2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2015 Ecole Normale Superieure. All rights reserved.
4 * Copyright 2015-2017 Sven Verdoolaege. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
19 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
22 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
23 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
24 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
25 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * The views and conclusions contained in the software and documentation
31 * are those of the authors and should not be interpreted as
32 * representing official policies, either expressed or implied, of
43 #include <llvm/Support/raw_ostream.h>
44 #include <clang/AST/ASTContext.h>
45 #include <clang/AST/ASTDiagnostic.h>
46 #include <clang/AST/Attr.h>
47 #include <clang/AST/Expr.h>
48 #include <clang/AST/RecursiveASTVisitor.h>
51 #include <isl/space.h>
54 #include <isl/union_set.h>
61 #include "expr_plus.h"
64 #include "inlined_calls.h"
65 #include "killed_locals.h"
70 #include "scop_plus.h"
71 #include "substituter.h"
73 #include "tree2scop.h"
76 using namespace clang
;
78 static enum pet_op_type
UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind
)
88 return pet_op_post_inc
;
90 return pet_op_post_dec
;
92 return pet_op_pre_inc
;
94 return pet_op_pre_dec
;
100 static enum pet_op_type
BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind
)
104 return pet_op_add_assign
;
106 return pet_op_sub_assign
;
108 return pet_op_mul_assign
;
110 return pet_op_div_assign
;
112 return pet_op_and_assign
;
114 return pet_op_xor_assign
;
116 return pet_op_or_assign
;
118 return pet_op_assign
;
160 #ifdef GETTYPEINFORETURNSTYPEINFO
162 static int size_in_bytes(ASTContext
&context
, QualType type
)
164 return context
.getTypeInfo(type
).Width
/ 8;
169 static int size_in_bytes(ASTContext
&context
, QualType type
)
171 return context
.getTypeInfo(type
).first
/ 8;
176 /* Check if the element type corresponding to the given array type
177 * has a const qualifier.
179 static bool const_base(QualType qt
)
181 const Type
*type
= qt
.getTypePtr();
183 if (type
->isPointerType())
184 return const_base(type
->getPointeeType());
185 if (type
->isArrayType()) {
186 const ArrayType
*atype
;
187 type
= type
->getCanonicalTypeInternal().getTypePtr();
188 atype
= cast
<ArrayType
>(type
);
189 return const_base(atype
->getElementType());
192 return qt
.isConstQualified();
197 std::map
<const Type
*, pet_expr
*>::iterator it
;
198 std::map
<FunctionDecl
*, pet_function_summary
*>::iterator it_s
;
200 for (it
= type_size
.begin(); it
!= type_size
.end(); ++it
)
201 pet_expr_free(it
->second
);
202 for (it_s
= summary_cache
.begin(); it_s
!= summary_cache
.end(); ++it_s
)
203 pet_function_summary_free(it_s
->second
);
205 isl_id_to_pet_expr_free(id_size
);
206 isl_union_map_free(value_bounds
);
209 /* Report a diagnostic on the range "range", unless autodetect is set.
211 void PetScan::report(SourceRange range
, unsigned id
)
213 if (options
->autodetect
)
216 SourceLocation loc
= range
.getBegin();
217 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
218 DiagnosticBuilder B
= diag
.Report(loc
, id
) << range
;
221 /* Report a diagnostic on "stmt", unless autodetect is set.
223 void PetScan::report(Stmt
*stmt
, unsigned id
)
225 report(stmt
->getSourceRange(), id
);
228 /* Report a diagnostic on "decl", unless autodetect is set.
230 void PetScan::report(Decl
*decl
, unsigned id
)
232 report(decl
->getSourceRange(), id
);
235 /* Called if we found something we (currently) cannot handle.
236 * We'll provide more informative warnings later.
238 * We only actually complain if autodetect is false.
240 void PetScan::unsupported(Stmt
*stmt
)
242 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
243 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
248 /* Report an unsupported unary operator, unless autodetect is set.
250 void PetScan::report_unsupported_unary_operator(Stmt
*stmt
)
252 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
253 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
254 "this type of unary operator is not supported");
258 /* Report an unsupported binary operator, unless autodetect is set.
260 void PetScan::report_unsupported_binary_operator(Stmt
*stmt
)
262 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
263 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
264 "this type of binary operator is not supported");
268 /* Report an unsupported statement type, unless autodetect is set.
270 void PetScan::report_unsupported_statement_type(Stmt
*stmt
)
272 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
273 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
274 "this type of statement is not supported");
278 /* Report a missing prototype, unless autodetect is set.
280 void PetScan::report_prototype_required(Stmt
*stmt
)
282 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
283 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
284 "prototype required");
288 /* Report a missing increment, unless autodetect is set.
290 void PetScan::report_missing_increment(Stmt
*stmt
)
292 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
293 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
294 "missing increment");
298 /* Report a missing summary function, unless autodetect is set.
300 void PetScan::report_missing_summary_function(Stmt
*stmt
)
302 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
303 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
304 "missing summary function");
308 /* Report a missing summary function body, unless autodetect is set.
310 void PetScan::report_missing_summary_function_body(Stmt
*stmt
)
312 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
313 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
314 "missing summary function body");
318 /* Report an unsupported argument in a call to an inlined function,
319 * unless autodetect is set.
321 void PetScan::report_unsupported_inline_function_argument(Stmt
*stmt
)
323 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
324 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
325 "unsupported inline function call argument");
329 /* Report an unsupported type of declaration, unless autodetect is set.
331 void PetScan::report_unsupported_declaration(Decl
*decl
)
333 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
334 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
335 "unsupported declaration");
339 /* Report an unbalanced pair of scop/endscop pragmas, unless autodetect is set.
341 void PetScan::report_unbalanced_pragmas(SourceLocation scop
,
342 SourceLocation endscop
)
344 if (options
->autodetect
)
347 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
349 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
350 "unbalanced endscop pragma");
351 DiagnosticBuilder B2
= diag
.Report(endscop
, id
);
354 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Note
,
355 "corresponding scop pragma");
356 DiagnosticBuilder B
= diag
.Report(scop
, id
);
360 /* Report a return statement in an unsupported context,
361 * unless autodetect is set.
363 void PetScan::report_unsupported_return(Stmt
*stmt
)
365 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
366 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
367 "return statements not supported in this context");
371 /* Report a return statement that does not appear at the end of a function,
372 * unless autodetect is set.
374 void PetScan::report_return_not_at_end_of_function(Stmt
*stmt
)
376 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
377 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
378 "return statement must be final statement in function");
382 /* Extract an integer from "val", which is assumed to be non-negative.
384 static __isl_give isl_val
*extract_unsigned(isl_ctx
*ctx
,
385 const llvm::APInt
&val
)
388 const uint64_t *data
;
390 data
= val
.getRawData();
391 n
= val
.getNumWords();
392 return isl_val_int_from_chunks(ctx
, n
, sizeof(uint64_t), data
);
395 /* Extract an integer from "val". If "is_signed" is set, then "val"
396 * is signed. Otherwise it it unsigned.
398 static __isl_give isl_val
*extract_int(isl_ctx
*ctx
, bool is_signed
,
401 int is_negative
= is_signed
&& val
.isNegative();
407 v
= extract_unsigned(ctx
, val
);
414 /* Extract an integer from "expr".
416 __isl_give isl_val
*PetScan::extract_int(isl_ctx
*ctx
, IntegerLiteral
*expr
)
418 const Type
*type
= expr
->getType().getTypePtr();
419 bool is_signed
= type
->hasSignedIntegerRepresentation();
421 return ::extract_int(ctx
, is_signed
, expr
->getValue());
424 /* Extract an integer from "expr".
425 * Return NULL if "expr" does not (obviously) represent an integer.
427 __isl_give isl_val
*PetScan::extract_int(clang::ParenExpr
*expr
)
429 return extract_int(expr
->getSubExpr());
432 /* Extract an integer from "expr".
433 * Return NULL if "expr" does not (obviously) represent an integer.
435 __isl_give isl_val
*PetScan::extract_int(clang::Expr
*expr
)
437 if (expr
->getStmtClass() == Stmt::IntegerLiteralClass
)
438 return extract_int(ctx
, cast
<IntegerLiteral
>(expr
));
439 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
440 return extract_int(cast
<ParenExpr
>(expr
));
446 /* Extract a pet_expr from the APInt "val", which is assumed
447 * to be non-negative.
449 __isl_give pet_expr
*PetScan::extract_expr(const llvm::APInt
&val
)
451 return pet_expr_new_int(extract_unsigned(ctx
, val
));
454 /* Return the number of bits needed to represent the type of "decl",
455 * if it is an integer type. Otherwise return 0.
456 * If qt is signed then return the opposite of the number of bits.
458 static int get_type_size(ValueDecl
*decl
)
460 return pet_clang_get_type_size(decl
->getType(), decl
->getASTContext());
463 /* Bound parameter "pos" of "set" to the possible values of "decl".
465 static __isl_give isl_set
*set_parameter_bounds(__isl_take isl_set
*set
,
466 unsigned pos
, ValueDecl
*decl
)
472 ctx
= isl_set_get_ctx(set
);
473 type_size
= get_type_size(decl
);
475 isl_die(ctx
, isl_error_invalid
, "not an integer type",
476 return isl_set_free(set
));
478 set
= isl_set_lower_bound_si(set
, isl_dim_param
, pos
, 0);
479 bound
= isl_val_int_from_ui(ctx
, type_size
);
480 bound
= isl_val_2exp(bound
);
481 bound
= isl_val_sub_ui(bound
, 1);
482 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
, bound
);
484 bound
= isl_val_int_from_ui(ctx
, -type_size
- 1);
485 bound
= isl_val_2exp(bound
);
486 bound
= isl_val_sub_ui(bound
, 1);
487 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
,
488 isl_val_copy(bound
));
489 bound
= isl_val_neg(bound
);
490 bound
= isl_val_sub_ui(bound
, 1);
491 set
= isl_set_lower_bound_val(set
, isl_dim_param
, pos
, bound
);
497 __isl_give pet_expr
*PetScan::extract_index_expr(ImplicitCastExpr
*expr
)
499 return extract_index_expr(expr
->getSubExpr());
502 /* Construct a pet_expr representing an index expression for an access
503 * to the variable referenced by "expr".
505 * If "expr" references an enum constant, then return an integer expression
506 * instead, representing the value of the enum constant.
508 __isl_give pet_expr
*PetScan::extract_index_expr(DeclRefExpr
*expr
)
510 return extract_index_expr(expr
->getDecl());
513 /* Construct a pet_expr representing an index expression for an access
514 * to the variable "decl".
516 * If "decl" is an enum constant, then we return an integer expression
517 * instead, representing the value of the enum constant.
519 __isl_give pet_expr
*PetScan::extract_index_expr(ValueDecl
*decl
)
523 if (isa
<EnumConstantDecl
>(decl
))
524 return extract_expr(cast
<EnumConstantDecl
>(decl
));
526 id
= pet_id_from_decl(ctx
, decl
);
527 return pet_id_create_index_expr(id
);
530 /* Construct a pet_expr representing the index expression "expr"
531 * Return NULL on error.
533 * If "expr" is a reference to an enum constant, then return
534 * an integer expression instead, representing the value of the enum constant.
536 __isl_give pet_expr
*PetScan::extract_index_expr(Expr
*expr
)
538 switch (expr
->getStmtClass()) {
539 case Stmt::ImplicitCastExprClass
:
540 return extract_index_expr(cast
<ImplicitCastExpr
>(expr
));
541 case Stmt::DeclRefExprClass
:
542 return extract_index_expr(cast
<DeclRefExpr
>(expr
));
543 case Stmt::ArraySubscriptExprClass
:
544 return extract_index_expr(cast
<ArraySubscriptExpr
>(expr
));
545 case Stmt::IntegerLiteralClass
:
546 return extract_expr(cast
<IntegerLiteral
>(expr
));
547 case Stmt::MemberExprClass
:
548 return extract_index_expr(cast
<MemberExpr
>(expr
));
555 /* Extract an index expression from the given array subscript expression.
557 * We first extract an index expression from the base.
558 * This will result in an index expression with a range that corresponds
559 * to the earlier indices.
560 * We then extract the current index and let
561 * pet_expr_access_subscript combine the two.
563 __isl_give pet_expr
*PetScan::extract_index_expr(ArraySubscriptExpr
*expr
)
565 Expr
*base
= expr
->getBase();
566 Expr
*idx
= expr
->getIdx();
570 base_expr
= extract_index_expr(base
);
571 index
= extract_expr(idx
);
573 base_expr
= pet_expr_access_subscript(base_expr
, index
);
578 /* Extract an index expression from a member expression.
580 * If the base access (to the structure containing the member)
585 * and the member is called "f", then the member access is of
590 * If the member access is to an anonymous struct, then simply return
594 * If the member access in the source code is of the form
598 * then it is treated as
602 __isl_give pet_expr
*PetScan::extract_index_expr(MemberExpr
*expr
)
604 Expr
*base
= expr
->getBase();
605 FieldDecl
*field
= cast
<FieldDecl
>(expr
->getMemberDecl());
606 pet_expr
*base_index
;
609 base_index
= extract_index_expr(base
);
611 if (expr
->isArrow()) {
612 pet_expr
*index
= pet_expr_new_int(isl_val_zero(ctx
));
613 base_index
= pet_expr_access_subscript(base_index
, index
);
616 if (field
->isAnonymousStructOrUnion())
619 id
= pet_id_from_decl(ctx
, field
);
621 return pet_expr_access_member(base_index
, id
);
624 /* Mark the given access pet_expr as a write.
626 static __isl_give pet_expr
*mark_write(__isl_take pet_expr
*access
)
628 access
= pet_expr_access_set_write(access
, 1);
629 access
= pet_expr_access_set_read(access
, 0);
634 /* Mark the given (read) access pet_expr as also possibly being written.
635 * That is, initialize the may write access relation from the may read relation
636 * and initialize the must write access relation to the empty relation.
638 static __isl_give pet_expr
*mark_may_write(__isl_take pet_expr
*expr
)
640 isl_union_map
*access
;
641 isl_union_map
*empty
;
643 access
= pet_expr_access_get_dependent_access(expr
,
644 pet_expr_access_may_read
);
645 empty
= isl_union_map_empty(isl_union_map_get_space(access
));
646 expr
= pet_expr_access_set_access(expr
, pet_expr_access_may_write
,
648 expr
= pet_expr_access_set_access(expr
, pet_expr_access_must_write
,
654 /* Construct a pet_expr representing a unary operator expression.
656 __isl_give pet_expr
*PetScan::extract_expr(UnaryOperator
*expr
)
662 op
= UnaryOperatorKind2pet_op_type(expr
->getOpcode());
663 if (op
== pet_op_last
) {
664 report_unsupported_unary_operator(expr
);
668 arg
= extract_expr(expr
->getSubExpr());
670 if (expr
->isIncrementDecrementOp() &&
671 pet_expr_get_type(arg
) == pet_expr_access
) {
672 arg
= mark_write(arg
);
673 arg
= pet_expr_access_set_read(arg
, 1);
676 type_size
= pet_clang_get_type_size(expr
->getType(), ast_context
);
677 return pet_expr_new_unary(type_size
, op
, arg
);
680 /* Construct a pet_expr representing a binary operator expression.
682 * If the top level operator is an assignment and the LHS is an access,
683 * then we mark that access as a write. If the operator is a compound
684 * assignment, the access is marked as both a read and a write.
686 __isl_give pet_expr
*PetScan::extract_expr(BinaryOperator
*expr
)
692 op
= BinaryOperatorKind2pet_op_type(expr
->getOpcode());
693 if (op
== pet_op_last
) {
694 report_unsupported_binary_operator(expr
);
698 lhs
= extract_expr(expr
->getLHS());
699 rhs
= extract_expr(expr
->getRHS());
701 if (expr
->isAssignmentOp() &&
702 pet_expr_get_type(lhs
) == pet_expr_access
) {
703 lhs
= mark_write(lhs
);
704 if (expr
->isCompoundAssignmentOp())
705 lhs
= pet_expr_access_set_read(lhs
, 1);
708 type_size
= pet_clang_get_type_size(expr
->getType(), ast_context
);
709 return pet_expr_new_binary(type_size
, op
, lhs
, rhs
);
712 /* Construct a pet_tree for a variable declaration and
713 * add the declaration to the list of declarations
714 * inside the current compound statement.
716 __isl_give pet_tree
*PetScan::extract(Decl
*decl
)
722 if (!isa
<VarDecl
>(decl
)) {
723 report_unsupported_declaration(decl
);
727 vd
= cast
<VarDecl
>(decl
);
728 declarations
.push_back(vd
);
730 lhs
= extract_access_expr(vd
);
731 lhs
= mark_write(lhs
);
733 tree
= pet_tree_new_decl(lhs
);
735 rhs
= extract_expr(vd
->getInit());
736 tree
= pet_tree_new_decl_init(lhs
, rhs
);
742 /* Construct a pet_tree for a variable declaration statement.
743 * If the declaration statement declares multiple variables,
744 * then return a group of pet_trees, one for each declared variable.
746 __isl_give pet_tree
*PetScan::extract(DeclStmt
*stmt
)
751 if (!stmt
->isSingleDecl()) {
752 const DeclGroup
&group
= stmt
->getDeclGroup().getDeclGroup();
754 tree
= pet_tree_new_block(ctx
, 0, n
);
756 for (unsigned i
= 0; i
< n
; ++i
) {
760 tree_i
= extract(group
[i
]);
761 loc
= construct_pet_loc(group
[i
]->getSourceRange(),
763 tree_i
= pet_tree_set_loc(tree_i
, loc
);
764 tree
= pet_tree_block_add_child(tree
, tree_i
);
770 return extract(stmt
->getSingleDecl());
773 /* Construct a pet_expr representing a conditional operation.
775 __isl_give pet_expr
*PetScan::extract_expr(ConditionalOperator
*expr
)
777 pet_expr
*cond
, *lhs
, *rhs
;
779 cond
= extract_expr(expr
->getCond());
780 lhs
= extract_expr(expr
->getTrueExpr());
781 rhs
= extract_expr(expr
->getFalseExpr());
783 return pet_expr_new_ternary(cond
, lhs
, rhs
);
786 __isl_give pet_expr
*PetScan::extract_expr(ImplicitCastExpr
*expr
)
788 return extract_expr(expr
->getSubExpr());
791 /* Construct a pet_expr representing a floating point value.
793 * If the floating point literal does not appear in a macro,
794 * then we use the original representation in the source code
795 * as the string representation. Otherwise, we use the pretty
796 * printer to produce a string representation.
798 __isl_give pet_expr
*PetScan::extract_expr(FloatingLiteral
*expr
)
802 const LangOptions
&LO
= PP
.getLangOpts();
803 SourceLocation loc
= expr
->getLocation();
805 if (!loc
.isMacroID()) {
806 SourceManager
&SM
= PP
.getSourceManager();
807 unsigned len
= Lexer::MeasureTokenLength(loc
, SM
, LO
);
808 s
= string(SM
.getCharacterData(loc
), len
);
810 llvm::raw_string_ostream
S(s
);
811 expr
->printPretty(S
, 0, PrintingPolicy(LO
));
814 d
= expr
->getValueAsApproximateDouble();
815 return pet_expr_new_double(ctx
, d
, s
.c_str());
818 /* Extract an index expression from "expr" and then convert it into
819 * an access pet_expr.
821 * If "expr" is a reference to an enum constant, then return
822 * an integer expression instead, representing the value of the enum constant.
824 __isl_give pet_expr
*PetScan::extract_access_expr(Expr
*expr
)
828 index
= extract_index_expr(expr
);
830 if (pet_expr_get_type(index
) == pet_expr_int
)
833 return pet_expr_access_from_index(expr
->getType(), index
, ast_context
);
836 /* Extract an index expression from "decl" and then convert it into
837 * an access pet_expr.
839 __isl_give pet_expr
*PetScan::extract_access_expr(ValueDecl
*decl
)
841 return pet_expr_access_from_index(decl
->getType(),
842 extract_index_expr(decl
), ast_context
);
845 __isl_give pet_expr
*PetScan::extract_expr(ParenExpr
*expr
)
847 return extract_expr(expr
->getSubExpr());
850 /* Extract an assume statement from the argument "expr"
851 * of a __builtin_assume or __pencil_assume statement.
853 __isl_give pet_expr
*PetScan::extract_assume(Expr
*expr
)
855 return pet_expr_new_unary(0, pet_op_assume
, extract_expr(expr
));
858 /* If "expr" is an address-of operator, then return its argument.
859 * Otherwise, return NULL.
861 static Expr
*extract_addr_of_arg(Expr
*expr
)
865 if (expr
->getStmtClass() != Stmt::UnaryOperatorClass
)
867 op
= cast
<UnaryOperator
>(expr
);
868 if (op
->getOpcode() != UO_AddrOf
)
870 return op
->getSubExpr();
873 /* Construct a pet_expr corresponding to the function call argument "expr".
874 * The argument appears in position "pos" of a call to function "fd".
876 * If we are passing along a pointer to an array element
877 * or an entire row or even higher dimensional slice of an array,
878 * then the function being called may write into the array.
880 * We assume here that if the function is declared to take a pointer
881 * to a const type, then the function may only perform a read
882 * and that otherwise, it may either perform a read or a write (or both).
883 * We only perform this check if "detect_writes" is set.
885 __isl_give pet_expr
*PetScan::extract_argument(FunctionDecl
*fd
, int pos
,
886 Expr
*expr
, bool detect_writes
)
890 int is_addr
= 0, is_partial
= 0;
892 expr
= pet_clang_strip_casts(expr
);
893 arg
= extract_addr_of_arg(expr
);
898 res
= extract_expr(expr
);
901 if (pet_clang_array_depth(expr
->getType()) > 0)
903 if (detect_writes
&& (is_addr
|| is_partial
) &&
904 pet_expr_get_type(res
) == pet_expr_access
) {
906 if (!fd
->hasPrototype()) {
907 report_prototype_required(expr
);
908 return pet_expr_free(res
);
910 parm
= fd
->getParamDecl(pos
);
911 if (!const_base(parm
->getType()))
912 res
= mark_may_write(res
);
916 res
= pet_expr_new_unary(0, pet_op_address_of
, res
);
920 /* Find the first FunctionDecl with the given name.
921 * "call" is the corresponding call expression and is only used
922 * for reporting errors.
924 * Return NULL on error.
926 FunctionDecl
*PetScan::find_decl_from_name(CallExpr
*call
, string name
)
928 TranslationUnitDecl
*tu
= ast_context
.getTranslationUnitDecl();
929 DeclContext::decl_iterator begin
= tu
->decls_begin();
930 DeclContext::decl_iterator end
= tu
->decls_end();
931 for (DeclContext::decl_iterator i
= begin
; i
!= end
; ++i
) {
932 FunctionDecl
*fd
= dyn_cast
<FunctionDecl
>(*i
);
935 if (fd
->getName().str().compare(name
) != 0)
939 report_missing_summary_function_body(call
);
942 report_missing_summary_function(call
);
946 /* Return the FunctionDecl for the summary function associated to the
947 * function called by "call".
949 * In particular, if the pencil option is set, then
950 * search for an annotate attribute formatted as
951 * "pencil_access(name)", where "name" is the name of the summary function.
953 * If no summary function was specified, then return the FunctionDecl
954 * that is actually being called.
956 * Return NULL on error.
958 FunctionDecl
*PetScan::get_summary_function(CallExpr
*call
)
960 FunctionDecl
*decl
= call
->getDirectCallee();
964 if (!options
->pencil
)
967 specific_attr_iterator
<AnnotateAttr
> begin
, end
, i
;
968 begin
= decl
->specific_attr_begin
<AnnotateAttr
>();
969 end
= decl
->specific_attr_end
<AnnotateAttr
>();
970 for (i
= begin
; i
!= end
; ++i
) {
971 string attr
= (*i
)->getAnnotation().str();
973 const char prefix
[] = "pencil_access(";
974 size_t start
= attr
.find(prefix
);
975 if (start
== string::npos
)
977 start
+= strlen(prefix
);
978 string name
= attr
.substr(start
, attr
.find(')') - start
);
980 return find_decl_from_name(call
, name
);
986 /* Is "name" the name of an assume statement?
987 * "pencil" indicates whether pencil builtins and pragmas should be supported.
988 * "__builtin_assume" is always accepted.
989 * If "pencil" is set, then "__pencil_assume" is also accepted.
991 static bool is_assume(int pencil
, const string
&name
)
993 if (name
== "__builtin_assume")
995 return pencil
&& name
== "__pencil_assume";
998 /* Construct a pet_expr representing a function call.
1000 * If this->call2id is not NULL and it contains a mapping for this call,
1001 * then this means that the corresponding function has been inlined.
1002 * Return a pet_expr that reads from the variable that
1003 * stores the return value of the inlined call.
1005 * In the special case of a "call" to __builtin_assume or __pencil_assume,
1006 * construct an assume expression instead.
1008 * In the case of a "call" to __pencil_kill, the arguments
1009 * are neither read nor written (only killed), so there
1010 * is no need to check for writes to these arguments.
1012 * __pencil_assume and __pencil_kill are only recognized
1013 * when the pencil option is set.
1015 __isl_give pet_expr
*PetScan::extract_expr(CallExpr
*expr
)
1017 pet_expr
*res
= NULL
;
1023 if (call2id
&& call2id
->find(expr
) != call2id
->end())
1024 return pet_expr_access_from_id(isl_id_copy(call2id
[0][expr
]),
1027 fd
= expr
->getDirectCallee();
1033 name
= fd
->getDeclName().getAsString();
1034 n_arg
= expr
->getNumArgs();
1036 if (n_arg
== 1 && is_assume(options
->pencil
, name
))
1037 return extract_assume(expr
->getArg(0));
1038 is_kill
= options
->pencil
&& name
== "__pencil_kill";
1040 res
= pet_expr_new_call(ctx
, name
.c_str(), n_arg
);
1044 for (unsigned i
= 0; i
< n_arg
; ++i
) {
1045 Expr
*arg
= expr
->getArg(i
);
1046 res
= pet_expr_set_arg(res
, i
,
1047 PetScan::extract_argument(fd
, i
, arg
, !is_kill
));
1050 fd
= get_summary_function(expr
);
1052 return pet_expr_free(res
);
1054 res
= set_summary(res
, fd
);
1059 /* Construct a pet_expr representing a (C style) cast.
1061 __isl_give pet_expr
*PetScan::extract_expr(CStyleCastExpr
*expr
)
1066 arg
= extract_expr(expr
->getSubExpr());
1070 type
= expr
->getTypeAsWritten();
1071 return pet_expr_new_cast(type
.getAsString().c_str(), arg
);
1074 /* Construct a pet_expr representing an integer.
1076 __isl_give pet_expr
*PetScan::extract_expr(IntegerLiteral
*expr
)
1078 return pet_expr_new_int(extract_int(expr
));
1081 /* Construct a pet_expr representing the integer enum constant "ecd".
1083 __isl_give pet_expr
*PetScan::extract_expr(EnumConstantDecl
*ecd
)
1086 const llvm::APSInt
&init
= ecd
->getInitVal();
1087 v
= ::extract_int(ctx
, init
.isSigned(), init
);
1088 return pet_expr_new_int(v
);
1091 /* Try and construct a pet_expr representing "expr".
1093 __isl_give pet_expr
*PetScan::extract_expr(Expr
*expr
)
1095 switch (expr
->getStmtClass()) {
1096 case Stmt::UnaryOperatorClass
:
1097 return extract_expr(cast
<UnaryOperator
>(expr
));
1098 case Stmt::CompoundAssignOperatorClass
:
1099 case Stmt::BinaryOperatorClass
:
1100 return extract_expr(cast
<BinaryOperator
>(expr
));
1101 case Stmt::ImplicitCastExprClass
:
1102 return extract_expr(cast
<ImplicitCastExpr
>(expr
));
1103 case Stmt::ArraySubscriptExprClass
:
1104 case Stmt::DeclRefExprClass
:
1105 case Stmt::MemberExprClass
:
1106 return extract_access_expr(expr
);
1107 case Stmt::IntegerLiteralClass
:
1108 return extract_expr(cast
<IntegerLiteral
>(expr
));
1109 case Stmt::FloatingLiteralClass
:
1110 return extract_expr(cast
<FloatingLiteral
>(expr
));
1111 case Stmt::ParenExprClass
:
1112 return extract_expr(cast
<ParenExpr
>(expr
));
1113 case Stmt::ConditionalOperatorClass
:
1114 return extract_expr(cast
<ConditionalOperator
>(expr
));
1115 case Stmt::CallExprClass
:
1116 return extract_expr(cast
<CallExpr
>(expr
));
1117 case Stmt::CStyleCastExprClass
:
1118 return extract_expr(cast
<CStyleCastExpr
>(expr
));
1125 /* Check if the given initialization statement is an assignment.
1126 * If so, return that assignment. Otherwise return NULL.
1128 BinaryOperator
*PetScan::initialization_assignment(Stmt
*init
)
1130 BinaryOperator
*ass
;
1132 if (init
->getStmtClass() != Stmt::BinaryOperatorClass
)
1135 ass
= cast
<BinaryOperator
>(init
);
1136 if (ass
->getOpcode() != BO_Assign
)
1142 /* Check if the given initialization statement is a declaration
1143 * of a single variable.
1144 * If so, return that declaration. Otherwise return NULL.
1146 Decl
*PetScan::initialization_declaration(Stmt
*init
)
1150 if (init
->getStmtClass() != Stmt::DeclStmtClass
)
1153 decl
= cast
<DeclStmt
>(init
);
1155 if (!decl
->isSingleDecl())
1158 return decl
->getSingleDecl();
1161 /* Given the assignment operator in the initialization of a for loop,
1162 * extract the induction variable, i.e., the (integer)variable being
1165 ValueDecl
*PetScan::extract_induction_variable(BinaryOperator
*init
)
1172 lhs
= init
->getLHS();
1173 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1178 ref
= cast
<DeclRefExpr
>(lhs
);
1179 decl
= ref
->getDecl();
1180 type
= decl
->getType().getTypePtr();
1182 if (!type
->isIntegerType()) {
1190 /* Given the initialization statement of a for loop and the single
1191 * declaration in this initialization statement,
1192 * extract the induction variable, i.e., the (integer) variable being
1195 VarDecl
*PetScan::extract_induction_variable(Stmt
*init
, Decl
*decl
)
1199 vd
= cast
<VarDecl
>(decl
);
1201 const QualType type
= vd
->getType();
1202 if (!type
->isIntegerType()) {
1207 if (!vd
->getInit()) {
1215 /* Check that op is of the form iv++ or iv--.
1216 * Return a pet_expr representing "1" or "-1" accordingly.
1218 __isl_give pet_expr
*PetScan::extract_unary_increment(
1219 clang::UnaryOperator
*op
, clang::ValueDecl
*iv
)
1225 if (!op
->isIncrementDecrementOp()) {
1230 sub
= op
->getSubExpr();
1231 if (sub
->getStmtClass() != Stmt::DeclRefExprClass
) {
1236 ref
= cast
<DeclRefExpr
>(sub
);
1237 if (ref
->getDecl() != iv
) {
1242 if (op
->isIncrementOp())
1243 v
= isl_val_one(ctx
);
1245 v
= isl_val_negone(ctx
);
1247 return pet_expr_new_int(v
);
1250 /* Check if op is of the form
1254 * and return the increment "expr - iv" as a pet_expr.
1256 __isl_give pet_expr
*PetScan::extract_binary_increment(BinaryOperator
*op
,
1257 clang::ValueDecl
*iv
)
1262 pet_expr
*expr
, *expr_iv
;
1264 if (op
->getOpcode() != BO_Assign
) {
1270 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1275 ref
= cast
<DeclRefExpr
>(lhs
);
1276 if (ref
->getDecl() != iv
) {
1281 expr
= extract_expr(op
->getRHS());
1282 expr_iv
= extract_expr(lhs
);
1284 type_size
= pet_clang_get_type_size(iv
->getType(), ast_context
);
1285 return pet_expr_new_binary(type_size
, pet_op_sub
, expr
, expr_iv
);
1288 /* Check that op is of the form iv += cst or iv -= cst
1289 * and return a pet_expr corresponding to cst or -cst accordingly.
1291 __isl_give pet_expr
*PetScan::extract_compound_increment(
1292 CompoundAssignOperator
*op
, clang::ValueDecl
*iv
)
1298 BinaryOperatorKind opcode
;
1300 opcode
= op
->getOpcode();
1301 if (opcode
!= BO_AddAssign
&& opcode
!= BO_SubAssign
) {
1305 if (opcode
== BO_SubAssign
)
1309 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1314 ref
= cast
<DeclRefExpr
>(lhs
);
1315 if (ref
->getDecl() != iv
) {
1320 expr
= extract_expr(op
->getRHS());
1323 type_size
= pet_clang_get_type_size(op
->getType(), ast_context
);
1324 expr
= pet_expr_new_unary(type_size
, pet_op_minus
, expr
);
1330 /* Check that the increment of the given for loop increments
1331 * (or decrements) the induction variable "iv" and return
1332 * the increment as a pet_expr if successful.
1334 __isl_give pet_expr
*PetScan::extract_increment(clang::ForStmt
*stmt
,
1337 Stmt
*inc
= stmt
->getInc();
1340 report_missing_increment(stmt
);
1344 if (inc
->getStmtClass() == Stmt::UnaryOperatorClass
)
1345 return extract_unary_increment(cast
<UnaryOperator
>(inc
), iv
);
1346 if (inc
->getStmtClass() == Stmt::CompoundAssignOperatorClass
)
1347 return extract_compound_increment(
1348 cast
<CompoundAssignOperator
>(inc
), iv
);
1349 if (inc
->getStmtClass() == Stmt::BinaryOperatorClass
)
1350 return extract_binary_increment(cast
<BinaryOperator
>(inc
), iv
);
1356 /* Construct a pet_tree for a while loop.
1358 * If we were only able to extract part of the body, then simply
1361 __isl_give pet_tree
*PetScan::extract(WhileStmt
*stmt
)
1366 tree
= extract(stmt
->getBody());
1369 pe_cond
= extract_expr(stmt
->getCond());
1370 tree
= pet_tree_new_while(pe_cond
, tree
);
1375 /* Construct a pet_tree for a for statement.
1376 * The for loop is required to be of one of the following forms
1378 * for (i = init; condition; ++i)
1379 * for (i = init; condition; --i)
1380 * for (i = init; condition; i += constant)
1381 * for (i = init; condition; i -= constant)
1383 * We extract a pet_tree for the body and then include it in a pet_tree
1384 * of type pet_tree_for.
1386 * As a special case, we also allow a for loop of the form
1390 * in which case we return a pet_tree of type pet_tree_infinite_loop.
1392 * If we were only able to extract part of the body, then simply
1395 __isl_give pet_tree
*PetScan::extract_for(ForStmt
*stmt
)
1397 BinaryOperator
*ass
;
1405 pet_expr
*pe_init
, *pe_inc
, *pe_iv
, *pe_cond
;
1407 independent
= is_current_stmt_marked_independent();
1409 if (!stmt
->getInit() && !stmt
->getCond() && !stmt
->getInc()) {
1410 tree
= extract(stmt
->getBody());
1413 tree
= pet_tree_new_infinite_loop(tree
);
1417 init
= stmt
->getInit();
1422 if ((ass
= initialization_assignment(init
)) != NULL
) {
1423 iv
= extract_induction_variable(ass
);
1426 rhs
= ass
->getRHS();
1427 } else if ((decl
= initialization_declaration(init
)) != NULL
) {
1428 VarDecl
*var
= extract_induction_variable(init
, decl
);
1432 rhs
= var
->getInit();
1434 unsupported(stmt
->getInit());
1438 declared
= !initialization_assignment(stmt
->getInit());
1439 tree
= extract(stmt
->getBody());
1442 pe_iv
= extract_access_expr(iv
);
1443 pe_iv
= mark_write(pe_iv
);
1444 pe_init
= extract_expr(rhs
);
1445 if (!stmt
->getCond())
1446 pe_cond
= pet_expr_new_int(isl_val_one(ctx
));
1448 pe_cond
= extract_expr(stmt
->getCond());
1449 pe_inc
= extract_increment(stmt
, iv
);
1450 tree
= pet_tree_new_for(independent
, declared
, pe_iv
, pe_init
, pe_cond
,
1455 /* Store the names of the variables declared in decl_context
1456 * in the set declared_names. Make sure to only do this once by
1457 * setting declared_names_collected.
1459 void PetScan::collect_declared_names()
1461 DeclContext
*DC
= decl_context
;
1462 DeclContext::decl_iterator it
;
1464 if (declared_names_collected
)
1467 for (it
= DC
->decls_begin(); it
!= DC
->decls_end(); ++it
) {
1471 if (!isa
<NamedDecl
>(D
))
1473 named
= cast
<NamedDecl
>(D
);
1474 declared_names
.insert(named
->getName().str());
1477 declared_names_collected
= true;
1480 /* Add the names in "names" that are not also in this->declared_names
1481 * to this->used_names.
1482 * It is up to the caller to make sure that declared_names has been
1483 * populated, if needed.
1485 void PetScan::add_new_used_names(const std::set
<std::string
> &names
)
1487 std::set
<std::string
>::const_iterator it
;
1489 for (it
= names
.begin(); it
!= names
.end(); ++it
) {
1490 if (declared_names
.find(*it
) != declared_names
.end())
1492 used_names
.insert(*it
);
1496 /* Is the name "name" used in any declaration other than "decl"?
1498 * If the name was found to be in use before, the consider it to be in use.
1499 * Otherwise, check the DeclContext of the function containing the scop
1500 * as well as all ancestors of this DeclContext for declarations
1501 * other than "decl" that declare something called "name".
1503 bool PetScan::name_in_use(const string
&name
, Decl
*decl
)
1506 DeclContext::decl_iterator it
;
1508 if (used_names
.find(name
) != used_names
.end())
1511 for (DC
= decl_context
; DC
; DC
= DC
->getParent()) {
1512 for (it
= DC
->decls_begin(); it
!= DC
->decls_end(); ++it
) {
1518 if (!isa
<NamedDecl
>(D
))
1520 named
= cast
<NamedDecl
>(D
);
1521 if (named
->getName().str() == name
)
1529 /* Generate a new name based on "name" that is not in use.
1530 * Do so by adding a suffix _i, with i an integer.
1532 string
PetScan::generate_new_name(const string
&name
)
1537 std::ostringstream oss
;
1538 oss
<< name
<< "_" << n_rename
++;
1539 new_name
= oss
.str();
1540 } while (name_in_use(new_name
, NULL
));
1545 /* Try and construct a pet_tree corresponding to a compound statement.
1547 * "skip_declarations" is set if we should skip initial declarations
1548 * in the children of the compound statements.
1550 * Collect a new set of declarations for the current compound statement.
1551 * If any of the names in these declarations is also used by another
1552 * declaration reachable from the current function, then rename it
1553 * to a name that is not already in use.
1554 * In particular, keep track of the old and new names in a pet_substituter
1555 * and apply the substitutions to the pet_tree corresponding to the
1556 * compound statement.
1558 __isl_give pet_tree
*PetScan::extract(CompoundStmt
*stmt
,
1559 bool skip_declarations
)
1562 std::vector
<VarDecl
*> saved_declarations
;
1563 std::vector
<VarDecl
*>::iterator it
;
1564 pet_substituter substituter
;
1566 saved_declarations
= declarations
;
1567 declarations
.clear();
1568 tree
= extract(stmt
->children(), true, skip_declarations
, stmt
);
1569 for (it
= declarations
.begin(); it
!= declarations
.end(); ++it
) {
1572 VarDecl
*decl
= *it
;
1573 string name
= decl
->getName().str();
1574 bool in_use
= name_in_use(name
, decl
);
1576 used_names
.insert(name
);
1580 name
= generate_new_name(name
);
1581 id
= pet_id_from_name_and_decl(ctx
, name
.c_str(), decl
);
1582 expr
= pet_expr_access_from_id(id
, ast_context
);
1583 id
= pet_id_from_decl(ctx
, decl
);
1584 substituter
.add_sub(id
, expr
);
1585 used_names
.insert(name
);
1587 tree
= substituter
.substitute(tree
);
1588 declarations
= saved_declarations
;
1593 /* Return the file offset of the expansion location of "Loc".
1595 static unsigned getExpansionOffset(SourceManager
&SM
, SourceLocation Loc
)
1597 return SM
.getFileOffset(SM
.getExpansionLoc(Loc
));
1600 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
1602 /* Return a SourceLocation for the location after the first semicolon
1603 * after "loc". If Lexer::findLocationAfterToken is available, we simply
1604 * call it and also skip trailing spaces and newline.
1606 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
1607 const LangOptions
&LO
)
1609 return Lexer::findLocationAfterToken(loc
, tok::semi
, SM
, LO
, true);
1614 /* Return a SourceLocation for the location after the first semicolon
1615 * after "loc". If Lexer::findLocationAfterToken is not available,
1616 * we look in the underlying character data for the first semicolon.
1618 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
1619 const LangOptions
&LO
)
1622 const char *s
= SM
.getCharacterData(loc
);
1624 semi
= strchr(s
, ';');
1626 return SourceLocation();
1627 return loc
.getFileLocWithOffset(semi
+ 1 - s
);
1632 /* If the token at "loc" is the first token on the line, then return
1633 * a location referring to the start of the line and set *indent
1634 * to the indentation of "loc"
1635 * Otherwise, return "loc" and set *indent to "".
1637 * This function is used to extend a scop to the start of the line
1638 * if the first token of the scop is also the first token on the line.
1640 * We look for the first token on the line. If its location is equal to "loc",
1641 * then the latter is the location of the first token on the line.
1643 static SourceLocation
move_to_start_of_line_if_first_token(SourceLocation loc
,
1644 SourceManager
&SM
, const LangOptions
&LO
, char **indent
)
1646 std::pair
<FileID
, unsigned> file_offset_pair
;
1647 llvm::StringRef file
;
1650 SourceLocation token_loc
, line_loc
;
1654 loc
= SM
.getExpansionLoc(loc
);
1655 col
= SM
.getExpansionColumnNumber(loc
);
1656 line_loc
= loc
.getLocWithOffset(1 - col
);
1657 file_offset_pair
= SM
.getDecomposedLoc(line_loc
);
1658 file
= SM
.getBufferData(file_offset_pair
.first
, NULL
);
1659 pos
= file
.data() + file_offset_pair
.second
;
1661 Lexer
lexer(SM
.getLocForStartOfFile(file_offset_pair
.first
), LO
,
1662 file
.begin(), pos
, file
.end());
1663 lexer
.LexFromRawLexer(tok
);
1664 token_loc
= tok
.getLocation();
1666 s
= SM
.getCharacterData(line_loc
);
1667 *indent
= strndup(s
, token_loc
== loc
? col
- 1 : 0);
1669 if (token_loc
== loc
)
1675 /* Construct a pet_loc corresponding to the region covered by "range".
1676 * If "skip_semi" is set, then we assume "range" is followed by
1677 * a semicolon and also include this semicolon.
1679 __isl_give pet_loc
*PetScan::construct_pet_loc(SourceRange range
,
1682 SourceLocation loc
= range
.getBegin();
1683 SourceManager
&SM
= PP
.getSourceManager();
1684 const LangOptions
&LO
= PP
.getLangOpts();
1685 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
1686 unsigned start
, end
;
1689 loc
= move_to_start_of_line_if_first_token(loc
, SM
, LO
, &indent
);
1690 start
= getExpansionOffset(SM
, loc
);
1691 loc
= range
.getEnd();
1693 loc
= location_after_semi(loc
, SM
, LO
);
1695 loc
= PP
.getLocForEndOfToken(loc
);
1696 end
= getExpansionOffset(SM
, loc
);
1698 return pet_loc_alloc(ctx
, start
, end
, line
, indent
);
1701 /* Convert a top-level pet_expr to an expression pet_tree.
1703 __isl_give pet_tree
*PetScan::extract(__isl_take pet_expr
*expr
,
1704 SourceRange range
, bool skip_semi
)
1709 tree
= pet_tree_new_expr(expr
);
1710 loc
= construct_pet_loc(range
, skip_semi
);
1711 tree
= pet_tree_set_loc(tree
, loc
);
1716 /* Construct a pet_tree for an if statement.
1718 __isl_give pet_tree
*PetScan::extract(IfStmt
*stmt
)
1721 pet_tree
*tree
, *tree_else
;
1723 pe_cond
= extract_expr(stmt
->getCond());
1724 tree
= extract(stmt
->getThen());
1725 if (stmt
->getElse()) {
1726 tree_else
= extract(stmt
->getElse());
1727 if (options
->autodetect
) {
1728 if (tree
&& !tree_else
) {
1730 pet_expr_free(pe_cond
);
1733 if (!tree
&& tree_else
) {
1735 pet_expr_free(pe_cond
);
1739 tree
= pet_tree_new_if_else(pe_cond
, tree
, tree_else
);
1741 tree
= pet_tree_new_if(pe_cond
, tree
);
1745 /* Is "parent" a compound statement that has "stmt" as its final child?
1747 static bool final_in_compound(ReturnStmt
*stmt
, Stmt
*parent
)
1751 c
= dyn_cast
<CompoundStmt
>(parent
);
1755 StmtRange range
= c
->children();
1757 for (i
= range
.first
; i
!= range
.second
; ++i
)
1759 return last
== stmt
;
1764 /* Try and construct a pet_tree for a return statement "stmt".
1766 * Return statements are only allowed in a context where
1767 * this->return_root has been set.
1768 * Furthermore, "stmt" should appear as the last child
1769 * in the compound statement this->return_root.
1771 __isl_give pet_tree
*PetScan::extract(ReturnStmt
*stmt
)
1776 report_unsupported_return(stmt
);
1779 if (!final_in_compound(stmt
, return_root
)) {
1780 report_return_not_at_end_of_function(stmt
);
1784 val
= extract_expr(stmt
->getRetValue());
1785 return pet_tree_new_return(val
);
1788 /* Try and construct a pet_tree for a label statement.
1790 __isl_give pet_tree
*PetScan::extract(LabelStmt
*stmt
)
1795 label
= isl_id_alloc(ctx
, stmt
->getName(), NULL
);
1797 tree
= extract(stmt
->getSubStmt());
1798 tree
= pet_tree_set_label(tree
, label
);
1802 /* Update the location of "tree" to include the source range of "stmt".
1804 * Actually, we create a new location based on the source range of "stmt" and
1805 * then extend this new location to include the region of the original location.
1806 * This ensures that the line number of the final location refers to "stmt".
1808 __isl_give pet_tree
*PetScan::update_loc(__isl_take pet_tree
*tree
, Stmt
*stmt
)
1810 pet_loc
*loc
, *tree_loc
;
1812 tree_loc
= pet_tree_get_loc(tree
);
1813 loc
= construct_pet_loc(stmt
->getSourceRange(), false);
1814 loc
= pet_loc_update_start_end_from_loc(loc
, tree_loc
);
1815 pet_loc_free(tree_loc
);
1817 tree
= pet_tree_set_loc(tree
, loc
);
1821 /* Is "expr" of a type that can be converted to an access expression?
1823 static bool is_access_expr_type(Expr
*expr
)
1825 switch (expr
->getStmtClass()) {
1826 case Stmt::ArraySubscriptExprClass
:
1827 case Stmt::DeclRefExprClass
:
1828 case Stmt::MemberExprClass
:
1835 /* Tell the pet_inliner "inliner" about the formal arguments
1836 * in "fd" and the corresponding actual arguments in "call".
1837 * Return 0 if this was successful and -1 otherwise.
1839 * Any pointer argument is treated as an array.
1840 * The other arguments are treated as scalars.
1842 * In case of scalars, there is no restriction on the actual argument.
1843 * This actual argument is assigned to a variable with a name
1844 * that is derived from the name of the corresponding formal argument,
1845 * but made not to conflict with any variable names that are
1848 * In case of arrays, the actual argument needs to be an expression
1849 * of a type that can be converted to an access expression or the address
1850 * of such an expression, ignoring implicit and redundant casts.
1852 int PetScan::set_inliner_arguments(pet_inliner
&inliner
, CallExpr
*call
,
1857 n
= fd
->getNumParams();
1858 for (unsigned i
= 0; i
< n
; ++i
) {
1859 ParmVarDecl
*parm
= fd
->getParamDecl(i
);
1860 QualType type
= parm
->getType();
1865 arg
= call
->getArg(i
);
1866 if (pet_clang_array_depth(type
) == 0) {
1867 string name
= parm
->getName().str();
1868 if (name_in_use(name
, NULL
))
1869 name
= generate_new_name(name
);
1870 used_names
.insert(name
);
1871 inliner
.add_scalar_arg(parm
, name
, extract_expr(arg
));
1874 arg
= pet_clang_strip_casts(arg
);
1875 sub
= extract_addr_of_arg(arg
);
1878 arg
= pet_clang_strip_casts(sub
);
1880 if (!is_access_expr_type(arg
)) {
1881 report_unsupported_inline_function_argument(arg
);
1884 expr
= extract_access_expr(arg
);
1887 inliner
.add_array_arg(parm
, expr
, is_addr
);
1893 /* Internal data structure for PetScan::substitute_array_sizes.
1894 * ps is the PetScan on which the method was called.
1895 * substituter is the substituter that is used to substitute variables
1896 * in the size expressions.
1898 struct pet_substitute_array_sizes_data
{
1900 pet_substituter
*substituter
;
1904 static int substitute_array_size(__isl_keep pet_tree
*tree
, void *user
);
1907 /* If "tree" is a declaration, then perform the substitutions
1908 * in data->substituter on its size expression and store the result
1909 * in the size expression cache of data->ps such that the modified expression
1910 * will be used in subsequent calls to get_array_size.
1912 static int substitute_array_size(__isl_keep pet_tree
*tree
, void *user
)
1914 struct pet_substitute_array_sizes_data
*data
;
1916 pet_expr
*var
, *size
;
1918 if (!pet_tree_is_decl(tree
))
1921 data
= (struct pet_substitute_array_sizes_data
*) user
;
1922 var
= pet_tree_decl_get_var(tree
);
1923 id
= pet_expr_access_get_id(var
);
1926 size
= data
->ps
->get_array_size(id
);
1927 size
= data
->substituter
->substitute(size
);
1928 data
->ps
->set_array_size(id
, size
);
1933 /* Perform the substitutions in "substituter" on all the arrays declared
1934 * inside "tree" and store the results in the size expression cache
1935 * such that the modified expressions will be used in subsequent calls
1936 * to get_array_size.
1938 int PetScan::substitute_array_sizes(__isl_keep pet_tree
*tree
,
1939 pet_substituter
*substituter
)
1941 struct pet_substitute_array_sizes_data data
= { this, substituter
};
1943 return pet_tree_foreach_sub_tree(tree
, &substitute_array_size
, &data
);
1946 /* Try and construct a pet_tree from the body of "fd" using the actual
1947 * arguments in "call" in place of the formal arguments.
1948 * "fd" is assumed to point to the declaration with a function body.
1949 * In particular, construct a block that consists of assignments
1950 * of (parts of) the actual arguments to temporary variables
1951 * followed by the inlined function body with the formal arguments
1952 * replaced by (expressions containing) these temporary variables.
1953 * If "return_id" is set, then it is used to store the return value
1954 * of the inlined function.
1956 * The actual inlining is taken care of by the pet_inliner object.
1957 * This function merely calls set_inliner_arguments to tell
1958 * the pet_inliner about the actual arguments, extracts a pet_tree
1959 * from the body of the called function and then passes this pet_tree
1960 * to the pet_inliner.
1961 * The body of the called function is allowed to have a return statement
1963 * The substitutions performed by the inliner are also applied
1964 * to the size expressions of the arrays declared in the inlined
1965 * function. These size expressions are not stored in the tree
1966 * itself, but rather in the size expression cache.
1968 * During the extraction of the function body, all variables names
1969 * that are declared in the calling function as well all variable
1970 * names that are known to be in use are considered to be in use
1971 * in the called function to ensure that there is no naming conflict.
1972 * Similarly, the additional names that are in use in the called function
1973 * are considered to be in use in the calling function as well.
1975 * The location of the pet_tree is reset to the call site to ensure
1976 * that the extent of the scop does not include the body of the called
1979 __isl_give pet_tree
*PetScan::extract_inlined_call(CallExpr
*call
,
1980 FunctionDecl
*fd
, __isl_keep isl_id
*return_id
)
1982 int save_autodetect
;
1985 pet_inliner
inliner(ctx
, n_arg
, ast_context
);
1987 if (set_inliner_arguments(inliner
, call
, fd
) < 0)
1990 save_autodetect
= options
->autodetect
;
1991 options
->autodetect
= 0;
1992 PetScan
body_scan(PP
, ast_context
, fd
, loc
, options
,
1993 isl_union_map_copy(value_bounds
), independent
);
1994 collect_declared_names();
1995 body_scan
.add_new_used_names(declared_names
);
1996 body_scan
.add_new_used_names(used_names
);
1997 body_scan
.return_root
= fd
->getBody();
1998 tree
= body_scan
.extract(fd
->getBody(), false);
1999 add_new_used_names(body_scan
.used_names
);
2000 options
->autodetect
= save_autodetect
;
2002 tree_loc
= construct_pet_loc(call
->getSourceRange(), true);
2003 tree
= pet_tree_set_loc(tree
, tree_loc
);
2005 substitute_array_sizes(tree
, &inliner
);
2007 return inliner
.inline_tree(tree
, return_id
);
2010 /* Try and construct a pet_tree corresponding
2011 * to the expression statement "stmt".
2013 * First look for function calls that have corresponding bodies
2014 * marked "inline". Extract the inlined functions in a pet_inlined_calls
2015 * object. Then extract the statement itself, replacing calls
2016 * to inlined function by accesses to the corresponding return variables, and
2017 * return the combined result.
2018 * If the outer expression is itself a call to an inlined function,
2019 * then it already appears as one of the inlined functions and
2020 * no separate pet_tree needs to be extracted for "stmt" itself.
2022 __isl_give pet_tree
*PetScan::extract_expr_stmt(Stmt
*stmt
)
2026 pet_inlined_calls
ic(this);
2029 if (ic
.calls
.size() >= 1 && ic
.calls
[0] == stmt
) {
2030 tree
= pet_tree_new_block(ctx
, 0, 0);
2032 call2id
= &ic
.call2id
;
2033 expr
= extract_expr(cast
<Expr
>(stmt
));
2034 tree
= extract(expr
, stmt
->getSourceRange(), true);
2037 tree
= ic
.add_inlined(tree
);
2041 /* Try and construct a pet_tree corresponding to "stmt".
2043 * If "stmt" is a compound statement, then "skip_declarations"
2044 * indicates whether we should skip initial declarations in the
2045 * compound statement.
2047 * If the constructed pet_tree is not a (possibly) partial representation
2048 * of "stmt", we update start and end of the pet_scop to those of "stmt".
2049 * In particular, if skip_declarations is set, then we may have skipped
2050 * declarations inside "stmt" and so the pet_scop may not represent
2051 * the entire "stmt".
2052 * Note that this function may be called with "stmt" referring to the entire
2053 * body of the function, including the outer braces. In such cases,
2054 * skip_declarations will be set and the braces will not be taken into
2055 * account in tree->loc.
2057 __isl_give pet_tree
*PetScan::extract(Stmt
*stmt
, bool skip_declarations
)
2061 set_current_stmt(stmt
);
2063 if (isa
<Expr
>(stmt
))
2064 return extract_expr_stmt(cast
<Expr
>(stmt
));
2066 switch (stmt
->getStmtClass()) {
2067 case Stmt::WhileStmtClass
:
2068 tree
= extract(cast
<WhileStmt
>(stmt
));
2070 case Stmt::ForStmtClass
:
2071 tree
= extract_for(cast
<ForStmt
>(stmt
));
2073 case Stmt::IfStmtClass
:
2074 tree
= extract(cast
<IfStmt
>(stmt
));
2076 case Stmt::CompoundStmtClass
:
2077 tree
= extract(cast
<CompoundStmt
>(stmt
), skip_declarations
);
2079 case Stmt::LabelStmtClass
:
2080 tree
= extract(cast
<LabelStmt
>(stmt
));
2082 case Stmt::ContinueStmtClass
:
2083 tree
= pet_tree_new_continue(ctx
);
2085 case Stmt::BreakStmtClass
:
2086 tree
= pet_tree_new_break(ctx
);
2088 case Stmt::DeclStmtClass
:
2089 tree
= extract(cast
<DeclStmt
>(stmt
));
2091 case Stmt::NullStmtClass
:
2092 tree
= pet_tree_new_block(ctx
, 0, 0);
2094 case Stmt::ReturnStmtClass
:
2095 tree
= extract(cast
<ReturnStmt
>(stmt
));
2098 report_unsupported_statement_type(stmt
);
2102 if (partial
|| skip_declarations
)
2105 return update_loc(tree
, stmt
);
2108 /* Given a sequence of statements "stmt_range" of which the first "n_decl"
2109 * are declarations and of which the remaining statements are represented
2110 * by "tree", try and extend "tree" to include the last sequence of
2111 * the initial declarations that can be completely extracted.
2113 * We start collecting the initial declarations and start over
2114 * whenever we come across a declaration that we cannot extract.
2115 * If we have been able to extract any declarations, then we
2116 * copy over the contents of "tree" at the end of the declarations.
2117 * Otherwise, we simply return the original "tree".
2119 __isl_give pet_tree
*PetScan::insert_initial_declarations(
2120 __isl_take pet_tree
*tree
, int n_decl
, StmtRange stmt_range
)
2128 n_stmt
= pet_tree_block_n_child(tree
);
2129 is_block
= pet_tree_block_get_block(tree
);
2130 res
= pet_tree_new_block(ctx
, is_block
, n_decl
+ n_stmt
);
2132 for (i
= stmt_range
.first
; n_decl
; ++i
, --n_decl
) {
2136 tree_i
= extract(child
);
2137 if (tree_i
&& !partial
) {
2138 res
= pet_tree_block_add_child(res
, tree_i
);
2141 pet_tree_free(tree_i
);
2143 if (pet_tree_block_n_child(res
) == 0)
2146 res
= pet_tree_new_block(ctx
, is_block
, n_decl
+ n_stmt
);
2149 if (pet_tree_block_n_child(res
) == 0) {
2154 for (j
= 0; j
< n_stmt
; ++j
) {
2157 tree_i
= pet_tree_block_get_child(tree
, j
);
2158 res
= pet_tree_block_add_child(res
, tree_i
);
2160 pet_tree_free(tree
);
2165 /* Try and construct a pet_tree corresponding to (part of)
2166 * a sequence of statements.
2168 * "block" is set if the sequence represents the children of
2169 * a compound statement.
2170 * "skip_declarations" is set if we should skip initial declarations
2171 * in the sequence of statements.
2172 * "parent" is the statement that has stmt_range as (some of) its children.
2174 * If autodetect is set, then we allow the extraction of only a subrange
2175 * of the sequence of statements. However, if there is at least one
2176 * kill and there is some subsequent statement for which we could not
2177 * construct a tree, then turn off the "block" property of the tree
2178 * such that no extra kill will be introduced at the end of the (partial)
2179 * block. If, on the other hand, the final range contains
2180 * no statements, then we discard the entire range.
2181 * If only a subrange of the sequence was extracted, but each statement
2182 * in the sequence was extracted completely, and if there are some
2183 * variable declarations in the sequence before or inside
2184 * the extracted subrange, then check if any of these variables are
2185 * not used after the extracted subrange. If so, add kills to these
2188 * If the entire range was extracted, apart from some initial declarations,
2189 * then we try and extend the range with the latest of those initial
2192 __isl_give pet_tree
*PetScan::extract(StmtRange stmt_range
, bool block
,
2193 bool skip_declarations
, Stmt
*parent
)
2197 bool has_kills
= false;
2198 bool partial_range
= false;
2199 bool outer_partial
= false;
2201 SourceManager
&SM
= PP
.getSourceManager();
2202 pet_killed_locals
kl(SM
);
2203 unsigned range_start
, range_end
;
2205 for (i
= stmt_range
.first
, j
= 0; i
!= stmt_range
.second
; ++i
, ++j
)
2208 tree
= pet_tree_new_block(ctx
, block
, j
);
2211 i
= stmt_range
.first
;
2212 if (skip_declarations
)
2213 for (; i
!= stmt_range
.second
; ++i
) {
2214 if ((*i
)->getStmtClass() != Stmt::DeclStmtClass
)
2216 if (options
->autodetect
)
2217 kl
.add_locals(cast
<DeclStmt
>(*i
));
2221 for (; i
!= stmt_range
.second
; ++i
) {
2225 tree_i
= extract(child
);
2226 if (pet_tree_block_n_child(tree
) != 0 && partial
) {
2227 pet_tree_free(tree_i
);
2230 if (child
->getStmtClass() == Stmt::DeclStmtClass
) {
2231 if (options
->autodetect
)
2232 kl
.add_locals(cast
<DeclStmt
>(child
));
2233 if (tree_i
&& block
)
2236 if (options
->autodetect
) {
2238 range_end
= getExpansionOffset(SM
,
2239 child
->getLocEnd());
2240 if (pet_tree_block_n_child(tree
) == 0)
2241 range_start
= getExpansionOffset(SM
,
2242 child
->getLocStart());
2243 tree
= pet_tree_block_add_child(tree
, tree_i
);
2245 partial_range
= true;
2247 if (pet_tree_block_n_child(tree
) != 0 && !tree_i
)
2248 outer_partial
= partial
= true;
2250 tree
= pet_tree_block_add_child(tree
, tree_i
);
2253 if (partial
|| !tree
)
2262 tree
= pet_tree_block_set_block(tree
, 0);
2263 if (outer_partial
) {
2264 kl
.remove_accessed_after(parent
,
2265 range_start
, range_end
);
2266 tree
= add_kills(tree
, kl
.locals
);
2268 } else if (partial_range
) {
2269 if (pet_tree_block_n_child(tree
) == 0) {
2270 pet_tree_free(tree
);
2274 } else if (skip
> 0)
2275 tree
= insert_initial_declarations(tree
, skip
, stmt_range
);
2281 static __isl_give pet_expr
*get_array_size(__isl_keep pet_expr
*access
,
2283 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
2284 __isl_keep pet_context
*pc
, void *user
);
2287 /* Construct a pet_expr that holds the sizes of the array accessed
2289 * This function is used as a callback to pet_context_add_parameters,
2290 * which is also passed a pointer to the PetScan object.
2292 static __isl_give pet_expr
*get_array_size(__isl_keep pet_expr
*access
,
2295 PetScan
*ps
= (PetScan
*) user
;
2299 id
= pet_expr_access_get_id(access
);
2300 size
= ps
->get_array_size(id
);
2306 /* Construct and return a pet_array corresponding to the variable
2307 * accessed by "access".
2308 * This function is used as a callback to pet_scop_from_pet_tree,
2309 * which is also passed a pointer to the PetScan object.
2311 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
2312 __isl_keep pet_context
*pc
, void *user
)
2314 PetScan
*ps
= (PetScan
*) user
;
2318 id
= pet_expr_access_get_id(access
);
2319 array
= ps
->extract_array(id
, NULL
, pc
);
2325 /* Extract a function summary from the body of "fd".
2327 * We extract a scop from the function body in a context with as
2328 * parameters the integer arguments of the function.
2329 * We turn off autodetection (in case it was set) to ensure that
2330 * the entire function body is considered.
2331 * We then collect the accessed array elements and attach them
2332 * to the corresponding array arguments, taking into account
2333 * that the function body may access members of array elements.
2334 * The function body is allowed to have a return statement at the end.
2336 * The reason for representing the integer arguments as parameters in
2337 * the context is that if we were to instead start with a context
2338 * with the function arguments as initial dimensions, then we would not
2339 * be able to refer to them from the array extents, without turning
2340 * array extents into maps.
2342 * The result is stored in the summary_cache cache so that we can reuse
2343 * it if this method gets called on the same function again later on.
2345 __isl_give pet_function_summary
*PetScan::get_summary(FunctionDecl
*fd
)
2351 pet_function_summary
*summary
;
2354 int save_autodetect
;
2355 struct pet_scop
*scop
;
2357 isl_union_set
*may_read
, *may_write
, *must_write
;
2358 isl_union_map
*to_inner
;
2360 if (summary_cache
.find(fd
) != summary_cache
.end())
2361 return pet_function_summary_copy(summary_cache
[fd
]);
2363 space
= isl_space_set_alloc(ctx
, 0, 0);
2365 n
= fd
->getNumParams();
2366 summary
= pet_function_summary_alloc(ctx
, n
);
2367 for (unsigned i
= 0; i
< n
; ++i
) {
2368 ParmVarDecl
*parm
= fd
->getParamDecl(i
);
2369 QualType type
= parm
->getType();
2372 if (!type
->isIntegerType())
2374 id
= pet_id_from_decl(ctx
, parm
);
2375 space
= isl_space_insert_dims(space
, isl_dim_param
, 0, 1);
2376 space
= isl_space_set_dim_id(space
, isl_dim_param
, 0,
2378 summary
= pet_function_summary_set_int(summary
, i
, id
);
2381 save_autodetect
= options
->autodetect
;
2382 options
->autodetect
= 0;
2383 PetScan
body_scan(PP
, ast_context
, fd
, loc
, options
,
2384 isl_union_map_copy(value_bounds
), independent
);
2386 body_scan
.return_root
= fd
->getBody();
2387 tree
= body_scan
.extract(fd
->getBody(), false);
2389 domain
= isl_set_universe(space
);
2390 pc
= pet_context_alloc(domain
);
2391 pc
= pet_context_add_parameters(pc
, tree
,
2392 &::get_array_size
, &body_scan
);
2393 int_size
= size_in_bytes(ast_context
, ast_context
.IntTy
);
2394 scop
= pet_scop_from_pet_tree(tree
, int_size
,
2395 &::extract_array
, &body_scan
, pc
);
2396 scop
= scan_arrays(scop
, pc
);
2397 may_read
= isl_union_map_range(pet_scop_get_may_reads(scop
));
2398 may_write
= isl_union_map_range(pet_scop_get_may_writes(scop
));
2399 must_write
= isl_union_map_range(pet_scop_get_must_writes(scop
));
2400 to_inner
= pet_scop_compute_outer_to_inner(scop
);
2401 pet_scop_free(scop
);
2403 for (unsigned i
= 0; i
< n
; ++i
) {
2404 ParmVarDecl
*parm
= fd
->getParamDecl(i
);
2405 QualType type
= parm
->getType();
2406 struct pet_array
*array
;
2408 isl_union_set
*data_set
;
2409 isl_union_set
*may_read_i
, *may_write_i
, *must_write_i
;
2411 if (pet_clang_array_depth(type
) == 0)
2414 array
= body_scan
.extract_array(parm
, NULL
, pc
);
2415 space
= array
? isl_set_get_space(array
->extent
) : NULL
;
2416 pet_array_free(array
);
2417 data_set
= isl_union_set_from_set(isl_set_universe(space
));
2418 data_set
= isl_union_set_apply(data_set
,
2419 isl_union_map_copy(to_inner
));
2420 may_read_i
= isl_union_set_intersect(
2421 isl_union_set_copy(may_read
),
2422 isl_union_set_copy(data_set
));
2423 may_write_i
= isl_union_set_intersect(
2424 isl_union_set_copy(may_write
),
2425 isl_union_set_copy(data_set
));
2426 must_write_i
= isl_union_set_intersect(
2427 isl_union_set_copy(must_write
), data_set
);
2428 summary
= pet_function_summary_set_array(summary
, i
,
2429 may_read_i
, may_write_i
, must_write_i
);
2432 isl_union_set_free(may_read
);
2433 isl_union_set_free(may_write
);
2434 isl_union_set_free(must_write
);
2435 isl_union_map_free(to_inner
);
2437 options
->autodetect
= save_autodetect
;
2438 pet_context_free(pc
);
2440 summary_cache
[fd
] = pet_function_summary_copy(summary
);
2445 /* If "fd" has a function body, then extract a function summary from
2446 * this body and attach it to the call expression "expr".
2448 * Even if a function body is available, "fd" itself may point
2449 * to a declaration without function body. We therefore first
2450 * replace it by the declaration that comes with a body (if any).
2452 __isl_give pet_expr
*PetScan::set_summary(__isl_take pet_expr
*expr
,
2455 pet_function_summary
*summary
;
2459 fd
= pet_clang_find_function_decl_with_body(fd
);
2463 summary
= get_summary(fd
);
2465 expr
= pet_expr_call_set_summary(expr
, summary
);
2470 /* Extract a pet_scop from "tree".
2472 * We simply call pet_scop_from_pet_tree with the appropriate arguments and
2473 * then add pet_arrays for all accessed arrays.
2474 * We populate the pet_context with assignments for all parameters used
2475 * inside "tree" or any of the size expressions for the arrays accessed
2476 * by "tree" so that they can be used in affine expressions.
2478 struct pet_scop
*PetScan::extract_scop(__isl_take pet_tree
*tree
)
2485 int_size
= size_in_bytes(ast_context
, ast_context
.IntTy
);
2487 domain
= isl_set_universe(isl_space_set_alloc(ctx
, 0, 0));
2488 pc
= pet_context_alloc(domain
);
2489 pc
= pet_context_add_parameters(pc
, tree
, &::get_array_size
, this);
2490 scop
= pet_scop_from_pet_tree(tree
, int_size
,
2491 &::extract_array
, this, pc
);
2492 scop
= scan_arrays(scop
, pc
);
2493 pet_context_free(pc
);
2498 /* Add a call to __pencil_kill to the end of "tree" that kills
2499 * all the variables in "locals" and return the result.
2501 * No location is added to the kill because the most natural
2502 * location would lie outside the scop. Attaching such a location
2503 * to this tree would extend the scope of the final result
2504 * to include the location.
2506 __isl_give pet_tree
*PetScan::add_kills(__isl_take pet_tree
*tree
,
2507 set
<ValueDecl
*> locals
)
2511 pet_tree
*kill
, *block
;
2512 set
<ValueDecl
*>::iterator it
;
2514 if (locals
.size() == 0)
2516 expr
= pet_expr_new_call(ctx
, "__pencil_kill", locals
.size());
2518 for (it
= locals
.begin(); it
!= locals
.end(); ++it
) {
2520 arg
= extract_access_expr(*it
);
2521 expr
= pet_expr_set_arg(expr
, i
++, arg
);
2523 kill
= pet_tree_new_expr(expr
);
2524 block
= pet_tree_new_block(ctx
, 0, 2);
2525 block
= pet_tree_block_add_child(block
, tree
);
2526 block
= pet_tree_block_add_child(block
, kill
);
2531 /* Check if the scop marked by the user is exactly this Stmt
2532 * or part of this Stmt.
2533 * If so, return a pet_scop corresponding to the marked region.
2534 * Otherwise, return NULL.
2536 * If the scop is not further nested inside a child of "stmt",
2537 * then check if there are any variable declarations before the scop
2538 * inside "stmt". If so, and if these variables are not used
2539 * after the scop, then add kills to the variables.
2541 * If the scop starts in the middle of one of the children, without
2542 * also ending in that child, then report an error.
2544 struct pet_scop
*PetScan::scan(Stmt
*stmt
)
2546 SourceManager
&SM
= PP
.getSourceManager();
2547 unsigned start_off
, end_off
;
2550 start_off
= getExpansionOffset(SM
, stmt
->getLocStart());
2551 end_off
= getExpansionOffset(SM
, stmt
->getLocEnd());
2553 if (start_off
> loc
.end
)
2555 if (end_off
< loc
.start
)
2558 if (start_off
>= loc
.start
&& end_off
<= loc
.end
)
2559 return extract_scop(extract(stmt
));
2561 pet_killed_locals
kl(SM
);
2563 for (start
= stmt
->child_begin(); start
!= stmt
->child_end(); ++start
) {
2564 Stmt
*child
= *start
;
2567 start_off
= getExpansionOffset(SM
, child
->getLocStart());
2568 end_off
= getExpansionOffset(SM
, child
->getLocEnd());
2569 if (start_off
< loc
.start
&& end_off
>= loc
.end
)
2571 if (start_off
>= loc
.start
)
2573 if (loc
.start
< end_off
) {
2574 report_unbalanced_pragmas(loc
.scop
, loc
.endscop
);
2577 if (isa
<DeclStmt
>(child
))
2578 kl
.add_locals(cast
<DeclStmt
>(child
));
2582 for (end
= start
; end
!= stmt
->child_end(); ++end
) {
2584 start_off
= SM
.getFileOffset(child
->getLocStart());
2585 if (start_off
>= loc
.end
)
2589 kl
.remove_accessed_after(stmt
, loc
.start
, loc
.end
);
2591 tree
= extract(StmtRange(start
, end
), false, false, stmt
);
2592 tree
= add_kills(tree
, kl
.locals
);
2593 return extract_scop(tree
);
2596 /* Set the size of index "pos" of "array" to "size".
2597 * In particular, add a constraint of the form
2601 * to array->extent and a constraint of the form
2605 * to array->context.
2607 * The domain of "size" is assumed to be zero-dimensional.
2609 static struct pet_array
*update_size(struct pet_array
*array
, int pos
,
2610 __isl_take isl_pw_aff
*size
)
2623 valid
= isl_set_params(isl_pw_aff_nonneg_set(isl_pw_aff_copy(size
)));
2624 array
->context
= isl_set_intersect(array
->context
, valid
);
2626 dim
= isl_set_get_space(array
->extent
);
2627 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2628 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, pos
, 1);
2629 univ
= isl_set_universe(isl_aff_get_domain_space(aff
));
2630 index
= isl_pw_aff_alloc(univ
, aff
);
2632 size
= isl_pw_aff_add_dims(size
, isl_dim_in
,
2633 isl_set_dim(array
->extent
, isl_dim_set
));
2634 id
= isl_set_get_tuple_id(array
->extent
);
2635 size
= isl_pw_aff_set_tuple_id(size
, isl_dim_in
, id
);
2636 bound
= isl_pw_aff_lt_set(index
, size
);
2638 array
->extent
= isl_set_intersect(array
->extent
, bound
);
2640 if (!array
->context
|| !array
->extent
)
2641 return pet_array_free(array
);
2645 isl_pw_aff_free(size
);
2649 #ifdef HAVE_DECAYEDTYPE
2651 /* If "qt" is a decayed type, then set *decayed to true and
2652 * return the original type.
2654 static QualType
undecay(QualType qt
, bool *decayed
)
2656 const Type
*type
= qt
.getTypePtr();
2658 *decayed
= isa
<DecayedType
>(type
);
2660 qt
= cast
<DecayedType
>(type
)->getOriginalType();
2666 /* If "qt" is a decayed type, then set *decayed to true and
2667 * return the original type.
2668 * Since this version of clang does not define a DecayedType,
2669 * we cannot obtain the original type even if it had been decayed and
2670 * we set *decayed to false.
2672 static QualType
undecay(QualType qt
, bool *decayed
)
2680 /* Figure out the size of the array at position "pos" and all
2681 * subsequent positions from "qt" and update the corresponding
2682 * argument of "expr" accordingly.
2684 * The initial type (when pos is zero) may be a pointer type decayed
2685 * from an array type, if this initial type is the type of a function
2686 * argument. This only happens if the original array type has
2687 * a constant size in the outer dimension as otherwise we get
2688 * a VariableArrayType. Try and obtain this original type (if available) and
2689 * take the outer array size into account if it was marked static.
2691 __isl_give pet_expr
*PetScan::set_upper_bounds(__isl_take pet_expr
*expr
,
2692 QualType qt
, int pos
)
2694 const ArrayType
*atype
;
2696 bool decayed
= false;
2702 qt
= undecay(qt
, &decayed
);
2704 if (qt
->isPointerType()) {
2705 qt
= qt
->getPointeeType();
2706 return set_upper_bounds(expr
, qt
, pos
+ 1);
2708 if (!qt
->isArrayType())
2711 qt
= qt
->getCanonicalTypeInternal();
2712 atype
= cast
<ArrayType
>(qt
.getTypePtr());
2714 if (decayed
&& atype
->getSizeModifier() != ArrayType::Static
) {
2715 qt
= atype
->getElementType();
2716 return set_upper_bounds(expr
, qt
, pos
+ 1);
2719 if (qt
->isConstantArrayType()) {
2720 const ConstantArrayType
*ca
= cast
<ConstantArrayType
>(atype
);
2721 size
= extract_expr(ca
->getSize());
2722 expr
= pet_expr_set_arg(expr
, pos
, size
);
2723 } else if (qt
->isVariableArrayType()) {
2724 const VariableArrayType
*vla
= cast
<VariableArrayType
>(atype
);
2725 size
= extract_expr(vla
->getSizeExpr());
2726 expr
= pet_expr_set_arg(expr
, pos
, size
);
2729 qt
= atype
->getElementType();
2731 return set_upper_bounds(expr
, qt
, pos
+ 1);
2734 /* Construct a pet_expr that holds the sizes of the array represented by "id".
2735 * The returned expression is a call expression with as arguments
2736 * the sizes in each dimension. If we are unable to derive the size
2737 * in a given dimension, then the corresponding argument is set to infinity.
2738 * In fact, we initialize all arguments to infinity and then update
2739 * them if we are able to figure out the size.
2741 * The result is stored in the id_size cache so that it can be reused
2742 * if this method is called on the same array identifier later.
2743 * The result is also stored in the type_size cache in case
2744 * it gets called on a different array identifier with the same type.
2746 __isl_give pet_expr
*PetScan::get_array_size(__isl_keep isl_id
*id
)
2748 QualType qt
= pet_id_get_array_type(id
);
2750 pet_expr
*expr
, *inf
;
2751 const Type
*type
= qt
.getTypePtr();
2752 isl_maybe_pet_expr m
;
2754 m
= isl_id_to_pet_expr_try_get(id_size
, id
);
2755 if (m
.valid
< 0 || m
.valid
)
2757 if (type_size
.find(type
) != type_size
.end())
2758 return pet_expr_copy(type_size
[type
]);
2760 depth
= pet_clang_array_depth(qt
);
2761 inf
= pet_expr_new_int(isl_val_infty(ctx
));
2762 expr
= pet_expr_new_call(ctx
, "bounds", depth
);
2763 for (int i
= 0; i
< depth
; ++i
)
2764 expr
= pet_expr_set_arg(expr
, i
, pet_expr_copy(inf
));
2767 expr
= set_upper_bounds(expr
, qt
, 0);
2768 type_size
[type
] = pet_expr_copy(expr
);
2769 id_size
= isl_id_to_pet_expr_set(id_size
, isl_id_copy(id
),
2770 pet_expr_copy(expr
));
2775 /* Set the array size of the array identified by "id" to "size",
2776 * replacing any previously stored value.
2778 void PetScan::set_array_size(__isl_take isl_id
*id
, __isl_take pet_expr
*size
)
2780 id_size
= isl_id_to_pet_expr_set(id_size
, id
, size
);
2783 /* Does "expr" represent the "integer" infinity?
2785 static int is_infty(__isl_keep pet_expr
*expr
)
2790 if (pet_expr_get_type(expr
) != pet_expr_int
)
2792 v
= pet_expr_int_get_val(expr
);
2793 res
= isl_val_is_infty(v
);
2799 /* Figure out the dimensions of an array "array" and
2800 * update "array" accordingly.
2802 * We first construct a pet_expr that holds the sizes of the array
2803 * in each dimension. The resulting expression may containing
2804 * infinity values for dimension where we are unable to derive
2805 * a size expression.
2807 * The arguments of the size expression that have a value different from
2808 * infinity are then converted to an affine expression
2809 * within the context "pc" and incorporated into the size of "array".
2810 * If we are unable to convert a size expression to an affine expression or
2811 * if the size is not a (symbolic) constant,
2812 * then we leave the corresponding size of "array" untouched.
2814 struct pet_array
*PetScan::set_upper_bounds(struct pet_array
*array
,
2815 __isl_keep pet_context
*pc
)
2824 id
= isl_set_get_tuple_id(array
->extent
);
2826 return pet_array_free(array
);
2827 expr
= get_array_size(id
);
2830 n
= pet_expr_get_n_arg(expr
);
2831 for (int i
= 0; i
< n
; ++i
) {
2835 arg
= pet_expr_get_arg(expr
, i
);
2836 if (!is_infty(arg
)) {
2839 size
= pet_expr_extract_affine(arg
, pc
);
2840 dim
= isl_pw_aff_dim(size
, isl_dim_in
);
2842 array
= pet_array_free(array
);
2843 else if (isl_pw_aff_involves_nan(size
) ||
2844 isl_pw_aff_involves_dims(size
, isl_dim_in
, 0, dim
))
2845 isl_pw_aff_free(size
);
2847 size
= isl_pw_aff_drop_dims(size
,
2848 isl_dim_in
, 0, dim
);
2849 array
= update_size(array
, i
, size
);
2854 pet_expr_free(expr
);
2859 /* Does "decl" have a definition that we can keep track of in a pet_type?
2861 static bool has_printable_definition(RecordDecl
*decl
)
2863 if (!decl
->getDeclName())
2865 return decl
->getLexicalDeclContext() == decl
->getDeclContext();
2868 /* Add all TypedefType objects that appear when dereferencing "type"
2871 static void insert_intermediate_typedefs(PetTypes
*types
, QualType type
)
2873 type
= pet_clang_base_or_typedef_type(type
);
2874 while (isa
<TypedefType
>(type
)) {
2875 const TypedefType
*tt
;
2877 tt
= cast
<TypedefType
>(type
);
2878 types
->insert(tt
->getDecl());
2879 type
= tt
->desugar();
2880 type
= pet_clang_base_or_typedef_type(type
);
2884 /* Construct and return a pet_array corresponding to the variable
2885 * represented by "id".
2886 * In particular, initialize array->extent to
2888 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2890 * and then call set_upper_bounds to set the upper bounds on the indices
2891 * based on the type of the variable. The upper bounds are converted
2892 * to affine expressions within the context "pc".
2894 * If the base type is that of a record with a top-level definition or
2895 * of a typedef and if "types" is not null, then the RecordDecl or
2896 * TypedefType corresponding to the type, as well as any intermediate
2897 * TypedefType, is added to "types".
2899 * If the base type is that of a record with no top-level definition,
2900 * then we replace it by "<subfield>".
2902 * If the variable is a scalar, i.e., a zero-dimensional array,
2903 * then the "const" qualifier, if any, is removed from the base type.
2904 * This makes it easier for users of pet to turn initializations
2907 struct pet_array
*PetScan::extract_array(__isl_keep isl_id
*id
,
2908 PetTypes
*types
, __isl_keep pet_context
*pc
)
2910 struct pet_array
*array
;
2911 QualType qt
= pet_id_get_array_type(id
);
2912 int depth
= pet_clang_array_depth(qt
);
2913 QualType base
= pet_clang_base_type(qt
);
2917 array
= isl_calloc_type(ctx
, struct pet_array
);
2921 space
= isl_space_set_alloc(ctx
, 0, depth
);
2922 space
= isl_space_set_tuple_id(space
, isl_dim_set
, isl_id_copy(id
));
2924 array
->extent
= isl_set_nat_universe(space
);
2926 space
= isl_space_params_alloc(ctx
, 0);
2927 array
->context
= isl_set_universe(space
);
2929 array
= set_upper_bounds(array
, pc
);
2934 base
.removeLocalConst();
2935 name
= base
.getAsString();
2938 insert_intermediate_typedefs(types
, qt
);
2939 if (isa
<TypedefType
>(base
)) {
2940 types
->insert(cast
<TypedefType
>(base
)->getDecl());
2941 } else if (base
->isRecordType()) {
2942 RecordDecl
*decl
= pet_clang_record_decl(base
);
2943 TypedefNameDecl
*typedecl
;
2944 typedecl
= decl
->getTypedefNameForAnonDecl();
2946 types
->insert(typedecl
);
2947 else if (has_printable_definition(decl
))
2948 types
->insert(decl
);
2950 name
= "<subfield>";
2954 array
->element_type
= strdup(name
.c_str());
2955 array
->element_is_record
= base
->isRecordType();
2956 array
->element_size
= size_in_bytes(ast_context
, base
);
2961 /* Construct and return a pet_array corresponding to the variable "decl".
2963 struct pet_array
*PetScan::extract_array(ValueDecl
*decl
,
2964 PetTypes
*types
, __isl_keep pet_context
*pc
)
2969 id
= pet_id_from_decl(ctx
, decl
);
2970 array
= extract_array(id
, types
, pc
);
2976 /* Construct and return a pet_array corresponding to the sequence
2977 * of declarations represented by "decls".
2978 * The upper bounds of the array are converted to affine expressions
2979 * within the context "pc".
2980 * If the sequence contains a single declaration, then it corresponds
2981 * to a simple array access. Otherwise, it corresponds to a member access,
2982 * with the declaration for the substructure following that of the containing
2983 * structure in the sequence of declarations.
2984 * We start with the outermost substructure and then combine it with
2985 * information from the inner structures.
2987 * Additionally, keep track of all required types in "types".
2989 struct pet_array
*PetScan::extract_array(__isl_keep isl_id_list
*decls
,
2990 PetTypes
*types
, __isl_keep pet_context
*pc
)
2994 struct pet_array
*array
;
2996 id
= isl_id_list_get_id(decls
, 0);
2997 array
= extract_array(id
, types
, pc
);
3000 n
= isl_id_list_n_id(decls
);
3001 for (i
= 1; i
< n
; ++i
) {
3002 struct pet_array
*parent
;
3003 const char *base_name
, *field_name
;
3007 id
= isl_id_list_get_id(decls
, i
);
3008 array
= extract_array(id
, types
, pc
);
3011 return pet_array_free(parent
);
3013 base_name
= isl_set_get_tuple_name(parent
->extent
);
3014 field_name
= isl_set_get_tuple_name(array
->extent
);
3015 product_name
= pet_array_member_access_name(ctx
,
3016 base_name
, field_name
);
3018 array
->extent
= isl_set_product(isl_set_copy(parent
->extent
),
3021 array
->extent
= isl_set_set_tuple_name(array
->extent
,
3023 array
->context
= isl_set_intersect(array
->context
,
3024 isl_set_copy(parent
->context
));
3026 pet_array_free(parent
);
3029 if (!array
->extent
|| !array
->context
|| !product_name
)
3030 return pet_array_free(array
);
3036 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3037 RecordDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3038 std::set
<TypeDecl
*> &types_done
);
3039 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3040 TypedefNameDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3041 std::set
<TypeDecl
*> &types_done
);
3043 /* For each of the fields of "decl" that is itself a record type
3044 * or a typedef, or an array of such type, add a corresponding pet_type
3047 static struct pet_scop
*add_field_types(isl_ctx
*ctx
, struct pet_scop
*scop
,
3048 RecordDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3049 std::set
<TypeDecl
*> &types_done
)
3051 RecordDecl::field_iterator it
;
3053 for (it
= decl
->field_begin(); it
!= decl
->field_end(); ++it
) {
3054 QualType type
= it
->getType();
3056 type
= pet_clang_base_or_typedef_type(type
);
3057 if (isa
<TypedefType
>(type
)) {
3058 TypedefNameDecl
*typedefdecl
;
3060 typedefdecl
= cast
<TypedefType
>(type
)->getDecl();
3061 scop
= add_type(ctx
, scop
, typedefdecl
,
3062 PP
, types
, types_done
);
3063 } else if (type
->isRecordType()) {
3066 record
= pet_clang_record_decl(type
);
3067 scop
= add_type(ctx
, scop
, record
,
3068 PP
, types
, types_done
);
3075 /* Add a pet_type corresponding to "decl" to "scop", provided
3076 * it is a member of types.records and it has not been added before
3077 * (i.e., it is not a member of "types_done").
3079 * Since we want the user to be able to print the types
3080 * in the order in which they appear in the scop, we need to
3081 * make sure that types of fields in a structure appear before
3082 * that structure. We therefore call ourselves recursively
3083 * through add_field_types on the types of all record subfields.
3085 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3086 RecordDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3087 std::set
<TypeDecl
*> &types_done
)
3090 llvm::raw_string_ostream
S(s
);
3092 if (types
.records
.find(decl
) == types
.records
.end())
3094 if (types_done
.find(decl
) != types_done
.end())
3097 add_field_types(ctx
, scop
, decl
, PP
, types
, types_done
);
3099 if (strlen(decl
->getName().str().c_str()) == 0)
3102 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
3105 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
3106 decl
->getName().str().c_str(), s
.c_str());
3107 if (!scop
->types
[scop
->n_type
])
3108 return pet_scop_free(scop
);
3110 types_done
.insert(decl
);
3117 /* Add a pet_type corresponding to "decl" to "scop", provided
3118 * it is a member of types.typedefs and it has not been added before
3119 * (i.e., it is not a member of "types_done").
3121 * If the underlying type is a structure, then we print the typedef
3122 * ourselves since clang does not print the definition of the structure
3123 * in the typedef. We also make sure in this case that the types of
3124 * the fields in the structure are added first.
3125 * Since the definition of the structure also gets printed this way,
3126 * add it to types_done such that it will not be printed again,
3127 * not even without the typedef.
3129 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3130 TypedefNameDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3131 std::set
<TypeDecl
*> &types_done
)
3134 llvm::raw_string_ostream
S(s
);
3135 QualType qt
= decl
->getUnderlyingType();
3137 if (types
.typedefs
.find(decl
) == types
.typedefs
.end())
3139 if (types_done
.find(decl
) != types_done
.end())
3142 if (qt
->isRecordType()) {
3143 RecordDecl
*rec
= pet_clang_record_decl(qt
);
3145 add_field_types(ctx
, scop
, rec
, PP
, types
, types_done
);
3147 rec
->print(S
, PrintingPolicy(PP
.getLangOpts()));
3149 S
<< decl
->getName();
3150 types_done
.insert(rec
);
3152 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
3156 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
3157 decl
->getName().str().c_str(), s
.c_str());
3158 if (!scop
->types
[scop
->n_type
])
3159 return pet_scop_free(scop
);
3161 types_done
.insert(decl
);
3168 /* Construct a list of pet_arrays, one for each array (or scalar)
3169 * accessed inside "scop", add this list to "scop" and return the result.
3170 * The upper bounds of the arrays are converted to affine expressions
3171 * within the context "pc".
3173 * The context of "scop" is updated with the intersection of
3174 * the contexts of all arrays, i.e., constraints on the parameters
3175 * that ensure that the arrays have a valid (non-negative) size.
3177 * If any of the extracted arrays refers to a member access or
3178 * has a typedef'd type as base type,
3179 * then also add the required types to "scop".
3180 * The typedef types are printed first because their definitions
3181 * may include the definition of a struct and these struct definitions
3182 * should not be printed separately. While the typedef definition
3183 * is being printed, the struct is marked as having been printed as well,
3184 * such that the later printing of the struct by itself can be prevented.
3186 * If the sequence of nested array declarations from which the pet_array
3187 * is extracted appears as the prefix of some other sequence,
3188 * then the pet_array is marked as "outer".
3189 * The arrays that already appear in scop->arrays at the start of
3190 * this function are assumed to be simple arrays, so they are not marked
3193 struct pet_scop
*PetScan::scan_arrays(struct pet_scop
*scop
,
3194 __isl_keep pet_context
*pc
)
3197 array_desc_set arrays
, has_sub
;
3198 array_desc_set::iterator it
;
3200 std::set
<TypeDecl
*> types_done
;
3201 std::set
<clang::RecordDecl
*, less_name
>::iterator records_it
;
3202 std::set
<clang::TypedefNameDecl
*, less_name
>::iterator typedefs_it
;
3204 struct pet_array
**scop_arrays
;
3209 pet_scop_collect_arrays(scop
, arrays
);
3210 if (arrays
.size() == 0)
3213 n_array
= scop
->n_array
;
3215 scop_arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
3216 n_array
+ arrays
.size());
3219 scop
->arrays
= scop_arrays
;
3221 for (it
= arrays
.begin(); it
!= arrays
.end(); ++it
) {
3222 isl_id_list
*list
= isl_id_list_copy(*it
);
3223 int n
= isl_id_list_n_id(list
);
3224 list
= isl_id_list_drop(list
, n
- 1, 1);
3225 has_sub
.insert(list
);
3228 for (it
= arrays
.begin(), i
= 0; it
!= arrays
.end(); ++it
, ++i
) {
3229 struct pet_array
*array
;
3230 array
= extract_array(*it
, &types
, pc
);
3231 scop
->arrays
[n_array
+ i
] = array
;
3232 if (!scop
->arrays
[n_array
+ i
])
3234 if (has_sub
.find(*it
) != has_sub
.end())
3237 scop
->context
= isl_set_intersect(scop
->context
,
3238 isl_set_copy(array
->context
));
3243 n
= types
.records
.size() + types
.typedefs
.size();
3247 scop
->types
= isl_alloc_array(ctx
, struct pet_type
*, n
);
3251 for (typedefs_it
= types
.typedefs
.begin();
3252 typedefs_it
!= types
.typedefs
.end(); ++typedefs_it
)
3253 scop
= add_type(ctx
, scop
, *typedefs_it
, PP
, types
, types_done
);
3255 for (records_it
= types
.records
.begin();
3256 records_it
!= types
.records
.end(); ++records_it
)
3257 scop
= add_type(ctx
, scop
, *records_it
, PP
, types
, types_done
);
3261 pet_scop_free(scop
);
3265 /* Bound all parameters in scop->context to the possible values
3266 * of the corresponding C variable.
3268 static struct pet_scop
*add_parameter_bounds(struct pet_scop
*scop
)
3275 n
= isl_set_dim(scop
->context
, isl_dim_param
);
3276 for (int i
= 0; i
< n
; ++i
) {
3280 id
= isl_set_get_dim_id(scop
->context
, isl_dim_param
, i
);
3281 if (pet_nested_in_id(id
)) {
3283 isl_die(isl_set_get_ctx(scop
->context
),
3285 "unresolved nested parameter", goto error
);
3287 decl
= pet_id_get_decl(id
);
3290 scop
->context
= set_parameter_bounds(scop
->context
, i
, decl
);
3298 pet_scop_free(scop
);
3302 /* Construct a pet_scop from the given function.
3304 * If the scop was delimited by scop and endscop pragmas, then we override
3305 * the file offsets by those derived from the pragmas.
3307 struct pet_scop
*PetScan::scan(FunctionDecl
*fd
)
3312 stmt
= fd
->getBody();
3314 if (options
->autodetect
) {
3315 set_current_stmt(stmt
);
3316 scop
= extract_scop(extract(stmt
, true));
3318 current_line
= loc
.start_line
;
3320 scop
= pet_scop_update_start_end(scop
, loc
.start
, loc
.end
);
3322 scop
= add_parameter_bounds(scop
);
3323 scop
= pet_scop_gist(scop
, value_bounds
);
3328 /* Update this->last_line and this->current_line based on the fact
3329 * that we are about to consider "stmt".
3331 void PetScan::set_current_stmt(Stmt
*stmt
)
3333 SourceLocation loc
= stmt
->getLocStart();
3334 SourceManager
&SM
= PP
.getSourceManager();
3336 last_line
= current_line
;
3337 current_line
= SM
.getExpansionLineNumber(loc
);
3340 /* Is the current statement marked by an independent pragma?
3341 * That is, is there an independent pragma on a line between
3342 * the line of the current statement and the line of the previous statement.
3343 * The search is not implemented very efficiently. We currently
3344 * assume that there are only a few independent pragmas, if any.
3346 bool PetScan::is_current_stmt_marked_independent()
3348 for (unsigned i
= 0; i
< independent
.size(); ++i
) {
3349 unsigned line
= independent
[i
].line
;
3351 if (last_line
< line
&& line
< current_line
)