2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
40 #include <isl/space.h>
41 #include <isl/local_space.h>
43 #include <isl/id_to_pw_aff.h>
46 #include <isl/union_set.h>
55 #include "tree2scop.h"
57 /* If "stmt" is an affine assumption, then record the assumption in "pc".
59 static __isl_give pet_context
*add_affine_assumption(struct pet_stmt
*stmt
,
60 __isl_take pet_context
*pc
)
65 affine
= pet_stmt_is_affine_assume(stmt
);
67 return pet_context_free(pc
);
70 cond
= pet_stmt_assume_get_affine_condition(stmt
);
71 cond
= isl_set_reset_tuple_id(cond
);
72 pc
= pet_context_intersect_domain(pc
, cond
);
76 /* Given a scop "scop" derived from an assumption statement,
77 * record the assumption in "pc", if it is affine.
78 * Note that "scop" should consist of exactly one statement.
80 static __isl_give pet_context
*scop_add_affine_assumption(
81 __isl_keep pet_scop
*scop
, __isl_take pet_context
*pc
)
86 return pet_context_free(pc
);
87 for (i
= 0; i
< scop
->n_stmt
; ++i
)
88 pc
= add_affine_assumption(scop
->stmts
[i
], pc
);
93 /* Update "pc" by taking into account the writes in "stmt".
94 * That is, clear any previously assigned values to variables
95 * that are written by "stmt".
97 static __isl_give pet_context
*handle_writes(struct pet_stmt
*stmt
,
98 __isl_take pet_context
*pc
)
100 return pet_context_clear_writes_in_tree(pc
, stmt
->body
);
103 /* Update "pc" based on the write accesses in "scop".
105 static __isl_give pet_context
*scop_handle_writes(struct pet_scop
*scop
,
106 __isl_take pet_context
*pc
)
111 return pet_context_free(pc
);
112 for (i
= 0; i
< scop
->n_stmt
; ++i
)
113 pc
= handle_writes(scop
->stmts
[i
], pc
);
118 /* Wrapper around pet_expr_resolve_assume
119 * for use as a callback to pet_tree_map_expr.
121 static __isl_give pet_expr
*resolve_assume(__isl_take pet_expr
*expr
,
124 pet_context
*pc
= user
;
126 return pet_expr_resolve_assume(expr
, pc
);
129 /* Check if any expression inside "tree" is an assume expression and
130 * if its single argument can be converted to an affine expression
131 * in the context of "pc".
132 * If so, replace the argument by the affine expression.
134 __isl_give pet_tree
*pet_tree_resolve_assume(__isl_take pet_tree
*tree
,
135 __isl_keep pet_context
*pc
)
137 return pet_tree_map_expr(tree
, &resolve_assume
, pc
);
140 /* Convert a pet_tree to a pet_scop with one statement within the context "pc".
141 * "tree" has already been evaluated in the context of "pc".
142 * This mainly involves resolving nested expression parameters
143 * and setting the name of the iteration space.
144 * The name is given by tree->label if it is non-NULL. Otherwise,
145 * it is of the form S_<stmt_nr>.
147 static struct pet_scop
*scop_from_evaluated_tree(__isl_take pet_tree
*tree
,
148 int stmt_nr
, __isl_keep pet_context
*pc
)
154 space
= pet_context_get_space(pc
);
156 tree
= pet_tree_resolve_nested(tree
, space
);
157 tree
= pet_tree_resolve_assume(tree
, pc
);
159 domain
= pet_context_get_domain(pc
);
160 ps
= pet_stmt_from_pet_tree(domain
, stmt_nr
, tree
);
161 return pet_scop_from_pet_stmt(space
, ps
);
164 /* Convert a top-level pet_expr to a pet_scop with one statement
165 * within the context "pc".
166 * "expr" has already been evaluated in the context of "pc".
167 * We construct a pet_tree from "expr" and continue with
168 * scop_from_evaluated_tree.
169 * The name is of the form S_<stmt_nr>.
170 * The location of the statement is set to "loc".
172 static struct pet_scop
*scop_from_evaluated_expr(__isl_take pet_expr
*expr
,
173 int stmt_nr
, __isl_take pet_loc
*loc
, __isl_keep pet_context
*pc
)
177 tree
= pet_tree_new_expr(expr
);
178 tree
= pet_tree_set_loc(tree
, loc
);
179 return scop_from_evaluated_tree(tree
, stmt_nr
, pc
);
182 /* Convert a pet_tree to a pet_scop with one statement within the context "pc".
183 * "tree" has not yet been evaluated in the context of "pc".
184 * We evaluate "tree" in the context of "pc" and continue with
185 * scop_from_evaluated_tree.
186 * The statement name is given by tree->label if it is non-NULL. Otherwise,
187 * it is of the form S_<stmt_nr>.
189 static struct pet_scop
*scop_from_unevaluated_tree(__isl_take pet_tree
*tree
,
190 int stmt_nr
, __isl_keep pet_context
*pc
)
192 tree
= pet_context_evaluate_tree(pc
, tree
);
193 return scop_from_evaluated_tree(tree
, stmt_nr
, pc
);
196 /* Convert a top-level pet_expr to a pet_scop with one statement
197 * within the context "pc", where "expr" has not yet been evaluated
198 * in the context of "pc".
199 * We construct a pet_tree from "expr" and continue with
200 * scop_from_unevaluated_tree.
201 * The statement name is of the form S_<stmt_nr>.
202 * The location of the statement is set to "loc".
204 static struct pet_scop
*scop_from_expr(__isl_take pet_expr
*expr
,
205 int stmt_nr
, __isl_take pet_loc
*loc
, __isl_keep pet_context
*pc
)
209 tree
= pet_tree_new_expr(expr
);
210 tree
= pet_tree_set_loc(tree
, loc
);
211 return scop_from_unevaluated_tree(tree
, stmt_nr
, pc
);
214 /* Construct a pet_scop with a single statement killing the entire
216 * The location of the statement is set to "loc".
218 static struct pet_scop
*kill(__isl_take pet_loc
*loc
, struct pet_array
*array
,
219 __isl_keep pet_context
*pc
, struct pet_state
*state
)
224 isl_multi_pw_aff
*index
;
230 ctx
= isl_set_get_ctx(array
->extent
);
231 access
= isl_map_from_range(isl_set_copy(array
->extent
));
232 id
= isl_set_get_tuple_id(array
->extent
);
233 space
= isl_space_alloc(ctx
, 0, 0, 0);
234 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
235 index
= isl_multi_pw_aff_zero(space
);
236 expr
= pet_expr_kill_from_access_and_index(access
, index
);
237 return scop_from_expr(expr
, state
->n_stmt
++, loc
, pc
);
243 /* Construct and return a pet_array corresponding to the variable
244 * accessed by "access" by calling the extract_array callback.
246 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
247 __isl_keep pet_context
*pc
, struct pet_state
*state
)
249 return state
->extract_array(access
, pc
, state
->user
);
252 /* Construct a pet_scop for a (single) variable declaration
253 * within the context "pc".
255 * The scop contains the variable being declared (as an array)
256 * and a statement killing the array.
258 * If the declaration comes with an initialization, then the scop
259 * also contains an assignment to the variable.
261 static struct pet_scop
*scop_from_decl(__isl_keep pet_tree
*tree
,
262 __isl_keep pet_context
*pc
, struct pet_state
*state
)
266 struct pet_array
*array
;
267 struct pet_scop
*scop_decl
, *scop
;
268 pet_expr
*lhs
, *rhs
, *pe
;
270 array
= extract_array(tree
->u
.d
.var
, pc
, state
);
273 scop_decl
= kill(pet_tree_get_loc(tree
), array
, pc
, state
);
274 scop_decl
= pet_scop_add_array(scop_decl
, array
);
276 if (tree
->type
!= pet_tree_decl_init
)
279 lhs
= pet_expr_copy(tree
->u
.d
.var
);
280 rhs
= pet_expr_copy(tree
->u
.d
.init
);
281 type_size
= pet_expr_get_type_size(lhs
);
282 pe
= pet_expr_new_binary(type_size
, pet_op_assign
, lhs
, rhs
);
283 scop
= scop_from_expr(pe
, state
->n_stmt
++, pet_tree_get_loc(tree
), pc
);
285 ctx
= pet_tree_get_ctx(tree
);
286 scop
= pet_scop_add_seq(ctx
, scop_decl
, scop
);
291 /* Does "tree" represent a kill statement?
292 * That is, is it an expression statement that "calls" __pencil_kill?
294 static int is_pencil_kill(__isl_keep pet_tree
*tree
)
301 if (tree
->type
!= pet_tree_expr
)
303 expr
= tree
->u
.e
.expr
;
304 if (pet_expr_get_type(expr
) != pet_expr_call
)
306 name
= pet_expr_call_get_name(expr
);
309 return !strcmp(name
, "__pencil_kill");
312 /* Add a kill to "scop" that kills what is accessed by
313 * the access expression "expr".
315 * Mark the access as a write prior to evaluation to avoid
316 * the access being replaced by a possible known value
317 * during the evaluation.
319 * If the access expression has any arguments (after evaluation
320 * in the context of "pc"), then we ignore it, since we cannot
321 * tell which elements are definitely killed.
323 * Otherwise, we extend the index expression to the dimension
324 * of the accessed array and intersect with the extent of the array and
325 * add a kill expression that kills these array elements is added to "scop".
327 static struct pet_scop
*scop_add_kill(struct pet_scop
*scop
,
328 __isl_take pet_expr
*expr
, __isl_take pet_loc
*loc
,
329 __isl_keep pet_context
*pc
, struct pet_state
*state
)
333 isl_multi_pw_aff
*index
;
336 struct pet_array
*array
;
337 struct pet_scop
*scop_i
;
339 expr
= pet_expr_access_set_write(expr
, 1);
340 expr
= pet_context_evaluate_expr(pc
, expr
);
343 if (expr
->n_arg
!= 0) {
348 array
= extract_array(expr
, pc
, state
);
351 index
= pet_expr_access_get_index(expr
);
353 map
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index
));
354 id
= isl_map_get_tuple_id(map
, isl_dim_out
);
355 dim1
= isl_set_dim(array
->extent
, isl_dim_set
);
356 dim2
= isl_map_dim(map
, isl_dim_out
);
357 map
= isl_map_add_dims(map
, isl_dim_out
, dim1
- dim2
);
358 map
= isl_map_set_tuple_id(map
, isl_dim_out
, id
);
359 map
= isl_map_intersect_range(map
, isl_set_copy(array
->extent
));
360 pet_array_free(array
);
361 kill
= pet_expr_kill_from_access_and_index(map
, index
);
362 scop_i
= scop_from_evaluated_expr(kill
, state
->n_stmt
++, loc
, pc
);
363 scop
= pet_scop_add_par(state
->ctx
, scop
, scop_i
);
369 return pet_scop_free(scop
);
372 /* For each argument of the __pencil_kill call in "tree" that
373 * represents an access, add a kill statement to "scop" killing the accessed
376 static struct pet_scop
*scop_from_pencil_kill(__isl_keep pet_tree
*tree
,
377 __isl_keep pet_context
*pc
, struct pet_state
*state
)
380 struct pet_scop
*scop
;
383 call
= tree
->u
.e
.expr
;
385 scop
= pet_scop_empty(pet_context_get_space(pc
));
387 n
= pet_expr_get_n_arg(call
);
388 for (i
= 0; i
< n
; ++i
) {
392 arg
= pet_expr_get_arg(call
, i
);
394 return pet_scop_free(scop
);
395 if (pet_expr_get_type(arg
) != pet_expr_access
) {
399 loc
= pet_tree_get_loc(tree
);
400 scop
= scop_add_kill(scop
, arg
, loc
, pc
, state
);
406 /* Construct a pet_scop for an expression statement within the context "pc".
408 * If the expression calls __pencil_kill, then it needs to be converted
409 * into zero or more kill statements.
410 * Otherwise, a scop is extracted directly from the tree.
412 static struct pet_scop
*scop_from_tree_expr(__isl_keep pet_tree
*tree
,
413 __isl_keep pet_context
*pc
, struct pet_state
*state
)
417 is_kill
= is_pencil_kill(tree
);
421 return scop_from_pencil_kill(tree
, pc
, state
);
422 return scop_from_unevaluated_tree(pet_tree_copy(tree
),
423 state
->n_stmt
++, pc
);
426 /* Construct a pet_scop for a return statement within the context "pc".
428 static struct pet_scop
*scop_from_return(__isl_keep pet_tree
*tree
,
429 __isl_keep pet_context
*pc
, struct pet_state
*state
)
431 return scop_from_unevaluated_tree(pet_tree_copy(tree
),
432 state
->n_stmt
++, pc
);
435 /* Return those elements in the space of "cond" that come after
436 * (based on "sign") an element in "cond" in the final dimension.
438 static __isl_give isl_set
*after(__isl_take isl_set
*cond
, int sign
)
441 isl_map
*previous_to_this
;
444 dim
= isl_set_dim(cond
, isl_dim_set
);
445 space
= isl_space_map_from_set(isl_set_get_space(cond
));
446 previous_to_this
= isl_map_universe(space
);
447 for (i
= 0; i
+ 1 < dim
; ++i
)
448 previous_to_this
= isl_map_equate(previous_to_this
,
449 isl_dim_in
, i
, isl_dim_out
, i
);
451 previous_to_this
= isl_map_order_lt(previous_to_this
,
452 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
454 previous_to_this
= isl_map_order_gt(previous_to_this
,
455 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
457 cond
= isl_set_apply(cond
, previous_to_this
);
462 /* Remove those iterations of "domain" that have an earlier iteration
463 * (based on "sign") in the final dimension where "skip" is satisfied.
464 * If "apply_skip_map" is set, then "skip_map" is first applied
465 * to the embedded skip condition before removing it from the domain.
467 static __isl_give isl_set
*apply_affine_break(__isl_take isl_set
*domain
,
468 __isl_take isl_set
*skip
, int sign
,
469 int apply_skip_map
, __isl_keep isl_map
*skip_map
)
472 skip
= isl_set_apply(skip
, isl_map_copy(skip_map
));
473 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
474 return isl_set_subtract(domain
, after(skip
, sign
));
477 /* Create a single-dimensional multi-affine expression on the domain space
478 * of "pc" that is equal to the final dimension of this domain.
479 * "loop_nr" is the sequence number of the corresponding loop.
480 * If "id" is not NULL, then it is used as the output tuple name.
481 * Otherwise, the name is constructed as L_<loop_nr>.
483 static __isl_give isl_multi_aff
*map_to_last(__isl_keep pet_context
*pc
,
484 int loop_nr
, __isl_keep isl_id
*id
)
494 space
= pet_context_get_space(pc
);
495 pos
= isl_space_dim(space
, isl_dim_set
) - 1;
496 ls
= isl_local_space_from_space(space
);
497 aff
= isl_aff_var_on_domain(ls
, isl_dim_set
, pos
);
498 ma
= isl_multi_aff_from_aff(aff
);
501 label
= isl_id_copy(id
);
503 snprintf(name
, sizeof(name
), "L_%d", loop_nr
);
504 label
= isl_id_alloc(pet_context_get_ctx(pc
), name
, NULL
);
506 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
, label
);
511 /* Create an affine expression that maps elements
512 * of an array "id_test" to the previous element in the final dimension
513 * (according to "inc"), provided this element belongs to "domain".
514 * That is, create the affine expression
516 * { id[outer,x] -> id[outer,x - inc] : (outer,x - inc) in domain }
518 static __isl_give isl_multi_pw_aff
*map_to_previous(__isl_take isl_id
*id_test
,
519 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
526 isl_multi_pw_aff
*prev
;
528 pos
= isl_set_dim(domain
, isl_dim_set
) - 1;
529 space
= isl_set_get_space(domain
);
530 space
= isl_space_map_from_set(space
);
531 ma
= isl_multi_aff_identity(space
);
532 aff
= isl_multi_aff_get_aff(ma
, pos
);
533 aff
= isl_aff_add_constant_val(aff
, isl_val_neg(inc
));
534 ma
= isl_multi_aff_set_aff(ma
, pos
, aff
);
535 domain
= isl_set_preimage_multi_aff(domain
, isl_multi_aff_copy(ma
));
536 prev
= isl_multi_pw_aff_from_multi_aff(ma
);
537 pa
= isl_multi_pw_aff_get_pw_aff(prev
, pos
);
538 pa
= isl_pw_aff_intersect_domain(pa
, domain
);
539 prev
= isl_multi_pw_aff_set_pw_aff(prev
, pos
, pa
);
540 prev
= isl_multi_pw_aff_set_tuple_id(prev
, isl_dim_out
, id_test
);
545 /* Add an implication to "scop" expressing that if an element of
546 * virtual array "id_test" has value "satisfied" then all previous elements
547 * of this array (in the final dimension) also have that value.
548 * The set of previous elements is bounded by "domain".
549 * If "sign" is negative then the iterator
550 * is decreasing and we express that all subsequent array elements
551 * (but still defined previously) have the same value.
553 static struct pet_scop
*add_implication(struct pet_scop
*scop
,
554 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
, int sign
,
561 dim
= isl_set_dim(domain
, isl_dim_set
);
562 domain
= isl_set_set_tuple_id(domain
, id_test
);
563 space
= isl_space_map_from_set(isl_set_get_space(domain
));
564 map
= isl_map_universe(space
);
565 for (i
= 0; i
+ 1 < dim
; ++i
)
566 map
= isl_map_equate(map
, isl_dim_in
, i
, isl_dim_out
, i
);
568 map
= isl_map_order_ge(map
,
569 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
571 map
= isl_map_order_le(map
,
572 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
573 map
= isl_map_intersect_range(map
, domain
);
574 scop
= pet_scop_add_implication(scop
, map
, satisfied
);
579 /* Add a filter to "scop" that imposes that it is only executed
580 * when the variable identified by "id_test" has a zero value
581 * for all previous iterations of "domain".
583 * In particular, add a filter that imposes that the array
584 * has a zero value at the previous iteration of domain and
585 * add an implication that implies that it then has that
586 * value for all previous iterations.
588 static struct pet_scop
*scop_add_break(struct pet_scop
*scop
,
589 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
,
590 __isl_take isl_val
*inc
)
592 isl_multi_pw_aff
*prev
;
593 int sign
= isl_val_sgn(inc
);
595 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
596 scop
= add_implication(scop
, id_test
, domain
, sign
, 0);
597 scop
= pet_scop_filter(scop
, prev
, 0);
602 static struct pet_scop
*scop_from_tree(__isl_keep pet_tree
*tree
,
603 __isl_keep pet_context
*pc
, struct pet_state
*state
);
605 /* Construct a pet_scop for an infinite loop around the given body
606 * within the context "pc".
607 * "loop_id" is the label on the loop or NULL if there is no such label.
609 * The domain of "pc" has already been extended with an infinite loop
613 * We extract a pet_scop for the body and then embed it in a loop with
616 * { [outer,t] -> [t] }
618 * If the body contains any break, then it is taken into
619 * account in apply_affine_break (if the skip condition is affine)
620 * or in scop_add_break (if the skip condition is not affine).
622 * Note that in case of an affine skip condition,
623 * since we are dealing with a loop without loop iterator,
624 * the skip condition cannot refer to the current loop iterator and
625 * so effectively, the effect on the iteration domain is of the form
627 * { [outer,0]; [outer,t] : t >= 1 and not skip }
629 static struct pet_scop
*scop_from_infinite_loop(__isl_keep pet_tree
*body
,
630 __isl_keep isl_id
*loop_id
, __isl_keep pet_context
*pc
,
631 struct pet_state
*state
)
637 isl_multi_aff
*sched
;
638 struct pet_scop
*scop
;
639 int has_affine_break
;
642 ctx
= pet_tree_get_ctx(body
);
643 domain
= pet_context_get_domain(pc
);
644 sched
= map_to_last(pc
, state
->n_loop
++, loop_id
);
646 scop
= scop_from_tree(body
, pc
, state
);
648 has_affine_break
= pet_scop_has_affine_skip(scop
, pet_skip_later
);
649 if (has_affine_break
)
650 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
651 has_var_break
= pet_scop_has_var_skip(scop
, pet_skip_later
);
653 id_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
655 scop
= pet_scop_reset_skips(scop
);
656 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), sched
);
657 if (has_affine_break
) {
658 domain
= apply_affine_break(domain
, skip
, 1, 0, NULL
);
659 scop
= pet_scop_intersect_domain_prefix(scop
,
660 isl_set_copy(domain
));
663 scop
= scop_add_break(scop
, id_test
, domain
, isl_val_one(ctx
));
665 isl_set_free(domain
);
670 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
675 * within the context "pc".
677 * Extend the domain of "pc" with an extra inner loop
681 * and construct the scop in scop_from_infinite_loop.
683 static struct pet_scop
*scop_from_infinite_for(__isl_keep pet_tree
*tree
,
684 __isl_keep pet_context
*pc
, struct pet_state
*state
)
686 struct pet_scop
*scop
;
688 pc
= pet_context_copy(pc
);
689 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
691 pc
= pet_context_add_infinite_loop(pc
);
693 scop
= scop_from_infinite_loop(tree
->u
.l
.body
, tree
->label
, pc
, state
);
695 pet_context_free(pc
);
700 /* Construct a pet_scop for a while loop of the form
705 * within the context "pc".
707 * The domain of "pc" has already been extended with an infinite loop
711 * Here, we add the constraints on the outer loop iterators
712 * implied by "pa" and construct the scop in scop_from_infinite_loop.
713 * Note that the intersection with these constraints
714 * may result in an empty loop.
716 static struct pet_scop
*scop_from_affine_while(__isl_keep pet_tree
*tree
,
717 __isl_take isl_pw_aff
*pa
, __isl_take pet_context
*pc
,
718 struct pet_state
*state
)
720 struct pet_scop
*scop
;
721 isl_set
*dom
, *local
;
724 valid
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
725 dom
= isl_pw_aff_non_zero_set(pa
);
726 local
= isl_set_add_dims(isl_set_copy(dom
), isl_dim_set
, 1);
727 pc
= pet_context_intersect_domain(pc
, local
);
728 scop
= scop_from_infinite_loop(tree
->u
.l
.body
, tree
->label
, pc
, state
);
729 scop
= pet_scop_restrict(scop
, dom
);
730 scop
= pet_scop_restrict_context(scop
, valid
);
732 pet_context_free(pc
);
736 /* Construct a scop for a while, given the scops for the condition
737 * and the body, the filter identifier and the iteration domain of
740 * In particular, the scop for the condition is filtered to depend
741 * on "id_test" evaluating to true for all previous iterations
742 * of the loop, while the scop for the body is filtered to depend
743 * on "id_test" evaluating to true for all iterations up to the
745 * The actual filter only imposes that this virtual array has
746 * value one on the previous or the current iteration.
747 * The fact that this condition also applies to the previous
748 * iterations is enforced by an implication.
750 * These filtered scops are then combined into a single scop,
751 * with the condition scop scheduled before the body scop.
753 * "sign" is positive if the iterator increases and negative
756 static struct pet_scop
*scop_add_while(struct pet_scop
*scop_cond
,
757 struct pet_scop
*scop_body
, __isl_take isl_id
*id_test
,
758 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
760 isl_ctx
*ctx
= isl_set_get_ctx(domain
);
762 isl_multi_pw_aff
*test_index
;
763 isl_multi_pw_aff
*prev
;
764 int sign
= isl_val_sgn(inc
);
765 struct pet_scop
*scop
;
767 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
768 scop_cond
= pet_scop_filter(scop_cond
, prev
, 1);
770 space
= isl_space_map_from_set(isl_set_get_space(domain
));
771 test_index
= isl_multi_pw_aff_identity(space
);
772 test_index
= isl_multi_pw_aff_set_tuple_id(test_index
, isl_dim_out
,
773 isl_id_copy(id_test
));
774 scop_body
= pet_scop_filter(scop_body
, test_index
, 1);
776 scop
= pet_scop_add_seq(ctx
, scop_cond
, scop_body
);
777 scop
= add_implication(scop
, id_test
, domain
, sign
, 1);
782 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
783 * evaluating "cond" and writing the result to a virtual scalar,
784 * as expressed by "index".
785 * The expression "cond" has not yet been evaluated in the context of "pc".
786 * Do so within the context "pc".
787 * The location of the statement is set to "loc".
789 static struct pet_scop
*scop_from_non_affine_condition(
790 __isl_take pet_expr
*cond
, int stmt_nr
,
791 __isl_take isl_multi_pw_aff
*index
,
792 __isl_take pet_loc
*loc
, __isl_keep pet_context
*pc
)
794 pet_expr
*expr
, *write
;
796 cond
= pet_context_evaluate_expr(pc
, cond
);
798 write
= pet_expr_from_index(index
);
799 write
= pet_expr_access_set_write(write
, 1);
800 write
= pet_expr_access_set_read(write
, 0);
801 expr
= pet_expr_new_binary(1, pet_op_assign
, write
, cond
);
803 return scop_from_evaluated_expr(expr
, stmt_nr
, loc
, pc
);
806 /* Given that "scop" has an affine skip condition of type pet_skip_now,
807 * apply this skip condition to the domain of "pc".
808 * That is, remove the elements satisfying the skip condition from
809 * the domain of "pc".
811 static __isl_give pet_context
*apply_affine_continue(__isl_take pet_context
*pc
,
812 struct pet_scop
*scop
)
814 isl_set
*domain
, *skip
;
816 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_now
);
817 domain
= pet_context_get_domain(pc
);
818 domain
= isl_set_subtract(domain
, skip
);
819 pc
= pet_context_intersect_domain(pc
, domain
);
824 /* Add a scop for evaluating the loop increment "inc" at the end
825 * of a loop body "scop" within the context "pc".
827 * The skip conditions resulting from continue statements inside
828 * the body do not apply to "inc", but those resulting from break
829 * statements do need to get applied.
831 static struct pet_scop
*scop_add_inc(struct pet_scop
*scop
,
832 __isl_take pet_expr
*inc
, __isl_take pet_loc
*loc
,
833 __isl_keep pet_context
*pc
, struct pet_state
*state
)
835 struct pet_scop
*scop_inc
;
837 pc
= pet_context_copy(pc
);
839 if (pet_scop_has_skip(scop
, pet_skip_later
)) {
840 isl_multi_pw_aff
*skip
;
841 skip
= pet_scop_get_skip(scop
, pet_skip_later
);
842 scop
= pet_scop_set_skip(scop
, pet_skip_now
, skip
);
843 if (pet_scop_has_affine_skip(scop
, pet_skip_now
))
844 pc
= apply_affine_continue(pc
, scop
);
846 pet_scop_reset_skip(scop
, pet_skip_now
);
847 scop_inc
= scop_from_expr(inc
, state
->n_stmt
++, loc
, pc
);
848 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_inc
);
850 pet_context_free(pc
);
855 /* Construct a generic while scop, with iteration domain
856 * { [t] : t >= 0 } around the scop for "tree_body" within the context "pc".
857 * "loop_id" is the label on the loop or NULL if there is no such label.
858 * The domain of "pc" has already been extended with this infinite loop
862 * The scop consists of two parts,
863 * one for evaluating the condition "cond" and one for the body.
864 * If "expr_inc" is not NULL, then a scop for evaluating this expression
865 * is added at the end of the body,
866 * after replacing any skip conditions resulting from continue statements
867 * by the skip conditions resulting from break statements (if any).
869 * The schedules are combined as a sequence to reflect that the condition is
870 * evaluated before the body is executed and the body is filtered to depend
871 * on the result of the condition evaluating to true on all iterations
872 * up to the current iteration, while the evaluation of the condition itself
873 * is filtered to depend on the result of the condition evaluating to true
874 * on all previous iterations.
875 * The context of the scop representing the body is dropped
876 * because we don't know how many times the body will be executed,
879 * If the body contains any break, then it is taken into
880 * account in apply_affine_break (if the skip condition is affine)
881 * or in scop_add_break (if the skip condition is not affine).
883 * Note that in case of an affine skip condition,
884 * since we are dealing with a loop without loop iterator,
885 * the skip condition cannot refer to the current loop iterator and
886 * so effectively, the effect on the iteration domain is of the form
888 * { [outer,0]; [outer,t] : t >= 1 and not skip }
890 static struct pet_scop
*scop_from_non_affine_while(__isl_take pet_expr
*cond
,
891 __isl_take pet_loc
*loc
, __isl_keep pet_tree
*tree_body
,
892 __isl_keep isl_id
*loop_id
, __isl_take pet_expr
*expr_inc
,
893 __isl_take pet_context
*pc
, struct pet_state
*state
)
896 isl_id
*id_test
, *id_break_test
;
898 isl_multi_pw_aff
*test_index
;
901 isl_multi_aff
*sched
;
902 struct pet_scop
*scop
, *scop_body
;
903 int has_affine_break
;
907 space
= pet_context_get_space(pc
);
908 test_index
= pet_create_test_index(space
, state
->n_test
++);
909 scop
= scop_from_non_affine_condition(cond
, state
->n_stmt
++,
910 isl_multi_pw_aff_copy(test_index
),
911 pet_loc_copy(loc
), pc
);
912 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
, isl_dim_out
);
913 domain
= pet_context_get_domain(pc
);
914 scop
= pet_scop_add_boolean_array(scop
, isl_set_copy(domain
),
915 test_index
, state
->int_size
);
917 sched
= map_to_last(pc
, state
->n_loop
++, loop_id
);
919 scop_body
= scop_from_tree(tree_body
, pc
, state
);
921 has_affine_break
= pet_scop_has_affine_skip(scop_body
, pet_skip_later
);
922 if (has_affine_break
)
923 skip
= pet_scop_get_affine_skip_domain(scop_body
,
925 has_var_break
= pet_scop_has_var_skip(scop_body
, pet_skip_later
);
927 id_break_test
= pet_scop_get_skip_id(scop_body
, pet_skip_later
);
929 scop_body
= pet_scop_reset_context(scop_body
);
931 scop_body
= scop_add_inc(scop_body
, expr_inc
, loc
, pc
, state
);
934 scop_body
= pet_scop_reset_skips(scop_body
);
936 if (has_affine_break
) {
937 domain
= apply_affine_break(domain
, skip
, 1, 0, NULL
);
938 scop
= pet_scop_intersect_domain_prefix(scop
,
939 isl_set_copy(domain
));
940 scop_body
= pet_scop_intersect_domain_prefix(scop_body
,
941 isl_set_copy(domain
));
944 scop
= scop_add_break(scop
, isl_id_copy(id_break_test
),
945 isl_set_copy(domain
), isl_val_one(ctx
));
946 scop_body
= scop_add_break(scop_body
, id_break_test
,
947 isl_set_copy(domain
), isl_val_one(ctx
));
949 scop
= scop_add_while(scop
, scop_body
, id_test
, isl_set_copy(domain
),
952 scop
= pet_scop_embed(scop
, domain
, sched
);
954 pet_context_free(pc
);
958 /* Check if the while loop is of the form
960 * while (affine expression)
963 * If so, call scop_from_affine_while to construct a scop.
965 * Otherwise, pass control to scop_from_non_affine_while.
967 * "pc" is the context in which the affine expressions in the scop are created.
968 * The domain of "pc" is extended with an infinite loop
972 * before passing control to scop_from_affine_while or
973 * scop_from_non_affine_while.
975 static struct pet_scop
*scop_from_while(__isl_keep pet_tree
*tree
,
976 __isl_keep pet_context
*pc
, struct pet_state
*state
)
984 pc
= pet_context_copy(pc
);
985 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
987 cond_expr
= pet_expr_copy(tree
->u
.l
.cond
);
988 cond_expr
= pet_context_evaluate_expr(pc
, cond_expr
);
989 pa
= pet_expr_extract_affine_condition(cond_expr
, pc
);
990 pet_expr_free(cond_expr
);
992 pc
= pet_context_add_infinite_loop(pc
);
997 if (!isl_pw_aff_involves_nan(pa
))
998 return scop_from_affine_while(tree
, pa
, pc
, state
);
1000 return scop_from_non_affine_while(pet_expr_copy(tree
->u
.l
.cond
),
1001 pet_tree_get_loc(tree
), tree
->u
.l
.body
,
1002 tree
->label
, NULL
, pc
, state
);
1004 pet_context_free(pc
);
1008 /* Check whether "cond" expresses a simple loop bound
1009 * on the final set dimension.
1010 * In particular, if "up" is set then "cond" should contain only
1011 * upper bounds on the final set dimension.
1012 * Otherwise, it should contain only lower bounds.
1014 static int is_simple_bound(__isl_keep isl_set
*cond
, __isl_keep isl_val
*inc
)
1018 pos
= isl_set_dim(cond
, isl_dim_set
) - 1;
1019 if (isl_val_is_pos(inc
))
1020 return !isl_set_dim_has_any_lower_bound(cond
, isl_dim_set
, pos
);
1022 return !isl_set_dim_has_any_upper_bound(cond
, isl_dim_set
, pos
);
1025 /* Extend a condition on a given iteration of a loop to one that
1026 * imposes the same condition on all previous iterations.
1027 * "domain" expresses the lower [upper] bound on the iterations
1028 * when inc is positive [negative] in its final dimension.
1030 * In particular, we construct the condition (when inc is positive)
1032 * forall i' : (domain(i') and i' <= i) => cond(i')
1034 * (where "<=" applies to the final dimension)
1035 * which is equivalent to
1037 * not exists i' : domain(i') and i' <= i and not cond(i')
1039 * We construct this set by subtracting the satisfying cond from domain,
1042 * { [i'] -> [i] : i' <= i }
1044 * and then subtracting the result from domain again.
1046 static __isl_give isl_set
*valid_for_each_iteration(__isl_take isl_set
*cond
,
1047 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
1050 isl_map
*previous_to_this
;
1053 dim
= isl_set_dim(cond
, isl_dim_set
);
1054 space
= isl_space_map_from_set(isl_set_get_space(cond
));
1055 previous_to_this
= isl_map_universe(space
);
1056 for (i
= 0; i
+ 1 < dim
; ++i
)
1057 previous_to_this
= isl_map_equate(previous_to_this
,
1058 isl_dim_in
, i
, isl_dim_out
, i
);
1059 if (isl_val_is_pos(inc
))
1060 previous_to_this
= isl_map_order_le(previous_to_this
,
1061 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
1063 previous_to_this
= isl_map_order_ge(previous_to_this
,
1064 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
1066 cond
= isl_set_subtract(isl_set_copy(domain
), cond
);
1067 cond
= isl_set_apply(cond
, previous_to_this
);
1068 cond
= isl_set_subtract(domain
, cond
);
1075 /* Given an initial value of the form
1077 * { [outer,i] -> init(outer) }
1079 * construct a domain of the form
1081 * { [outer,i] : exists a: i = init(outer) + a * inc and a >= 0 }
1083 static __isl_give isl_set
*strided_domain(__isl_take isl_pw_aff
*init
,
1084 __isl_take isl_val
*inc
)
1089 isl_local_space
*ls
;
1092 dim
= isl_pw_aff_dim(init
, isl_dim_in
);
1094 init
= isl_pw_aff_add_dims(init
, isl_dim_in
, 1);
1095 space
= isl_pw_aff_get_domain_space(init
);
1096 ls
= isl_local_space_from_space(space
);
1097 aff
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1098 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_in
, dim
, inc
);
1099 init
= isl_pw_aff_add(init
, isl_pw_aff_from_aff(aff
));
1101 aff
= isl_aff_var_on_domain(ls
, isl_dim_set
, dim
- 1);
1102 set
= isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff
), init
);
1104 set
= isl_set_lower_bound_si(set
, isl_dim_set
, dim
, 0);
1105 set
= isl_set_project_out(set
, isl_dim_set
, dim
, 1);
1110 /* Assuming "cond" represents a bound on a loop where the loop
1111 * iterator "iv" is incremented (or decremented) by one, check if wrapping
1114 * Under the given assumptions, wrapping is only possible if "cond" allows
1115 * for the last value before wrapping, i.e., 2^width - 1 in case of an
1116 * increasing iterator and 0 in case of a decreasing iterator.
1118 static int can_wrap(__isl_keep isl_set
*cond
, __isl_keep pet_expr
*iv
,
1119 __isl_keep isl_val
*inc
)
1126 test
= isl_set_copy(cond
);
1128 ctx
= isl_set_get_ctx(test
);
1129 if (isl_val_is_neg(inc
))
1130 limit
= isl_val_zero(ctx
);
1132 limit
= isl_val_int_from_ui(ctx
, pet_expr_get_type_size(iv
));
1133 limit
= isl_val_2exp(limit
);
1134 limit
= isl_val_sub_ui(limit
, 1);
1137 test
= isl_set_fix_val(cond
, isl_dim_set
, 0, limit
);
1138 cw
= !isl_set_is_empty(test
);
1148 * construct the following affine expression on this space
1150 * { [outer, v] -> [outer, v mod 2^width] }
1152 * where width is the number of bits used to represent the values
1153 * of the unsigned variable "iv".
1155 static __isl_give isl_multi_aff
*compute_wrapping(__isl_take isl_space
*space
,
1156 __isl_keep pet_expr
*iv
)
1162 dim
= isl_space_dim(space
, isl_dim_set
);
1164 space
= isl_space_map_from_set(space
);
1165 ma
= isl_multi_aff_identity(space
);
1167 aff
= isl_multi_aff_get_aff(ma
, dim
- 1);
1168 aff
= pet_wrap_aff(aff
, pet_expr_get_type_size(iv
));
1169 ma
= isl_multi_aff_set_aff(ma
, dim
- 1, aff
);
1174 /* Given two sets in the space
1178 * where l represents the outer loop iterators, compute the set
1179 * of values of l that ensure that "set1" is a subset of "set2".
1181 * set1 is a subset of set2 if
1183 * forall i: set1(l,i) => set2(l,i)
1187 * not exists i: set1(l,i) and not set2(l,i)
1191 * not exists i: (set1 \ set2)(l,i)
1193 static __isl_give isl_set
*enforce_subset(__isl_take isl_set
*set1
,
1194 __isl_take isl_set
*set2
)
1198 pos
= isl_set_dim(set1
, isl_dim_set
) - 1;
1199 set1
= isl_set_subtract(set1
, set2
);
1200 set1
= isl_set_eliminate(set1
, isl_dim_set
, pos
, 1);
1201 return isl_set_complement(set1
);
1204 /* Compute the set of outer iterator values for which "cond" holds
1205 * on the next iteration of the inner loop for each element of "dom".
1207 * We first construct mapping { [l,i] -> [l,i + inc] } (where l refers
1208 * to the outer loop iterators), plug that into "cond"
1209 * and then compute the set of outer iterators for which "dom" is a subset
1212 static __isl_give isl_set
*valid_on_next(__isl_take isl_set
*cond
,
1213 __isl_take isl_set
*dom
, __isl_take isl_val
*inc
)
1220 pos
= isl_set_dim(dom
, isl_dim_set
) - 1;
1221 space
= isl_set_get_space(dom
);
1222 space
= isl_space_map_from_set(space
);
1223 ma
= isl_multi_aff_identity(space
);
1224 aff
= isl_multi_aff_get_aff(ma
, pos
);
1225 aff
= isl_aff_add_constant_val(aff
, inc
);
1226 ma
= isl_multi_aff_set_aff(ma
, pos
, aff
);
1227 cond
= isl_set_preimage_multi_aff(cond
, ma
);
1229 return enforce_subset(dom
, cond
);
1232 /* Construct a pet_scop for the initialization of the iterator
1233 * of the for loop "tree" within the context "pc" (i.e., the context
1236 static __isl_give pet_scop
*scop_from_for_init(__isl_keep pet_tree
*tree
,
1237 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1239 pet_expr
*expr_iv
, *init
;
1242 expr_iv
= pet_expr_copy(tree
->u
.l
.iv
);
1243 type_size
= pet_expr_get_type_size(expr_iv
);
1244 init
= pet_expr_copy(tree
->u
.l
.init
);
1245 init
= pet_expr_new_binary(type_size
, pet_op_assign
, expr_iv
, init
);
1246 return scop_from_expr(init
, state
->n_stmt
++,
1247 pet_tree_get_loc(tree
), pc
);
1250 /* Extract the for loop "tree" as a while loop within the context "pc_init".
1251 * In particular, "pc_init" represents the context of the loop,
1252 * whereas "pc" represents the context of the body of the loop and
1253 * has already had its domain extended with an infinite loop
1257 * The for loop has the form
1259 * for (iv = init; cond; iv += inc)
1270 * except that the skips resulting from any continue statements
1271 * in body do not apply to the increment, but are replaced by the skips
1272 * resulting from break statements.
1274 * If the loop iterator is declared in the for loop, then it is killed before
1275 * and after the loop.
1277 static struct pet_scop
*scop_from_non_affine_for(__isl_keep pet_tree
*tree
,
1278 __isl_keep pet_context
*pc_init
, __isl_take pet_context
*pc
,
1279 struct pet_state
*state
)
1283 pet_expr
*expr_iv
, *inc
;
1284 struct pet_scop
*scop_init
, *scop
;
1286 struct pet_array
*array
;
1287 struct pet_scop
*scop_kill
;
1289 iv
= pet_expr_access_get_id(tree
->u
.l
.iv
);
1290 pc
= pet_context_clear_value(pc
, iv
);
1292 declared
= tree
->u
.l
.declared
;
1294 scop_init
= scop_from_for_init(tree
, pc_init
, state
);
1296 expr_iv
= pet_expr_copy(tree
->u
.l
.iv
);
1297 type_size
= pet_expr_get_type_size(expr_iv
);
1298 inc
= pet_expr_copy(tree
->u
.l
.inc
);
1299 inc
= pet_expr_new_binary(type_size
, pet_op_add_assign
, expr_iv
, inc
);
1301 scop
= scop_from_non_affine_while(pet_expr_copy(tree
->u
.l
.cond
),
1302 pet_tree_get_loc(tree
), tree
->u
.l
.body
, tree
->label
,
1303 inc
, pet_context_copy(pc
), state
);
1305 scop
= pet_scop_add_seq(state
->ctx
, scop_init
, scop
);
1307 pet_context_free(pc
);
1312 array
= extract_array(tree
->u
.l
.iv
, pc_init
, state
);
1314 array
->declared
= 1;
1315 scop_kill
= kill(pet_tree_get_loc(tree
), array
, pc_init
, state
);
1316 scop
= pet_scop_add_seq(state
->ctx
, scop_kill
, scop
);
1317 scop_kill
= kill(pet_tree_get_loc(tree
), array
, pc_init
, state
);
1318 scop_kill
= pet_scop_add_array(scop_kill
, array
);
1319 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_kill
);
1324 /* Given an access expression "expr", is the variable accessed by
1325 * "expr" assigned anywhere inside "tree"?
1327 static int is_assigned(__isl_keep pet_expr
*expr
, __isl_keep pet_tree
*tree
)
1332 id
= pet_expr_access_get_id(expr
);
1333 assigned
= pet_tree_writes(tree
, id
);
1339 /* Are all nested access parameters in "pa" allowed given "tree".
1340 * In particular, is none of them written by anywhere inside "tree".
1342 * If "tree" has any continue or break nodes in the current loop level,
1343 * then no nested access parameters are allowed.
1344 * In particular, if there is any nested access in a guard
1345 * for a piece of code containing a "continue", then we want to introduce
1346 * a separate statement for evaluating this guard so that we can express
1347 * that the result is false for all previous iterations.
1349 static int is_nested_allowed(__isl_keep isl_pw_aff
*pa
,
1350 __isl_keep pet_tree
*tree
)
1357 if (!pet_nested_any_in_pw_aff(pa
))
1360 if (pet_tree_has_continue_or_break(tree
))
1363 nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
1364 for (i
= 0; i
< nparam
; ++i
) {
1365 isl_id
*id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
1369 if (!pet_nested_in_id(id
)) {
1374 expr
= pet_nested_extract_expr(id
);
1375 allowed
= pet_expr_get_type(expr
) == pet_expr_access
&&
1376 !is_assigned(expr
, tree
);
1378 pet_expr_free(expr
);
1388 /* Internal data structure for collect_local.
1389 * "pc" and "state" are needed to extract pet_arrays for the local variables.
1390 * "local" collects the results.
1392 struct pet_tree_collect_local_data
{
1394 struct pet_state
*state
;
1395 isl_union_set
*local
;
1398 /* Add the variable accessed by "var" to data->local.
1399 * We extract a representation of the variable from
1400 * the pet_array constructed using extract_array
1401 * to ensure consistency with the rest of the scop.
1403 static int add_local(struct pet_tree_collect_local_data
*data
,
1404 __isl_keep pet_expr
*var
)
1406 struct pet_array
*array
;
1409 array
= extract_array(var
, data
->pc
, data
->state
);
1413 universe
= isl_set_universe(isl_set_get_space(array
->extent
));
1414 data
->local
= isl_union_set_add_set(data
->local
, universe
);
1415 pet_array_free(array
);
1420 /* If the node "tree" declares a variable, then add it to
1423 static int extract_local_var(__isl_keep pet_tree
*tree
, void *user
)
1425 enum pet_tree_type type
;
1426 struct pet_tree_collect_local_data
*data
= user
;
1428 type
= pet_tree_get_type(tree
);
1429 if (type
== pet_tree_decl
|| type
== pet_tree_decl_init
)
1430 return add_local(data
, tree
->u
.d
.var
);
1435 /* If the node "tree" is a for loop that declares its induction variable,
1436 * then add it this induction variable to data->local.
1438 static int extract_local_iterator(__isl_keep pet_tree
*tree
, void *user
)
1440 struct pet_tree_collect_local_data
*data
= user
;
1442 if (pet_tree_get_type(tree
) == pet_tree_for
&& tree
->u
.l
.declared
)
1443 return add_local(data
, tree
->u
.l
.iv
);
1448 /* Collect and return all local variables of the for loop represented
1449 * by "tree", with "scop" the corresponding pet_scop.
1450 * "pc" and "state" are needed to extract pet_arrays for the local variables.
1452 * We collect not only the variables that are declared inside "tree",
1453 * but also the loop iterators that are declared anywhere inside
1454 * any possible macro statements in "scop".
1455 * The latter also appear as declared variable in the scop,
1456 * whereas other declared loop iterators only appear implicitly
1457 * in the iteration domains.
1459 static __isl_give isl_union_set
*collect_local(struct pet_scop
*scop
,
1460 __isl_keep pet_tree
*tree
, __isl_keep pet_context
*pc
,
1461 struct pet_state
*state
)
1465 struct pet_tree_collect_local_data data
= { pc
, state
};
1467 ctx
= pet_tree_get_ctx(tree
);
1468 data
.local
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
1470 if (pet_tree_foreach_sub_tree(tree
, &extract_local_var
, &data
) < 0)
1471 return isl_union_set_free(data
.local
);
1473 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1474 pet_tree
*body
= scop
->stmts
[i
]->body
;
1475 if (pet_tree_foreach_sub_tree(body
, &extract_local_iterator
,
1477 return isl_union_set_free(data
.local
);
1483 /* Add an independence to "scop" if the for node "tree" was marked
1485 * "domain" is the set of loop iterators, with the current for loop
1486 * innermost. If "sign" is positive, then the inner iterator increases.
1487 * Otherwise it decreases.
1488 * "pc" and "state" are needed to extract pet_arrays for the local variables.
1490 * If the tree was marked, then collect all local variables and
1491 * add an independence.
1493 static struct pet_scop
*set_independence(struct pet_scop
*scop
,
1494 __isl_keep pet_tree
*tree
, __isl_keep isl_set
*domain
, int sign
,
1495 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1497 isl_union_set
*local
;
1499 if (!tree
->u
.l
.independent
)
1502 local
= collect_local(scop
, tree
, pc
, state
);
1503 scop
= pet_scop_set_independent(scop
, domain
, local
, sign
);
1508 /* Add a scop for assigning to the variable corresponding to the loop
1509 * iterator the result of adding the increment to the loop iterator
1510 * at the end of a loop body "scop" within the context "pc".
1511 * "tree" represents the for loop.
1513 * The increment is of the form
1517 * Note that "iv" on the right hand side will be evaluated in terms
1518 * of the (possibly virtual) loop iterator, i.e., the inner dimension
1519 * of the domain, while "iv" on the left hand side will not be evaluated
1520 * (because it is a write) and will continue to refer to the original
1523 static __isl_give pet_scop
*add_iterator_assignment(__isl_take pet_scop
*scop
,
1524 __isl_keep pet_tree
*tree
, __isl_keep pet_context
*pc
,
1525 struct pet_state
*state
)
1528 pet_expr
*expr
, *iv
, *inc
;
1530 iv
= pet_expr_copy(tree
->u
.l
.iv
);
1531 type_size
= pet_expr_get_type_size(iv
);
1532 iv
= pet_expr_access_set_write(iv
, 0);
1533 iv
= pet_expr_access_set_read(iv
, 1);
1534 inc
= pet_expr_copy(tree
->u
.l
.inc
);
1535 expr
= pet_expr_new_binary(type_size
, pet_op_add
, iv
, inc
);
1536 iv
= pet_expr_copy(tree
->u
.l
.iv
);
1537 expr
= pet_expr_new_binary(type_size
, pet_op_assign
, iv
, expr
);
1539 scop
= scop_add_inc(scop
, expr
, pet_tree_get_loc(tree
), pc
, state
);
1544 /* Construct a pet_scop for a for tree with static affine initialization
1545 * and constant increment within the context "pc".
1546 * The domain of "pc" has already been extended with an (at this point
1547 * unbounded) inner loop iterator corresponding to the current for loop.
1549 * The condition is allowed to contain nested accesses, provided
1550 * they are not being written to inside the body of the loop.
1551 * Otherwise, or if the condition is otherwise non-affine, the for loop is
1552 * essentially treated as a while loop, with iteration domain
1553 * { [l,i] : i >= init }, where l refers to the outer loop iterators.
1555 * We extract a pet_scop for the body after intersecting the domain of "pc"
1557 * { [l,i] : i >= init and condition' }
1561 * { [l,i] : i <= init and condition' }
1563 * Where condition' is equal to condition if the latter is
1564 * a simple upper [lower] bound and a condition that is extended
1565 * to apply to all previous iterations otherwise.
1566 * Afterwards, the schedule of the pet_scop is extended with
1574 * If the condition is non-affine, then we drop the condition from the
1575 * iteration domain and instead create a separate statement
1576 * for evaluating the condition. The body is then filtered to depend
1577 * on the result of the condition evaluating to true on all iterations
1578 * up to the current iteration, while the evaluation the condition itself
1579 * is filtered to depend on the result of the condition evaluating to true
1580 * on all previous iterations.
1581 * The context of the scop representing the body is dropped
1582 * because we don't know how many times the body will be executed,
1585 * If the stride of the loop is not 1, then "i >= init" is replaced by
1587 * (exists a: i = init + stride * a and a >= 0)
1589 * If the loop iterator i is unsigned, then wrapping may occur.
1590 * We therefore use a virtual iterator instead that does not wrap.
1591 * However, the condition in the code applies
1592 * to the wrapped value, so we need to change condition(l,i)
1593 * into condition([l,i % 2^width]). Similarly, we replace all accesses
1594 * to the original iterator by the wrapping of the virtual iterator.
1595 * Note that there may be no need to perform this final wrapping
1596 * if the loop condition (after wrapping) satisfies certain conditions.
1597 * However, the is_simple_bound condition is not enough since it doesn't
1598 * check if there even is an upper bound.
1600 * Wrapping on unsigned iterators can be avoided entirely if
1601 * the loop condition is simple, the loop iterator is incremented
1602 * [decremented] by one and the last value before wrapping cannot
1603 * possibly satisfy the loop condition.
1605 * Valid outer iterators for a for loop are those for which the initial
1606 * value itself, the increment on each domain iteration and
1607 * the condition on both the initial value and
1608 * the result of incrementing the iterator for each iteration of the domain
1610 * If the loop condition is non-affine, then we only consider validity
1611 * of the initial value.
1613 * If the loop iterator was not declared inside the loop header,
1614 * then the variable corresponding to this loop iterator is assigned
1615 * the result of adding the increment at the end of the loop body.
1616 * The assignment of the initial value is taken care of by
1617 * scop_from_affine_for_init.
1619 * If the body contains any break, then we keep track of it in "skip"
1620 * (if the skip condition is affine) or it is handled in scop_add_break
1621 * (if the skip condition is not affine).
1622 * Note that the affine break condition needs to be considered with
1623 * respect to previous iterations in the virtual domain (if any).
1625 static struct pet_scop
*scop_from_affine_for(__isl_keep pet_tree
*tree
,
1626 __isl_take isl_pw_aff
*init_val
, __isl_take isl_pw_aff
*pa_inc
,
1627 __isl_take isl_val
*inc
, __isl_take pet_context
*pc
,
1628 struct pet_state
*state
)
1631 isl_multi_aff
*sched
;
1632 isl_set
*cond
= NULL
;
1633 isl_set
*skip
= NULL
;
1634 isl_id
*id_test
= NULL
, *id_break_test
;
1635 struct pet_scop
*scop
, *scop_cond
= NULL
;
1642 int has_affine_break
;
1644 isl_map
*rev_wrap
= NULL
;
1645 isl_map
*init_val_map
;
1647 isl_set
*valid_init
;
1648 isl_set
*valid_cond
;
1649 isl_set
*valid_cond_init
;
1650 isl_set
*valid_cond_next
;
1652 pet_expr
*cond_expr
;
1653 pet_context
*pc_nested
;
1655 pos
= pet_context_dim(pc
) - 1;
1657 domain
= pet_context_get_domain(pc
);
1658 cond_expr
= pet_expr_copy(tree
->u
.l
.cond
);
1659 cond_expr
= pet_context_evaluate_expr(pc
, cond_expr
);
1660 pc_nested
= pet_context_copy(pc
);
1661 pc_nested
= pet_context_set_allow_nested(pc_nested
, 1);
1662 pa
= pet_expr_extract_affine_condition(cond_expr
, pc_nested
);
1663 pet_context_free(pc_nested
);
1664 pet_expr_free(cond_expr
);
1666 valid_inc
= isl_pw_aff_domain(pa_inc
);
1668 is_unsigned
= pet_expr_get_type_size(tree
->u
.l
.iv
) > 0;
1670 is_non_affine
= isl_pw_aff_involves_nan(pa
) ||
1671 !is_nested_allowed(pa
, tree
->u
.l
.body
);
1673 pa
= isl_pw_aff_free(pa
);
1675 valid_cond
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1676 cond
= isl_pw_aff_non_zero_set(pa
);
1678 cond
= isl_set_universe(isl_set_get_space(domain
));
1680 valid_cond
= isl_set_coalesce(valid_cond
);
1681 is_one
= isl_val_is_one(inc
) || isl_val_is_negone(inc
);
1682 is_virtual
= is_unsigned
&&
1683 (!is_one
|| can_wrap(cond
, tree
->u
.l
.iv
, inc
));
1685 init_val_map
= isl_map_from_pw_aff(isl_pw_aff_copy(init_val
));
1686 init_val_map
= isl_map_equate(init_val_map
, isl_dim_in
, pos
,
1688 valid_cond_init
= enforce_subset(isl_map_domain(init_val_map
),
1689 isl_set_copy(valid_cond
));
1690 if (is_one
&& !is_virtual
) {
1693 isl_pw_aff_free(init_val
);
1694 pa
= pet_expr_extract_comparison(
1695 isl_val_is_pos(inc
) ? pet_op_ge
: pet_op_le
,
1696 tree
->u
.l
.iv
, tree
->u
.l
.init
, pc
);
1697 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1698 valid_init
= isl_set_eliminate(valid_init
, isl_dim_set
,
1699 isl_set_dim(domain
, isl_dim_set
) - 1, 1);
1700 cond
= isl_pw_aff_non_zero_set(pa
);
1701 domain
= isl_set_intersect(domain
, cond
);
1705 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(init_val
));
1706 strided
= strided_domain(init_val
, isl_val_copy(inc
));
1707 domain
= isl_set_intersect(domain
, strided
);
1711 isl_multi_aff
*wrap
;
1712 wrap
= compute_wrapping(isl_set_get_space(cond
), tree
->u
.l
.iv
);
1713 pc
= pet_context_preimage_domain(pc
, wrap
);
1714 rev_wrap
= isl_map_from_multi_aff(wrap
);
1715 rev_wrap
= isl_map_reverse(rev_wrap
);
1716 cond
= isl_set_apply(cond
, isl_map_copy(rev_wrap
));
1717 valid_cond
= isl_set_apply(valid_cond
, isl_map_copy(rev_wrap
));
1718 valid_inc
= isl_set_apply(valid_inc
, isl_map_copy(rev_wrap
));
1720 is_simple
= is_simple_bound(cond
, inc
);
1722 cond
= isl_set_gist(cond
, isl_set_copy(domain
));
1723 is_simple
= is_simple_bound(cond
, inc
);
1726 cond
= valid_for_each_iteration(cond
,
1727 isl_set_copy(domain
), isl_val_copy(inc
));
1728 cond
= isl_set_align_params(cond
, isl_set_get_space(domain
));
1729 domain
= isl_set_intersect(domain
, cond
);
1730 sched
= map_to_last(pc
, state
->n_loop
++, tree
->label
);
1731 if (isl_val_is_neg(inc
))
1732 sched
= isl_multi_aff_neg(sched
);
1734 valid_cond_next
= valid_on_next(valid_cond
, isl_set_copy(domain
),
1736 valid_inc
= enforce_subset(isl_set_copy(domain
), valid_inc
);
1738 pc
= pet_context_intersect_domain(pc
, isl_set_copy(domain
));
1740 if (is_non_affine
) {
1742 isl_multi_pw_aff
*test_index
;
1743 space
= isl_set_get_space(domain
);
1744 test_index
= pet_create_test_index(space
, state
->n_test
++);
1745 scop_cond
= scop_from_non_affine_condition(
1746 pet_expr_copy(tree
->u
.l
.cond
), state
->n_stmt
++,
1747 isl_multi_pw_aff_copy(test_index
),
1748 pet_tree_get_loc(tree
), pc
);
1749 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
,
1751 scop_cond
= pet_scop_add_boolean_array(scop_cond
,
1752 isl_set_copy(domain
), test_index
,
1756 scop
= scop_from_tree(tree
->u
.l
.body
, pc
, state
);
1757 has_affine_break
= scop
&&
1758 pet_scop_has_affine_skip(scop
, pet_skip_later
);
1759 if (has_affine_break
)
1760 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
1761 has_var_break
= scop
&& pet_scop_has_var_skip(scop
, pet_skip_later
);
1763 id_break_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
1764 if (is_non_affine
) {
1765 scop
= pet_scop_reset_context(scop
);
1767 if (!tree
->u
.l
.declared
)
1768 scop
= add_iterator_assignment(scop
, tree
, pc
, state
);
1769 scop
= pet_scop_reset_skips(scop
);
1770 scop
= pet_scop_resolve_nested(scop
);
1771 if (has_affine_break
) {
1772 domain
= apply_affine_break(domain
, skip
, isl_val_sgn(inc
),
1773 is_virtual
, rev_wrap
);
1774 scop
= pet_scop_intersect_domain_prefix(scop
,
1775 isl_set_copy(domain
));
1777 isl_map_free(rev_wrap
);
1779 scop
= scop_add_break(scop
, id_break_test
, isl_set_copy(domain
),
1782 scop
= scop_add_while(scop_cond
, scop
, id_test
,
1783 isl_set_copy(domain
),
1786 scop
= set_independence(scop
, tree
, domain
, isl_val_sgn(inc
),
1788 scop
= pet_scop_embed(scop
, domain
, sched
);
1789 if (is_non_affine
) {
1790 isl_set_free(valid_inc
);
1792 valid_inc
= isl_set_intersect(valid_inc
, valid_cond_next
);
1793 valid_inc
= isl_set_intersect(valid_inc
, valid_cond_init
);
1794 valid_inc
= isl_set_project_out(valid_inc
, isl_dim_set
, pos
, 1);
1795 scop
= pet_scop_restrict_context(scop
, valid_inc
);
1800 valid_init
= isl_set_project_out(valid_init
, isl_dim_set
, pos
, 1);
1801 scop
= pet_scop_restrict_context(scop
, valid_init
);
1803 pet_context_free(pc
);
1807 /* Construct a pet_scop for a for tree with static affine initialization
1808 * and constant increment within the context "pc_init".
1809 * In particular, "pc_init" represents the context of the loop,
1810 * whereas the domain of "pc" has already been extended with an (at this point
1811 * unbounded) inner loop iterator corresponding to the current for loop.
1813 * If the loop iterator was not declared inside the loop header,
1814 * then add an assignment of the initial value to the loop iterator
1815 * before the loop. The construction of a pet_scop for the loop itself,
1816 * including updates to the loop iterator, is handled by scop_from_affine_for.
1818 static __isl_give pet_scop
*scop_from_affine_for_init(__isl_keep pet_tree
*tree
,
1819 __isl_take isl_pw_aff
*init_val
, __isl_take isl_pw_aff
*pa_inc
,
1820 __isl_take isl_val
*inc
, __isl_keep pet_context
*pc_init
,
1821 __isl_take pet_context
*pc
, struct pet_state
*state
)
1823 pet_scop
*scop_init
, *scop
;
1825 if (!tree
->u
.l
.declared
)
1826 scop_init
= scop_from_for_init(tree
, pc_init
, state
);
1828 scop
= scop_from_affine_for(tree
, init_val
, pa_inc
, inc
, pc
, state
);
1830 if (!tree
->u
.l
.declared
)
1831 scop
= pet_scop_add_seq(state
->ctx
, scop_init
, scop
);
1836 /* Construct a pet_scop for a for statement within the context of "pc".
1838 * We update the context to reflect the writes to the loop variable and
1839 * the writes inside the body.
1841 * Then we check if the initialization of the for loop
1842 * is a static affine value and the increment is a constant.
1843 * If so, we construct the pet_scop using scop_from_affine_for_init.
1844 * Otherwise, we treat the for loop as a while loop
1845 * in scop_from_non_affine_for.
1847 * Note that the initialization and the increment are extracted
1848 * in a context where the current loop iterator has been added
1849 * to the context. If these turn out not be affine, then we
1850 * have reconstruct the body context without an assignment
1851 * to this loop iterator, as this variable will then not be
1852 * treated as a dimension of the iteration domain, but as any
1855 static struct pet_scop
*scop_from_for(__isl_keep pet_tree
*tree
,
1856 __isl_keep pet_context
*init_pc
, struct pet_state
*state
)
1860 isl_pw_aff
*pa_inc
, *init_val
;
1861 pet_context
*pc
, *pc_init_val
;
1866 iv
= pet_expr_access_get_id(tree
->u
.l
.iv
);
1867 pc
= pet_context_copy(init_pc
);
1868 pc
= pet_context_add_inner_iterator(pc
, iv
);
1869 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
1871 pc_init_val
= pet_context_copy(pc
);
1872 pc_init_val
= pet_context_clear_value(pc_init_val
, isl_id_copy(iv
));
1873 init_val
= pet_expr_extract_affine(tree
->u
.l
.init
, pc_init_val
);
1874 pet_context_free(pc_init_val
);
1875 pa_inc
= pet_expr_extract_affine(tree
->u
.l
.inc
, pc
);
1876 inc
= pet_extract_cst(pa_inc
);
1877 if (!pa_inc
|| !init_val
|| !inc
)
1879 if (!isl_pw_aff_involves_nan(pa_inc
) &&
1880 !isl_pw_aff_involves_nan(init_val
) && !isl_val_is_nan(inc
))
1881 return scop_from_affine_for_init(tree
, init_val
, pa_inc
, inc
,
1882 init_pc
, pc
, state
);
1884 isl_pw_aff_free(pa_inc
);
1885 isl_pw_aff_free(init_val
);
1887 pet_context_free(pc
);
1889 pc
= pet_context_copy(init_pc
);
1890 pc
= pet_context_add_infinite_loop(pc
);
1891 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
1892 return scop_from_non_affine_for(tree
, init_pc
, pc
, state
);
1894 isl_pw_aff_free(pa_inc
);
1895 isl_pw_aff_free(init_val
);
1897 pet_context_free(pc
);
1901 /* Check whether "expr" is an affine constraint within the context "pc".
1903 static int is_affine_condition(__isl_keep pet_expr
*expr
,
1904 __isl_keep pet_context
*pc
)
1909 pa
= pet_expr_extract_affine_condition(expr
, pc
);
1912 is_affine
= !isl_pw_aff_involves_nan(pa
);
1913 isl_pw_aff_free(pa
);
1918 /* Check if the given if statement is a conditional assignement
1919 * with a non-affine condition.
1921 * In particular we check if "stmt" is of the form
1928 * where the condition is non-affine and a is some array or scalar access.
1930 static int is_conditional_assignment(__isl_keep pet_tree
*tree
,
1931 __isl_keep pet_context
*pc
)
1935 pet_expr
*expr1
, *expr2
;
1937 ctx
= pet_tree_get_ctx(tree
);
1938 if (!pet_options_get_detect_conditional_assignment(ctx
))
1940 if (tree
->type
!= pet_tree_if_else
)
1942 if (tree
->u
.i
.then_body
->type
!= pet_tree_expr
)
1944 if (tree
->u
.i
.else_body
->type
!= pet_tree_expr
)
1946 expr1
= tree
->u
.i
.then_body
->u
.e
.expr
;
1947 expr2
= tree
->u
.i
.else_body
->u
.e
.expr
;
1948 if (pet_expr_get_type(expr1
) != pet_expr_op
)
1950 if (pet_expr_get_type(expr2
) != pet_expr_op
)
1952 if (pet_expr_op_get_type(expr1
) != pet_op_assign
)
1954 if (pet_expr_op_get_type(expr2
) != pet_op_assign
)
1956 expr1
= pet_expr_get_arg(expr1
, 0);
1957 expr2
= pet_expr_get_arg(expr2
, 0);
1958 equal
= pet_expr_is_equal(expr1
, expr2
);
1959 pet_expr_free(expr1
);
1960 pet_expr_free(expr2
);
1961 if (equal
< 0 || !equal
)
1963 if (is_affine_condition(tree
->u
.i
.cond
, pc
))
1969 /* Given that "tree" is of the form
1976 * where a is some array or scalar access, construct a pet_scop
1977 * corresponding to this conditional assignment within the context "pc".
1978 * "cond_pa" is an affine expression with nested accesses representing
1981 * The constructed pet_scop then corresponds to the expression
1983 * a = condition ? f(...) : g(...)
1985 * All access relations in f(...) are intersected with condition
1986 * while all access relation in g(...) are intersected with the complement.
1988 static struct pet_scop
*scop_from_conditional_assignment(
1989 __isl_keep pet_tree
*tree
, __isl_take isl_pw_aff
*cond_pa
,
1990 __isl_take pet_context
*pc
, struct pet_state
*state
)
1993 isl_set
*cond
, *comp
;
1994 isl_multi_pw_aff
*index
;
1995 pet_expr
*expr1
, *expr2
;
1996 pet_expr
*pe_cond
, *pe_then
, *pe_else
, *pe
, *pe_write
;
1997 struct pet_scop
*scop
;
1999 cond
= isl_pw_aff_non_zero_set(isl_pw_aff_copy(cond_pa
));
2000 comp
= isl_pw_aff_zero_set(isl_pw_aff_copy(cond_pa
));
2001 index
= isl_multi_pw_aff_from_pw_aff(cond_pa
);
2003 expr1
= tree
->u
.i
.then_body
->u
.e
.expr
;
2004 expr2
= tree
->u
.i
.else_body
->u
.e
.expr
;
2006 pe_cond
= pet_expr_from_index(index
);
2008 pe_then
= pet_expr_get_arg(expr1
, 1);
2009 pe_then
= pet_context_evaluate_expr(pc
, pe_then
);
2010 pe_then
= pet_expr_restrict(pe_then
, cond
);
2011 pe_else
= pet_expr_get_arg(expr2
, 1);
2012 pe_else
= pet_context_evaluate_expr(pc
, pe_else
);
2013 pe_else
= pet_expr_restrict(pe_else
, comp
);
2014 pe_write
= pet_expr_get_arg(expr1
, 0);
2015 pe_write
= pet_context_evaluate_expr(pc
, pe_write
);
2017 pe
= pet_expr_new_ternary(pe_cond
, pe_then
, pe_else
);
2018 type_size
= pet_expr_get_type_size(pe_write
);
2019 pe
= pet_expr_new_binary(type_size
, pet_op_assign
, pe_write
, pe
);
2021 scop
= scop_from_evaluated_expr(pe
, state
->n_stmt
++,
2022 pet_tree_get_loc(tree
), pc
);
2024 pet_context_free(pc
);
2029 /* Construct a pet_scop for a non-affine if statement within the context "pc".
2031 * We create a separate statement that writes the result
2032 * of the non-affine condition to a virtual scalar.
2033 * A constraint requiring the value of this virtual scalar to be one
2034 * is added to the iteration domains of the then branch.
2035 * Similarly, a constraint requiring the value of this virtual scalar
2036 * to be zero is added to the iteration domains of the else branch, if any.
2037 * We combine the schedules as a sequence to ensure that the virtual scalar
2038 * is written before it is read.
2040 * If there are any breaks or continues in the then and/or else
2041 * branches, then we may have to compute a new skip condition.
2042 * This is handled using a pet_skip_info object.
2043 * On initialization, the object checks if skip conditions need
2044 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
2045 * adds them in pet_skip_info_add.
2047 static struct pet_scop
*scop_from_non_affine_if(__isl_keep pet_tree
*tree
,
2048 __isl_take pet_context
*pc
, struct pet_state
*state
)
2053 isl_multi_pw_aff
*test_index
;
2054 struct pet_skip_info skip
;
2055 struct pet_scop
*scop
, *scop_then
, *scop_else
= NULL
;
2057 has_else
= tree
->type
== pet_tree_if_else
;
2059 space
= pet_context_get_space(pc
);
2060 test_index
= pet_create_test_index(space
, state
->n_test
++);
2061 scop
= scop_from_non_affine_condition(pet_expr_copy(tree
->u
.i
.cond
),
2062 state
->n_stmt
++, isl_multi_pw_aff_copy(test_index
),
2063 pet_tree_get_loc(tree
), pc
);
2064 domain
= pet_context_get_domain(pc
);
2065 scop
= pet_scop_add_boolean_array(scop
, domain
,
2066 isl_multi_pw_aff_copy(test_index
), state
->int_size
);
2068 scop_then
= scop_from_tree(tree
->u
.i
.then_body
, pc
, state
);
2070 scop_else
= scop_from_tree(tree
->u
.i
.else_body
, pc
, state
);
2072 pet_skip_info_if_init(&skip
, state
->ctx
, scop_then
, scop_else
,
2074 pet_skip_info_if_extract_index(&skip
, test_index
, pc
, state
);
2076 scop_then
= pet_scop_filter(scop_then
,
2077 isl_multi_pw_aff_copy(test_index
), 1);
2079 scop_else
= pet_scop_filter(scop_else
, test_index
, 0);
2080 scop_then
= pet_scop_add_par(state
->ctx
, scop_then
, scop_else
);
2082 isl_multi_pw_aff_free(test_index
);
2084 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_then
);
2086 scop
= pet_skip_info_add(&skip
, scop
);
2088 pet_context_free(pc
);
2092 /* Construct a pet_scop for an affine if statement within the context "pc".
2094 * The condition is added to the iteration domains of the then branch,
2095 * while the opposite of the condition in added to the iteration domains
2096 * of the else branch, if any.
2098 * If there are any breaks or continues in the then and/or else
2099 * branches, then we may have to compute a new skip condition.
2100 * This is handled using a pet_skip_info_if object.
2101 * On initialization, the object checks if skip conditions need
2102 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
2103 * adds them in pet_skip_info_add.
2105 static struct pet_scop
*scop_from_affine_if(__isl_keep pet_tree
*tree
,
2106 __isl_take isl_pw_aff
*cond
, __isl_take pet_context
*pc
,
2107 struct pet_state
*state
)
2111 isl_set
*set
, *complement
;
2113 struct pet_skip_info skip
;
2114 struct pet_scop
*scop
, *scop_then
, *scop_else
= NULL
;
2115 pet_context
*pc_body
;
2117 ctx
= pet_tree_get_ctx(tree
);
2119 has_else
= tree
->type
== pet_tree_if_else
;
2121 valid
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
2122 set
= isl_pw_aff_non_zero_set(isl_pw_aff_copy(cond
));
2124 pc_body
= pet_context_copy(pc
);
2125 pc_body
= pet_context_intersect_domain(pc_body
, isl_set_copy(set
));
2126 scop_then
= scop_from_tree(tree
->u
.i
.then_body
, pc_body
, state
);
2127 pet_context_free(pc_body
);
2129 pc_body
= pet_context_copy(pc
);
2130 complement
= isl_set_copy(valid
);
2131 complement
= isl_set_subtract(valid
, isl_set_copy(set
));
2132 pc_body
= pet_context_intersect_domain(pc_body
,
2133 isl_set_copy(complement
));
2134 scop_else
= scop_from_tree(tree
->u
.i
.else_body
, pc_body
, state
);
2135 pet_context_free(pc_body
);
2138 pet_skip_info_if_init(&skip
, ctx
, scop_then
, scop_else
, has_else
, 1);
2139 pet_skip_info_if_extract_cond(&skip
, cond
, pc
, state
);
2140 isl_pw_aff_free(cond
);
2142 scop
= pet_scop_restrict(scop_then
, set
);
2145 scop_else
= pet_scop_restrict(scop_else
, complement
);
2146 scop
= pet_scop_add_par(ctx
, scop
, scop_else
);
2148 scop
= pet_scop_resolve_nested(scop
);
2149 scop
= pet_scop_restrict_context(scop
, valid
);
2151 scop
= pet_skip_info_add(&skip
, scop
);
2153 pet_context_free(pc
);
2157 /* Construct a pet_scop for an if statement within the context "pc".
2159 * If the condition fits the pattern of a conditional assignment,
2160 * then it is handled by scop_from_conditional_assignment.
2161 * Note that the condition is only considered for a conditional assignment
2162 * if it is not static-affine. However, it should still convert
2163 * to an affine expression when nesting is allowed.
2165 * Otherwise, we check if the condition is affine.
2166 * If so, we construct the scop in scop_from_affine_if.
2167 * Otherwise, we construct the scop in scop_from_non_affine_if.
2169 * We allow the condition to be dynamic, i.e., to refer to
2170 * scalars or array elements that may be written to outside
2171 * of the given if statement. These nested accesses are then represented
2172 * as output dimensions in the wrapping iteration domain.
2173 * If it is also written _inside_ the then or else branch, then
2174 * we treat the condition as non-affine.
2175 * As explained in extract_non_affine_if, this will introduce
2176 * an extra statement.
2177 * For aesthetic reasons, we want this statement to have a statement
2178 * number that is lower than those of the then and else branches.
2179 * In order to evaluate if we will need such a statement, however, we
2180 * first construct scops for the then and else branches.
2181 * We therefore reserve a statement number if we might have to
2182 * introduce such an extra statement.
2184 static struct pet_scop
*scop_from_if(__isl_keep pet_tree
*tree
,
2185 __isl_keep pet_context
*pc
, struct pet_state
*state
)
2189 pet_expr
*cond_expr
;
2190 pet_context
*pc_nested
;
2195 has_else
= tree
->type
== pet_tree_if_else
;
2197 pc
= pet_context_copy(pc
);
2198 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.i
.then_body
);
2200 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.i
.else_body
);
2202 cond_expr
= pet_expr_copy(tree
->u
.i
.cond
);
2203 cond_expr
= pet_context_evaluate_expr(pc
, cond_expr
);
2204 pc_nested
= pet_context_copy(pc
);
2205 pc_nested
= pet_context_set_allow_nested(pc_nested
, 1);
2206 cond
= pet_expr_extract_affine_condition(cond_expr
, pc_nested
);
2207 pet_context_free(pc_nested
);
2208 pet_expr_free(cond_expr
);
2211 pet_context_free(pc
);
2215 if (isl_pw_aff_involves_nan(cond
)) {
2216 isl_pw_aff_free(cond
);
2217 return scop_from_non_affine_if(tree
, pc
, state
);
2220 if (is_conditional_assignment(tree
, pc
))
2221 return scop_from_conditional_assignment(tree
, cond
, pc
, state
);
2223 if ((!is_nested_allowed(cond
, tree
->u
.i
.then_body
) ||
2224 (has_else
&& !is_nested_allowed(cond
, tree
->u
.i
.else_body
)))) {
2225 isl_pw_aff_free(cond
);
2226 return scop_from_non_affine_if(tree
, pc
, state
);
2229 return scop_from_affine_if(tree
, cond
, pc
, state
);
2232 /* Return a one-dimensional multi piecewise affine expression that is equal
2233 * to the constant 1 and is defined over the given domain.
2235 static __isl_give isl_multi_pw_aff
*one_mpa(__isl_take isl_space
*space
)
2237 isl_local_space
*ls
;
2240 ls
= isl_local_space_from_space(space
);
2241 aff
= isl_aff_zero_on_domain(ls
);
2242 aff
= isl_aff_set_constant_si(aff
, 1);
2244 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
2247 /* Construct a pet_scop for a continue statement with the given domain space.
2249 * We simply create an empty scop with a universal pet_skip_now
2250 * skip condition. This skip condition will then be taken into
2251 * account by the enclosing loop construct, possibly after
2252 * being incorporated into outer skip conditions.
2254 static struct pet_scop
*scop_from_continue(__isl_keep pet_tree
*tree
,
2255 __isl_take isl_space
*space
)
2257 struct pet_scop
*scop
;
2259 scop
= pet_scop_empty(isl_space_copy(space
));
2261 scop
= pet_scop_set_skip(scop
, pet_skip_now
, one_mpa(space
));
2266 /* Construct a pet_scop for a break statement with the given domain space.
2268 * We simply create an empty scop with both a universal pet_skip_now
2269 * skip condition and a universal pet_skip_later skip condition.
2270 * These skip conditions will then be taken into
2271 * account by the enclosing loop construct, possibly after
2272 * being incorporated into outer skip conditions.
2274 static struct pet_scop
*scop_from_break(__isl_keep pet_tree
*tree
,
2275 __isl_take isl_space
*space
)
2277 struct pet_scop
*scop
;
2278 isl_multi_pw_aff
*skip
;
2280 scop
= pet_scop_empty(isl_space_copy(space
));
2282 skip
= one_mpa(space
);
2283 scop
= pet_scop_set_skip(scop
, pet_skip_now
,
2284 isl_multi_pw_aff_copy(skip
));
2285 scop
= pet_scop_set_skip(scop
, pet_skip_later
, skip
);
2290 /* Extract a clone of the kill statement "stmt".
2291 * The domain of the clone is given by "domain".
2293 static struct pet_scop
*extract_kill(__isl_keep isl_set
*domain
,
2294 struct pet_stmt
*stmt
, struct pet_state
*state
)
2298 isl_multi_pw_aff
*mpa
;
2301 if (!domain
|| !stmt
)
2304 kill
= pet_tree_expr_get_expr(stmt
->body
);
2305 space
= pet_stmt_get_space(stmt
);
2306 space
= isl_space_map_from_set(space
);
2307 mpa
= isl_multi_pw_aff_identity(space
);
2308 mpa
= isl_multi_pw_aff_reset_tuple_id(mpa
, isl_dim_in
);
2309 kill
= pet_expr_update_domain(kill
, mpa
);
2310 tree
= pet_tree_new_expr(kill
);
2311 tree
= pet_tree_set_loc(tree
, pet_loc_copy(stmt
->loc
));
2312 stmt
= pet_stmt_from_pet_tree(isl_set_copy(domain
),
2313 state
->n_stmt
++, tree
);
2314 return pet_scop_from_pet_stmt(isl_set_get_space(domain
), stmt
);
2317 /* Extract a clone of the kill statements in "scop".
2318 * The domain of each clone is given by "domain".
2319 * "scop" is expected to have been created from a DeclStmt
2320 * and should have (one of) the kill(s) as its first statement.
2321 * If "scop" was created from a declaration group, then there
2322 * may be multiple kill statements inside.
2324 static struct pet_scop
*extract_kills(__isl_keep isl_set
*domain
,
2325 struct pet_scop
*scop
, struct pet_state
*state
)
2328 struct pet_stmt
*stmt
;
2329 struct pet_scop
*kill
;
2332 if (!domain
|| !scop
)
2334 ctx
= isl_set_get_ctx(domain
);
2335 if (scop
->n_stmt
< 1)
2336 isl_die(ctx
, isl_error_internal
,
2337 "expecting at least one statement", return NULL
);
2338 stmt
= scop
->stmts
[0];
2339 if (!pet_stmt_is_kill(stmt
))
2340 isl_die(ctx
, isl_error_internal
,
2341 "expecting kill statement", return NULL
);
2343 kill
= extract_kill(domain
, stmt
, state
);
2345 for (i
= 1; i
< scop
->n_stmt
; ++i
) {
2346 struct pet_scop
*kill_i
;
2348 stmt
= scop
->stmts
[i
];
2349 if (!pet_stmt_is_kill(stmt
))
2352 kill_i
= extract_kill(domain
, stmt
, state
);
2353 kill
= pet_scop_add_par(ctx
, kill
, kill_i
);
2359 /* Has "tree" been created from a DeclStmt?
2360 * That is, is it either a declaration or a group of declarations?
2362 static int tree_is_decl(__isl_keep pet_tree
*tree
)
2369 is_decl
= pet_tree_is_decl(tree
);
2370 if (is_decl
< 0 || is_decl
)
2373 if (tree
->type
!= pet_tree_block
)
2375 if (pet_tree_block_get_block(tree
))
2377 if (tree
->u
.b
.n
== 0)
2380 for (i
= 0; i
< tree
->u
.b
.n
; ++i
) {
2381 is_decl
= tree_is_decl(tree
->u
.b
.child
[i
]);
2382 if (is_decl
< 0 || !is_decl
)
2389 /* Does "tree" represent an assignment to a variable?
2391 * The assignment may be one of
2392 * - a declaration with initialization
2393 * - an expression with a top-level assignment operator
2395 static int is_assignment(__isl_keep pet_tree
*tree
)
2399 if (tree
->type
== pet_tree_decl_init
)
2401 return pet_tree_is_assign(tree
);
2404 /* Update "pc" by taking into account the assignment performed by "tree",
2405 * where "tree" satisfies is_assignment.
2407 * In particular, if the lhs of the assignment is a scalar variable and
2408 * if the rhs is an affine expression, then keep track of this value in "pc"
2409 * so that we can plug it in when we later come across the same variable.
2411 * Any previously assigned value to the variable has already been removed
2412 * by scop_handle_writes.
2414 static __isl_give pet_context
*handle_assignment(__isl_take pet_context
*pc
,
2415 __isl_keep pet_tree
*tree
)
2417 pet_expr
*var
, *val
;
2421 if (pet_tree_get_type(tree
) == pet_tree_decl_init
) {
2422 var
= pet_tree_decl_get_var(tree
);
2423 val
= pet_tree_decl_get_init(tree
);
2426 expr
= pet_tree_expr_get_expr(tree
);
2427 var
= pet_expr_get_arg(expr
, 0);
2428 val
= pet_expr_get_arg(expr
, 1);
2429 pet_expr_free(expr
);
2432 if (!pet_expr_is_scalar_access(var
)) {
2438 pa
= pet_expr_extract_affine(val
, pc
);
2440 pc
= pet_context_free(pc
);
2442 if (!isl_pw_aff_involves_nan(pa
)) {
2443 id
= pet_expr_access_get_id(var
);
2444 pc
= pet_context_set_value(pc
, id
, pa
);
2446 isl_pw_aff_free(pa
);
2454 /* Mark all arrays in "scop" as being exposed.
2456 static struct pet_scop
*mark_exposed(struct pet_scop
*scop
)
2462 for (i
= 0; i
< scop
->n_array
; ++i
)
2463 scop
->arrays
[i
]->exposed
= 1;
2467 /* Try and construct a pet_scop corresponding to (part of)
2468 * a sequence of statements within the context "pc".
2470 * After extracting a statement, we update "pc"
2471 * based on the top-level assignments in the statement
2472 * so that we can exploit them in subsequent statements in the same block.
2473 * Top-level affine assumptions are also recorded in the context.
2475 * If there are any breaks or continues in the individual statements,
2476 * then we may have to compute a new skip condition.
2477 * This is handled using a pet_skip_info object.
2478 * On initialization, the object checks if skip conditions need
2479 * to be computed. If so, it does so in pet_skip_info_seq_extract and
2480 * adds them in pet_skip_info_add.
2482 * If "block" is set, then we need to insert kill statements at
2483 * the end of the block for any array that has been declared by
2484 * one of the statements in the sequence. Each of these declarations
2485 * results in the construction of a kill statement at the place
2486 * of the declaration, so we simply collect duplicates of
2487 * those kill statements and append these duplicates to the constructed scop.
2489 * If "block" is not set, then any array declared by one of the statements
2490 * in the sequence is marked as being exposed.
2492 * If autodetect is set, then we allow the extraction of only a subrange
2493 * of the sequence of statements. However, if there is at least one statement
2494 * for which we could not construct a scop and the final range contains
2495 * either no statements or at least one kill, then we discard the entire
2498 static struct pet_scop
*scop_from_block(__isl_keep pet_tree
*tree
,
2499 __isl_keep pet_context
*pc
, struct pet_state
*state
)
2505 struct pet_scop
*scop
, *kills
;
2507 ctx
= pet_tree_get_ctx(tree
);
2509 space
= pet_context_get_space(pc
);
2510 domain
= pet_context_get_domain(pc
);
2511 pc
= pet_context_copy(pc
);
2512 scop
= pet_scop_empty(isl_space_copy(space
));
2513 kills
= pet_scop_empty(space
);
2514 for (i
= 0; i
< tree
->u
.b
.n
; ++i
) {
2515 struct pet_scop
*scop_i
;
2517 if (pet_scop_has_affine_skip(scop
, pet_skip_now
))
2518 pc
= apply_affine_continue(pc
, scop
);
2519 scop_i
= scop_from_tree(tree
->u
.b
.child
[i
], pc
, state
);
2520 if (pet_tree_is_assume(tree
->u
.b
.child
[i
]))
2521 pc
= scop_add_affine_assumption(scop_i
, pc
);
2522 pc
= scop_handle_writes(scop_i
, pc
);
2523 if (is_assignment(tree
->u
.b
.child
[i
]))
2524 pc
= handle_assignment(pc
, tree
->u
.b
.child
[i
]);
2525 struct pet_skip_info skip
;
2526 pet_skip_info_seq_init(&skip
, ctx
, scop
, scop_i
);
2527 pet_skip_info_seq_extract(&skip
, pc
, state
);
2528 if (scop_i
&& tree_is_decl(tree
->u
.b
.child
[i
])) {
2529 if (tree
->u
.b
.block
) {
2530 struct pet_scop
*kill
;
2531 kill
= extract_kills(domain
, scop_i
, state
);
2532 kills
= pet_scop_add_par(ctx
, kills
, kill
);
2534 scop_i
= mark_exposed(scop_i
);
2536 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
2538 scop
= pet_skip_info_add(&skip
, scop
);
2543 isl_set_free(domain
);
2545 scop
= pet_scop_add_seq(ctx
, scop
, kills
);
2547 pet_context_free(pc
);
2552 /* Internal data structure for extract_declared_arrays.
2554 * "pc" and "state" are used to create pet_array objects and kill statements.
2555 * "any" is initialized to 0 by the caller and set to 1 as soon as we have
2556 * found any declared array.
2557 * "scop" has been initialized by the caller and is used to attach
2558 * the created pet_array objects.
2559 * "kill_before" and "kill_after" are created and updated by
2560 * extract_declared_arrays to collect the kills of the arrays.
2562 struct pet_tree_extract_declared_arrays_data
{
2564 struct pet_state
*state
;
2569 struct pet_scop
*scop
;
2570 struct pet_scop
*kill_before
;
2571 struct pet_scop
*kill_after
;
2574 /* Check if the node "node" declares any array or scalar.
2575 * If so, create the corresponding pet_array and attach it to data->scop.
2576 * Additionally, create two kill statements for the array and add them
2577 * to data->kill_before and data->kill_after.
2579 static int extract_declared_arrays(__isl_keep pet_tree
*node
, void *user
)
2581 enum pet_tree_type type
;
2582 struct pet_tree_extract_declared_arrays_data
*data
= user
;
2583 struct pet_array
*array
;
2584 struct pet_scop
*scop_kill
;
2587 type
= pet_tree_get_type(node
);
2588 if (type
== pet_tree_decl
|| type
== pet_tree_decl_init
)
2589 var
= node
->u
.d
.var
;
2590 else if (type
== pet_tree_for
&& node
->u
.l
.declared
)
2595 array
= extract_array(var
, data
->pc
, data
->state
);
2597 array
->declared
= 1;
2598 data
->scop
= pet_scop_add_array(data
->scop
, array
);
2600 scop_kill
= kill(pet_tree_get_loc(node
), array
, data
->pc
, data
->state
);
2602 data
->kill_before
= scop_kill
;
2604 data
->kill_before
= pet_scop_add_par(data
->ctx
,
2605 data
->kill_before
, scop_kill
);
2607 scop_kill
= kill(pet_tree_get_loc(node
), array
, data
->pc
, data
->state
);
2609 data
->kill_after
= scop_kill
;
2611 data
->kill_after
= pet_scop_add_par(data
->ctx
,
2612 data
->kill_after
, scop_kill
);
2619 /* Convert a pet_tree that consists of more than a single leaf
2620 * to a pet_scop with a single statement encapsulating the entire pet_tree.
2621 * Do so within the context of "pc", taking into account the writes inside
2622 * "tree". That is, first clear any previously assigned values to variables
2623 * that are written by "tree".
2625 * After constructing the core scop, we also look for any arrays (or scalars)
2626 * that are declared inside "tree". Each of those arrays is marked as
2627 * having been declared and kill statements for these arrays
2628 * are introduced before and after the core scop.
2629 * Note that the input tree is not a leaf so that the declaration
2630 * cannot occur at the outer level.
2632 static struct pet_scop
*scop_from_tree_macro(__isl_take pet_tree
*tree
,
2633 __isl_keep pet_context
*pc
, struct pet_state
*state
)
2635 struct pet_tree_extract_declared_arrays_data data
= { pc
, state
};
2637 data
.pc
= pet_context_copy(data
.pc
);
2638 data
.pc
= pet_context_clear_writes_in_tree(data
.pc
, tree
);
2639 data
.scop
= scop_from_unevaluated_tree(pet_tree_copy(tree
),
2640 state
->n_stmt
++, data
.pc
);
2643 data
.ctx
= pet_context_get_ctx(data
.pc
);
2644 if (pet_tree_foreach_sub_tree(tree
, &extract_declared_arrays
,
2646 data
.scop
= pet_scop_free(data
.scop
);
2647 pet_tree_free(tree
);
2648 pet_context_free(data
.pc
);
2653 data
.scop
= pet_scop_add_seq(data
.ctx
, data
.kill_before
, data
.scop
);
2654 data
.scop
= pet_scop_add_seq(data
.ctx
, data
.scop
, data
.kill_after
);
2659 /* Construct a pet_scop that corresponds to the pet_tree "tree"
2660 * within the context "pc" by calling the appropriate function
2661 * based on the type of "tree".
2663 * If the initially constructed pet_scop turns out to involve
2664 * dynamic control and if the user has requested an encapsulation
2665 * of all dynamic control, then this pet_scop is discarded and
2666 * a new pet_scop is created with a single statement representing
2667 * the entire "tree".
2668 * However, if the scop contains any active continue or break,
2669 * then we need to include the loop containing the continue or break
2670 * in the encapsulation. We therefore postpone the encapsulation
2671 * until we have constructed a pet_scop for this enclosing loop.
2673 static struct pet_scop
*scop_from_tree(__isl_keep pet_tree
*tree
,
2674 __isl_keep pet_context
*pc
, struct pet_state
*state
)
2677 struct pet_scop
*scop
= NULL
;
2682 ctx
= pet_tree_get_ctx(tree
);
2683 switch (tree
->type
) {
2684 case pet_tree_error
:
2686 case pet_tree_block
:
2687 return scop_from_block(tree
, pc
, state
);
2688 case pet_tree_break
:
2689 return scop_from_break(tree
, pet_context_get_space(pc
));
2690 case pet_tree_continue
:
2691 return scop_from_continue(tree
, pet_context_get_space(pc
));
2693 case pet_tree_decl_init
:
2694 return scop_from_decl(tree
, pc
, state
);
2696 return scop_from_tree_expr(tree
, pc
, state
);
2697 case pet_tree_return
:
2698 return scop_from_return(tree
, pc
, state
);
2700 case pet_tree_if_else
:
2701 scop
= scop_from_if(tree
, pc
, state
);
2704 scop
= scop_from_for(tree
, pc
, state
);
2706 case pet_tree_while
:
2707 scop
= scop_from_while(tree
, pc
, state
);
2709 case pet_tree_infinite_loop
:
2710 scop
= scop_from_infinite_for(tree
, pc
, state
);
2717 if (!pet_options_get_encapsulate_dynamic_control(ctx
) ||
2718 !pet_scop_has_data_dependent_conditions(scop
) ||
2719 pet_scop_has_var_skip(scop
, pet_skip_now
))
2722 pet_scop_free(scop
);
2723 return scop_from_tree_macro(pet_tree_copy(tree
), pc
, state
);
2726 /* If "tree" has a label that is of the form S_<nr>, then make
2727 * sure that state->n_stmt is greater than nr to ensure that
2728 * we will not generate S_<nr> ourselves.
2730 static int set_first_stmt(__isl_keep pet_tree
*tree
, void *user
)
2732 struct pet_state
*state
= user
;
2740 name
= isl_id_get_name(tree
->label
);
2741 if (strncmp(name
, "S_", 2) != 0)
2743 nr
= atoi(name
+ 2);
2744 if (nr
>= state
->n_stmt
)
2745 state
->n_stmt
= nr
+ 1;
2750 /* Construct a pet_scop that corresponds to the pet_tree "tree".
2751 * "int_size" is the number of bytes need to represent an integer.
2752 * "extract_array" is a callback that we can use to create a pet_array
2753 * that corresponds to the variable accessed by an expression.
2755 * Initialize the global state, construct a context and then
2756 * construct the pet_scop by recursively visiting the tree.
2758 * state.n_stmt is initialized to point beyond any explicit S_<nr> label.
2760 struct pet_scop
*pet_scop_from_pet_tree(__isl_take pet_tree
*tree
, int int_size
,
2761 struct pet_array
*(*extract_array
)(__isl_keep pet_expr
*access
,
2762 __isl_keep pet_context
*pc
, void *user
), void *user
,
2763 __isl_keep pet_context
*pc
)
2765 struct pet_scop
*scop
;
2766 struct pet_state state
= { 0 };
2771 state
.ctx
= pet_tree_get_ctx(tree
);
2772 state
.int_size
= int_size
;
2773 state
.extract_array
= extract_array
;
2775 if (pet_tree_foreach_sub_tree(tree
, &set_first_stmt
, &state
) < 0)
2776 tree
= pet_tree_free(tree
);
2778 scop
= scop_from_tree(tree
, pc
, &state
);
2779 scop
= pet_scop_set_loc(scop
, pet_tree_get_loc(tree
));
2781 pet_tree_free(tree
);
2784 scop
->context
= isl_set_params(scop
->context
);