2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2015 Ecole Normale Superieure. All rights reserved.
4 * Copyright 2015-2017 Sven Verdoolaege. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
19 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
22 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
23 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
24 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
25 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * The views and conclusions contained in the software and documentation
31 * are those of the authors and should not be interpreted as
32 * representing official policies, either expressed or implied, of
43 #include <llvm/Support/raw_ostream.h>
44 #include <clang/AST/ASTContext.h>
45 #include <clang/AST/ASTDiagnostic.h>
46 #include <clang/AST/Attr.h>
47 #include <clang/AST/Expr.h>
48 #include <clang/AST/RecursiveASTVisitor.h>
51 #include <isl/space.h>
54 #include <isl/union_set.h>
58 #include "clang_compatibility.h"
62 #include "expr_plus.h"
65 #include "inlined_calls.h"
66 #include "killed_locals.h"
71 #include "scop_plus.h"
72 #include "substituter.h"
74 #include "tree2scop.h"
77 using namespace clang
;
79 static enum pet_op_type
UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind
)
89 return pet_op_post_inc
;
91 return pet_op_post_dec
;
93 return pet_op_pre_inc
;
95 return pet_op_pre_dec
;
101 static enum pet_op_type
BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind
)
105 return pet_op_add_assign
;
107 return pet_op_sub_assign
;
109 return pet_op_mul_assign
;
111 return pet_op_div_assign
;
113 return pet_op_and_assign
;
115 return pet_op_xor_assign
;
117 return pet_op_or_assign
;
119 return pet_op_assign
;
161 #ifdef GETTYPEINFORETURNSTYPEINFO
163 static int size_in_bytes(ASTContext
&context
, QualType type
)
165 return context
.getTypeInfo(type
).Width
/ 8;
170 static int size_in_bytes(ASTContext
&context
, QualType type
)
172 return context
.getTypeInfo(type
).first
/ 8;
177 /* Check if the element type corresponding to the given array type
178 * has a const qualifier.
180 static bool const_base(QualType qt
)
182 const Type
*type
= qt
.getTypePtr();
184 if (type
->isPointerType())
185 return const_base(type
->getPointeeType());
186 if (type
->isArrayType()) {
187 const ArrayType
*atype
;
188 type
= type
->getCanonicalTypeInternal().getTypePtr();
189 atype
= cast
<ArrayType
>(type
);
190 return const_base(atype
->getElementType());
193 return qt
.isConstQualified();
198 std::map
<const Type
*, pet_expr
*>::iterator it
;
199 std::map
<FunctionDecl
*, pet_function_summary
*>::iterator it_s
;
201 for (it
= type_size
.begin(); it
!= type_size
.end(); ++it
)
202 pet_expr_free(it
->second
);
203 pet_function_summary_free(no_summary
);
204 for (it_s
= summary_cache
.begin(); it_s
!= summary_cache
.end(); ++it_s
)
205 pet_function_summary_free(it_s
->second
);
207 isl_id_to_pet_expr_free(id_size
);
208 isl_union_map_free(value_bounds
);
211 /* Report a diagnostic on the range "range", unless autodetect is set.
213 void PetScan::report(SourceRange range
, unsigned id
)
215 if (options
->autodetect
)
218 SourceLocation loc
= range
.getBegin();
219 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
220 DiagnosticBuilder B
= diag
.Report(loc
, id
) << range
;
223 /* Report a diagnostic on "stmt", unless autodetect is set.
225 void PetScan::report(Stmt
*stmt
, unsigned id
)
227 report(stmt
->getSourceRange(), id
);
230 /* Report a diagnostic on "decl", unless autodetect is set.
232 void PetScan::report(Decl
*decl
, unsigned id
)
234 report(decl
->getSourceRange(), id
);
237 /* Called if we found something we (currently) cannot handle.
238 * We'll provide more informative warnings later.
240 * We only actually complain if autodetect is false.
242 void PetScan::unsupported(Stmt
*stmt
)
244 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
245 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
250 /* Report an unsupported unary operator, unless autodetect is set.
252 void PetScan::report_unsupported_unary_operator(Stmt
*stmt
)
254 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
255 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
256 "this type of unary operator is not supported");
260 /* Report an unsupported binary operator, unless autodetect is set.
262 void PetScan::report_unsupported_binary_operator(Stmt
*stmt
)
264 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
265 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
266 "this type of binary operator is not supported");
270 /* Report an unsupported statement type, unless autodetect is set.
272 void PetScan::report_unsupported_statement_type(Stmt
*stmt
)
274 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
275 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
276 "this type of statement is not supported");
280 /* Report a missing prototype, unless autodetect is set.
282 void PetScan::report_prototype_required(Stmt
*stmt
)
284 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
285 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
286 "prototype required");
290 /* Report a missing increment, unless autodetect is set.
292 void PetScan::report_missing_increment(Stmt
*stmt
)
294 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
295 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
296 "missing increment");
300 /* Report a missing summary function, unless autodetect is set.
302 void PetScan::report_missing_summary_function(Stmt
*stmt
)
304 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
305 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
306 "missing summary function");
310 /* Report a missing summary function body, unless autodetect is set.
312 void PetScan::report_missing_summary_function_body(Stmt
*stmt
)
314 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
315 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
316 "missing summary function body");
320 /* Report an unsupported argument in a call to an inlined function,
321 * unless autodetect is set.
323 void PetScan::report_unsupported_inline_function_argument(Stmt
*stmt
)
325 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
326 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
327 "unsupported inline function call argument");
331 /* Report an unsupported type of declaration, unless autodetect is set.
333 void PetScan::report_unsupported_declaration(Decl
*decl
)
335 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
336 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
337 "unsupported declaration");
341 /* Report an unbalanced pair of scop/endscop pragmas, unless autodetect is set.
343 void PetScan::report_unbalanced_pragmas(SourceLocation scop
,
344 SourceLocation endscop
)
346 if (options
->autodetect
)
349 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
351 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
352 "unbalanced endscop pragma");
353 DiagnosticBuilder B2
= diag
.Report(endscop
, id
);
356 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Note
,
357 "corresponding scop pragma");
358 DiagnosticBuilder B
= diag
.Report(scop
, id
);
362 /* Report a return statement in an unsupported context,
363 * unless autodetect is set.
365 void PetScan::report_unsupported_return(Stmt
*stmt
)
367 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
368 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
369 "return statements not supported in this context");
373 /* Report a return statement that does not appear at the end of a function,
374 * unless autodetect is set.
376 void PetScan::report_return_not_at_end_of_function(Stmt
*stmt
)
378 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
379 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
380 "return statement must be final statement in function");
384 /* Extract an integer from "val", which is assumed to be non-negative.
386 static __isl_give isl_val
*extract_unsigned(isl_ctx
*ctx
,
387 const llvm::APInt
&val
)
390 const uint64_t *data
;
392 data
= val
.getRawData();
393 n
= val
.getNumWords();
394 return isl_val_int_from_chunks(ctx
, n
, sizeof(uint64_t), data
);
397 /* Extract an integer from "val". If "is_signed" is set, then "val"
398 * is signed. Otherwise it it unsigned.
400 static __isl_give isl_val
*extract_int(isl_ctx
*ctx
, bool is_signed
,
403 int is_negative
= is_signed
&& val
.isNegative();
409 v
= extract_unsigned(ctx
, val
);
416 /* Extract an integer from "expr".
418 __isl_give isl_val
*PetScan::extract_int(isl_ctx
*ctx
, IntegerLiteral
*expr
)
420 const Type
*type
= expr
->getType().getTypePtr();
421 bool is_signed
= type
->hasSignedIntegerRepresentation();
423 return ::extract_int(ctx
, is_signed
, expr
->getValue());
426 /* Extract an integer from "expr".
427 * Return NULL if "expr" does not (obviously) represent an integer.
429 __isl_give isl_val
*PetScan::extract_int(clang::ParenExpr
*expr
)
431 return extract_int(expr
->getSubExpr());
434 /* Extract an integer from "expr".
435 * Return NULL if "expr" does not (obviously) represent an integer.
437 __isl_give isl_val
*PetScan::extract_int(clang::Expr
*expr
)
439 if (expr
->getStmtClass() == Stmt::IntegerLiteralClass
)
440 return extract_int(ctx
, cast
<IntegerLiteral
>(expr
));
441 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
442 return extract_int(cast
<ParenExpr
>(expr
));
448 /* Extract a pet_expr from the APInt "val", which is assumed
449 * to be non-negative.
451 __isl_give pet_expr
*PetScan::extract_expr(const llvm::APInt
&val
)
453 return pet_expr_new_int(extract_unsigned(ctx
, val
));
456 /* Return the number of bits needed to represent the type of "decl",
457 * if it is an integer type. Otherwise return 0.
458 * If qt is signed then return the opposite of the number of bits.
460 static int get_type_size(ValueDecl
*decl
)
462 return pet_clang_get_type_size(decl
->getType(), decl
->getASTContext());
465 /* Bound parameter "pos" of "set" to the possible values of "decl".
467 static __isl_give isl_set
*set_parameter_bounds(__isl_take isl_set
*set
,
468 unsigned pos
, ValueDecl
*decl
)
474 ctx
= isl_set_get_ctx(set
);
475 type_size
= get_type_size(decl
);
477 isl_die(ctx
, isl_error_invalid
, "not an integer type",
478 return isl_set_free(set
));
480 set
= isl_set_lower_bound_si(set
, isl_dim_param
, pos
, 0);
481 bound
= isl_val_int_from_ui(ctx
, type_size
);
482 bound
= isl_val_2exp(bound
);
483 bound
= isl_val_sub_ui(bound
, 1);
484 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
, bound
);
486 bound
= isl_val_int_from_ui(ctx
, -type_size
- 1);
487 bound
= isl_val_2exp(bound
);
488 bound
= isl_val_sub_ui(bound
, 1);
489 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
,
490 isl_val_copy(bound
));
491 bound
= isl_val_neg(bound
);
492 bound
= isl_val_sub_ui(bound
, 1);
493 set
= isl_set_lower_bound_val(set
, isl_dim_param
, pos
, bound
);
499 __isl_give pet_expr
*PetScan::extract_index_expr(ImplicitCastExpr
*expr
)
501 return extract_index_expr(expr
->getSubExpr());
504 /* Construct a pet_expr representing an index expression for an access
505 * to the variable referenced by "expr".
507 * If "expr" references an enum constant, then return an integer expression
508 * instead, representing the value of the enum constant.
510 __isl_give pet_expr
*PetScan::extract_index_expr(DeclRefExpr
*expr
)
512 return extract_index_expr(expr
->getDecl());
515 /* Construct a pet_expr representing an index expression for an access
516 * to the variable "decl".
518 * If "decl" is an enum constant, then we return an integer expression
519 * instead, representing the value of the enum constant.
521 __isl_give pet_expr
*PetScan::extract_index_expr(ValueDecl
*decl
)
525 if (isa
<EnumConstantDecl
>(decl
))
526 return extract_expr(cast
<EnumConstantDecl
>(decl
));
528 id
= pet_id_from_decl(ctx
, decl
);
529 return pet_id_create_index_expr(id
);
532 /* Construct a pet_expr representing the index expression "expr"
533 * Return NULL on error.
535 * If "expr" is a reference to an enum constant, then return
536 * an integer expression instead, representing the value of the enum constant.
538 __isl_give pet_expr
*PetScan::extract_index_expr(Expr
*expr
)
540 switch (expr
->getStmtClass()) {
541 case Stmt::ImplicitCastExprClass
:
542 return extract_index_expr(cast
<ImplicitCastExpr
>(expr
));
543 case Stmt::DeclRefExprClass
:
544 return extract_index_expr(cast
<DeclRefExpr
>(expr
));
545 case Stmt::ArraySubscriptExprClass
:
546 return extract_index_expr(cast
<ArraySubscriptExpr
>(expr
));
547 case Stmt::IntegerLiteralClass
:
548 return extract_expr(cast
<IntegerLiteral
>(expr
));
549 case Stmt::MemberExprClass
:
550 return extract_index_expr(cast
<MemberExpr
>(expr
));
557 /* Extract an index expression from the given array subscript expression.
559 * We first extract an index expression from the base.
560 * This will result in an index expression with a range that corresponds
561 * to the earlier indices.
562 * We then extract the current index and let
563 * pet_expr_access_subscript combine the two.
565 __isl_give pet_expr
*PetScan::extract_index_expr(ArraySubscriptExpr
*expr
)
567 Expr
*base
= expr
->getBase();
568 Expr
*idx
= expr
->getIdx();
572 base_expr
= extract_index_expr(base
);
573 index
= extract_expr(idx
);
575 base_expr
= pet_expr_access_subscript(base_expr
, index
);
580 /* Extract an index expression from a member expression.
582 * If the base access (to the structure containing the member)
587 * and the member is called "f", then the member access is of
592 * If the member access is to an anonymous struct, then simply return
596 * If the member access in the source code is of the form
600 * then it is treated as
604 __isl_give pet_expr
*PetScan::extract_index_expr(MemberExpr
*expr
)
606 Expr
*base
= expr
->getBase();
607 FieldDecl
*field
= cast
<FieldDecl
>(expr
->getMemberDecl());
608 pet_expr
*base_index
;
611 base_index
= extract_index_expr(base
);
613 if (expr
->isArrow()) {
614 pet_expr
*index
= pet_expr_new_int(isl_val_zero(ctx
));
615 base_index
= pet_expr_access_subscript(base_index
, index
);
618 if (field
->isAnonymousStructOrUnion())
621 id
= pet_id_from_decl(ctx
, field
);
623 return pet_expr_access_member(base_index
, id
);
626 /* Mark the given access pet_expr as a write.
628 static __isl_give pet_expr
*mark_write(__isl_take pet_expr
*access
)
630 access
= pet_expr_access_set_write(access
, 1);
631 access
= pet_expr_access_set_read(access
, 0);
636 /* Mark the given (read) access pet_expr as also possibly being written.
637 * That is, initialize the may write access relation from the may read relation
638 * and initialize the must write access relation to the empty relation.
640 static __isl_give pet_expr
*mark_may_write(__isl_take pet_expr
*expr
)
642 isl_union_map
*access
;
643 isl_union_map
*empty
;
645 access
= pet_expr_access_get_dependent_access(expr
,
646 pet_expr_access_may_read
);
647 empty
= isl_union_map_empty(isl_union_map_get_space(access
));
648 expr
= pet_expr_access_set_access(expr
, pet_expr_access_may_write
,
650 expr
= pet_expr_access_set_access(expr
, pet_expr_access_must_write
,
656 /* Construct a pet_expr representing a unary operator expression.
658 __isl_give pet_expr
*PetScan::extract_expr(UnaryOperator
*expr
)
664 op
= UnaryOperatorKind2pet_op_type(expr
->getOpcode());
665 if (op
== pet_op_last
) {
666 report_unsupported_unary_operator(expr
);
670 arg
= extract_expr(expr
->getSubExpr());
672 if (expr
->isIncrementDecrementOp() &&
673 pet_expr_get_type(arg
) == pet_expr_access
) {
674 arg
= mark_write(arg
);
675 arg
= pet_expr_access_set_read(arg
, 1);
678 type_size
= pet_clang_get_type_size(expr
->getType(), ast_context
);
679 return pet_expr_new_unary(type_size
, op
, arg
);
682 /* Construct a pet_expr representing a binary operator expression.
684 * If the top level operator is an assignment and the LHS is an access,
685 * then we mark that access as a write. If the operator is a compound
686 * assignment, the access is marked as both a read and a write.
688 __isl_give pet_expr
*PetScan::extract_expr(BinaryOperator
*expr
)
694 op
= BinaryOperatorKind2pet_op_type(expr
->getOpcode());
695 if (op
== pet_op_last
) {
696 report_unsupported_binary_operator(expr
);
700 lhs
= extract_expr(expr
->getLHS());
701 rhs
= extract_expr(expr
->getRHS());
703 if (expr
->isAssignmentOp() &&
704 pet_expr_get_type(lhs
) == pet_expr_access
) {
705 lhs
= mark_write(lhs
);
706 if (expr
->isCompoundAssignmentOp())
707 lhs
= pet_expr_access_set_read(lhs
, 1);
710 type_size
= pet_clang_get_type_size(expr
->getType(), ast_context
);
711 return pet_expr_new_binary(type_size
, op
, lhs
, rhs
);
714 /* Construct a pet_tree for a variable declaration and
715 * add the declaration to the list of declarations
716 * inside the current compound statement.
718 __isl_give pet_tree
*PetScan::extract(Decl
*decl
)
724 if (!isa
<VarDecl
>(decl
)) {
725 report_unsupported_declaration(decl
);
729 vd
= cast
<VarDecl
>(decl
);
730 declarations
.push_back(vd
);
732 lhs
= extract_access_expr(vd
);
733 lhs
= mark_write(lhs
);
735 tree
= pet_tree_new_decl(lhs
);
737 rhs
= extract_expr(vd
->getInit());
738 tree
= pet_tree_new_decl_init(lhs
, rhs
);
744 /* Construct a pet_tree for a variable declaration statement.
745 * If the declaration statement declares multiple variables,
746 * then return a group of pet_trees, one for each declared variable.
748 __isl_give pet_tree
*PetScan::extract(DeclStmt
*stmt
)
753 if (!stmt
->isSingleDecl()) {
754 const DeclGroup
&group
= stmt
->getDeclGroup().getDeclGroup();
756 tree
= pet_tree_new_block(ctx
, 0, n
);
758 for (unsigned i
= 0; i
< n
; ++i
) {
762 tree_i
= extract(group
[i
]);
763 loc
= construct_pet_loc(group
[i
]->getSourceRange(),
765 tree_i
= pet_tree_set_loc(tree_i
, loc
);
766 tree
= pet_tree_block_add_child(tree
, tree_i
);
772 return extract(stmt
->getSingleDecl());
775 /* Construct a pet_expr representing a conditional operation.
777 __isl_give pet_expr
*PetScan::extract_expr(ConditionalOperator
*expr
)
779 pet_expr
*cond
, *lhs
, *rhs
;
781 cond
= extract_expr(expr
->getCond());
782 lhs
= extract_expr(expr
->getTrueExpr());
783 rhs
= extract_expr(expr
->getFalseExpr());
785 return pet_expr_new_ternary(cond
, lhs
, rhs
);
788 __isl_give pet_expr
*PetScan::extract_expr(ImplicitCastExpr
*expr
)
790 return extract_expr(expr
->getSubExpr());
793 /* Construct a pet_expr representing a floating point value.
795 * If the floating point literal does not appear in a macro,
796 * then we use the original representation in the source code
797 * as the string representation. Otherwise, we use the pretty
798 * printer to produce a string representation.
800 __isl_give pet_expr
*PetScan::extract_expr(FloatingLiteral
*expr
)
804 const LangOptions
&LO
= PP
.getLangOpts();
805 SourceLocation loc
= expr
->getLocation();
807 if (!loc
.isMacroID()) {
808 SourceManager
&SM
= PP
.getSourceManager();
809 unsigned len
= Lexer::MeasureTokenLength(loc
, SM
, LO
);
810 s
= string(SM
.getCharacterData(loc
), len
);
812 llvm::raw_string_ostream
S(s
);
813 expr
->printPretty(S
, 0, PrintingPolicy(LO
));
816 d
= expr
->getValueAsApproximateDouble();
817 return pet_expr_new_double(ctx
, d
, s
.c_str());
820 /* Extract an index expression from "expr" and then convert it into
821 * an access pet_expr.
823 * If "expr" is a reference to an enum constant, then return
824 * an integer expression instead, representing the value of the enum constant.
826 __isl_give pet_expr
*PetScan::extract_access_expr(Expr
*expr
)
830 index
= extract_index_expr(expr
);
832 if (pet_expr_get_type(index
) == pet_expr_int
)
835 return pet_expr_access_from_index(expr
->getType(), index
, ast_context
);
838 /* Extract an index expression from "decl" and then convert it into
839 * an access pet_expr.
841 __isl_give pet_expr
*PetScan::extract_access_expr(ValueDecl
*decl
)
843 return pet_expr_access_from_index(decl
->getType(),
844 extract_index_expr(decl
), ast_context
);
847 __isl_give pet_expr
*PetScan::extract_expr(ParenExpr
*expr
)
849 return extract_expr(expr
->getSubExpr());
852 /* Extract an assume statement from the argument "expr"
853 * of a __builtin_assume or __pencil_assume statement.
855 __isl_give pet_expr
*PetScan::extract_assume(Expr
*expr
)
857 return pet_expr_new_unary(0, pet_op_assume
, extract_expr(expr
));
860 /* If "expr" is an address-of operator, then return its argument.
861 * Otherwise, return NULL.
863 static Expr
*extract_addr_of_arg(Expr
*expr
)
867 if (expr
->getStmtClass() != Stmt::UnaryOperatorClass
)
869 op
= cast
<UnaryOperator
>(expr
);
870 if (op
->getOpcode() != UO_AddrOf
)
872 return op
->getSubExpr();
875 /* Construct a pet_expr corresponding to the function call argument "expr".
876 * The argument appears in position "pos" of a call to function "fd".
878 * If we are passing along a pointer to an array element
879 * or an entire row or even higher dimensional slice of an array,
880 * then the function being called may write into the array.
882 * We assume here that if the function is declared to take a pointer
883 * to a const type, then the function may only perform a read
884 * and that otherwise, it may either perform a read or a write (or both).
885 * We only perform this check if "detect_writes" is set.
887 __isl_give pet_expr
*PetScan::extract_argument(FunctionDecl
*fd
, int pos
,
888 Expr
*expr
, bool detect_writes
)
892 int is_addr
= 0, is_partial
= 0;
894 expr
= pet_clang_strip_casts(expr
);
895 arg
= extract_addr_of_arg(expr
);
900 res
= extract_expr(expr
);
903 if (pet_clang_array_depth(expr
->getType()) > 0)
905 if (detect_writes
&& (is_addr
|| is_partial
) &&
906 pet_expr_get_type(res
) == pet_expr_access
) {
908 if (!fd
->hasPrototype()) {
909 report_prototype_required(expr
);
910 return pet_expr_free(res
);
912 parm
= fd
->getParamDecl(pos
);
913 if (!const_base(parm
->getType()))
914 res
= mark_may_write(res
);
918 res
= pet_expr_new_unary(0, pet_op_address_of
, res
);
922 /* Find the first FunctionDecl with the given name.
923 * "call" is the corresponding call expression and is only used
924 * for reporting errors.
926 * Return NULL on error.
928 FunctionDecl
*PetScan::find_decl_from_name(CallExpr
*call
, string name
)
930 TranslationUnitDecl
*tu
= ast_context
.getTranslationUnitDecl();
931 DeclContext::decl_iterator begin
= tu
->decls_begin();
932 DeclContext::decl_iterator end
= tu
->decls_end();
933 for (DeclContext::decl_iterator i
= begin
; i
!= end
; ++i
) {
934 FunctionDecl
*fd
= dyn_cast
<FunctionDecl
>(*i
);
937 if (fd
->getName().str().compare(name
) != 0)
941 report_missing_summary_function_body(call
);
944 report_missing_summary_function(call
);
948 /* Return the FunctionDecl for the summary function associated to the
949 * function called by "call".
951 * In particular, if the pencil option is set, then
952 * search for an annotate attribute formatted as
953 * "pencil_access(name)", where "name" is the name of the summary function.
955 * If no summary function was specified, then return the FunctionDecl
956 * that is actually being called.
958 * Return NULL on error.
960 FunctionDecl
*PetScan::get_summary_function(CallExpr
*call
)
962 FunctionDecl
*decl
= call
->getDirectCallee();
966 if (!options
->pencil
)
969 specific_attr_iterator
<AnnotateAttr
> begin
, end
, i
;
970 begin
= decl
->specific_attr_begin
<AnnotateAttr
>();
971 end
= decl
->specific_attr_end
<AnnotateAttr
>();
972 for (i
= begin
; i
!= end
; ++i
) {
973 string attr
= (*i
)->getAnnotation().str();
975 const char prefix
[] = "pencil_access(";
976 size_t start
= attr
.find(prefix
);
977 if (start
== string::npos
)
979 start
+= strlen(prefix
);
980 string name
= attr
.substr(start
, attr
.find(')') - start
);
982 return find_decl_from_name(call
, name
);
988 /* Is "name" the name of an assume statement?
989 * "pencil" indicates whether pencil builtins and pragmas should be supported.
990 * "__builtin_assume" is always accepted.
991 * If "pencil" is set, then "__pencil_assume" is also accepted.
993 static bool is_assume(int pencil
, const string
&name
)
995 if (name
== "__builtin_assume")
997 return pencil
&& name
== "__pencil_assume";
1000 /* Construct a pet_expr representing a function call.
1002 * If this->call2id is not NULL and it contains a mapping for this call,
1003 * then this means that the corresponding function has been inlined.
1004 * Return a pet_expr that reads from the variable that
1005 * stores the return value of the inlined call.
1007 * In the special case of a "call" to __builtin_assume or __pencil_assume,
1008 * construct an assume expression instead.
1010 * In the case of a "call" to __pencil_kill, the arguments
1011 * are neither read nor written (only killed), so there
1012 * is no need to check for writes to these arguments.
1014 * __pencil_assume and __pencil_kill are only recognized
1015 * when the pencil option is set.
1017 __isl_give pet_expr
*PetScan::extract_expr(CallExpr
*expr
)
1019 pet_expr
*res
= NULL
;
1025 if (call2id
&& call2id
->find(expr
) != call2id
->end())
1026 return pet_expr_access_from_id(isl_id_copy(call2id
[0][expr
]),
1029 fd
= expr
->getDirectCallee();
1035 name
= fd
->getDeclName().getAsString();
1036 n_arg
= expr
->getNumArgs();
1038 if (n_arg
== 1 && is_assume(options
->pencil
, name
))
1039 return extract_assume(expr
->getArg(0));
1040 is_kill
= options
->pencil
&& name
== "__pencil_kill";
1042 res
= pet_expr_new_call(ctx
, name
.c_str(), n_arg
);
1046 for (unsigned i
= 0; i
< n_arg
; ++i
) {
1047 Expr
*arg
= expr
->getArg(i
);
1048 res
= pet_expr_set_arg(res
, i
,
1049 PetScan::extract_argument(fd
, i
, arg
, !is_kill
));
1052 fd
= get_summary_function(expr
);
1054 return pet_expr_free(res
);
1056 res
= set_summary(res
, fd
);
1061 /* Construct a pet_expr representing a (C style) cast.
1063 __isl_give pet_expr
*PetScan::extract_expr(CStyleCastExpr
*expr
)
1068 arg
= extract_expr(expr
->getSubExpr());
1072 type
= expr
->getTypeAsWritten();
1073 return pet_expr_new_cast(type
.getAsString().c_str(), arg
);
1076 /* Construct a pet_expr representing an integer.
1078 __isl_give pet_expr
*PetScan::extract_expr(IntegerLiteral
*expr
)
1080 return pet_expr_new_int(extract_int(expr
));
1083 /* Construct a pet_expr representing the integer enum constant "ecd".
1085 __isl_give pet_expr
*PetScan::extract_expr(EnumConstantDecl
*ecd
)
1088 const llvm::APSInt
&init
= ecd
->getInitVal();
1089 v
= ::extract_int(ctx
, init
.isSigned(), init
);
1090 return pet_expr_new_int(v
);
1093 /* Try and construct a pet_expr representing "expr".
1095 __isl_give pet_expr
*PetScan::extract_expr(Expr
*expr
)
1097 switch (expr
->getStmtClass()) {
1098 case Stmt::UnaryOperatorClass
:
1099 return extract_expr(cast
<UnaryOperator
>(expr
));
1100 case Stmt::CompoundAssignOperatorClass
:
1101 case Stmt::BinaryOperatorClass
:
1102 return extract_expr(cast
<BinaryOperator
>(expr
));
1103 case Stmt::ImplicitCastExprClass
:
1104 return extract_expr(cast
<ImplicitCastExpr
>(expr
));
1105 case Stmt::ArraySubscriptExprClass
:
1106 case Stmt::DeclRefExprClass
:
1107 case Stmt::MemberExprClass
:
1108 return extract_access_expr(expr
);
1109 case Stmt::IntegerLiteralClass
:
1110 return extract_expr(cast
<IntegerLiteral
>(expr
));
1111 case Stmt::FloatingLiteralClass
:
1112 return extract_expr(cast
<FloatingLiteral
>(expr
));
1113 case Stmt::ParenExprClass
:
1114 return extract_expr(cast
<ParenExpr
>(expr
));
1115 case Stmt::ConditionalOperatorClass
:
1116 return extract_expr(cast
<ConditionalOperator
>(expr
));
1117 case Stmt::CallExprClass
:
1118 return extract_expr(cast
<CallExpr
>(expr
));
1119 case Stmt::CStyleCastExprClass
:
1120 return extract_expr(cast
<CStyleCastExpr
>(expr
));
1127 /* Check if the given initialization statement is an assignment.
1128 * If so, return that assignment. Otherwise return NULL.
1130 BinaryOperator
*PetScan::initialization_assignment(Stmt
*init
)
1132 BinaryOperator
*ass
;
1134 if (init
->getStmtClass() != Stmt::BinaryOperatorClass
)
1137 ass
= cast
<BinaryOperator
>(init
);
1138 if (ass
->getOpcode() != BO_Assign
)
1144 /* Check if the given initialization statement is a declaration
1145 * of a single variable.
1146 * If so, return that declaration. Otherwise return NULL.
1148 Decl
*PetScan::initialization_declaration(Stmt
*init
)
1152 if (init
->getStmtClass() != Stmt::DeclStmtClass
)
1155 decl
= cast
<DeclStmt
>(init
);
1157 if (!decl
->isSingleDecl())
1160 return decl
->getSingleDecl();
1163 /* Given the assignment operator in the initialization of a for loop,
1164 * extract the induction variable, i.e., the (integer)variable being
1167 ValueDecl
*PetScan::extract_induction_variable(BinaryOperator
*init
)
1174 lhs
= init
->getLHS();
1175 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1180 ref
= cast
<DeclRefExpr
>(lhs
);
1181 decl
= ref
->getDecl();
1182 type
= decl
->getType().getTypePtr();
1184 if (!type
->isIntegerType()) {
1192 /* Given the initialization statement of a for loop and the single
1193 * declaration in this initialization statement,
1194 * extract the induction variable, i.e., the (integer) variable being
1197 VarDecl
*PetScan::extract_induction_variable(Stmt
*init
, Decl
*decl
)
1201 vd
= cast
<VarDecl
>(decl
);
1203 const QualType type
= vd
->getType();
1204 if (!type
->isIntegerType()) {
1209 if (!vd
->getInit()) {
1217 /* Check that op is of the form iv++ or iv--.
1218 * Return a pet_expr representing "1" or "-1" accordingly.
1220 __isl_give pet_expr
*PetScan::extract_unary_increment(
1221 clang::UnaryOperator
*op
, clang::ValueDecl
*iv
)
1227 if (!op
->isIncrementDecrementOp()) {
1232 sub
= op
->getSubExpr();
1233 if (sub
->getStmtClass() != Stmt::DeclRefExprClass
) {
1238 ref
= cast
<DeclRefExpr
>(sub
);
1239 if (ref
->getDecl() != iv
) {
1244 if (op
->isIncrementOp())
1245 v
= isl_val_one(ctx
);
1247 v
= isl_val_negone(ctx
);
1249 return pet_expr_new_int(v
);
1252 /* Check if op is of the form
1256 * and return the increment "expr - iv" as a pet_expr.
1258 __isl_give pet_expr
*PetScan::extract_binary_increment(BinaryOperator
*op
,
1259 clang::ValueDecl
*iv
)
1264 pet_expr
*expr
, *expr_iv
;
1266 if (op
->getOpcode() != BO_Assign
) {
1272 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1277 ref
= cast
<DeclRefExpr
>(lhs
);
1278 if (ref
->getDecl() != iv
) {
1283 expr
= extract_expr(op
->getRHS());
1284 expr_iv
= extract_expr(lhs
);
1286 type_size
= pet_clang_get_type_size(iv
->getType(), ast_context
);
1287 return pet_expr_new_binary(type_size
, pet_op_sub
, expr
, expr_iv
);
1290 /* Check that op is of the form iv += cst or iv -= cst
1291 * and return a pet_expr corresponding to cst or -cst accordingly.
1293 __isl_give pet_expr
*PetScan::extract_compound_increment(
1294 CompoundAssignOperator
*op
, clang::ValueDecl
*iv
)
1300 BinaryOperatorKind opcode
;
1302 opcode
= op
->getOpcode();
1303 if (opcode
!= BO_AddAssign
&& opcode
!= BO_SubAssign
) {
1307 if (opcode
== BO_SubAssign
)
1311 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1316 ref
= cast
<DeclRefExpr
>(lhs
);
1317 if (ref
->getDecl() != iv
) {
1322 expr
= extract_expr(op
->getRHS());
1325 type_size
= pet_clang_get_type_size(op
->getType(), ast_context
);
1326 expr
= pet_expr_new_unary(type_size
, pet_op_minus
, expr
);
1332 /* Check that the increment of the given for loop increments
1333 * (or decrements) the induction variable "iv" and return
1334 * the increment as a pet_expr if successful.
1336 __isl_give pet_expr
*PetScan::extract_increment(clang::ForStmt
*stmt
,
1339 Stmt
*inc
= stmt
->getInc();
1342 report_missing_increment(stmt
);
1346 if (inc
->getStmtClass() == Stmt::UnaryOperatorClass
)
1347 return extract_unary_increment(cast
<UnaryOperator
>(inc
), iv
);
1348 if (inc
->getStmtClass() == Stmt::CompoundAssignOperatorClass
)
1349 return extract_compound_increment(
1350 cast
<CompoundAssignOperator
>(inc
), iv
);
1351 if (inc
->getStmtClass() == Stmt::BinaryOperatorClass
)
1352 return extract_binary_increment(cast
<BinaryOperator
>(inc
), iv
);
1358 /* Construct a pet_tree for a while loop.
1360 * If we were only able to extract part of the body, then simply
1363 __isl_give pet_tree
*PetScan::extract(WhileStmt
*stmt
)
1368 tree
= extract(stmt
->getBody());
1371 pe_cond
= extract_expr(stmt
->getCond());
1372 tree
= pet_tree_new_while(pe_cond
, tree
);
1377 /* Construct a pet_tree for a for statement.
1378 * The for loop is required to be of one of the following forms
1380 * for (i = init; condition; ++i)
1381 * for (i = init; condition; --i)
1382 * for (i = init; condition; i += constant)
1383 * for (i = init; condition; i -= constant)
1385 * We extract a pet_tree for the body and then include it in a pet_tree
1386 * of type pet_tree_for.
1388 * As a special case, we also allow a for loop of the form
1392 * in which case we return a pet_tree of type pet_tree_infinite_loop.
1394 * If we were only able to extract part of the body, then simply
1397 __isl_give pet_tree
*PetScan::extract_for(ForStmt
*stmt
)
1399 BinaryOperator
*ass
;
1407 pet_expr
*pe_init
, *pe_inc
, *pe_iv
, *pe_cond
;
1409 independent
= is_current_stmt_marked_independent();
1411 if (!stmt
->getInit() && !stmt
->getCond() && !stmt
->getInc()) {
1412 tree
= extract(stmt
->getBody());
1415 tree
= pet_tree_new_infinite_loop(tree
);
1419 init
= stmt
->getInit();
1424 if ((ass
= initialization_assignment(init
)) != NULL
) {
1425 iv
= extract_induction_variable(ass
);
1428 rhs
= ass
->getRHS();
1429 } else if ((decl
= initialization_declaration(init
)) != NULL
) {
1430 VarDecl
*var
= extract_induction_variable(init
, decl
);
1434 rhs
= var
->getInit();
1436 unsupported(stmt
->getInit());
1440 declared
= !initialization_assignment(stmt
->getInit());
1441 tree
= extract(stmt
->getBody());
1444 pe_iv
= extract_access_expr(iv
);
1445 pe_iv
= mark_write(pe_iv
);
1446 pe_init
= extract_expr(rhs
);
1447 if (!stmt
->getCond())
1448 pe_cond
= pet_expr_new_int(isl_val_one(ctx
));
1450 pe_cond
= extract_expr(stmt
->getCond());
1451 pe_inc
= extract_increment(stmt
, iv
);
1452 tree
= pet_tree_new_for(independent
, declared
, pe_iv
, pe_init
, pe_cond
,
1457 /* Store the names of the variables declared in decl_context
1458 * in the set declared_names. Make sure to only do this once by
1459 * setting declared_names_collected.
1461 void PetScan::collect_declared_names()
1463 DeclContext
*DC
= decl_context
;
1464 DeclContext::decl_iterator it
;
1466 if (declared_names_collected
)
1469 for (it
= DC
->decls_begin(); it
!= DC
->decls_end(); ++it
) {
1473 if (!isa
<NamedDecl
>(D
))
1475 named
= cast
<NamedDecl
>(D
);
1476 declared_names
.insert(named
->getName().str());
1479 declared_names_collected
= true;
1482 /* Add the names in "names" that are not also in this->declared_names
1483 * to this->used_names.
1484 * It is up to the caller to make sure that declared_names has been
1485 * populated, if needed.
1487 void PetScan::add_new_used_names(const std::set
<std::string
> &names
)
1489 std::set
<std::string
>::const_iterator it
;
1491 for (it
= names
.begin(); it
!= names
.end(); ++it
) {
1492 if (declared_names
.find(*it
) != declared_names
.end())
1494 used_names
.insert(*it
);
1498 /* Is the name "name" used in any declaration other than "decl"?
1500 * If the name was found to be in use before, the consider it to be in use.
1501 * Otherwise, check the DeclContext of the function containing the scop
1502 * as well as all ancestors of this DeclContext for declarations
1503 * other than "decl" that declare something called "name".
1505 bool PetScan::name_in_use(const string
&name
, Decl
*decl
)
1508 DeclContext::decl_iterator it
;
1510 if (used_names
.find(name
) != used_names
.end())
1513 for (DC
= decl_context
; DC
; DC
= DC
->getParent()) {
1514 for (it
= DC
->decls_begin(); it
!= DC
->decls_end(); ++it
) {
1520 if (!isa
<NamedDecl
>(D
))
1522 named
= cast
<NamedDecl
>(D
);
1523 if (named
->getName().str() == name
)
1531 /* Generate a new name based on "name" that is not in use.
1532 * Do so by adding a suffix _i, with i an integer.
1534 string
PetScan::generate_new_name(const string
&name
)
1539 std::ostringstream oss
;
1540 oss
<< name
<< "_" << n_rename
++;
1541 new_name
= oss
.str();
1542 } while (name_in_use(new_name
, NULL
));
1547 /* Try and construct a pet_tree corresponding to a compound statement.
1549 * "skip_declarations" is set if we should skip initial declarations
1550 * in the children of the compound statements.
1552 * Collect a new set of declarations for the current compound statement.
1553 * If any of the names in these declarations is also used by another
1554 * declaration reachable from the current function, then rename it
1555 * to a name that is not already in use.
1556 * In particular, keep track of the old and new names in a pet_substituter
1557 * and apply the substitutions to the pet_tree corresponding to the
1558 * compound statement.
1560 __isl_give pet_tree
*PetScan::extract(CompoundStmt
*stmt
,
1561 bool skip_declarations
)
1564 std::vector
<VarDecl
*> saved_declarations
;
1565 std::vector
<VarDecl
*>::iterator it
;
1566 pet_substituter substituter
;
1568 saved_declarations
= declarations
;
1569 declarations
.clear();
1570 tree
= extract(stmt
->children(), true, skip_declarations
, stmt
);
1571 for (it
= declarations
.begin(); it
!= declarations
.end(); ++it
) {
1574 VarDecl
*decl
= *it
;
1575 string name
= decl
->getName().str();
1576 bool in_use
= name_in_use(name
, decl
);
1578 used_names
.insert(name
);
1582 name
= generate_new_name(name
);
1583 id
= pet_id_from_name_and_decl(ctx
, name
.c_str(), decl
);
1584 expr
= pet_expr_access_from_id(id
, ast_context
);
1585 id
= pet_id_from_decl(ctx
, decl
);
1586 substituter
.add_sub(id
, expr
);
1587 used_names
.insert(name
);
1589 tree
= substituter
.substitute(tree
);
1590 declarations
= saved_declarations
;
1595 /* Return the file offset of the expansion location of "Loc".
1597 static unsigned getExpansionOffset(SourceManager
&SM
, SourceLocation Loc
)
1599 return SM
.getFileOffset(SM
.getExpansionLoc(Loc
));
1602 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
1604 /* Return a SourceLocation for the location after the first semicolon
1605 * after "loc". If Lexer::findLocationAfterToken is available, we simply
1606 * call it and also skip trailing spaces and newline.
1608 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
1609 const LangOptions
&LO
)
1611 return Lexer::findLocationAfterToken(loc
, tok::semi
, SM
, LO
, true);
1616 /* Return a SourceLocation for the location after the first semicolon
1617 * after "loc". If Lexer::findLocationAfterToken is not available,
1618 * we look in the underlying character data for the first semicolon.
1620 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
1621 const LangOptions
&LO
)
1624 const char *s
= SM
.getCharacterData(loc
);
1626 semi
= strchr(s
, ';');
1628 return SourceLocation();
1629 return loc
.getFileLocWithOffset(semi
+ 1 - s
);
1634 /* If the token at "loc" is the first token on the line, then return
1635 * a location referring to the start of the line and set *indent
1636 * to the indentation of "loc"
1637 * Otherwise, return "loc" and set *indent to "".
1639 * This function is used to extend a scop to the start of the line
1640 * if the first token of the scop is also the first token on the line.
1642 * We look for the first token on the line. If its location is equal to "loc",
1643 * then the latter is the location of the first token on the line.
1645 static SourceLocation
move_to_start_of_line_if_first_token(SourceLocation loc
,
1646 SourceManager
&SM
, const LangOptions
&LO
, char **indent
)
1648 std::pair
<FileID
, unsigned> file_offset_pair
;
1649 llvm::StringRef file
;
1652 SourceLocation token_loc
, line_loc
;
1656 loc
= SM
.getExpansionLoc(loc
);
1657 col
= SM
.getExpansionColumnNumber(loc
);
1658 line_loc
= loc
.getLocWithOffset(1 - col
);
1659 file_offset_pair
= SM
.getDecomposedLoc(line_loc
);
1660 file
= SM
.getBufferData(file_offset_pair
.first
, NULL
);
1661 pos
= file
.data() + file_offset_pair
.second
;
1663 Lexer
lexer(SM
.getLocForStartOfFile(file_offset_pair
.first
), LO
,
1664 file
.begin(), pos
, file
.end());
1665 lexer
.LexFromRawLexer(tok
);
1666 token_loc
= tok
.getLocation();
1668 s
= SM
.getCharacterData(line_loc
);
1669 *indent
= strndup(s
, token_loc
== loc
? col
- 1 : 0);
1671 if (token_loc
== loc
)
1677 /* Construct a pet_loc corresponding to the region covered by "range".
1678 * If "skip_semi" is set, then we assume "range" is followed by
1679 * a semicolon and also include this semicolon.
1681 __isl_give pet_loc
*PetScan::construct_pet_loc(SourceRange range
,
1684 SourceLocation loc
= range
.getBegin();
1685 SourceManager
&SM
= PP
.getSourceManager();
1686 const LangOptions
&LO
= PP
.getLangOpts();
1687 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
1688 unsigned start
, end
;
1691 loc
= move_to_start_of_line_if_first_token(loc
, SM
, LO
, &indent
);
1692 start
= getExpansionOffset(SM
, loc
);
1693 loc
= range
.getEnd();
1695 loc
= location_after_semi(loc
, SM
, LO
);
1697 loc
= PP
.getLocForEndOfToken(loc
);
1698 end
= getExpansionOffset(SM
, loc
);
1700 return pet_loc_alloc(ctx
, start
, end
, line
, indent
);
1703 /* Convert a top-level pet_expr to an expression pet_tree.
1705 __isl_give pet_tree
*PetScan::extract(__isl_take pet_expr
*expr
,
1706 SourceRange range
, bool skip_semi
)
1711 tree
= pet_tree_new_expr(expr
);
1712 loc
= construct_pet_loc(range
, skip_semi
);
1713 tree
= pet_tree_set_loc(tree
, loc
);
1718 /* Construct a pet_tree for an if statement.
1720 __isl_give pet_tree
*PetScan::extract(IfStmt
*stmt
)
1723 pet_tree
*tree
, *tree_else
;
1725 pe_cond
= extract_expr(stmt
->getCond());
1726 tree
= extract(stmt
->getThen());
1727 if (stmt
->getElse()) {
1728 tree_else
= extract(stmt
->getElse());
1729 if (options
->autodetect
) {
1730 if (tree
&& !tree_else
) {
1732 pet_expr_free(pe_cond
);
1735 if (!tree
&& tree_else
) {
1737 pet_expr_free(pe_cond
);
1741 tree
= pet_tree_new_if_else(pe_cond
, tree
, tree_else
);
1743 tree
= pet_tree_new_if(pe_cond
, tree
);
1747 /* Is "parent" a compound statement that has "stmt" as its final child?
1749 static bool final_in_compound(ReturnStmt
*stmt
, Stmt
*parent
)
1753 c
= dyn_cast
<CompoundStmt
>(parent
);
1757 StmtRange range
= c
->children();
1759 for (i
= range
.first
; i
!= range
.second
; ++i
)
1761 return last
== stmt
;
1766 /* Try and construct a pet_tree for a return statement "stmt".
1768 * Return statements are only allowed in a context where
1769 * this->return_root has been set.
1770 * Furthermore, "stmt" should appear as the last child
1771 * in the compound statement this->return_root.
1773 __isl_give pet_tree
*PetScan::extract(ReturnStmt
*stmt
)
1778 report_unsupported_return(stmt
);
1781 if (!final_in_compound(stmt
, return_root
)) {
1782 report_return_not_at_end_of_function(stmt
);
1786 val
= extract_expr(stmt
->getRetValue());
1787 return pet_tree_new_return(val
);
1790 /* Try and construct a pet_tree for a label statement.
1792 __isl_give pet_tree
*PetScan::extract(LabelStmt
*stmt
)
1797 label
= isl_id_alloc(ctx
, stmt
->getName(), NULL
);
1799 tree
= extract(stmt
->getSubStmt());
1800 tree
= pet_tree_set_label(tree
, label
);
1804 /* Update the location of "tree" to include the source range of "stmt".
1806 * Actually, we create a new location based on the source range of "stmt" and
1807 * then extend this new location to include the region of the original location.
1808 * This ensures that the line number of the final location refers to "stmt".
1810 __isl_give pet_tree
*PetScan::update_loc(__isl_take pet_tree
*tree
, Stmt
*stmt
)
1812 pet_loc
*loc
, *tree_loc
;
1814 tree_loc
= pet_tree_get_loc(tree
);
1815 loc
= construct_pet_loc(stmt
->getSourceRange(), false);
1816 loc
= pet_loc_update_start_end_from_loc(loc
, tree_loc
);
1817 pet_loc_free(tree_loc
);
1819 tree
= pet_tree_set_loc(tree
, loc
);
1823 /* Is "expr" of a type that can be converted to an access expression?
1825 static bool is_access_expr_type(Expr
*expr
)
1827 switch (expr
->getStmtClass()) {
1828 case Stmt::ArraySubscriptExprClass
:
1829 case Stmt::DeclRefExprClass
:
1830 case Stmt::MemberExprClass
:
1837 /* Tell the pet_inliner "inliner" about the formal arguments
1838 * in "fd" and the corresponding actual arguments in "call".
1839 * Return 0 if this was successful and -1 otherwise.
1841 * Any pointer argument is treated as an array.
1842 * The other arguments are treated as scalars.
1844 * In case of scalars, there is no restriction on the actual argument.
1845 * This actual argument is assigned to a variable with a name
1846 * that is derived from the name of the corresponding formal argument,
1847 * but made not to conflict with any variable names that are
1850 * In case of arrays, the actual argument needs to be an expression
1851 * of a type that can be converted to an access expression or the address
1852 * of such an expression, ignoring implicit and redundant casts.
1854 int PetScan::set_inliner_arguments(pet_inliner
&inliner
, CallExpr
*call
,
1859 n
= fd
->getNumParams();
1860 for (unsigned i
= 0; i
< n
; ++i
) {
1861 ParmVarDecl
*parm
= fd
->getParamDecl(i
);
1862 QualType type
= parm
->getType();
1867 arg
= call
->getArg(i
);
1868 if (pet_clang_array_depth(type
) == 0) {
1869 string name
= parm
->getName().str();
1870 if (name_in_use(name
, NULL
))
1871 name
= generate_new_name(name
);
1872 used_names
.insert(name
);
1873 inliner
.add_scalar_arg(parm
, name
, extract_expr(arg
));
1876 arg
= pet_clang_strip_casts(arg
);
1877 sub
= extract_addr_of_arg(arg
);
1880 arg
= pet_clang_strip_casts(sub
);
1882 if (!is_access_expr_type(arg
)) {
1883 report_unsupported_inline_function_argument(arg
);
1886 expr
= extract_access_expr(arg
);
1889 inliner
.add_array_arg(parm
, expr
, is_addr
);
1895 /* Internal data structure for PetScan::substitute_array_sizes.
1896 * ps is the PetScan on which the method was called.
1897 * substituter is the substituter that is used to substitute variables
1898 * in the size expressions.
1900 struct pet_substitute_array_sizes_data
{
1902 pet_substituter
*substituter
;
1906 static int substitute_array_size(__isl_keep pet_tree
*tree
, void *user
);
1909 /* If "tree" is a declaration, then perform the substitutions
1910 * in data->substituter on its size expression and store the result
1911 * in the size expression cache of data->ps such that the modified expression
1912 * will be used in subsequent calls to get_array_size.
1914 static int substitute_array_size(__isl_keep pet_tree
*tree
, void *user
)
1916 struct pet_substitute_array_sizes_data
*data
;
1918 pet_expr
*var
, *size
;
1920 if (!pet_tree_is_decl(tree
))
1923 data
= (struct pet_substitute_array_sizes_data
*) user
;
1924 var
= pet_tree_decl_get_var(tree
);
1925 id
= pet_expr_access_get_id(var
);
1928 size
= data
->ps
->get_array_size(id
);
1929 size
= data
->substituter
->substitute(size
);
1930 data
->ps
->set_array_size(id
, size
);
1935 /* Perform the substitutions in "substituter" on all the arrays declared
1936 * inside "tree" and store the results in the size expression cache
1937 * such that the modified expressions will be used in subsequent calls
1938 * to get_array_size.
1940 int PetScan::substitute_array_sizes(__isl_keep pet_tree
*tree
,
1941 pet_substituter
*substituter
)
1943 struct pet_substitute_array_sizes_data data
= { this, substituter
};
1945 return pet_tree_foreach_sub_tree(tree
, &substitute_array_size
, &data
);
1948 /* Try and construct a pet_tree from the body of "fd" using the actual
1949 * arguments in "call" in place of the formal arguments.
1950 * "fd" is assumed to point to the declaration with a function body.
1951 * In particular, construct a block that consists of assignments
1952 * of (parts of) the actual arguments to temporary variables
1953 * followed by the inlined function body with the formal arguments
1954 * replaced by (expressions containing) these temporary variables.
1955 * If "return_id" is set, then it is used to store the return value
1956 * of the inlined function.
1958 * The actual inlining is taken care of by the pet_inliner object.
1959 * This function merely calls set_inliner_arguments to tell
1960 * the pet_inliner about the actual arguments, extracts a pet_tree
1961 * from the body of the called function and then passes this pet_tree
1962 * to the pet_inliner.
1963 * The body of the called function is allowed to have a return statement
1965 * The substitutions performed by the inliner are also applied
1966 * to the size expressions of the arrays declared in the inlined
1967 * function. These size expressions are not stored in the tree
1968 * itself, but rather in the size expression cache.
1970 * During the extraction of the function body, all variables names
1971 * that are declared in the calling function as well all variable
1972 * names that are known to be in use are considered to be in use
1973 * in the called function to ensure that there is no naming conflict.
1974 * Similarly, the additional names that are in use in the called function
1975 * are considered to be in use in the calling function as well.
1977 * The location of the pet_tree is reset to the call site to ensure
1978 * that the extent of the scop does not include the body of the called
1981 __isl_give pet_tree
*PetScan::extract_inlined_call(CallExpr
*call
,
1982 FunctionDecl
*fd
, __isl_keep isl_id
*return_id
)
1984 int save_autodetect
;
1987 pet_inliner
inliner(ctx
, n_arg
, ast_context
);
1989 if (set_inliner_arguments(inliner
, call
, fd
) < 0)
1992 save_autodetect
= options
->autodetect
;
1993 options
->autodetect
= 0;
1994 PetScan
body_scan(PP
, ast_context
, fd
, loc
, options
,
1995 isl_union_map_copy(value_bounds
), independent
);
1996 collect_declared_names();
1997 body_scan
.add_new_used_names(declared_names
);
1998 body_scan
.add_new_used_names(used_names
);
1999 body_scan
.return_root
= fd
->getBody();
2000 tree
= body_scan
.extract(fd
->getBody(), false);
2001 add_new_used_names(body_scan
.used_names
);
2002 options
->autodetect
= save_autodetect
;
2004 tree_loc
= construct_pet_loc(call
->getSourceRange(), true);
2005 tree
= pet_tree_set_loc(tree
, tree_loc
);
2007 substitute_array_sizes(tree
, &inliner
);
2009 return inliner
.inline_tree(tree
, return_id
);
2012 /* Try and construct a pet_tree corresponding
2013 * to the expression statement "stmt".
2015 * First look for function calls that have corresponding bodies
2016 * marked "inline". Extract the inlined functions in a pet_inlined_calls
2017 * object. Then extract the statement itself, replacing calls
2018 * to inlined function by accesses to the corresponding return variables, and
2019 * return the combined result.
2020 * If the outer expression is itself a call to an inlined function,
2021 * then it already appears as one of the inlined functions and
2022 * no separate pet_tree needs to be extracted for "stmt" itself.
2024 __isl_give pet_tree
*PetScan::extract_expr_stmt(Stmt
*stmt
)
2028 pet_inlined_calls
ic(this);
2031 if (ic
.calls
.size() >= 1 && ic
.calls
[0] == stmt
) {
2032 tree
= pet_tree_new_block(ctx
, 0, 0);
2034 call2id
= &ic
.call2id
;
2035 expr
= extract_expr(cast
<Expr
>(stmt
));
2036 tree
= extract(expr
, stmt
->getSourceRange(), true);
2039 tree
= ic
.add_inlined(tree
);
2043 /* Try and construct a pet_tree corresponding to "stmt".
2045 * If "stmt" is a compound statement, then "skip_declarations"
2046 * indicates whether we should skip initial declarations in the
2047 * compound statement.
2049 * If the constructed pet_tree is not a (possibly) partial representation
2050 * of "stmt", we update start and end of the pet_scop to those of "stmt".
2051 * In particular, if skip_declarations is set, then we may have skipped
2052 * declarations inside "stmt" and so the pet_scop may not represent
2053 * the entire "stmt".
2054 * Note that this function may be called with "stmt" referring to the entire
2055 * body of the function, including the outer braces. In such cases,
2056 * skip_declarations will be set and the braces will not be taken into
2057 * account in tree->loc.
2059 __isl_give pet_tree
*PetScan::extract(Stmt
*stmt
, bool skip_declarations
)
2063 set_current_stmt(stmt
);
2065 if (isa
<Expr
>(stmt
))
2066 return extract_expr_stmt(cast
<Expr
>(stmt
));
2068 switch (stmt
->getStmtClass()) {
2069 case Stmt::WhileStmtClass
:
2070 tree
= extract(cast
<WhileStmt
>(stmt
));
2072 case Stmt::ForStmtClass
:
2073 tree
= extract_for(cast
<ForStmt
>(stmt
));
2075 case Stmt::IfStmtClass
:
2076 tree
= extract(cast
<IfStmt
>(stmt
));
2078 case Stmt::CompoundStmtClass
:
2079 tree
= extract(cast
<CompoundStmt
>(stmt
), skip_declarations
);
2081 case Stmt::LabelStmtClass
:
2082 tree
= extract(cast
<LabelStmt
>(stmt
));
2084 case Stmt::ContinueStmtClass
:
2085 tree
= pet_tree_new_continue(ctx
);
2087 case Stmt::BreakStmtClass
:
2088 tree
= pet_tree_new_break(ctx
);
2090 case Stmt::DeclStmtClass
:
2091 tree
= extract(cast
<DeclStmt
>(stmt
));
2093 case Stmt::NullStmtClass
:
2094 tree
= pet_tree_new_block(ctx
, 0, 0);
2096 case Stmt::ReturnStmtClass
:
2097 tree
= extract(cast
<ReturnStmt
>(stmt
));
2100 report_unsupported_statement_type(stmt
);
2104 if (partial
|| skip_declarations
)
2107 return update_loc(tree
, stmt
);
2110 /* Given a sequence of statements "stmt_range" of which the first "n_decl"
2111 * are declarations and of which the remaining statements are represented
2112 * by "tree", try and extend "tree" to include the last sequence of
2113 * the initial declarations that can be completely extracted.
2115 * We start collecting the initial declarations and start over
2116 * whenever we come across a declaration that we cannot extract.
2117 * If we have been able to extract any declarations, then we
2118 * copy over the contents of "tree" at the end of the declarations.
2119 * Otherwise, we simply return the original "tree".
2121 __isl_give pet_tree
*PetScan::insert_initial_declarations(
2122 __isl_take pet_tree
*tree
, int n_decl
, StmtRange stmt_range
)
2130 n_stmt
= pet_tree_block_n_child(tree
);
2131 is_block
= pet_tree_block_get_block(tree
);
2132 res
= pet_tree_new_block(ctx
, is_block
, n_decl
+ n_stmt
);
2134 for (i
= stmt_range
.first
; n_decl
; ++i
, --n_decl
) {
2138 tree_i
= extract(child
);
2139 if (tree_i
&& !partial
) {
2140 res
= pet_tree_block_add_child(res
, tree_i
);
2143 pet_tree_free(tree_i
);
2145 if (pet_tree_block_n_child(res
) == 0)
2148 res
= pet_tree_new_block(ctx
, is_block
, n_decl
+ n_stmt
);
2151 if (pet_tree_block_n_child(res
) == 0) {
2156 for (j
= 0; j
< n_stmt
; ++j
) {
2159 tree_i
= pet_tree_block_get_child(tree
, j
);
2160 res
= pet_tree_block_add_child(res
, tree_i
);
2162 pet_tree_free(tree
);
2167 /* Try and construct a pet_tree corresponding to (part of)
2168 * a sequence of statements.
2170 * "block" is set if the sequence represents the children of
2171 * a compound statement.
2172 * "skip_declarations" is set if we should skip initial declarations
2173 * in the sequence of statements.
2174 * "parent" is the statement that has stmt_range as (some of) its children.
2176 * If autodetect is set, then we allow the extraction of only a subrange
2177 * of the sequence of statements. However, if there is at least one
2178 * kill and there is some subsequent statement for which we could not
2179 * construct a tree, then turn off the "block" property of the tree
2180 * such that no extra kill will be introduced at the end of the (partial)
2181 * block. If, on the other hand, the final range contains
2182 * no statements, then we discard the entire range.
2183 * If only a subrange of the sequence was extracted, but each statement
2184 * in the sequence was extracted completely, and if there are some
2185 * variable declarations in the sequence before or inside
2186 * the extracted subrange, then check if any of these variables are
2187 * not used after the extracted subrange. If so, add kills to these
2190 * If the entire range was extracted, apart from some initial declarations,
2191 * then we try and extend the range with the latest of those initial
2194 __isl_give pet_tree
*PetScan::extract(StmtRange stmt_range
, bool block
,
2195 bool skip_declarations
, Stmt
*parent
)
2199 bool has_kills
= false;
2200 bool partial_range
= false;
2201 bool outer_partial
= false;
2203 SourceManager
&SM
= PP
.getSourceManager();
2204 pet_killed_locals
kl(SM
);
2205 unsigned range_start
, range_end
;
2207 for (i
= stmt_range
.first
, j
= 0; i
!= stmt_range
.second
; ++i
, ++j
)
2210 tree
= pet_tree_new_block(ctx
, block
, j
);
2213 i
= stmt_range
.first
;
2214 if (skip_declarations
)
2215 for (; i
!= stmt_range
.second
; ++i
) {
2216 if ((*i
)->getStmtClass() != Stmt::DeclStmtClass
)
2218 if (options
->autodetect
)
2219 kl
.add_locals(cast
<DeclStmt
>(*i
));
2223 for (; i
!= stmt_range
.second
; ++i
) {
2227 tree_i
= extract(child
);
2228 if (pet_tree_block_n_child(tree
) != 0 && partial
) {
2229 pet_tree_free(tree_i
);
2232 if (child
->getStmtClass() == Stmt::DeclStmtClass
) {
2233 if (options
->autodetect
)
2234 kl
.add_locals(cast
<DeclStmt
>(child
));
2235 if (tree_i
&& block
)
2238 if (options
->autodetect
) {
2240 range_end
= getExpansionOffset(SM
,
2242 if (pet_tree_block_n_child(tree
) == 0)
2243 range_start
= getExpansionOffset(SM
,
2245 tree
= pet_tree_block_add_child(tree
, tree_i
);
2247 partial_range
= true;
2249 if (pet_tree_block_n_child(tree
) != 0 && !tree_i
)
2250 outer_partial
= partial
= true;
2252 tree
= pet_tree_block_add_child(tree
, tree_i
);
2255 if (partial
|| !tree
)
2264 tree
= pet_tree_block_set_block(tree
, 0);
2265 if (outer_partial
) {
2266 kl
.remove_accessed_after(parent
,
2267 range_start
, range_end
);
2268 tree
= add_kills(tree
, kl
.locals
);
2270 } else if (partial_range
) {
2271 if (pet_tree_block_n_child(tree
) == 0) {
2272 pet_tree_free(tree
);
2276 } else if (skip
> 0)
2277 tree
= insert_initial_declarations(tree
, skip
, stmt_range
);
2283 static __isl_give pet_expr
*get_array_size(__isl_keep pet_expr
*access
,
2285 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
2286 __isl_keep pet_context
*pc
, void *user
);
2289 /* Construct a pet_expr that holds the sizes of the array accessed
2291 * This function is used as a callback to pet_context_add_parameters,
2292 * which is also passed a pointer to the PetScan object.
2294 static __isl_give pet_expr
*get_array_size(__isl_keep pet_expr
*access
,
2297 PetScan
*ps
= (PetScan
*) user
;
2301 id
= pet_expr_access_get_id(access
);
2302 size
= ps
->get_array_size(id
);
2308 /* Construct and return a pet_array corresponding to the variable
2309 * accessed by "access".
2310 * This function is used as a callback to pet_scop_from_pet_tree,
2311 * which is also passed a pointer to the PetScan object.
2313 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
2314 __isl_keep pet_context
*pc
, void *user
)
2316 PetScan
*ps
= (PetScan
*) user
;
2320 id
= pet_expr_access_get_id(access
);
2321 array
= ps
->extract_array(id
, NULL
, pc
);
2327 /* Store (a copy of) "summary" in the cache of function summaries
2328 * for function declaration "fd" and then give it back to the caller.
2330 __isl_give pet_function_summary
*PetScan::cache_summary(clang::FunctionDecl
*fd
,
2331 __isl_take pet_function_summary
*summary
)
2333 summary_cache
[fd
] = pet_function_summary_copy(summary
);
2338 /* Extract a function summary from the body of "fd",
2339 * with pet_tree representation "tree", extracted using "body_scan".
2341 * We extract a scop from the function body in a context with as
2342 * parameters the integer arguments of the function.
2343 * We then collect the accessed array elements and attach them
2344 * to the corresponding array arguments, taking into account
2345 * that the function body may access members of array elements.
2347 * The reason for representing the integer arguments as parameters in
2348 * the context is that if we were to instead start with a context
2349 * with the function arguments as initial dimensions, then we would not
2350 * be able to refer to them from the array extents, without turning
2351 * array extents into maps.
2353 __isl_give pet_function_summary
*PetScan::get_summary_from_tree(
2354 __isl_take pet_tree
*tree
, clang::FunctionDecl
*fd
,
2360 pet_function_summary
*summary
;
2362 struct pet_scop
*scop
;
2364 isl_union_set
*may_read
, *may_write
, *must_write
;
2365 isl_union_map
*to_inner
;
2367 space
= isl_space_set_alloc(ctx
, 0, 0);
2369 n
= fd
->getNumParams();
2370 summary
= pet_function_summary_alloc(ctx
, n
);
2371 for (unsigned i
= 0; i
< n
; ++i
) {
2372 ParmVarDecl
*parm
= fd
->getParamDecl(i
);
2373 QualType type
= parm
->getType();
2376 if (!type
->isIntegerType())
2378 id
= pet_id_from_decl(ctx
, parm
);
2379 space
= isl_space_insert_dims(space
, isl_dim_param
, 0, 1);
2380 space
= isl_space_set_dim_id(space
, isl_dim_param
, 0,
2382 summary
= pet_function_summary_set_int(summary
, i
, id
);
2385 domain
= isl_set_universe(space
);
2386 pc
= pet_context_alloc(domain
);
2387 pc
= pet_context_add_parameters(pc
, tree
,
2388 &::get_array_size
, &body_scan
);
2389 int_size
= size_in_bytes(ast_context
, ast_context
.IntTy
);
2390 scop
= pet_scop_from_pet_tree(tree
, int_size
,
2391 &::extract_array
, &body_scan
, pc
);
2392 scop
= scan_arrays(scop
, pc
);
2393 may_read
= isl_union_map_range(pet_scop_get_may_reads(scop
));
2394 may_write
= isl_union_map_range(pet_scop_get_may_writes(scop
));
2395 must_write
= isl_union_map_range(pet_scop_get_must_writes(scop
));
2396 to_inner
= pet_scop_compute_outer_to_inner(scop
);
2397 pet_scop_free(scop
);
2399 for (unsigned i
= 0; i
< n
; ++i
) {
2400 ParmVarDecl
*parm
= fd
->getParamDecl(i
);
2401 QualType type
= parm
->getType();
2402 struct pet_array
*array
;
2404 isl_union_set
*data_set
;
2405 isl_union_set
*may_read_i
, *may_write_i
, *must_write_i
;
2407 if (pet_clang_array_depth(type
) == 0)
2410 array
= body_scan
.extract_array(parm
, NULL
, pc
);
2411 space
= array
? isl_set_get_space(array
->extent
) : NULL
;
2412 pet_array_free(array
);
2413 data_set
= isl_union_set_from_set(isl_set_universe(space
));
2414 data_set
= isl_union_set_apply(data_set
,
2415 isl_union_map_copy(to_inner
));
2416 may_read_i
= isl_union_set_intersect(
2417 isl_union_set_copy(may_read
),
2418 isl_union_set_copy(data_set
));
2419 may_write_i
= isl_union_set_intersect(
2420 isl_union_set_copy(may_write
),
2421 isl_union_set_copy(data_set
));
2422 must_write_i
= isl_union_set_intersect(
2423 isl_union_set_copy(must_write
), data_set
);
2424 summary
= pet_function_summary_set_array(summary
, i
,
2425 may_read_i
, may_write_i
, must_write_i
);
2428 isl_union_set_free(may_read
);
2429 isl_union_set_free(may_write
);
2430 isl_union_set_free(must_write
);
2431 isl_union_map_free(to_inner
);
2433 pet_context_free(pc
);
2438 /* Extract a function summary from the body of "fd", if possible.
2439 * Return this->no_summary if the body cannot be fully analyzed.
2441 * Turn on autodetection to avoid printing warnings
2442 * if the body cannot be fully analyzed,
2443 * but return this->no_summary if the extracted pet_tree only
2444 * represents part of the function body.
2445 * The function body is allowed to have a return statement at the end.
2447 * The result is stored in the summary_cache cache so that we can reuse
2448 * it if this method gets called on the same function again later on.
2450 __isl_give pet_function_summary
*PetScan::get_summary(FunctionDecl
*fd
)
2453 pet_function_summary
*summary
;
2455 int save_autodetect
;
2457 if (summary_cache
.find(fd
) != summary_cache
.end())
2458 return pet_function_summary_copy(summary_cache
[fd
]);
2460 save_autodetect
= options
->autodetect
;
2461 options
->autodetect
= 1;
2462 PetScan
body_scan(PP
, ast_context
, fd
, loc
, options
,
2463 isl_union_map_copy(value_bounds
), independent
);
2465 body_scan
.return_root
= fd
->getBody();
2466 tree
= body_scan
.extract(fd
->getBody(), false);
2467 options
->autodetect
= save_autodetect
;
2469 if (body_scan
.partial
) {
2470 pet_tree_free(tree
);
2471 return cache_summary(fd
, pet_function_summary_copy(no_summary
));
2474 summary
= get_summary_from_tree(tree
, fd
, body_scan
);
2476 return cache_summary(fd
, summary
);
2479 /* If "fd" has a function body, then try and extract a function summary from
2480 * this body and, if successful, attach it to the call expression "expr".
2482 * Even if a function body is available, "fd" itself may point
2483 * to a declaration without function body. We therefore first
2484 * replace it by the declaration that comes with a body (if any).
2486 __isl_give pet_expr
*PetScan::set_summary(__isl_take pet_expr
*expr
,
2489 pet_function_summary
*summary
;
2493 fd
= pet_clang_find_function_decl_with_body(fd
);
2497 summary
= get_summary(fd
);
2498 if (summary
== no_summary
) {
2499 pet_function_summary_free(summary
);
2503 expr
= pet_expr_call_set_summary(expr
, summary
);
2508 /* Extract a pet_scop from "tree".
2510 * We simply call pet_scop_from_pet_tree with the appropriate arguments and
2511 * then add pet_arrays for all accessed arrays.
2512 * We populate the pet_context with assignments for all parameters used
2513 * inside "tree" or any of the size expressions for the arrays accessed
2514 * by "tree" so that they can be used in affine expressions.
2516 struct pet_scop
*PetScan::extract_scop(__isl_take pet_tree
*tree
)
2523 int_size
= size_in_bytes(ast_context
, ast_context
.IntTy
);
2525 domain
= isl_set_universe(isl_space_set_alloc(ctx
, 0, 0));
2526 pc
= pet_context_alloc(domain
);
2527 pc
= pet_context_add_parameters(pc
, tree
, &::get_array_size
, this);
2528 scop
= pet_scop_from_pet_tree(tree
, int_size
,
2529 &::extract_array
, this, pc
);
2530 scop
= scan_arrays(scop
, pc
);
2531 pet_context_free(pc
);
2536 /* Add a call to __pencil_kill to the end of "tree" that kills
2537 * all the variables in "locals" and return the result.
2539 * No location is added to the kill because the most natural
2540 * location would lie outside the scop. Attaching such a location
2541 * to this tree would extend the scope of the final result
2542 * to include the location.
2544 __isl_give pet_tree
*PetScan::add_kills(__isl_take pet_tree
*tree
,
2545 set
<ValueDecl
*> locals
)
2549 pet_tree
*kill
, *block
;
2550 set
<ValueDecl
*>::iterator it
;
2552 if (locals
.size() == 0)
2554 expr
= pet_expr_new_call(ctx
, "__pencil_kill", locals
.size());
2556 for (it
= locals
.begin(); it
!= locals
.end(); ++it
) {
2558 arg
= extract_access_expr(*it
);
2559 expr
= pet_expr_set_arg(expr
, i
++, arg
);
2561 kill
= pet_tree_new_expr(expr
);
2562 block
= pet_tree_new_block(ctx
, 0, 2);
2563 block
= pet_tree_block_add_child(block
, tree
);
2564 block
= pet_tree_block_add_child(block
, kill
);
2569 /* Check if the scop marked by the user is exactly this Stmt
2570 * or part of this Stmt.
2571 * If so, return a pet_scop corresponding to the marked region.
2572 * Otherwise, return NULL.
2574 * If the scop is not further nested inside a child of "stmt",
2575 * then check if there are any variable declarations before the scop
2576 * inside "stmt". If so, and if these variables are not used
2577 * after the scop, then add kills to the variables.
2579 * If the scop starts in the middle of one of the children, without
2580 * also ending in that child, then report an error.
2582 struct pet_scop
*PetScan::scan(Stmt
*stmt
)
2584 SourceManager
&SM
= PP
.getSourceManager();
2585 unsigned start_off
, end_off
;
2588 start_off
= getExpansionOffset(SM
, begin_loc(stmt
));
2589 end_off
= getExpansionOffset(SM
, end_loc(stmt
));
2591 if (start_off
> loc
.end
)
2593 if (end_off
< loc
.start
)
2596 if (start_off
>= loc
.start
&& end_off
<= loc
.end
)
2597 return extract_scop(extract(stmt
));
2599 pet_killed_locals
kl(SM
);
2601 for (start
= stmt
->child_begin(); start
!= stmt
->child_end(); ++start
) {
2602 Stmt
*child
= *start
;
2605 start_off
= getExpansionOffset(SM
, begin_loc(child
));
2606 end_off
= getExpansionOffset(SM
, end_loc(child
));
2607 if (start_off
< loc
.start
&& end_off
>= loc
.end
)
2609 if (start_off
>= loc
.start
)
2611 if (loc
.start
< end_off
) {
2612 report_unbalanced_pragmas(loc
.scop
, loc
.endscop
);
2615 if (isa
<DeclStmt
>(child
))
2616 kl
.add_locals(cast
<DeclStmt
>(child
));
2620 for (end
= start
; end
!= stmt
->child_end(); ++end
) {
2622 start_off
= SM
.getFileOffset(begin_loc(child
));
2623 if (start_off
>= loc
.end
)
2627 kl
.remove_accessed_after(stmt
, loc
.start
, loc
.end
);
2629 tree
= extract(StmtRange(start
, end
), false, false, stmt
);
2630 tree
= add_kills(tree
, kl
.locals
);
2631 return extract_scop(tree
);
2634 /* Set the size of index "pos" of "array" to "size".
2635 * In particular, add a constraint of the form
2639 * to array->extent and a constraint of the form
2643 * to array->context.
2645 * The domain of "size" is assumed to be zero-dimensional.
2647 static struct pet_array
*update_size(struct pet_array
*array
, int pos
,
2648 __isl_take isl_pw_aff
*size
)
2661 valid
= isl_set_params(isl_pw_aff_nonneg_set(isl_pw_aff_copy(size
)));
2662 array
->context
= isl_set_intersect(array
->context
, valid
);
2664 dim
= isl_set_get_space(array
->extent
);
2665 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2666 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, pos
, 1);
2667 univ
= isl_set_universe(isl_aff_get_domain_space(aff
));
2668 index
= isl_pw_aff_alloc(univ
, aff
);
2670 size
= isl_pw_aff_add_dims(size
, isl_dim_in
,
2671 isl_set_dim(array
->extent
, isl_dim_set
));
2672 id
= isl_set_get_tuple_id(array
->extent
);
2673 size
= isl_pw_aff_set_tuple_id(size
, isl_dim_in
, id
);
2674 bound
= isl_pw_aff_lt_set(index
, size
);
2676 array
->extent
= isl_set_intersect(array
->extent
, bound
);
2678 if (!array
->context
|| !array
->extent
)
2679 return pet_array_free(array
);
2683 isl_pw_aff_free(size
);
2687 #ifdef HAVE_DECAYEDTYPE
2689 /* If "qt" is a decayed type, then set *decayed to true and
2690 * return the original type.
2692 static QualType
undecay(QualType qt
, bool *decayed
)
2694 const Type
*type
= qt
.getTypePtr();
2696 *decayed
= isa
<DecayedType
>(type
);
2698 qt
= cast
<DecayedType
>(type
)->getOriginalType();
2704 /* If "qt" is a decayed type, then set *decayed to true and
2705 * return the original type.
2706 * Since this version of clang does not define a DecayedType,
2707 * we cannot obtain the original type even if it had been decayed and
2708 * we set *decayed to false.
2710 static QualType
undecay(QualType qt
, bool *decayed
)
2718 /* Figure out the size of the array at position "pos" and all
2719 * subsequent positions from "qt" and update the corresponding
2720 * argument of "expr" accordingly.
2722 * The initial type (when pos is zero) may be a pointer type decayed
2723 * from an array type, if this initial type is the type of a function
2724 * argument. This only happens if the original array type has
2725 * a constant size in the outer dimension as otherwise we get
2726 * a VariableArrayType. Try and obtain this original type (if available) and
2727 * take the outer array size into account if it was marked static.
2729 __isl_give pet_expr
*PetScan::set_upper_bounds(__isl_take pet_expr
*expr
,
2730 QualType qt
, int pos
)
2732 const ArrayType
*atype
;
2734 bool decayed
= false;
2740 qt
= undecay(qt
, &decayed
);
2742 if (qt
->isPointerType()) {
2743 qt
= qt
->getPointeeType();
2744 return set_upper_bounds(expr
, qt
, pos
+ 1);
2746 if (!qt
->isArrayType())
2749 qt
= qt
->getCanonicalTypeInternal();
2750 atype
= cast
<ArrayType
>(qt
.getTypePtr());
2752 if (decayed
&& atype
->getSizeModifier() != ArrayType::Static
) {
2753 qt
= atype
->getElementType();
2754 return set_upper_bounds(expr
, qt
, pos
+ 1);
2757 if (qt
->isConstantArrayType()) {
2758 const ConstantArrayType
*ca
= cast
<ConstantArrayType
>(atype
);
2759 size
= extract_expr(ca
->getSize());
2760 expr
= pet_expr_set_arg(expr
, pos
, size
);
2761 } else if (qt
->isVariableArrayType()) {
2762 const VariableArrayType
*vla
= cast
<VariableArrayType
>(atype
);
2763 size
= extract_expr(vla
->getSizeExpr());
2764 expr
= pet_expr_set_arg(expr
, pos
, size
);
2767 qt
= atype
->getElementType();
2769 return set_upper_bounds(expr
, qt
, pos
+ 1);
2772 /* Construct a pet_expr that holds the sizes of the array represented by "id".
2773 * The returned expression is a call expression with as arguments
2774 * the sizes in each dimension. If we are unable to derive the size
2775 * in a given dimension, then the corresponding argument is set to infinity.
2776 * In fact, we initialize all arguments to infinity and then update
2777 * them if we are able to figure out the size.
2779 * The result is stored in the id_size cache so that it can be reused
2780 * if this method is called on the same array identifier later.
2781 * The result is also stored in the type_size cache in case
2782 * it gets called on a different array identifier with the same type.
2784 __isl_give pet_expr
*PetScan::get_array_size(__isl_keep isl_id
*id
)
2786 QualType qt
= pet_id_get_array_type(id
);
2788 pet_expr
*expr
, *inf
;
2789 const Type
*type
= qt
.getTypePtr();
2790 isl_maybe_pet_expr m
;
2792 m
= isl_id_to_pet_expr_try_get(id_size
, id
);
2793 if (m
.valid
< 0 || m
.valid
)
2795 if (type_size
.find(type
) != type_size
.end())
2796 return pet_expr_copy(type_size
[type
]);
2798 depth
= pet_clang_array_depth(qt
);
2799 inf
= pet_expr_new_int(isl_val_infty(ctx
));
2800 expr
= pet_expr_new_call(ctx
, "bounds", depth
);
2801 for (int i
= 0; i
< depth
; ++i
)
2802 expr
= pet_expr_set_arg(expr
, i
, pet_expr_copy(inf
));
2805 expr
= set_upper_bounds(expr
, qt
, 0);
2806 type_size
[type
] = pet_expr_copy(expr
);
2807 id_size
= isl_id_to_pet_expr_set(id_size
, isl_id_copy(id
),
2808 pet_expr_copy(expr
));
2813 /* Set the array size of the array identified by "id" to "size",
2814 * replacing any previously stored value.
2816 void PetScan::set_array_size(__isl_take isl_id
*id
, __isl_take pet_expr
*size
)
2818 id_size
= isl_id_to_pet_expr_set(id_size
, id
, size
);
2821 /* Does "expr" represent the "integer" infinity?
2823 static int is_infty(__isl_keep pet_expr
*expr
)
2828 if (pet_expr_get_type(expr
) != pet_expr_int
)
2830 v
= pet_expr_int_get_val(expr
);
2831 res
= isl_val_is_infty(v
);
2837 /* Figure out the dimensions of an array "array" and
2838 * update "array" accordingly.
2840 * We first construct a pet_expr that holds the sizes of the array
2841 * in each dimension. The resulting expression may containing
2842 * infinity values for dimension where we are unable to derive
2843 * a size expression.
2845 * The arguments of the size expression that have a value different from
2846 * infinity are then converted to an affine expression
2847 * within the context "pc" and incorporated into the size of "array".
2848 * If we are unable to convert a size expression to an affine expression or
2849 * if the size is not a (symbolic) constant,
2850 * then we leave the corresponding size of "array" untouched.
2852 struct pet_array
*PetScan::set_upper_bounds(struct pet_array
*array
,
2853 __isl_keep pet_context
*pc
)
2862 id
= isl_set_get_tuple_id(array
->extent
);
2864 return pet_array_free(array
);
2865 expr
= get_array_size(id
);
2868 n
= pet_expr_get_n_arg(expr
);
2869 for (int i
= 0; i
< n
; ++i
) {
2873 arg
= pet_expr_get_arg(expr
, i
);
2874 if (!is_infty(arg
)) {
2877 size
= pet_expr_extract_affine(arg
, pc
);
2878 dim
= isl_pw_aff_dim(size
, isl_dim_in
);
2880 array
= pet_array_free(array
);
2881 else if (isl_pw_aff_involves_nan(size
) ||
2882 isl_pw_aff_involves_dims(size
, isl_dim_in
, 0, dim
))
2883 isl_pw_aff_free(size
);
2885 size
= isl_pw_aff_drop_dims(size
,
2886 isl_dim_in
, 0, dim
);
2887 array
= update_size(array
, i
, size
);
2892 pet_expr_free(expr
);
2897 /* Does "decl" have a definition that we can keep track of in a pet_type?
2899 static bool has_printable_definition(RecordDecl
*decl
)
2901 if (!decl
->getDeclName())
2903 return decl
->getLexicalDeclContext() == decl
->getDeclContext();
2906 /* Add all TypedefType objects that appear when dereferencing "type"
2909 static void insert_intermediate_typedefs(PetTypes
*types
, QualType type
)
2911 type
= pet_clang_base_or_typedef_type(type
);
2912 while (isa
<TypedefType
>(type
)) {
2913 const TypedefType
*tt
;
2915 tt
= cast
<TypedefType
>(type
);
2916 types
->insert(tt
->getDecl());
2917 type
= tt
->desugar();
2918 type
= pet_clang_base_or_typedef_type(type
);
2922 /* Construct and return a pet_array corresponding to the variable
2923 * represented by "id".
2924 * In particular, initialize array->extent to
2926 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2928 * and then call set_upper_bounds to set the upper bounds on the indices
2929 * based on the type of the variable. The upper bounds are converted
2930 * to affine expressions within the context "pc".
2932 * If the base type is that of a record with a top-level definition or
2933 * of a typedef and if "types" is not null, then the RecordDecl or
2934 * TypedefType corresponding to the type, as well as any intermediate
2935 * TypedefType, is added to "types".
2937 * If the base type is that of a record with no top-level definition,
2938 * then we replace it by "<subfield>".
2940 * If the variable is a scalar, i.e., a zero-dimensional array,
2941 * then the "const" qualifier, if any, is removed from the base type.
2942 * This makes it easier for users of pet to turn initializations
2945 struct pet_array
*PetScan::extract_array(__isl_keep isl_id
*id
,
2946 PetTypes
*types
, __isl_keep pet_context
*pc
)
2948 struct pet_array
*array
;
2949 QualType qt
= pet_id_get_array_type(id
);
2950 int depth
= pet_clang_array_depth(qt
);
2951 QualType base
= pet_clang_base_type(qt
);
2955 array
= isl_calloc_type(ctx
, struct pet_array
);
2959 space
= isl_space_set_alloc(ctx
, 0, depth
);
2960 space
= isl_space_set_tuple_id(space
, isl_dim_set
, isl_id_copy(id
));
2962 array
->extent
= isl_set_nat_universe(space
);
2964 space
= isl_space_params_alloc(ctx
, 0);
2965 array
->context
= isl_set_universe(space
);
2967 array
= set_upper_bounds(array
, pc
);
2972 base
.removeLocalConst();
2973 name
= base
.getAsString();
2976 insert_intermediate_typedefs(types
, qt
);
2977 if (isa
<TypedefType
>(base
)) {
2978 types
->insert(cast
<TypedefType
>(base
)->getDecl());
2979 } else if (base
->isRecordType()) {
2980 RecordDecl
*decl
= pet_clang_record_decl(base
);
2981 TypedefNameDecl
*typedecl
;
2982 typedecl
= decl
->getTypedefNameForAnonDecl();
2984 types
->insert(typedecl
);
2985 else if (has_printable_definition(decl
))
2986 types
->insert(decl
);
2988 name
= "<subfield>";
2992 array
->element_type
= strdup(name
.c_str());
2993 array
->element_is_record
= base
->isRecordType();
2994 array
->element_size
= size_in_bytes(ast_context
, base
);
2999 /* Construct and return a pet_array corresponding to the variable "decl".
3001 struct pet_array
*PetScan::extract_array(ValueDecl
*decl
,
3002 PetTypes
*types
, __isl_keep pet_context
*pc
)
3007 id
= pet_id_from_decl(ctx
, decl
);
3008 array
= extract_array(id
, types
, pc
);
3014 /* Construct and return a pet_array corresponding to the sequence
3015 * of declarations represented by "decls".
3016 * The upper bounds of the array are converted to affine expressions
3017 * within the context "pc".
3018 * If the sequence contains a single declaration, then it corresponds
3019 * to a simple array access. Otherwise, it corresponds to a member access,
3020 * with the declaration for the substructure following that of the containing
3021 * structure in the sequence of declarations.
3022 * We start with the outermost substructure and then combine it with
3023 * information from the inner structures.
3025 * Additionally, keep track of all required types in "types".
3027 struct pet_array
*PetScan::extract_array(__isl_keep isl_id_list
*decls
,
3028 PetTypes
*types
, __isl_keep pet_context
*pc
)
3032 struct pet_array
*array
;
3034 id
= isl_id_list_get_id(decls
, 0);
3035 array
= extract_array(id
, types
, pc
);
3038 n
= isl_id_list_n_id(decls
);
3039 for (i
= 1; i
< n
; ++i
) {
3040 struct pet_array
*parent
;
3041 const char *base_name
, *field_name
;
3045 id
= isl_id_list_get_id(decls
, i
);
3046 array
= extract_array(id
, types
, pc
);
3049 return pet_array_free(parent
);
3051 base_name
= isl_set_get_tuple_name(parent
->extent
);
3052 field_name
= isl_set_get_tuple_name(array
->extent
);
3053 product_name
= pet_array_member_access_name(ctx
,
3054 base_name
, field_name
);
3056 array
->extent
= isl_set_product(isl_set_copy(parent
->extent
),
3059 array
->extent
= isl_set_set_tuple_name(array
->extent
,
3061 array
->context
= isl_set_intersect(array
->context
,
3062 isl_set_copy(parent
->context
));
3064 pet_array_free(parent
);
3067 if (!array
->extent
|| !array
->context
|| !product_name
)
3068 return pet_array_free(array
);
3074 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3075 RecordDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3076 std::set
<TypeDecl
*> &types_done
);
3077 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3078 TypedefNameDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3079 std::set
<TypeDecl
*> &types_done
);
3081 /* For each of the fields of "decl" that is itself a record type
3082 * or a typedef, or an array of such type, add a corresponding pet_type
3085 static struct pet_scop
*add_field_types(isl_ctx
*ctx
, struct pet_scop
*scop
,
3086 RecordDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3087 std::set
<TypeDecl
*> &types_done
)
3089 RecordDecl::field_iterator it
;
3091 for (it
= decl
->field_begin(); it
!= decl
->field_end(); ++it
) {
3092 QualType type
= it
->getType();
3094 type
= pet_clang_base_or_typedef_type(type
);
3095 if (isa
<TypedefType
>(type
)) {
3096 TypedefNameDecl
*typedefdecl
;
3098 typedefdecl
= cast
<TypedefType
>(type
)->getDecl();
3099 scop
= add_type(ctx
, scop
, typedefdecl
,
3100 PP
, types
, types_done
);
3101 } else if (type
->isRecordType()) {
3104 record
= pet_clang_record_decl(type
);
3105 scop
= add_type(ctx
, scop
, record
,
3106 PP
, types
, types_done
);
3113 /* Add a pet_type corresponding to "decl" to "scop", provided
3114 * it is a member of types.records and it has not been added before
3115 * (i.e., it is not a member of "types_done").
3117 * Since we want the user to be able to print the types
3118 * in the order in which they appear in the scop, we need to
3119 * make sure that types of fields in a structure appear before
3120 * that structure. We therefore call ourselves recursively
3121 * through add_field_types on the types of all record subfields.
3123 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3124 RecordDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3125 std::set
<TypeDecl
*> &types_done
)
3128 llvm::raw_string_ostream
S(s
);
3130 if (types
.records
.find(decl
) == types
.records
.end())
3132 if (types_done
.find(decl
) != types_done
.end())
3135 add_field_types(ctx
, scop
, decl
, PP
, types
, types_done
);
3137 if (strlen(decl
->getName().str().c_str()) == 0)
3140 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
3143 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
3144 decl
->getName().str().c_str(), s
.c_str());
3145 if (!scop
->types
[scop
->n_type
])
3146 return pet_scop_free(scop
);
3148 types_done
.insert(decl
);
3155 /* Add a pet_type corresponding to "decl" to "scop", provided
3156 * it is a member of types.typedefs and it has not been added before
3157 * (i.e., it is not a member of "types_done").
3159 * If the underlying type is a structure, then we print the typedef
3160 * ourselves since clang does not print the definition of the structure
3161 * in the typedef. We also make sure in this case that the types of
3162 * the fields in the structure are added first.
3163 * Since the definition of the structure also gets printed this way,
3164 * add it to types_done such that it will not be printed again,
3165 * not even without the typedef.
3167 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3168 TypedefNameDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3169 std::set
<TypeDecl
*> &types_done
)
3172 llvm::raw_string_ostream
S(s
);
3173 QualType qt
= decl
->getUnderlyingType();
3175 if (types
.typedefs
.find(decl
) == types
.typedefs
.end())
3177 if (types_done
.find(decl
) != types_done
.end())
3180 if (qt
->isRecordType()) {
3181 RecordDecl
*rec
= pet_clang_record_decl(qt
);
3183 add_field_types(ctx
, scop
, rec
, PP
, types
, types_done
);
3185 rec
->print(S
, PrintingPolicy(PP
.getLangOpts()));
3187 S
<< decl
->getName();
3188 types_done
.insert(rec
);
3190 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
3194 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
3195 decl
->getName().str().c_str(), s
.c_str());
3196 if (!scop
->types
[scop
->n_type
])
3197 return pet_scop_free(scop
);
3199 types_done
.insert(decl
);
3206 /* Construct a list of pet_arrays, one for each array (or scalar)
3207 * accessed inside "scop", add this list to "scop" and return the result.
3208 * The upper bounds of the arrays are converted to affine expressions
3209 * within the context "pc".
3211 * The context of "scop" is updated with the intersection of
3212 * the contexts of all arrays, i.e., constraints on the parameters
3213 * that ensure that the arrays have a valid (non-negative) size.
3215 * If any of the extracted arrays refers to a member access or
3216 * has a typedef'd type as base type,
3217 * then also add the required types to "scop".
3218 * The typedef types are printed first because their definitions
3219 * may include the definition of a struct and these struct definitions
3220 * should not be printed separately. While the typedef definition
3221 * is being printed, the struct is marked as having been printed as well,
3222 * such that the later printing of the struct by itself can be prevented.
3224 * If the sequence of nested array declarations from which the pet_array
3225 * is extracted appears as the prefix of some other sequence,
3226 * then the pet_array is marked as "outer".
3227 * The arrays that already appear in scop->arrays at the start of
3228 * this function are assumed to be simple arrays, so they are not marked
3231 struct pet_scop
*PetScan::scan_arrays(struct pet_scop
*scop
,
3232 __isl_keep pet_context
*pc
)
3235 array_desc_set arrays
, has_sub
;
3236 array_desc_set::iterator it
;
3238 std::set
<TypeDecl
*> types_done
;
3239 std::set
<clang::RecordDecl
*, less_name
>::iterator records_it
;
3240 std::set
<clang::TypedefNameDecl
*, less_name
>::iterator typedefs_it
;
3242 struct pet_array
**scop_arrays
;
3247 pet_scop_collect_arrays(scop
, arrays
);
3248 if (arrays
.size() == 0)
3251 n_array
= scop
->n_array
;
3253 scop_arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
3254 n_array
+ arrays
.size());
3257 scop
->arrays
= scop_arrays
;
3259 for (it
= arrays
.begin(); it
!= arrays
.end(); ++it
) {
3260 isl_id_list
*list
= isl_id_list_copy(*it
);
3261 int n
= isl_id_list_n_id(list
);
3262 list
= isl_id_list_drop(list
, n
- 1, 1);
3263 has_sub
.insert(list
);
3266 for (it
= arrays
.begin(), i
= 0; it
!= arrays
.end(); ++it
, ++i
) {
3267 struct pet_array
*array
;
3268 array
= extract_array(*it
, &types
, pc
);
3269 scop
->arrays
[n_array
+ i
] = array
;
3270 if (!scop
->arrays
[n_array
+ i
])
3272 if (has_sub
.find(*it
) != has_sub
.end())
3275 scop
->context
= isl_set_intersect(scop
->context
,
3276 isl_set_copy(array
->context
));
3281 n
= types
.records
.size() + types
.typedefs
.size();
3285 scop
->types
= isl_alloc_array(ctx
, struct pet_type
*, n
);
3289 for (typedefs_it
= types
.typedefs
.begin();
3290 typedefs_it
!= types
.typedefs
.end(); ++typedefs_it
)
3291 scop
= add_type(ctx
, scop
, *typedefs_it
, PP
, types
, types_done
);
3293 for (records_it
= types
.records
.begin();
3294 records_it
!= types
.records
.end(); ++records_it
)
3295 scop
= add_type(ctx
, scop
, *records_it
, PP
, types
, types_done
);
3299 pet_scop_free(scop
);
3303 /* Bound all parameters in scop->context to the possible values
3304 * of the corresponding C variable.
3306 static struct pet_scop
*add_parameter_bounds(struct pet_scop
*scop
)
3313 n
= isl_set_dim(scop
->context
, isl_dim_param
);
3314 for (int i
= 0; i
< n
; ++i
) {
3318 id
= isl_set_get_dim_id(scop
->context
, isl_dim_param
, i
);
3319 if (pet_nested_in_id(id
)) {
3321 isl_die(isl_set_get_ctx(scop
->context
),
3323 "unresolved nested parameter", goto error
);
3325 decl
= pet_id_get_decl(id
);
3328 scop
->context
= set_parameter_bounds(scop
->context
, i
, decl
);
3336 pet_scop_free(scop
);
3340 /* Construct a pet_scop from the given function.
3342 * If the scop was delimited by scop and endscop pragmas, then we override
3343 * the file offsets by those derived from the pragmas.
3345 struct pet_scop
*PetScan::scan(FunctionDecl
*fd
)
3350 stmt
= fd
->getBody();
3352 if (options
->autodetect
) {
3353 set_current_stmt(stmt
);
3354 scop
= extract_scop(extract(stmt
, true));
3356 current_line
= loc
.start_line
;
3358 scop
= pet_scop_update_start_end(scop
, loc
.start
, loc
.end
);
3360 scop
= add_parameter_bounds(scop
);
3361 scop
= pet_scop_gist(scop
, value_bounds
);
3366 /* Update this->last_line and this->current_line based on the fact
3367 * that we are about to consider "stmt".
3369 void PetScan::set_current_stmt(Stmt
*stmt
)
3371 SourceLocation loc
= begin_loc(stmt
);
3372 SourceManager
&SM
= PP
.getSourceManager();
3374 last_line
= current_line
;
3375 current_line
= SM
.getExpansionLineNumber(loc
);
3378 /* Is the current statement marked by an independent pragma?
3379 * That is, is there an independent pragma on a line between
3380 * the line of the current statement and the line of the previous statement.
3381 * The search is not implemented very efficiently. We currently
3382 * assume that there are only a few independent pragmas, if any.
3384 bool PetScan::is_current_stmt_marked_independent()
3386 for (unsigned i
= 0; i
< independent
.size(); ++i
) {
3387 unsigned line
= independent
[i
].line
;
3389 if (last_line
< line
&& line
< current_line
)