__isl_take pet_expr *expr,
2693 QualType qt, int pos)
2695 const ArrayType *atype;
2696 pet_expr *size;
2697 bool decayed = false;
2699 if (!expr)
2700 return NULL;
2702 if (pos == 0)
2703 qt = undecay(qt, &decayed);
2705 if (qt->isPointerType()) {
2706 qt = qt->getPointeeType();
2707 return set_upper_bounds(expr, qt, pos + 1);
2709 if (!qt->isArrayType())
2710 return expr;
2712 qt = qt->getCanonicalTypeInternal();
2713 atype = cast<ArrayType>(qt.getTypePtr());
2715 if (decayed && atype->getSizeModifier() != ArrayType::Static) {
2716 qt = atype->getElementType();
2717 return set_upper_bounds(expr, qt, pos + 1);
2720 if (qt->isConstantArrayType()) {
2721 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
2722 size = extract_expr(ca->getSize());
2723 expr = pet_expr_set_arg(expr, pos, size);
2724 } else if (qt->isVariableArrayType()) {
2725 const VariableArrayType *vla = cast<VariableArrayType>(atype);
2726 size = extract_expr(vla->getSizeExpr());
2727 expr = pet_expr_set_arg(expr, pos, size);
2730 qt = atype->getElementType();
2732 return set_upper_bounds(expr, qt, pos + 1);
2735 /* Construct a pet_expr that holds the sizes of the array represented by "id".
2736 * The returned expression is a call expression with as arguments
2737 * the sizes in each dimension. If we are unable to derive the size
2738 * in a given dimension, then the corresponding argument is set to infinity.
2739 * In fact, we initialize all arguments to infinity and then update
2740 * them if we are able to figure out the size.
2742 * The result is stored in the id_size cache so that it can be reused
2743 * if this method is called on the same array identifier later.
2744 * The result is also stored in the type_size cache in case
2745 * it gets called on a different array identifier with the same type.
2747 __isl_give pet_expr *PetScan::get_array_size(__isl_keep isl_id *id)
2749 QualType qt = pet_id_get_array_type(id);
2750 int depth;
2751 pet_expr *expr, *inf;
2752 const Type *type = qt.getTypePtr();
2753 isl_maybe_pet_expr m;
2755 m = isl_id_to_pet_expr_try_get(id_size, id);
2756 if (m.valid < 0 || m.valid)
2757 return m.value;
2758 if (type_size.find(type) != type_size.end())
2759 return pet_expr_copy(type_size[type]);
2761 depth = pet_clang_array_depth(qt);
2762 inf = pet_expr_new_int(isl_val_infty(ctx));
2763 expr = pet_expr_new_call(ctx, "bounds", depth);
2764 for (int i = 0; i < depth; ++i)
2765 expr = pet_expr_set_arg(expr, i, pet_expr_copy(inf));
2766 pet_expr_free(inf);
2768 expr = set_upper_bounds(expr, qt, 0);
2769 type_size[type] = pet_expr_copy(expr);
2770 id_size = isl_id_to_pet_expr_set(id_size, isl_id_copy(id),
2771 pet_expr_copy(expr));
2773 return expr;
2776 /* Set the array size of the array identified by "id" to "size",
2777 * replacing any previously stored value.
2779 void PetScan::set_array_size(__isl_take isl_id *id, __isl_take pet_expr *size)
2781 id_size = isl_id_to_pet_expr_set(id_size, id, size);
2784 /* Does "expr" represent the "integer" infinity?
2786 static int is_infty(__isl_keep pet_expr *expr)
2788 isl_val *v;
2789 int res;
2791 if (pet_expr_get_type(expr) != pet_expr_int)
2792 return 0;
2793 v = pet_expr_int_get_val(expr);
2794 res = isl_val_is_infty(v);
2795 isl_val_free(v);
2797 return res;
2800 /* Figure out the dimensions of an array "array" and
2801 * update "array" accordingly.
2803 * We first construct a pet_expr that holds the sizes of the array
2804 * in each dimension. The resulting expression may containing
2805 * infinity values for dimension where we are unable to derive
2806 * a size expression.
2808 * The arguments of the size expression that have a value different from
2809 * infinity are then converted to an affine expression
2810 * within the context "pc" and incorporated into the size of "array".
2811 * If we are unable to convert a size expression to an affine expression or
2812 * if the size is not a (symbolic) constant,
2813 * then we leave the corresponding size of "array" untouched.
2815 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
2816 __isl_keep pet_context *pc)
2818 int n;
2819 isl_id *id;
2820 pet_expr *expr;
2822 if (!array)
2823 return NULL;
2825 id = isl_set_get_tuple_id(array->extent);
2826 if (!id)
2827 return pet_array_free(array);
2828 expr = get_array_size(id);
2829 isl_id_free(id);
2831 n = pet_expr_get_n_arg(expr);
2832 for (int i = 0; i < n; ++i) {
2833 pet_expr *arg;
2834 isl_pw_aff *size;
2836 arg = pet_expr_get_arg(expr, i);
2837 if (!is_infty(arg)) {
2838 int dim;
2840 size = pet_expr_extract_affine(arg, pc);
2841 dim = isl_pw_aff_dim(size, isl_dim_in);
2842 if (!size)
2843 array = pet_array_free(array);
2844 else if (isl_pw_aff_involves_nan(size) ||
2845 isl_pw_aff_involves_dims(size, isl_dim_in, 0, dim))
2846 isl_pw_aff_free(size);
2847 else {
2848 size = isl_pw_aff_drop_dims(size,
2849 isl_dim_in, 0, dim);
2850 array = update_size(array, i, size);
2853 pet_expr_free(arg);
2855 pet_expr_free(expr);
2857 return array;
2860 /* Does "decl" have a definition that we can keep track of in a pet_type?
2862 static bool has_printable_definition(RecordDecl *decl)
2864 if (!decl->getDeclName())
2865 return false;
2866 return decl->getLexicalDeclContext() == decl->getDeclContext();
2869 /* Add all TypedefType objects that appear when dereferencing "type"
2870 * to "types".
2872 static void insert_intermediate_typedefs(PetTypes *types, QualType type)
2874 type = pet_clang_base_or_typedef_type(type);
2875 while (isa<TypedefType>(type)) {
2876 const TypedefType *tt;
2878 tt = cast<TypedefType>(type);
2879 types->insert(tt->getDecl());
2880 type = tt->desugar();
2881 type = pet_clang_base_or_typedef_type(type);
2885 /* Construct and return a pet_array corresponding to the variable
2886 * represented by "id".
2887 * In particular, initialize array->extent to
2889 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2891 * and then call set_upper_bounds to set the upper bounds on the indices
2892 * based on the type of the variable. The upper bounds are converted
2893 * to affine expressions within the context "pc".
2895 * If the base type is that of a record with a top-level definition or
2896 * of a typedef and if "types" is not null, then the RecordDecl or
2897 * TypedefType corresponding to the type, as well as any intermediate
2898 * TypedefType, is added to "types".
2900 * If the base type is that of a record with no top-level definition,
2901 * then we replace it by "<subfield>".
2903 * If the variable is a scalar, i.e., a zero-dimensional array,
2904 * then the "const" qualifier, if any, is removed from the base type.
2905 * This makes it easier for users of pet to turn initializations
2906 * into assignments.
2908 struct pet_array *PetScan::extract_array(__isl_keep isl_id *id,
2909 PetTypes *types, __isl_keep pet_context *pc)
2911 struct pet_array *array;
2912 QualType qt = pet_id_get_array_type(id);
2913 int depth = pet_clang_array_depth(qt);
2914 QualType base = pet_clang_base_type(qt);
2915 string name;
2916 isl_space *space;
2918 array = isl_calloc_type(ctx, struct pet_array);
2919 if (!array)
2920 return NULL;
2922 space = isl_space_set_alloc(ctx, 0, depth);
2923 space = isl_space_set_tuple_id(space, isl_dim_set, isl_id_copy(id));
2925 array->extent = isl_set_nat_universe(space);
2927 space = isl_space_params_alloc(ctx, 0);
2928 array->context = isl_set_universe(space);
2930 array = set_upper_bounds(array, pc);
2931 if (!array)
2932 return NULL;
2934 if (depth == 0)
2935 base.removeLocalConst();
2936 name = base.getAsString();
2938 if (types) {
2939 insert_intermediate_typedefs(types, qt);
2940 if (isa<TypedefType>(base)) {
2941 types->insert(cast<TypedefType>(base)->getDecl());
2942 } else if (base->isRecordType()) {
2943 RecordDecl *decl = pet_clang_record_decl(base);
2944 TypedefNameDecl *typedecl;
2945 typedecl = decl->getTypedefNameForAnonDecl();
2946 if (typedecl)
2947 types->insert(typedecl);
2948 else if (has_printable_definition(decl))
2949 types->insert(decl);
2950 else
2951 name = "<subfield>";
2955 array->element_type = strdup(name.c_str());
2956 array->element_is_record = base->isRecordType();
2957 array->element_size = size_in_bytes(ast_context, base);
2959 return array;
2962 /* Construct and return a pet_array corresponding to the variable "decl".
2964 struct pet_array *PetScan::extract_array(ValueDecl *decl,
2965 PetTypes *types, __isl_keep pet_context *pc)
2967 isl_id *id;
2968 pet_array *array;
2970 id = pet_id_from_decl(ctx, decl);
2971 array = extract_array(id, types, pc);
2972 isl_id_free(id);
2974 return array;
2977 /* Construct and return a pet_array corresponding to the sequence
2978 * of declarations represented by "decls".
2979 * The upper bounds of the array are converted to affine expressions
2980 * within the context "pc".
2981 * If the sequence contains a single declaration, then it corresponds
2982 * to a simple array access. Otherwise, it corresponds to a member access,
2983 * with the declaration for the substructure following that of the containing
2984 * structure in the sequence of declarations.
2985 * We start with the outermost substructure and then combine it with
2986 * information from the inner structures.
2988 * Additionally, keep track of all required types in "types".
2990 struct pet_array *PetScan::extract_array(__isl_keep isl_id_list *decls,
2991 PetTypes *types, __isl_keep pet_context *pc)
2993 int i, n;
2994 isl_id *id;
2995 struct pet_array *array;
2997 id = isl_id_list_get_id(decls, 0);
2998 array = extract_array(id, types, pc);
2999 isl_id_free(id);
3001 n = isl_id_list_n_id(decls);
3002 for (i = 1; i < n; ++i) {
3003 struct pet_array *parent;
3004 const char *base_name, *field_name;
3005 char *product_name;
3007 parent = array;
3008 id = isl_id_list_get_id(decls, i);
3009 array = extract_array(id, types, pc);
3010 isl_id_free(id);
3011 if (!array)
3012 return pet_array_free(parent);
3014 base_name = isl_set_get_tuple_name(parent->extent);
3015 field_name = isl_set_get_tuple_name(array->extent);
3016 product_name = pet_array_member_access_name(ctx,
3017 base_name, field_name);
3019 array->extent = isl_set_product(isl_set_copy(parent->extent),
3020 array->extent);
3021 if (product_name)
3022 array->extent = isl_set_set_tuple_name(array->extent,
3023 product_name);
3024 array->context = isl_set_intersect(array->context,
3025 isl_set_copy(parent->context));
3027 pet_array_free(parent);
3028 free(product_name);
3030 if (!array->extent || !array->context || !product_name)
3031 return pet_array_free(array);
3034 return array;
3037 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
3038 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
3039 std::set<TypeDecl *> &types_done);
3040 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
3041 TypedefNameDecl *decl, Preprocessor &PP, PetTypes &types,
3042 std::set<TypeDecl *> &types_done);
3044 /* For each of the fields of "decl" that is itself a record type
3045 * or a typedef, or an array of such type, add a corresponding pet_type
3046 * to "scop".
3048 static struct pet_scop *add_field_types(isl_ctx *ctx, struct pet_scop *scop,
3049 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
3050 std::set<TypeDecl *> &types_done)
3052 RecordDecl::field_iterator it;
3054 for (it = decl->field_begin(); it != decl->field_end(); ++it) {
3055 QualType type = it->getType();
3057 type = pet_clang_base_or_typedef_type(type);
3058 if (isa<TypedefType>(type)) {
3059 TypedefNameDecl *typedefdecl;
3061 typedefdecl = cast<TypedefType>(type)->getDecl();
3062 scop = add_type(ctx, scop, typedefdecl,
3063 PP, types, types_done);
3064 } else if (type->isRecordType()) {
3065 RecordDecl *record;
3067 record = pet_clang_record_decl(type);
3068 scop = add_type(ctx, scop, record,
3069 PP, types, types_done);
3073 return scop;
3076 /* Add a pet_type corresponding to "decl" to "scop", provided
3077 * it is a member of types.records and it has not been added before
3078 * (i.e., it is not a member of "types_done").
3080 * Since we want the user to be able to print the types
3081 * in the order in which they appear in the scop, we need to
3082 * make sure that types of fields in a structure appear before
3083 * that structure. We therefore call ourselves recursively
3084 * through add_field_types on the types of all record subfields.
3086 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
3087 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
3088 std::set<TypeDecl *> &types_done)
3090 string s;
3091 llvm::raw_string_ostream S(s);
3093 if (types.records.find(decl) == types.records.end())
3094 return scop;
3095 if (types_done.find(decl) != types_done.end())
3096 return scop;
3098 add_field_types(ctx, scop, decl, PP, types, types_done);
3100 if (strlen(decl->getName().str().c_str()) == 0)
3101 return scop;
3103 decl->print(S, PrintingPolicy(PP.getLangOpts()));
3104 S.str();
3106 scop->types[scop->n_type] = pet_type_alloc(ctx,
3107 decl->getName().str().c_str(), s.c_str());
3108 if (!scop->types[scop->n_type])
3109 return pet_scop_free(scop);
3111 types_done.insert(decl);
3113 scop->n_type++;
3115 return scop;
3118 /* Add a pet_type corresponding to "decl" to "scop", provided
3119 * it is a member of types.typedefs and it has not been added before
3120 * (i.e., it is not a member of "types_done").
3122 * If the underlying type is a structure, then we print the typedef
3123 * ourselves since clang does not print the definition of the structure
3124 * in the typedef. We also make sure in this case that the types of
3125 * the fields in the structure are added first.
3126 * Since the definition of the structure also gets printed this way,
3127 * add it to types_done such that it will not be printed again,
3128 * not even without the typedef.
3130 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
3131 TypedefNameDecl *decl, Preprocessor &PP, PetTypes &types,
3132 std::set<TypeDecl *> &types_done)
3134 string s;
3135 llvm::raw_string_ostream S(s);
3136 QualType qt = decl->getUnderlyingType();
3138 if (types.typedefs.find(decl) == types.typedefs.end())
3139 return scop;
3140 if (types_done.find(decl) != types_done.end())
3141 return scop;
3143 if (qt->isRecordType()) {
3144 RecordDecl *rec = pet_clang_record_decl(qt);
3146 add_field_types(ctx, scop, rec, PP, types, types_done);
3147 S << "typedef ";
3148 rec->print(S, PrintingPolicy(PP.getLangOpts()));
3149 S << " ";
3150 S << decl->getName();
3151 types_done.insert(rec);
3152 } else {
3153 decl->print(S, PrintingPolicy(PP.getLangOpts()));
3155 S.str();
3157 scop->types[scop->n_type] = pet_type_alloc(ctx,
3158 decl->getName().str().c_str(), s.c_str());
3159 if (!scop->types[scop->n_type])
3160 return pet_scop_free(scop);
3162 types_done.insert(decl);
3164 scop->n_type++;
3166 return scop;
3169 /* Construct a list of pet_arrays, one for each array (or scalar)
3170 * accessed inside "scop", add this list to "scop" and return the result.
3171 * The upper bounds of the arrays are converted to affine expressions
3172 * within the context "pc".
3174 * The context of "scop" is updated with the intersection of
3175 * the contexts of all arrays, i.e., constraints on the parameters
3176 * that ensure that the arrays have a valid (non-negative) size.
3178 * If any of the extracted arrays refers to a member access or
3179 * has a typedef'd type as base type,
3180 * then also add the required types to "scop".
3181 * The typedef types are printed first because their definitions
3182 * may include the definition of a struct and these struct definitions
3183 * should not be printed separately. While the typedef definition
3184 * is being printed, the struct is marked as having been printed as well,
3185 * such that the later printing of the struct by itself can be prevented.
3187 * If the sequence of nested array declarations from which the pet_array
3188 * is extracted appears as the prefix of some other sequence,
3189 * then the pet_array is marked as "outer".
3190 * The arrays that already appear in scop->arrays at the start of
3191 * this function are assumed to be simple arrays, so they are not marked
3192 * as outer.
3194 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop,
3195 __isl_keep pet_context *pc)
3197 int i, n;
3198 array_desc_set arrays, has_sub;
3199 array_desc_set::iterator it;
3200 PetTypes types;
3201 std::set<TypeDecl *> types_done;
3202 std::set<clang::RecordDecl *, less_name>::iterator records_it;
3203 std::set<clang::TypedefNameDecl *, less_name>::iterator typedefs_it;
3204 int n_array;
3205 struct pet_array **scop_arrays;
3207 if (!scop)
3208 return NULL;
3210 pet_scop_collect_arrays(scop, arrays);
3211 if (arrays.size() == 0)
3212 return scop;
3214 n_array = scop->n_array;
3216 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
3217 n_array + arrays.size());
3218 if (!scop_arrays)
3219 goto error;
3220 scop->arrays = scop_arrays;
3222 for (it = arrays.begin(); it != arrays.end(); ++it) {
3223 isl_id_list *list = isl_id_list_copy(*it);
3224 int n = isl_id_list_n_id(list);
3225 list = isl_id_list_drop(list, n - 1, 1);
3226 has_sub.insert(list);
3229 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
3230 struct pet_array *array;
3231 array = extract_array(*it, &types, pc);
3232 scop->arrays[n_array + i] = array;
3233 if (!scop->arrays[n_array + i])
3234 goto error;
3235 if (has_sub.find(*it) != has_sub.end())
3236 array->outer = 1;
3237 scop->n_array++;
3238 scop->context = isl_set_intersect(scop->context,
3239 isl_set_copy(array->context));
3240 if (!scop->context)
3241 goto error;
3244 n = types.records.size() + types.typedefs.size();
3245 if (n == 0)
3246 return scop;
3248 scop->types = isl_alloc_array(ctx, struct pet_type *, n);
3249 if (!scop->types)
3250 goto error;
3252 for (typedefs_it = types.typedefs.begin();
3253 typedefs_it != types.typedefs.end(); ++typedefs_it)
3254 scop = add_type(ctx, scop, *typedefs_it, PP, types, types_done);
3256 for (records_it = types.records.begin();
3257 records_it != types.records.end(); ++records_it)
3258 scop = add_type(ctx, scop, *records_it, PP, types, types_done);
3260 return scop;
3261 error:
3262 pet_scop_free(scop);
3263 return NULL;
3266 /* Bound all parameters in scop->context to the possible values
3267 * of the corresponding C variable.
3269 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
3271 int n;
3273 if (!scop)
3274 return NULL;
3276 n = isl_set_dim(scop->context, isl_dim_param);
3277 for (int i = 0; i < n; ++i) {
3278 isl_id *id;
3279 ValueDecl *decl;
3281 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
3282 if (pet_nested_in_id(id)) {
3283 isl_id_free(id);
3284 isl_die(isl_set_get_ctx(scop->context),
3285 isl_error_internal,
3286 "unresolved nested parameter", goto error);
3288 decl = pet_id_get_decl(id);
3289 isl_id_free(id);
3291 scop->context = set_parameter_bounds(scop->context, i, decl);
3293 if (!scop->context)
3294 goto error;
3297 return scop;
3298 error:
3299 pet_scop_free(scop);
3300 return NULL;
3303 /* Construct a pet_scop from the given function.
3305 * If the scop was delimited by scop and endscop pragmas, then we override
3306 * the file offsets by those derived from the pragmas.
3308 struct pet_scop *PetScan::scan(FunctionDecl *fd)
3310 pet_scop *scop;
3311 Stmt *stmt;
3313 stmt = fd->getBody();
3315 if (options->autodetect) {
3316 set_current_stmt(stmt);
3317 scop = extract_scop(extract(stmt, true));
3318 } else {
3319 current_line = loc.start_line;
3320 scop = scan(stmt);
3321 scop = pet_scop_update_start_end(scop, loc.start, loc.end);
3323 scop = add_parameter_bounds(scop);
3324 scop = pet_scop_gist(scop, value_bounds);
3326 return scop;
3329 /* Update this->last_line and this->current_line based on the fact
3330 * that we are about to consider "stmt".
3332 void PetScan::set_current_stmt(Stmt *stmt)
3334 SourceLocation loc = begin_loc(stmt);
3335 SourceManager &SM = PP.getSourceManager();
3337 last_line = current_line;
3338 current_line = SM.getExpansionLineNumber(loc);
3341 /* Is the current statement marked by an independent pragma?
3342 * That is, is there an independent pragma on a line between
3343 * the line of the current statement and the line of the previous statement.
3344 * The search is not implemented very efficiently. We currently
3345 * assume that there are only a few independent pragmas, if any.
3347 bool PetScan::is_current_stmt_marked_independent()
3349 for (unsigned i = 0; i < independent.size(); ++i) {
3350 unsigned line = independent[i].line;
3352 if (last_line < line && line < current_line)
3353 return true;
3356 return false;