2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
35 #include <isl/id_to_pw_aff.h>
44 #include "tree2scop.h"
46 /* Update "pc" by taking into account the writes in "stmt".
47 * That is, first mark all scalar variables that are written by "stmt"
48 * as having an unknown value. Afterwards,
49 * if "stmt" is a top-level (i.e., unconditional) assignment
50 * to a scalar variable, then update "pc" accordingly.
52 * In particular, if the lhs of the assignment is a scalar variable, then mark
53 * the variable as having been assigned. If, furthermore, the rhs
54 * is an affine expression, then keep track of this value in "pc"
55 * so that we can plug it in when we later come across the same variable.
57 * We skip assignments to virtual arrays (those with NULL user pointer).
59 static __isl_give pet_context
*handle_writes(struct pet_stmt
*stmt
,
60 __isl_take pet_context
*pc
)
62 pet_expr
*body
= stmt
->body
;
67 pc
= pet_context_clear_writes_in_expr(pc
, body
);
71 if (pet_expr_get_type(body
) != pet_expr_op
)
73 if (pet_expr_op_get_type(body
) != pet_op_assign
)
75 if (!isl_set_plain_is_universe(stmt
->domain
))
77 arg
= pet_expr_get_arg(body
, 0);
78 if (!pet_expr_is_scalar_access(arg
)) {
83 id
= pet_expr_access_get_id(arg
);
86 if (!isl_id_get_user(id
)) {
91 arg
= pet_expr_get_arg(body
, 1);
92 pa
= pet_expr_extract_affine(arg
, pc
);
93 pc
= pet_context_mark_assigned(pc
, isl_id_copy(id
));
96 if (pa
&& isl_pw_aff_involves_nan(pa
)) {
102 pc
= pet_context_set_value(pc
, id
, pa
);
107 /* Update "pc" based on the write accesses (and, in particular,
108 * assignments) in "scop".
110 static __isl_give pet_context
*scop_handle_writes(struct pet_scop
*scop
,
111 __isl_take pet_context
*pc
)
116 return pet_context_free(pc
);
117 for (i
= 0; i
< scop
->n_stmt
; ++i
)
118 pc
= handle_writes(scop
->stmts
[i
], pc
);
123 /* Convert a top-level pet_expr to a pet_scop with one statement
124 * within the context "pc".
125 * This mainly involves resolving nested expression parameters
126 * and setting the name of the iteration space.
127 * The name is given by "label" if it is non-NULL. Otherwise,
128 * it is of the form S_<stmt_nr>.
129 * The location of the statement is set to "loc".
131 static struct pet_scop
*scop_from_expr(__isl_take pet_expr
*expr
,
132 __isl_take isl_id
*label
, int stmt_nr
, __isl_take pet_loc
*loc
,
133 __isl_keep pet_context
*pc
)
138 ctx
= pet_expr_get_ctx(expr
);
140 expr
= pet_expr_plug_in_args(expr
, pc
);
141 expr
= pet_expr_resolve_nested(expr
);
142 expr
= pet_expr_resolve_assume(expr
, pc
);
143 ps
= pet_stmt_from_pet_expr(loc
, label
, stmt_nr
, expr
);
144 return pet_scop_from_pet_stmt(ctx
, ps
);
147 /* Construct a pet_scop with a single statement killing the entire
149 * The location of the statement is set to "loc".
151 static struct pet_scop
*kill(__isl_take pet_loc
*loc
, struct pet_array
*array
,
152 __isl_keep pet_context
*pc
, struct pet_state
*state
)
157 isl_multi_pw_aff
*index
;
160 struct pet_scop
*scop
;
164 ctx
= isl_set_get_ctx(array
->extent
);
165 access
= isl_map_from_range(isl_set_copy(array
->extent
));
166 id
= isl_set_get_tuple_id(array
->extent
);
167 space
= isl_space_alloc(ctx
, 0, 0, 0);
168 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
169 index
= isl_multi_pw_aff_zero(space
);
170 expr
= pet_expr_kill_from_access_and_index(access
, index
);
171 return scop_from_expr(expr
, NULL
, state
->n_stmt
++, loc
, pc
);
177 /* Construct and return a pet_array corresponding to the variable
178 * accessed by "access" by calling the extract_array callback.
180 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
181 __isl_keep pet_context
*pc
, struct pet_state
*state
)
183 return state
->extract_array(access
, pc
, state
->user
);
186 /* Construct a pet_scop for a (single) variable declaration
187 * within the context "pc".
189 * The scop contains the variable being declared (as an array)
190 * and a statement killing the array.
192 * If the declaration comes with an initialization, then the scop
193 * also contains an assignment to the variable.
195 static struct pet_scop
*scop_from_decl(__isl_keep pet_tree
*tree
,
196 __isl_keep pet_context
*pc
, struct pet_state
*state
)
200 struct pet_array
*array
;
201 struct pet_scop
*scop_decl
, *scop
;
202 pet_expr
*lhs
, *rhs
, *pe
;
204 array
= extract_array(tree
->u
.d
.var
, pc
, state
);
207 scop_decl
= kill(pet_tree_get_loc(tree
), array
, pc
, state
);
208 scop_decl
= pet_scop_add_array(scop_decl
, array
);
210 if (tree
->type
!= pet_tree_decl_init
)
213 lhs
= pet_expr_copy(tree
->u
.d
.var
);
214 rhs
= pet_expr_copy(tree
->u
.d
.init
);
215 type_size
= pet_expr_get_type_size(lhs
);
216 pe
= pet_expr_new_binary(type_size
, pet_op_assign
, lhs
, rhs
);
217 scop
= scop_from_expr(pe
, NULL
, state
->n_stmt
++,
218 pet_tree_get_loc(tree
), pc
);
220 scop_decl
= pet_scop_prefix(scop_decl
, 0);
221 scop
= pet_scop_prefix(scop
, 1);
223 ctx
= pet_tree_get_ctx(tree
);
224 scop
= pet_scop_add_seq(ctx
, scop_decl
, scop
);
229 /* Embed the given iteration domain in an extra outer loop
230 * with induction variable "var".
231 * If this variable appeared as a parameter in the constraints,
232 * it is replaced by the new outermost dimension.
234 static __isl_give isl_set
*embed(__isl_take isl_set
*set
,
235 __isl_take isl_id
*var
)
239 set
= isl_set_insert_dims(set
, isl_dim_set
, 0, 1);
240 pos
= isl_set_find_dim_by_id(set
, isl_dim_param
, var
);
242 set
= isl_set_equate(set
, isl_dim_param
, pos
, isl_dim_set
, 0);
243 set
= isl_set_project_out(set
, isl_dim_param
, pos
, 1);
250 /* Return those elements in the space of "cond" that come after
251 * (based on "sign") an element in "cond".
253 static __isl_give isl_set
*after(__isl_take isl_set
*cond
, int sign
)
255 isl_map
*previous_to_this
;
258 previous_to_this
= isl_map_lex_lt(isl_set_get_space(cond
));
260 previous_to_this
= isl_map_lex_gt(isl_set_get_space(cond
));
262 cond
= isl_set_apply(cond
, previous_to_this
);
267 /* Remove those iterations of "domain" that have an earlier iteration
268 * (based on "sign") where "skip" is satisfied.
269 * "domain" has an extra outer loop compared to "skip".
270 * The skip condition is first embedded in the same space as "domain".
271 * If "apply_skip_map" is set, then "skip_map" is first applied
272 * to the embedded skip condition before removing it from the domain.
274 static __isl_give isl_set
*apply_affine_break(__isl_take isl_set
*domain
,
275 __isl_take isl_set
*skip
, int sign
,
276 int apply_skip_map
, __isl_keep isl_map
*skip_map
)
278 skip
= embed(skip
, isl_set_get_dim_id(domain
, isl_dim_set
, 0));
280 skip
= isl_set_apply(skip
, isl_map_copy(skip_map
));
281 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
282 return isl_set_subtract(domain
, after(skip
, sign
));
285 /* Create the infinite iteration domain
289 static __isl_give isl_set
*infinite_domain(__isl_take isl_id
*id
)
291 isl_ctx
*ctx
= isl_id_get_ctx(id
);
294 domain
= isl_set_nat_universe(isl_space_set_alloc(ctx
, 0, 1));
295 domain
= isl_set_set_dim_id(domain
, isl_dim_set
, 0, id
);
300 /* Create an identity affine expression on the space containing "domain",
301 * which is assumed to be one-dimensional.
303 static __isl_give isl_aff
*identity_aff(__isl_keep isl_set
*domain
)
307 ls
= isl_local_space_from_space(isl_set_get_space(domain
));
308 return isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
311 /* Create an affine expression that maps elements
312 * of a single-dimensional array "id_test" to the previous element
313 * (according to "inc"), provided this element belongs to "domain".
314 * That is, create the affine expression
316 * { id[x] -> id[x - inc] : x - inc in domain }
318 static __isl_give isl_multi_pw_aff
*map_to_previous(__isl_take isl_id
*id_test
,
319 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
324 isl_multi_pw_aff
*prev
;
326 space
= isl_set_get_space(domain
);
327 ls
= isl_local_space_from_space(space
);
328 aff
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
329 aff
= isl_aff_add_constant_val(aff
, isl_val_neg(inc
));
330 prev
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
331 domain
= isl_set_preimage_multi_pw_aff(domain
,
332 isl_multi_pw_aff_copy(prev
));
333 prev
= isl_multi_pw_aff_intersect_domain(prev
, domain
);
334 prev
= isl_multi_pw_aff_set_tuple_id(prev
, isl_dim_out
, id_test
);
339 /* Add an implication to "scop" expressing that if an element of
340 * virtual array "id_test" has value "satisfied" then all previous elements
341 * of this array also have that value. The set of previous elements
342 * is bounded by "domain". If "sign" is negative then the iterator
343 * is decreasing and we express that all subsequent array elements
344 * (but still defined previously) have the same value.
346 static struct pet_scop
*add_implication(struct pet_scop
*scop
,
347 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
, int sign
,
353 domain
= isl_set_set_tuple_id(domain
, id_test
);
354 space
= isl_set_get_space(domain
);
356 map
= isl_map_lex_ge(space
);
358 map
= isl_map_lex_le(space
);
359 map
= isl_map_intersect_range(map
, domain
);
360 scop
= pet_scop_add_implication(scop
, map
, satisfied
);
365 /* Add a filter to "scop" that imposes that it is only executed
366 * when the variable identified by "id_test" has a zero value
367 * for all previous iterations of "domain".
369 * In particular, add a filter that imposes that the array
370 * has a zero value at the previous iteration of domain and
371 * add an implication that implies that it then has that
372 * value for all previous iterations.
374 static struct pet_scop
*scop_add_break(struct pet_scop
*scop
,
375 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
,
376 __isl_take isl_val
*inc
)
378 isl_multi_pw_aff
*prev
;
379 int sign
= isl_val_sgn(inc
);
381 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
382 scop
= add_implication(scop
, id_test
, domain
, sign
, 0);
383 scop
= pet_scop_filter(scop
, prev
, 0);
388 static struct pet_scop
*scop_from_tree(__isl_keep pet_tree
*tree
,
389 __isl_keep pet_context
*pc
, struct pet_state
*state
);
391 /* Construct a pet_scop for an infinite loop around the given body
392 * within the context "pc".
394 * We extract a pet_scop for the body and then embed it in a loop with
403 * If the body contains any break, then it is taken into
404 * account in apply_affine_break (if the skip condition is affine)
405 * or in scop_add_break (if the skip condition is not affine).
407 * Note that in case of an affine skip condition,
408 * since we are dealing with a loop without loop iterator,
409 * the skip condition cannot refer to the current loop iterator and
410 * so effectively, the iteration domain is of the form
412 * { [0]; [t] : t >= 1 and not skip }
414 static struct pet_scop
*scop_from_infinite_loop(__isl_keep pet_tree
*body
,
415 __isl_keep pet_context
*pc
, struct pet_state
*state
)
418 isl_id
*id
, *id_test
;
422 struct pet_scop
*scop
;
423 int has_affine_break
;
426 ctx
= pet_tree_get_ctx(body
);
427 id
= isl_id_alloc(ctx
, "t", NULL
);
428 domain
= infinite_domain(isl_id_copy(id
));
429 ident
= identity_aff(domain
);
431 scop
= scop_from_tree(body
, pc
, state
);
433 has_affine_break
= pet_scop_has_affine_skip(scop
, pet_skip_later
);
434 if (has_affine_break
)
435 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
436 has_var_break
= pet_scop_has_var_skip(scop
, pet_skip_later
);
438 id_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
440 scop
= pet_scop_embed(scop
, isl_set_copy(domain
),
441 isl_aff_copy(ident
), ident
, id
);
442 if (has_affine_break
) {
443 domain
= apply_affine_break(domain
, skip
, 1, 0, NULL
);
444 scop
= pet_scop_intersect_domain_prefix(scop
,
445 isl_set_copy(domain
));
448 scop
= scop_add_break(scop
, id_test
, domain
, isl_val_one(ctx
));
450 isl_set_free(domain
);
455 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
460 * within the context "pc".
462 static struct pet_scop
*scop_from_infinite_for(__isl_keep pet_tree
*tree
,
463 __isl_keep pet_context
*pc
, struct pet_state
*state
)
465 struct pet_scop
*scop
;
467 pc
= pet_context_copy(pc
);
468 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
470 scop
= scop_from_infinite_loop(tree
->u
.l
.body
, pc
, state
);
472 pet_context_free(pc
);
477 /* Construct a pet_scop for a while loop of the form
482 * within the context "pc".
483 * In particular, construct a scop for an infinite loop around body and
484 * intersect the domain with the affine expression.
485 * Note that this intersection may result in an empty loop.
487 static struct pet_scop
*scop_from_affine_while(__isl_keep pet_tree
*tree
,
488 __isl_take isl_pw_aff
*pa
, __isl_take pet_context
*pc
,
489 struct pet_state
*state
)
491 struct pet_scop
*scop
;
495 valid
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
496 dom
= isl_pw_aff_non_zero_set(pa
);
497 scop
= scop_from_infinite_loop(tree
->u
.l
.body
, pc
, state
);
498 scop
= pet_scop_restrict(scop
, isl_set_params(dom
));
499 scop
= pet_scop_restrict_context(scop
, isl_set_params(valid
));
501 pet_context_free(pc
);
505 /* Construct a scop for a while, given the scops for the condition
506 * and the body, the filter identifier and the iteration domain of
509 * In particular, the scop for the condition is filtered to depend
510 * on "id_test" evaluating to true for all previous iterations
511 * of the loop, while the scop for the body is filtered to depend
512 * on "id_test" evaluating to true for all iterations up to the
514 * The actual filter only imposes that this virtual array has
515 * value one on the previous or the current iteration.
516 * The fact that this condition also applies to the previous
517 * iterations is enforced by an implication.
519 * These filtered scops are then combined into a single scop.
521 * "sign" is positive if the iterator increases and negative
524 static struct pet_scop
*scop_add_while(struct pet_scop
*scop_cond
,
525 struct pet_scop
*scop_body
, __isl_take isl_id
*id_test
,
526 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
528 isl_ctx
*ctx
= isl_set_get_ctx(domain
);
530 isl_multi_pw_aff
*test_index
;
531 isl_multi_pw_aff
*prev
;
532 int sign
= isl_val_sgn(inc
);
533 struct pet_scop
*scop
;
535 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
536 scop_cond
= pet_scop_filter(scop_cond
, prev
, 1);
538 space
= isl_space_map_from_set(isl_set_get_space(domain
));
539 test_index
= isl_multi_pw_aff_identity(space
);
540 test_index
= isl_multi_pw_aff_set_tuple_id(test_index
, isl_dim_out
,
541 isl_id_copy(id_test
));
542 scop_body
= pet_scop_filter(scop_body
, test_index
, 1);
544 scop
= pet_scop_add_seq(ctx
, scop_cond
, scop_body
);
545 scop
= add_implication(scop
, id_test
, domain
, sign
, 1);
550 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
551 * evaluating "cond" and writing the result to a virtual scalar,
552 * as expressed by "index".
553 * Do so within the context "pc".
554 * The location of the statement is set to "loc".
556 static struct pet_scop
*scop_from_non_affine_condition(
557 __isl_take pet_expr
*cond
, int stmt_nr
,
558 __isl_take isl_multi_pw_aff
*index
,
559 __isl_take pet_loc
*loc
, __isl_keep pet_context
*pc
)
561 pet_expr
*expr
, *write
;
563 write
= pet_expr_from_index(index
);
564 write
= pet_expr_access_set_write(write
, 1);
565 write
= pet_expr_access_set_read(write
, 0);
566 expr
= pet_expr_new_binary(1, pet_op_assign
, write
, cond
);
568 return scop_from_expr(expr
, NULL
, stmt_nr
, loc
, pc
);
571 /* Construct a generic while scop, with iteration domain
572 * { [t] : t >= 0 } around the scop for "tree_body" within the context "pc".
573 * The scop consists of two parts,
574 * one for evaluating the condition "cond" and one for the body.
575 * If "expr_inc" is not NULL, then a scop for evaluating this expression
576 * is added at the end of the body,
577 * after replacing any skip conditions resulting from continue statements
578 * by the skip conditions resulting from break statements (if any).
580 * The schedule is adjusted to reflect that the condition is evaluated
581 * before the body is executed and the body is filtered to depend
582 * on the result of the condition evaluating to true on all iterations
583 * up to the current iteration, while the evaluation of the condition itself
584 * is filtered to depend on the result of the condition evaluating to true
585 * on all previous iterations.
586 * The context of the scop representing the body is dropped
587 * because we don't know how many times the body will be executed,
590 * If the body contains any break, then it is taken into
591 * account in apply_affine_break (if the skip condition is affine)
592 * or in scop_add_break (if the skip condition is not affine).
594 * Note that in case of an affine skip condition,
595 * since we are dealing with a loop without loop iterator,
596 * the skip condition cannot refer to the current loop iterator and
597 * so effectively, the iteration domain is of the form
599 * { [0]; [t] : t >= 1 and not skip }
601 static struct pet_scop
*scop_from_non_affine_while(__isl_take pet_expr
*cond
,
602 __isl_take pet_loc
*loc
, __isl_keep pet_tree
*tree_body
,
603 __isl_take pet_expr
*expr_inc
, __isl_take pet_context
*pc
,
604 struct pet_state
*state
)
607 isl_id
*id
, *id_test
, *id_break_test
;
608 isl_multi_pw_aff
*test_index
;
612 struct pet_scop
*scop
, *scop_body
;
613 int has_affine_break
;
617 test_index
= pet_create_test_index(ctx
, state
->n_test
++);
618 scop
= scop_from_non_affine_condition(cond
, state
->n_stmt
++,
619 isl_multi_pw_aff_copy(test_index
),
620 pet_loc_copy(loc
), pc
);
621 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
, isl_dim_out
);
622 scop
= pet_scop_add_boolean_array(scop
, test_index
, state
->int_size
);
624 id
= isl_id_alloc(ctx
, "t", NULL
);
625 domain
= infinite_domain(isl_id_copy(id
));
626 ident
= identity_aff(domain
);
628 scop_body
= scop_from_tree(tree_body
, pc
, state
);
630 has_affine_break
= pet_scop_has_affine_skip(scop_body
, pet_skip_later
);
631 if (has_affine_break
)
632 skip
= pet_scop_get_affine_skip_domain(scop_body
,
634 has_var_break
= pet_scop_has_var_skip(scop_body
, pet_skip_later
);
636 id_break_test
= pet_scop_get_skip_id(scop_body
, pet_skip_later
);
638 scop
= pet_scop_prefix(scop
, 0);
639 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), isl_aff_copy(ident
),
640 isl_aff_copy(ident
), isl_id_copy(id
));
641 scop_body
= pet_scop_reset_context(scop_body
);
642 scop_body
= pet_scop_prefix(scop_body
, 1);
644 struct pet_scop
*scop_inc
;
645 scop_inc
= scop_from_expr(expr_inc
, NULL
, state
->n_stmt
++,
647 scop_inc
= pet_scop_prefix(scop_inc
, 2);
648 if (pet_scop_has_skip(scop_body
, pet_skip_later
)) {
649 isl_multi_pw_aff
*skip
;
650 skip
= pet_scop_get_skip(scop_body
, pet_skip_later
);
651 scop_body
= pet_scop_set_skip(scop_body
,
654 pet_scop_reset_skip(scop_body
, pet_skip_now
);
655 scop_body
= pet_scop_add_seq(ctx
, scop_body
, scop_inc
);
658 scop_body
= pet_scop_embed(scop_body
, isl_set_copy(domain
),
659 isl_aff_copy(ident
), ident
, id
);
661 if (has_affine_break
) {
662 domain
= apply_affine_break(domain
, skip
, 1, 0, NULL
);
663 scop
= pet_scop_intersect_domain_prefix(scop
,
664 isl_set_copy(domain
));
665 scop_body
= pet_scop_intersect_domain_prefix(scop_body
,
666 isl_set_copy(domain
));
669 scop
= scop_add_break(scop
, isl_id_copy(id_break_test
),
670 isl_set_copy(domain
), isl_val_one(ctx
));
671 scop_body
= scop_add_break(scop_body
, id_break_test
,
672 isl_set_copy(domain
), isl_val_one(ctx
));
674 scop
= scop_add_while(scop
, scop_body
, id_test
, domain
,
677 pet_context_free(pc
);
681 /* Check if the while loop is of the form
683 * while (affine expression)
686 * If so, call scop_from_affine_while to construct a scop.
688 * Otherwise, pass control to scop_from_non_affine_while.
690 * "pc" is the context in which the affine expressions in the scop are created.
692 static struct pet_scop
*scop_from_while(__isl_keep pet_tree
*tree
,
693 __isl_keep pet_context
*pc
, struct pet_state
*state
)
701 pc
= pet_context_copy(pc
);
702 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
704 cond_expr
= pet_expr_copy(tree
->u
.l
.cond
);
705 cond_expr
= pet_expr_plug_in_args(cond_expr
, pc
);
706 pa
= pet_expr_extract_affine_condition(cond_expr
, pc
);
707 pet_expr_free(cond_expr
);
712 if (!isl_pw_aff_involves_nan(pa
))
713 return scop_from_affine_while(tree
, pa
, pc
, state
);
715 return scop_from_non_affine_while(pet_expr_copy(tree
->u
.l
.cond
),
716 pet_tree_get_loc(tree
), tree
->u
.l
.body
, NULL
,
719 pet_context_free(pc
);
723 /* Check whether "cond" expresses a simple loop bound
724 * on the only set dimension.
725 * In particular, if "up" is set then "cond" should contain only
726 * upper bounds on the set dimension.
727 * Otherwise, it should contain only lower bounds.
729 static int is_simple_bound(__isl_keep isl_set
*cond
, __isl_keep isl_val
*inc
)
731 if (isl_val_is_pos(inc
))
732 return !isl_set_dim_has_any_lower_bound(cond
, isl_dim_set
, 0);
734 return !isl_set_dim_has_any_upper_bound(cond
, isl_dim_set
, 0);
737 /* Extend a condition on a given iteration of a loop to one that
738 * imposes the same condition on all previous iterations.
739 * "domain" expresses the lower [upper] bound on the iterations
740 * when inc is positive [negative].
742 * In particular, we construct the condition (when inc is positive)
744 * forall i' : (domain(i') and i' <= i) => cond(i')
746 * which is equivalent to
748 * not exists i' : domain(i') and i' <= i and not cond(i')
750 * We construct this set by negating cond, applying a map
752 * { [i'] -> [i] : domain(i') and i' <= i }
754 * and then negating the result again.
756 static __isl_give isl_set
*valid_for_each_iteration(__isl_take isl_set
*cond
,
757 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
759 isl_map
*previous_to_this
;
761 if (isl_val_is_pos(inc
))
762 previous_to_this
= isl_map_lex_le(isl_set_get_space(domain
));
764 previous_to_this
= isl_map_lex_ge(isl_set_get_space(domain
));
766 previous_to_this
= isl_map_intersect_domain(previous_to_this
, domain
);
768 cond
= isl_set_complement(cond
);
769 cond
= isl_set_apply(cond
, previous_to_this
);
770 cond
= isl_set_complement(cond
);
777 /* Construct a domain of the form
779 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
781 static __isl_give isl_set
*strided_domain(__isl_take isl_id
*id
,
782 __isl_take isl_pw_aff
*init
, __isl_take isl_val
*inc
)
788 init
= isl_pw_aff_insert_dims(init
, isl_dim_in
, 0, 1);
789 dim
= isl_pw_aff_get_domain_space(init
);
790 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
791 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_in
, 0, inc
);
792 init
= isl_pw_aff_add(init
, isl_pw_aff_from_aff(aff
));
794 dim
= isl_space_set_alloc(isl_pw_aff_get_ctx(init
), 1, 1);
795 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
796 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
797 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
799 set
= isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff
), init
);
801 set
= isl_set_lower_bound_si(set
, isl_dim_set
, 0, 0);
803 return isl_set_params(set
);
806 /* Assuming "cond" represents a bound on a loop where the loop
807 * iterator "iv" is incremented (or decremented) by one, check if wrapping
810 * Under the given assumptions, wrapping is only possible if "cond" allows
811 * for the last value before wrapping, i.e., 2^width - 1 in case of an
812 * increasing iterator and 0 in case of a decreasing iterator.
814 static int can_wrap(__isl_keep isl_set
*cond
, __isl_keep pet_expr
*iv
,
815 __isl_keep isl_val
*inc
)
822 test
= isl_set_copy(cond
);
824 ctx
= isl_set_get_ctx(test
);
825 if (isl_val_is_neg(inc
))
826 limit
= isl_val_zero(ctx
);
828 limit
= isl_val_int_from_ui(ctx
, pet_expr_get_type_size(iv
));
829 limit
= isl_val_2exp(limit
);
830 limit
= isl_val_sub_ui(limit
, 1);
833 test
= isl_set_fix_val(cond
, isl_dim_set
, 0, limit
);
834 cw
= !isl_set_is_empty(test
);
840 /* Given a one-dimensional space, construct the following affine expression
843 * { [v] -> [v mod 2^width] }
845 * where width is the number of bits used to represent the values
846 * of the unsigned variable "iv".
848 static __isl_give isl_aff
*compute_wrapping(__isl_take isl_space
*dim
,
849 __isl_keep pet_expr
*iv
)
855 ctx
= isl_space_get_ctx(dim
);
856 mod
= isl_val_int_from_ui(ctx
, pet_expr_get_type_size(iv
));
857 mod
= isl_val_2exp(mod
);
859 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
860 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
861 aff
= isl_aff_mod_val(aff
, mod
);
866 /* Project out the parameter "id" from "set".
868 static __isl_give isl_set
*set_project_out_by_id(__isl_take isl_set
*set
,
869 __isl_keep isl_id
*id
)
873 pos
= isl_set_find_dim_by_id(set
, isl_dim_param
, id
);
875 set
= isl_set_project_out(set
, isl_dim_param
, pos
, 1);
880 /* Compute the set of parameters for which "set1" is a subset of "set2".
882 * set1 is a subset of set2 if
884 * forall i in set1 : i in set2
888 * not exists i in set1 and i not in set2
892 * not exists i in set1 \ set2
894 static __isl_give isl_set
*enforce_subset(__isl_take isl_set
*set1
,
895 __isl_take isl_set
*set2
)
897 return isl_set_complement(isl_set_params(isl_set_subtract(set1
, set2
)));
900 /* Compute the set of parameter values for which "cond" holds
901 * on the next iteration for each element of "dom".
903 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
904 * and then compute the set of parameters for which the result is a subset
907 static __isl_give isl_set
*valid_on_next(__isl_take isl_set
*cond
,
908 __isl_take isl_set
*dom
, __isl_take isl_val
*inc
)
914 space
= isl_set_get_space(dom
);
915 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
916 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
917 aff
= isl_aff_add_constant_val(aff
, inc
);
918 next
= isl_map_from_basic_map(isl_basic_map_from_aff(aff
));
920 dom
= isl_set_apply(dom
, next
);
922 return enforce_subset(dom
, cond
);
925 /* Extract the for loop "tree" as a while loop within the context "pc".
927 * That is, the for loop has the form
929 * for (iv = init; cond; iv += inc)
940 * except that the skips resulting from any continue statements
941 * in body do not apply to the increment, but are replaced by the skips
942 * resulting from break statements.
944 * If the loop iterator is declared in the for loop, then it is killed before
945 * and after the loop.
947 static struct pet_scop
*scop_from_non_affine_for(__isl_keep pet_tree
*tree
,
948 __isl_take pet_context
*pc
, struct pet_state
*state
)
952 pet_expr
*expr_iv
, *init
, *inc
;
953 struct pet_scop
*scop_init
, *scop
;
955 struct pet_array
*array
;
956 struct pet_scop
*scop_kill
;
958 iv
= pet_expr_access_get_id(tree
->u
.l
.iv
);
959 pc
= pet_context_mark_assigned(pc
, iv
);
961 declared
= tree
->u
.l
.declared
;
963 expr_iv
= pet_expr_copy(tree
->u
.l
.iv
);
964 type_size
= pet_expr_get_type_size(expr_iv
);
965 init
= pet_expr_copy(tree
->u
.l
.init
);
966 init
= pet_expr_new_binary(type_size
, pet_op_assign
, expr_iv
, init
);
967 scop_init
= scop_from_expr(init
, NULL
, state
->n_stmt
++,
968 pet_tree_get_loc(tree
), pc
);
969 scop_init
= pet_scop_prefix(scop_init
, declared
);
971 expr_iv
= pet_expr_copy(tree
->u
.l
.iv
);
972 type_size
= pet_expr_get_type_size(expr_iv
);
973 inc
= pet_expr_copy(tree
->u
.l
.inc
);
974 inc
= pet_expr_new_binary(type_size
, pet_op_add_assign
, expr_iv
, inc
);
976 scop
= scop_from_non_affine_while(pet_expr_copy(tree
->u
.l
.cond
),
977 pet_tree_get_loc(tree
), tree
->u
.l
.body
, inc
,
978 pet_context_copy(pc
), state
);
980 scop
= pet_scop_prefix(scop
, declared
+ 1);
981 scop
= pet_scop_add_seq(state
->ctx
, scop_init
, scop
);
984 pet_context_free(pc
);
988 array
= extract_array(tree
->u
.l
.iv
, pc
, state
);
991 scop_kill
= kill(pet_tree_get_loc(tree
), array
, pc
, state
);
992 scop_kill
= pet_scop_prefix(scop_kill
, 0);
993 scop
= pet_scop_add_seq(state
->ctx
, scop_kill
, scop
);
994 scop_kill
= kill(pet_tree_get_loc(tree
), array
, pc
, state
);
995 scop_kill
= pet_scop_add_array(scop_kill
, array
);
996 scop_kill
= pet_scop_prefix(scop_kill
, 3);
997 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_kill
);
999 pet_context_free(pc
);
1003 /* Given an access expression "expr", is the variable accessed by
1004 * "expr" assigned anywhere inside "tree"?
1006 static int is_assigned(__isl_keep pet_expr
*expr
, __isl_keep pet_tree
*tree
)
1011 id
= pet_expr_access_get_id(expr
);
1012 assigned
= pet_tree_writes(tree
, id
);
1018 /* Are all nested access parameters in "pa" allowed given "tree".
1019 * In particular, is none of them written by anywhere inside "tree".
1021 * If "tree" has any continue nodes in the current loop level,
1022 * then no nested access parameters are allowed.
1023 * In particular, if there is any nested access in a guard
1024 * for a piece of code containing a "continue", then we want to introduce
1025 * a separate statement for evaluating this guard so that we can express
1026 * that the result is false for all previous iterations.
1028 static int is_nested_allowed(__isl_keep isl_pw_aff
*pa
,
1029 __isl_keep pet_tree
*tree
)
1036 if (!pet_nested_any_in_pw_aff(pa
))
1039 if (pet_tree_has_continue(tree
))
1042 nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
1043 for (i
= 0; i
< nparam
; ++i
) {
1044 isl_id
*id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
1048 if (!pet_nested_in_id(id
)) {
1053 expr
= pet_nested_extract_expr(id
);
1054 allowed
= pet_expr_get_type(expr
) == pet_expr_access
&&
1055 !is_assigned(expr
, tree
);
1057 pet_expr_free(expr
);
1067 /* Construct a pet_scop for a for tree with static affine initialization
1068 * and constant increment within the context "pc".
1070 * The condition is allowed to contain nested accesses, provided
1071 * they are not being written to inside the body of the loop.
1072 * Otherwise, or if the condition is otherwise non-affine, the for loop is
1073 * essentially treated as a while loop, with iteration domain
1074 * { [i] : i >= init }.
1076 * We extract a pet_scop for the body and then embed it in a loop with
1077 * iteration domain and schedule
1079 * { [i] : i >= init and condition' }
1084 * { [i] : i <= init and condition' }
1087 * Where condition' is equal to condition if the latter is
1088 * a simple upper [lower] bound and a condition that is extended
1089 * to apply to all previous iterations otherwise.
1091 * If the condition is non-affine, then we drop the condition from the
1092 * iteration domain and instead create a separate statement
1093 * for evaluating the condition. The body is then filtered to depend
1094 * on the result of the condition evaluating to true on all iterations
1095 * up to the current iteration, while the evaluation the condition itself
1096 * is filtered to depend on the result of the condition evaluating to true
1097 * on all previous iterations.
1098 * The context of the scop representing the body is dropped
1099 * because we don't know how many times the body will be executed,
1102 * If the stride of the loop is not 1, then "i >= init" is replaced by
1104 * (exists a: i = init + stride * a and a >= 0)
1106 * If the loop iterator i is unsigned, then wrapping may occur.
1107 * We therefore use a virtual iterator instead that does not wrap.
1108 * However, the condition in the code applies
1109 * to the wrapped value, so we need to change condition(i)
1110 * into condition([i % 2^width]). Similarly, we replace all accesses
1111 * to the original iterator by the wrapping of the virtual iterator.
1112 * Note that there may be no need to perform this final wrapping
1113 * if the loop condition (after wrapping) satisfies certain conditions.
1114 * However, the is_simple_bound condition is not enough since it doesn't
1115 * check if there even is an upper bound.
1117 * Wrapping on unsigned iterators can be avoided entirely if
1118 * loop condition is simple, the loop iterator is incremented
1119 * [decremented] by one and the last value before wrapping cannot
1120 * possibly satisfy the loop condition.
1122 * Valid parameters for a for loop are those for which the initial
1123 * value itself, the increment on each domain iteration and
1124 * the condition on both the initial value and
1125 * the result of incrementing the iterator for each iteration of the domain
1127 * If the loop condition is non-affine, then we only consider validity
1128 * of the initial value.
1130 * If the body contains any break, then we keep track of it in "skip"
1131 * (if the skip condition is affine) or it is handled in scop_add_break
1132 * (if the skip condition is not affine).
1133 * Note that the affine break condition needs to be considered with
1134 * respect to previous iterations in the virtual domain (if any).
1136 static struct pet_scop
*scop_from_affine_for(__isl_keep pet_tree
*tree
,
1137 __isl_take isl_pw_aff
*init_val
, __isl_take isl_pw_aff
*pa_inc
,
1138 __isl_take isl_val
*inc
, __isl_take pet_context
*pc
,
1139 struct pet_state
*state
)
1141 isl_local_space
*ls
;
1144 isl_set
*cond
= NULL
;
1145 isl_set
*skip
= NULL
;
1146 isl_id
*id
, *id_test
= NULL
, *id_break_test
;
1147 struct pet_scop
*scop
, *scop_cond
= NULL
;
1153 int has_affine_break
;
1155 isl_map
*rev_wrap
= NULL
;
1156 isl_aff
*wrap
= NULL
;
1158 isl_set
*valid_init
;
1159 isl_set
*valid_cond
;
1160 isl_set
*valid_cond_init
;
1161 isl_set
*valid_cond_next
;
1163 pet_expr
*cond_expr
;
1164 pet_context
*pc_nested
;
1166 id
= pet_expr_access_get_id(tree
->u
.l
.iv
);
1168 cond_expr
= pet_expr_copy(tree
->u
.l
.cond
);
1169 cond_expr
= pet_expr_plug_in_args(cond_expr
, pc
);
1170 pc_nested
= pet_context_copy(pc
);
1171 pc_nested
= pet_context_set_allow_nested(pc_nested
, 1);
1172 pa
= pet_expr_extract_affine_condition(cond_expr
, pc_nested
);
1173 pet_context_free(pc_nested
);
1174 pet_expr_free(cond_expr
);
1176 valid_inc
= isl_pw_aff_domain(pa_inc
);
1178 is_unsigned
= pet_expr_get_type_size(tree
->u
.l
.iv
) > 0;
1180 is_non_affine
= isl_pw_aff_involves_nan(pa
) ||
1181 !is_nested_allowed(pa
, tree
->u
.l
.body
);
1183 pa
= isl_pw_aff_free(pa
);
1185 valid_cond
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1186 cond
= isl_pw_aff_non_zero_set(pa
);
1188 cond
= isl_set_universe(isl_space_set_alloc(state
->ctx
, 0, 0));
1190 cond
= embed(cond
, isl_id_copy(id
));
1191 valid_cond
= isl_set_coalesce(valid_cond
);
1192 valid_cond
= embed(valid_cond
, isl_id_copy(id
));
1193 valid_inc
= embed(valid_inc
, isl_id_copy(id
));
1194 is_one
= isl_val_is_one(inc
) || isl_val_is_negone(inc
);
1195 is_virtual
= is_unsigned
&&
1196 (!is_one
|| can_wrap(cond
, tree
->u
.l
.iv
, inc
));
1198 valid_cond_init
= enforce_subset(
1199 isl_map_range(isl_map_from_pw_aff(isl_pw_aff_copy(init_val
))),
1200 isl_set_copy(valid_cond
));
1201 if (is_one
&& !is_virtual
) {
1202 isl_pw_aff_free(init_val
);
1203 pa
= pet_expr_extract_comparison(
1204 isl_val_is_pos(inc
) ? pet_op_ge
: pet_op_le
,
1205 tree
->u
.l
.iv
, tree
->u
.l
.init
, pc
);
1206 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1207 valid_init
= set_project_out_by_id(valid_init
, id
);
1208 domain
= isl_pw_aff_non_zero_set(pa
);
1210 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(init_val
));
1211 domain
= strided_domain(isl_id_copy(id
), init_val
,
1215 domain
= embed(domain
, isl_id_copy(id
));
1217 wrap
= compute_wrapping(isl_set_get_space(cond
), tree
->u
.l
.iv
);
1218 rev_wrap
= isl_map_from_aff(isl_aff_copy(wrap
));
1219 rev_wrap
= isl_map_reverse(rev_wrap
);
1220 cond
= isl_set_apply(cond
, isl_map_copy(rev_wrap
));
1221 valid_cond
= isl_set_apply(valid_cond
, isl_map_copy(rev_wrap
));
1222 valid_inc
= isl_set_apply(valid_inc
, isl_map_copy(rev_wrap
));
1224 is_simple
= is_simple_bound(cond
, inc
);
1226 cond
= isl_set_gist(cond
, isl_set_copy(domain
));
1227 is_simple
= is_simple_bound(cond
, inc
);
1230 cond
= valid_for_each_iteration(cond
,
1231 isl_set_copy(domain
), isl_val_copy(inc
));
1232 domain
= isl_set_intersect(domain
, cond
);
1233 domain
= isl_set_set_dim_id(domain
, isl_dim_set
, 0, isl_id_copy(id
));
1234 ls
= isl_local_space_from_space(isl_set_get_space(domain
));
1235 sched
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
1236 if (isl_val_is_neg(inc
))
1237 sched
= isl_aff_neg(sched
);
1239 valid_cond_next
= valid_on_next(valid_cond
, isl_set_copy(domain
),
1241 valid_inc
= enforce_subset(isl_set_copy(domain
), valid_inc
);
1244 wrap
= identity_aff(domain
);
1246 if (is_non_affine
) {
1247 isl_multi_pw_aff
*test_index
;
1248 test_index
= pet_create_test_index(state
->ctx
, state
->n_test
++);
1249 scop_cond
= scop_from_non_affine_condition(
1250 pet_expr_copy(tree
->u
.l
.cond
), state
->n_stmt
++,
1251 isl_multi_pw_aff_copy(test_index
),
1252 pet_tree_get_loc(tree
), pc
);
1253 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
,
1255 scop_cond
= pet_scop_add_boolean_array(scop_cond
, test_index
,
1257 scop_cond
= pet_scop_prefix(scop_cond
, 0);
1258 scop_cond
= pet_scop_embed(scop_cond
, isl_set_copy(domain
),
1259 isl_aff_copy(sched
), isl_aff_copy(wrap
),
1263 scop
= scop_from_tree(tree
->u
.l
.body
, pc
, state
);
1264 has_affine_break
= scop
&&
1265 pet_scop_has_affine_skip(scop
, pet_skip_later
);
1266 if (has_affine_break
)
1267 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
1268 has_var_break
= scop
&& pet_scop_has_var_skip(scop
, pet_skip_later
);
1270 id_break_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
1271 if (is_non_affine
) {
1272 scop
= pet_scop_reset_context(scop
);
1273 scop
= pet_scop_prefix(scop
, 1);
1275 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), sched
, wrap
, id
);
1276 scop
= pet_scop_resolve_nested(scop
);
1277 if (has_affine_break
) {
1278 domain
= apply_affine_break(domain
, skip
, isl_val_sgn(inc
),
1279 is_virtual
, rev_wrap
);
1280 scop
= pet_scop_intersect_domain_prefix(scop
,
1281 isl_set_copy(domain
));
1283 isl_map_free(rev_wrap
);
1285 scop
= scop_add_break(scop
, id_break_test
, isl_set_copy(domain
),
1287 if (is_non_affine
) {
1288 scop
= scop_add_while(scop_cond
, scop
, id_test
, domain
,
1290 isl_set_free(valid_inc
);
1292 scop
= pet_scop_restrict_context(scop
, valid_inc
);
1293 scop
= pet_scop_restrict_context(scop
, valid_cond_next
);
1294 scop
= pet_scop_restrict_context(scop
, valid_cond_init
);
1295 isl_set_free(domain
);
1300 scop
= pet_scop_restrict_context(scop
, isl_set_params(valid_init
));
1302 pet_context_free(pc
);
1306 /* Construct a pet_scop for a for statement within the context of "pc".
1308 * We update the context to reflect the writes to the loop variable and
1309 * the writes inside the body.
1311 * Then we check if the initialization of the for loop
1312 * is a static affine value and the increment is a constant.
1313 * If so, we construct the pet_scop using scop_from_affine_for.
1314 * Otherwise, we treat the for loop as a while loop
1315 * in scop_from_non_affine_for.
1317 static struct pet_scop
*scop_from_for(__isl_keep pet_tree
*tree
,
1318 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1322 isl_pw_aff
*pa_inc
, *init_val
;
1323 pet_context
*pc_init_val
;
1328 iv
= pet_expr_access_get_id(tree
->u
.l
.iv
);
1329 pc
= pet_context_copy(pc
);
1330 pc
= pet_context_clear_value(pc
, iv
);
1331 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
1333 pc_init_val
= pet_context_copy(pc
);
1334 pc_init_val
= pet_context_mark_unknown(pc_init_val
, isl_id_copy(iv
));
1335 init_val
= pet_expr_extract_affine(tree
->u
.l
.init
, pc_init_val
);
1336 pet_context_free(pc_init_val
);
1337 pa_inc
= pet_expr_extract_affine(tree
->u
.l
.inc
, pc
);
1338 inc
= pet_extract_cst(pa_inc
);
1339 if (!pa_inc
|| !init_val
|| !inc
)
1341 if (!isl_pw_aff_involves_nan(pa_inc
) &&
1342 !isl_pw_aff_involves_nan(init_val
) && !isl_val_is_nan(inc
))
1343 return scop_from_affine_for(tree
, init_val
, pa_inc
, inc
,
1346 isl_pw_aff_free(pa_inc
);
1347 isl_pw_aff_free(init_val
);
1349 return scop_from_non_affine_for(tree
, pc
, state
);
1351 isl_pw_aff_free(pa_inc
);
1352 isl_pw_aff_free(init_val
);
1354 pet_context_free(pc
);
1358 /* Check whether "expr" is an affine constraint within the context "pc".
1360 static int is_affine_condition(__isl_keep pet_expr
*expr
,
1361 __isl_keep pet_context
*pc
)
1366 pa
= pet_expr_extract_affine_condition(expr
, pc
);
1369 is_affine
= !isl_pw_aff_involves_nan(pa
);
1370 isl_pw_aff_free(pa
);
1375 /* Check if the given if statement is a conditional assignement
1376 * with a non-affine condition.
1378 * In particular we check if "stmt" is of the form
1385 * where the condition is non-affine and a is some array or scalar access.
1387 static int is_conditional_assignment(__isl_keep pet_tree
*tree
,
1388 __isl_keep pet_context
*pc
)
1392 pet_expr
*expr1
, *expr2
;
1394 ctx
= pet_tree_get_ctx(tree
);
1395 if (!pet_options_get_detect_conditional_assignment(ctx
))
1397 if (tree
->type
!= pet_tree_if_else
)
1399 if (tree
->u
.i
.then_body
->type
!= pet_tree_expr
)
1401 if (tree
->u
.i
.else_body
->type
!= pet_tree_expr
)
1403 expr1
= tree
->u
.i
.then_body
->u
.e
.expr
;
1404 expr2
= tree
->u
.i
.else_body
->u
.e
.expr
;
1405 if (pet_expr_get_type(expr1
) != pet_expr_op
)
1407 if (pet_expr_get_type(expr2
) != pet_expr_op
)
1409 if (pet_expr_op_get_type(expr1
) != pet_op_assign
)
1411 if (pet_expr_op_get_type(expr2
) != pet_op_assign
)
1413 expr1
= pet_expr_get_arg(expr1
, 0);
1414 expr2
= pet_expr_get_arg(expr2
, 0);
1415 equal
= pet_expr_is_equal(expr1
, expr2
);
1416 pet_expr_free(expr1
);
1417 pet_expr_free(expr2
);
1418 if (equal
< 0 || !equal
)
1420 if (is_affine_condition(tree
->u
.i
.cond
, pc
))
1426 /* Given that "tree" is of the form
1433 * where a is some array or scalar access, construct a pet_scop
1434 * corresponding to this conditional assignment within the context "pc".
1436 * The constructed pet_scop then corresponds to the expression
1438 * a = condition ? f(...) : g(...)
1440 * All access relations in f(...) are intersected with condition
1441 * while all access relation in g(...) are intersected with the complement.
1443 static struct pet_scop
*scop_from_conditional_assignment(
1444 __isl_keep pet_tree
*tree
, __isl_take pet_context
*pc
,
1445 struct pet_state
*state
)
1449 isl_set
*cond
, *comp
;
1450 isl_multi_pw_aff
*index
;
1451 pet_expr
*expr1
, *expr2
;
1452 pet_expr
*pe_cond
, *pe_then
, *pe_else
, *pe
, *pe_write
;
1453 pet_context
*pc_nested
;
1454 struct pet_scop
*scop
;
1456 pe_cond
= pet_expr_copy(tree
->u
.i
.cond
);
1457 pe_cond
= pet_expr_plug_in_args(pe_cond
, pc
);
1458 pc_nested
= pet_context_copy(pc
);
1459 pc_nested
= pet_context_set_allow_nested(pc_nested
, 1);
1460 pa
= pet_expr_extract_affine_condition(pe_cond
, pc_nested
);
1461 pet_context_free(pc_nested
);
1462 pet_expr_free(pe_cond
);
1463 cond
= isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa
));
1464 comp
= isl_pw_aff_zero_set(isl_pw_aff_copy(pa
));
1465 index
= isl_multi_pw_aff_from_pw_aff(pa
);
1467 expr1
= tree
->u
.i
.then_body
->u
.e
.expr
;
1468 expr2
= tree
->u
.i
.else_body
->u
.e
.expr
;
1470 pe_cond
= pet_expr_from_index(index
);
1472 pe_then
= pet_expr_get_arg(expr1
, 1);
1473 pe_then
= pet_expr_restrict(pe_then
, cond
);
1474 pe_else
= pet_expr_get_arg(expr2
, 1);
1475 pe_else
= pet_expr_restrict(pe_else
, comp
);
1476 pe_write
= pet_expr_get_arg(expr1
, 0);
1478 pe
= pet_expr_new_ternary(pe_cond
, pe_then
, pe_else
);
1479 type_size
= pet_expr_get_type_size(pe_write
);
1480 pe
= pet_expr_new_binary(type_size
, pet_op_assign
, pe_write
, pe
);
1482 scop
= scop_from_expr(pe
, NULL
, state
->n_stmt
++,
1483 pet_tree_get_loc(tree
), pc
);
1485 pet_context_free(pc
);
1490 /* Construct a pet_scop for a non-affine if statement within the context "pc".
1492 * We create a separate statement that writes the result
1493 * of the non-affine condition to a virtual scalar.
1494 * A constraint requiring the value of this virtual scalar to be one
1495 * is added to the iteration domains of the then branch.
1496 * Similarly, a constraint requiring the value of this virtual scalar
1497 * to be zero is added to the iteration domains of the else branch, if any.
1498 * We adjust the schedules to ensure that the virtual scalar is written
1499 * before it is read.
1501 * If there are any breaks or continues in the then and/or else
1502 * branches, then we may have to compute a new skip condition.
1503 * This is handled using a pet_skip_info object.
1504 * On initialization, the object checks if skip conditions need
1505 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
1506 * adds them in pet_skip_info_if_add.
1508 static struct pet_scop
*scop_from_non_affine_if(__isl_keep pet_tree
*tree
,
1509 __isl_take pet_context
*pc
, struct pet_state
*state
)
1512 isl_multi_pw_aff
*test_index
;
1513 struct pet_skip_info skip
;
1514 struct pet_scop
*scop
, *scop_then
, *scop_else
= NULL
;
1516 has_else
= tree
->type
== pet_tree_if_else
;
1518 test_index
= pet_create_test_index(state
->ctx
, state
->n_test
++);
1519 scop
= scop_from_non_affine_condition(pet_expr_copy(tree
->u
.i
.cond
),
1520 state
->n_stmt
++, isl_multi_pw_aff_copy(test_index
),
1521 pet_tree_get_loc(tree
), pc
);
1522 scop
= pet_scop_add_boolean_array(scop
,
1523 isl_multi_pw_aff_copy(test_index
), state
->int_size
);
1525 scop_then
= scop_from_tree(tree
->u
.i
.then_body
, pc
, state
);
1527 scop_else
= scop_from_tree(tree
->u
.i
.else_body
, pc
, state
);
1529 pet_skip_info_if_init(&skip
, state
->ctx
, scop_then
, scop_else
,
1531 pet_skip_info_if_extract_index(&skip
, test_index
, state
);
1533 scop
= pet_scop_prefix(scop
, 0);
1534 scop_then
= pet_scop_prefix(scop_then
, 1);
1535 scop_then
= pet_scop_filter(scop_then
,
1536 isl_multi_pw_aff_copy(test_index
), 1);
1538 scop_else
= pet_scop_prefix(scop_else
, 1);
1539 scop_else
= pet_scop_filter(scop_else
, test_index
, 0);
1540 scop_then
= pet_scop_add_par(state
->ctx
, scop_then
, scop_else
);
1542 isl_multi_pw_aff_free(test_index
);
1544 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_then
);
1546 scop
= pet_skip_info_if_add(&skip
, scop
, 2);
1548 pet_context_free(pc
);
1552 /* Construct a pet_scop for an affine if statement within the context "pc".
1554 * The condition is added to the iteration domains of the then branch,
1555 * while the opposite of the condition in added to the iteration domains
1556 * of the else branch, if any.
1558 * If there are any breaks or continues in the then and/or else
1559 * branches, then we may have to compute a new skip condition.
1560 * This is handled using a pet_skip_info_if object.
1561 * On initialization, the object checks if skip conditions need
1562 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
1563 * adds them in pet_skip_info_if_add.
1565 static struct pet_scop
*scop_from_affine_if(__isl_keep pet_tree
*tree
,
1566 __isl_take isl_pw_aff
*cond
, __isl_take pet_context
*pc
,
1567 struct pet_state
*state
)
1573 struct pet_skip_info skip
;
1574 struct pet_scop
*scop
, *scop_then
, *scop_else
= NULL
;
1576 ctx
= pet_tree_get_ctx(tree
);
1578 has_else
= tree
->type
== pet_tree_if_else
;
1580 scop_then
= scop_from_tree(tree
->u
.i
.then_body
, pc
, state
);
1582 scop_else
= scop_from_tree(tree
->u
.i
.else_body
, pc
, state
);
1584 pet_skip_info_if_init(&skip
, ctx
, scop_then
, scop_else
, has_else
, 1);
1585 pet_skip_info_if_extract_cond(&skip
, cond
, state
);
1587 valid
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
1588 set
= isl_pw_aff_non_zero_set(cond
);
1589 scop
= pet_scop_restrict(scop_then
, isl_set_params(isl_set_copy(set
)));
1592 set
= isl_set_subtract(isl_set_copy(valid
), set
);
1593 scop_else
= pet_scop_restrict(scop_else
, isl_set_params(set
));
1594 scop
= pet_scop_add_par(ctx
, scop
, scop_else
);
1597 scop
= pet_scop_resolve_nested(scop
);
1598 scop
= pet_scop_restrict_context(scop
, isl_set_params(valid
));
1600 if (pet_skip_info_has_skip(&skip
))
1601 scop
= pet_scop_prefix(scop
, 0);
1602 scop
= pet_skip_info_if_add(&skip
, scop
, 1);
1604 pet_context_free(pc
);
1608 /* Construct a pet_scop for an if statement within the context "pc".
1610 * If the condition fits the pattern of a conditional assignment,
1611 * then it is handled by scop_from_conditional_assignment.
1613 * Otherwise, we check if the condition is affine.
1614 * If so, we construct the scop in scop_from_affine_if.
1615 * Otherwise, we construct the scop in scop_from_non_affine_if.
1617 * We allow the condition to be dynamic, i.e., to refer to
1618 * scalars or array elements that may be written to outside
1619 * of the given if statement. These nested accesses are then represented
1620 * as output dimensions in the wrapping iteration domain.
1621 * If it is also written _inside_ the then or else branch, then
1622 * we treat the condition as non-affine.
1623 * As explained in extract_non_affine_if, this will introduce
1624 * an extra statement.
1625 * For aesthetic reasons, we want this statement to have a statement
1626 * number that is lower than those of the then and else branches.
1627 * In order to evaluate if we will need such a statement, however, we
1628 * first construct scops for the then and else branches.
1629 * We therefore reserve a statement number if we might have to
1630 * introduce such an extra statement.
1632 static struct pet_scop
*scop_from_if(__isl_keep pet_tree
*tree
,
1633 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1637 pet_expr
*cond_expr
;
1638 pet_context
*pc_nested
;
1643 has_else
= tree
->type
== pet_tree_if_else
;
1645 pc
= pet_context_copy(pc
);
1646 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.i
.then_body
);
1648 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.i
.else_body
);
1650 if (is_conditional_assignment(tree
, pc
))
1651 return scop_from_conditional_assignment(tree
, pc
, state
);
1653 cond_expr
= pet_expr_copy(tree
->u
.i
.cond
);
1654 cond_expr
= pet_expr_plug_in_args(cond_expr
, pc
);
1655 pc_nested
= pet_context_copy(pc
);
1656 pc_nested
= pet_context_set_allow_nested(pc_nested
, 1);
1657 cond
= pet_expr_extract_affine_condition(cond_expr
, pc_nested
);
1658 pet_context_free(pc_nested
);
1659 pet_expr_free(cond_expr
);
1662 pet_context_free(pc
);
1666 if (isl_pw_aff_involves_nan(cond
)) {
1667 isl_pw_aff_free(cond
);
1668 return scop_from_non_affine_if(tree
, pc
, state
);
1671 if ((!is_nested_allowed(cond
, tree
->u
.i
.then_body
) ||
1672 (has_else
&& !is_nested_allowed(cond
, tree
->u
.i
.else_body
)))) {
1673 isl_pw_aff_free(cond
);
1674 return scop_from_non_affine_if(tree
, pc
, state
);
1677 return scop_from_affine_if(tree
, cond
, pc
, state
);
1680 /* Return a one-dimensional multi piecewise affine expression that is equal
1681 * to the constant 1 and is defined over a zero-dimensional domain.
1683 static __isl_give isl_multi_pw_aff
*one_mpa(isl_ctx
*ctx
)
1686 isl_local_space
*ls
;
1689 space
= isl_space_set_alloc(ctx
, 0, 0);
1690 ls
= isl_local_space_from_space(space
);
1691 aff
= isl_aff_zero_on_domain(ls
);
1692 aff
= isl_aff_set_constant_si(aff
, 1);
1694 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
1697 /* Construct a pet_scop for a continue statement.
1699 * We simply create an empty scop with a universal pet_skip_now
1700 * skip condition. This skip condition will then be taken into
1701 * account by the enclosing loop construct, possibly after
1702 * being incorporated into outer skip conditions.
1704 static struct pet_scop
*scop_from_continue(__isl_keep pet_tree
*tree
)
1706 struct pet_scop
*scop
;
1709 ctx
= pet_tree_get_ctx(tree
);
1710 scop
= pet_scop_empty(ctx
);
1714 scop
= pet_scop_set_skip(scop
, pet_skip_now
, one_mpa(ctx
));
1719 /* Construct a pet_scop for a break statement.
1721 * We simply create an empty scop with both a universal pet_skip_now
1722 * skip condition and a universal pet_skip_later skip condition.
1723 * These skip conditions will then be taken into
1724 * account by the enclosing loop construct, possibly after
1725 * being incorporated into outer skip conditions.
1727 static struct pet_scop
*scop_from_break(__isl_keep pet_tree
*tree
)
1729 struct pet_scop
*scop
;
1731 isl_multi_pw_aff
*skip
;
1733 ctx
= pet_tree_get_ctx(tree
);
1734 scop
= pet_scop_empty(ctx
);
1738 skip
= one_mpa(ctx
);
1739 scop
= pet_scop_set_skip(scop
, pet_skip_now
,
1740 isl_multi_pw_aff_copy(skip
));
1741 scop
= pet_scop_set_skip(scop
, pet_skip_later
, skip
);
1746 /* Extract a clone of the kill statement in "scop".
1747 * "scop" is expected to have been created from a DeclStmt
1748 * and should have the kill as its first statement.
1750 static struct pet_scop
*extract_kill(isl_ctx
*ctx
, struct pet_scop
*scop
,
1751 struct pet_state
*state
)
1754 struct pet_stmt
*stmt
;
1755 isl_multi_pw_aff
*index
;
1761 if (scop
->n_stmt
< 1)
1762 isl_die(ctx
, isl_error_internal
,
1763 "expecting at least one statement", return NULL
);
1764 stmt
= scop
->stmts
[0];
1765 if (!pet_stmt_is_kill(stmt
))
1766 isl_die(ctx
, isl_error_internal
,
1767 "expecting kill statement", return NULL
);
1769 arg
= pet_expr_get_arg(stmt
->body
, 0);
1770 index
= pet_expr_access_get_index(arg
);
1771 access
= pet_expr_access_get_access(arg
);
1773 index
= isl_multi_pw_aff_reset_tuple_id(index
, isl_dim_in
);
1774 access
= isl_map_reset_tuple_id(access
, isl_dim_in
);
1775 kill
= pet_expr_kill_from_access_and_index(access
, index
);
1776 stmt
= pet_stmt_from_pet_expr(pet_loc_copy(stmt
->loc
),
1777 NULL
, state
->n_stmt
++, kill
);
1778 return pet_scop_from_pet_stmt(ctx
, stmt
);
1781 /* Mark all arrays in "scop" as being exposed.
1783 static struct pet_scop
*mark_exposed(struct pet_scop
*scop
)
1789 for (i
= 0; i
< scop
->n_array
; ++i
)
1790 scop
->arrays
[i
]->exposed
= 1;
1794 /* Try and construct a pet_scop corresponding to (part of)
1795 * a sequence of statements within the context "pc".
1797 * After extracting a statement, we update "pc"
1798 * based on the top-level assignments in the statement
1799 * so that we can exploit them in subsequent statements in the same block.
1801 * If there are any breaks or continues in the individual statements,
1802 * then we may have to compute a new skip condition.
1803 * This is handled using a pet_skip_info object.
1804 * On initialization, the object checks if skip conditions need
1805 * to be computed. If so, it does so in pet_skip_info_seq_extract and
1806 * adds them in pet_skip_info_seq_add.
1808 * If "block" is set, then we need to insert kill statements at
1809 * the end of the block for any array that has been declared by
1810 * one of the statements in the sequence. Each of these declarations
1811 * results in the construction of a kill statement at the place
1812 * of the declaration, so we simply collect duplicates of
1813 * those kill statements and append these duplicates to the constructed scop.
1815 * If "block" is not set, then any array declared by one of the statements
1816 * in the sequence is marked as being exposed.
1818 * If autodetect is set, then we allow the extraction of only a subrange
1819 * of the sequence of statements. However, if there is at least one statement
1820 * for which we could not construct a scop and the final range contains
1821 * either no statements or at least one kill, then we discard the entire
1824 static struct pet_scop
*scop_from_block(__isl_keep pet_tree
*tree
,
1825 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1829 struct pet_scop
*scop
, *kills
;
1831 ctx
= pet_tree_get_ctx(tree
);
1833 pc
= pet_context_copy(pc
);
1834 scop
= pet_scop_empty(ctx
);
1835 kills
= pet_scop_empty(ctx
);
1836 for (i
= 0; i
< tree
->u
.b
.n
; ++i
) {
1837 struct pet_scop
*scop_i
;
1839 scop_i
= scop_from_tree(tree
->u
.b
.child
[i
], pc
, state
);
1840 pc
= scop_handle_writes(scop_i
, pc
);
1841 struct pet_skip_info skip
;
1842 pet_skip_info_seq_init(&skip
, ctx
, scop
, scop_i
);
1843 pet_skip_info_seq_extract(&skip
, state
);
1844 if (pet_skip_info_has_skip(&skip
))
1845 scop_i
= pet_scop_prefix(scop_i
, 0);
1846 if (scop_i
&& pet_tree_is_decl(tree
->u
.b
.child
[i
])) {
1847 if (tree
->u
.b
.block
) {
1848 struct pet_scop
*kill
;
1849 kill
= extract_kill(ctx
, scop_i
, state
);
1850 kills
= pet_scop_add_par(ctx
, kills
, kill
);
1852 scop_i
= mark_exposed(scop_i
);
1854 scop_i
= pet_scop_prefix(scop_i
, i
);
1855 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
1857 scop
= pet_skip_info_seq_add(&skip
, scop
, i
);
1863 kills
= pet_scop_prefix(kills
, tree
->u
.b
.n
);
1864 scop
= pet_scop_add_seq(ctx
, scop
, kills
);
1866 pet_context_free(pc
);
1871 /* Construct a pet_scop that corresponds to the pet_tree "tree"
1872 * within the context "pc" by calling the appropriate function
1873 * based on the type of "tree".
1875 static struct pet_scop
*scop_from_tree(__isl_keep pet_tree
*tree
,
1876 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1881 switch (tree
->type
) {
1882 case pet_tree_error
:
1884 case pet_tree_block
:
1885 return scop_from_block(tree
, pc
, state
);
1886 case pet_tree_break
:
1887 return scop_from_break(tree
);
1888 case pet_tree_continue
:
1889 return scop_from_continue(tree
);
1891 case pet_tree_decl_init
:
1892 return scop_from_decl(tree
, pc
, state
);
1894 return scop_from_expr(pet_expr_copy(tree
->u
.e
.expr
),
1895 isl_id_copy(tree
->label
),
1897 pet_tree_get_loc(tree
), pc
);
1899 case pet_tree_if_else
:
1900 return scop_from_if(tree
, pc
, state
);
1902 return scop_from_for(tree
, pc
, state
);
1903 case pet_tree_while
:
1904 return scop_from_while(tree
, pc
, state
);
1905 case pet_tree_infinite_loop
:
1906 return scop_from_infinite_for(tree
, pc
, state
);
1909 isl_die(tree
->ctx
, isl_error_internal
, "unhandled type",
1913 /* Construct a pet_scop that corresponds to the pet_tree "tree".
1914 * "int_size" is the number of bytes need to represent an integer.
1915 * "extract_array" is a callback that we can use to create a pet_array
1916 * that corresponds to the variable accessed by an expression.
1918 * Initialize the global state, construct a context and then
1919 * construct the pet_scop by recursively visiting the tree.
1921 struct pet_scop
*pet_scop_from_pet_tree(__isl_take pet_tree
*tree
, int int_size
,
1922 struct pet_array
*(*extract_array
)(__isl_keep pet_expr
*access
,
1923 __isl_keep pet_context
*pc
, void *user
), void *user
,
1924 __isl_keep pet_context
*pc
)
1926 struct pet_scop
*scop
;
1927 struct pet_state state
= { 0 };
1932 state
.ctx
= pet_tree_get_ctx(tree
);
1933 state
.int_size
= int_size
;
1934 state
.extract_array
= extract_array
;
1937 scop
= scop_from_tree(tree
, pc
, &state
);
1938 scop
= pet_scop_set_loc(scop
, pet_tree_get_loc(tree
));
1940 pet_tree_free(tree
);