PetScan::extract_for: move up extraction of constant increment
[pet.git] / expr.c
blob45a678484b8a76265a8669e19bbe59da4f73448a
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
35 #include <string.h>
37 #include "aff.h"
38 #include "expr.h"
39 #include "filter.h"
40 #include "nest.h"
41 #include "options.h"
42 #include "value_bounds.h"
44 #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array))
46 static char *type_str[] = {
47 [pet_expr_access] = "access",
48 [pet_expr_call] = "call",
49 [pet_expr_cast] = "cast",
50 [pet_expr_double] = "double",
51 [pet_expr_int] = "int",
52 [pet_expr_op] = "op",
55 static char *op_str[] = {
56 [pet_op_add_assign] = "+=",
57 [pet_op_sub_assign] = "-=",
58 [pet_op_mul_assign] = "*=",
59 [pet_op_div_assign] = "/=",
60 [pet_op_assign] = "=",
61 [pet_op_add] = "+",
62 [pet_op_sub] = "-",
63 [pet_op_mul] = "*",
64 [pet_op_div] = "/",
65 [pet_op_mod] = "%",
66 [pet_op_shl] = "<<",
67 [pet_op_shr] = ">>",
68 [pet_op_eq] = "==",
69 [pet_op_ne] = "!=",
70 [pet_op_le] = "<=",
71 [pet_op_ge] = ">=",
72 [pet_op_lt] = "<",
73 [pet_op_gt] = ">",
74 [pet_op_minus] = "-",
75 [pet_op_post_inc] = "++",
76 [pet_op_post_dec] = "--",
77 [pet_op_pre_inc] = "++",
78 [pet_op_pre_dec] = "--",
79 [pet_op_address_of] = "&",
80 [pet_op_and] = "&",
81 [pet_op_xor] = "^",
82 [pet_op_or] = "|",
83 [pet_op_not] = "~",
84 [pet_op_land] = "&&",
85 [pet_op_lor] = "||",
86 [pet_op_lnot] = "!",
87 [pet_op_cond] = "?:",
88 [pet_op_assume] = "assume",
89 [pet_op_kill] = "kill"
92 const char *pet_op_str(enum pet_op_type op)
94 return op_str[op];
97 int pet_op_is_inc_dec(enum pet_op_type op)
99 return op == pet_op_post_inc || op == pet_op_post_dec ||
100 op == pet_op_pre_inc || op == pet_op_pre_dec;
103 const char *pet_type_str(enum pet_expr_type type)
105 return type_str[type];
108 enum pet_op_type pet_str_op(const char *str)
110 int i;
112 for (i = 0; i < ARRAY_SIZE(op_str); ++i)
113 if (!strcmp(op_str[i], str))
114 return i;
116 return -1;
119 enum pet_expr_type pet_str_type(const char *str)
121 int i;
123 for (i = 0; i < ARRAY_SIZE(type_str); ++i)
124 if (!strcmp(type_str[i], str))
125 return i;
127 return -1;
130 /* Construct a pet_expr of the given type.
132 __isl_give pet_expr *pet_expr_alloc(isl_ctx *ctx, enum pet_expr_type type)
134 pet_expr *expr;
136 expr = isl_calloc_type(ctx, struct pet_expr);
137 if (!expr)
138 return NULL;
140 expr->ctx = ctx;
141 isl_ctx_ref(ctx);
142 expr->type = type;
143 expr->ref = 1;
145 return expr;
148 /* Construct an access pet_expr from an access relation and an index expression.
149 * By default, it is considered to be a read access.
151 __isl_give pet_expr *pet_expr_from_access_and_index( __isl_take isl_map *access,
152 __isl_take isl_multi_pw_aff *index)
154 isl_ctx *ctx = isl_map_get_ctx(access);
155 pet_expr *expr;
157 if (!index || !access)
158 goto error;
159 expr = pet_expr_alloc(ctx, pet_expr_access);
160 if (!expr)
161 goto error;
163 expr->acc.access = access;
164 expr->acc.index = index;
165 expr->acc.read = 1;
166 expr->acc.write = 0;
168 return expr;
169 error:
170 isl_map_free(access);
171 isl_multi_pw_aff_free(index);
172 return NULL;
175 /* Construct an access pet_expr from an index expression.
176 * By default, the access is considered to be a read access.
178 __isl_give pet_expr *pet_expr_from_index(__isl_take isl_multi_pw_aff *index)
180 isl_map *access;
182 access = isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index));
183 return pet_expr_from_access_and_index(access, index);
186 /* Extend the range of "access" with "n" dimensions, retaining
187 * the tuple identifier on this range.
189 * If "access" represents a member access, then extend the range
190 * of the member.
192 static __isl_give isl_map *extend_range(__isl_take isl_map *access, int n)
194 isl_id *id;
196 id = isl_map_get_tuple_id(access, isl_dim_out);
198 if (!isl_map_range_is_wrapping(access)) {
199 access = isl_map_add_dims(access, isl_dim_out, n);
200 } else {
201 isl_map *domain;
203 domain = isl_map_copy(access);
204 domain = isl_map_range_factor_domain(domain);
205 access = isl_map_range_factor_range(access);
206 access = extend_range(access, n);
207 access = isl_map_range_product(domain, access);
210 access = isl_map_set_tuple_id(access, isl_dim_out, id);
212 return access;
215 /* Construct an access pet_expr from the number of bits needed to
216 * represent the type of the expression (may be zero if unknown or
217 * if the type is not an integer) an index expression and
218 * the depth of the accessed array.
219 * By default, the access is considered to be a read access.
221 * If the number of indices is smaller than the depth of the array,
222 * then we assume that all elements of the remaining dimensions
223 * are accessed.
225 __isl_give pet_expr *pet_expr_from_index_and_depth(int type_size,
226 __isl_take isl_multi_pw_aff *index, int depth)
228 isl_map *access;
229 int dim;
230 pet_expr *expr;
232 access = isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index));
233 if (!access)
234 goto error;
235 dim = isl_map_dim(access, isl_dim_out);
236 if (dim > depth)
237 isl_die(isl_map_get_ctx(access), isl_error_internal,
238 "number of indices greater than depth",
239 access = isl_map_free(access));
241 if (dim != depth)
242 access = extend_range(access, depth - dim);
244 expr = pet_expr_from_access_and_index(access, index);
245 if (!expr)
246 return NULL;
248 expr->type_size = type_size;
250 return expr;
251 error:
252 isl_multi_pw_aff_free(index);
253 return NULL;
256 /* Construct a pet_expr that kills the elements specified by
257 * the index expression "index" and the access relation "access".
259 __isl_give pet_expr *pet_expr_kill_from_access_and_index(
260 __isl_take isl_map *access, __isl_take isl_multi_pw_aff *index)
262 pet_expr *expr;
264 if (!access || !index)
265 goto error;
267 expr = pet_expr_from_access_and_index(access, index);
268 expr = pet_expr_access_set_read(expr, 0);
269 return pet_expr_new_unary(pet_op_kill, expr);
270 error:
271 isl_map_free(access);
272 isl_multi_pw_aff_free(index);
273 return NULL;
276 /* Construct a unary pet_expr that performs "op" on "arg".
278 __isl_give pet_expr *pet_expr_new_unary(enum pet_op_type op,
279 __isl_take pet_expr *arg)
281 isl_ctx *ctx;
282 pet_expr *expr;
284 if (!arg)
285 return NULL;
286 ctx = pet_expr_get_ctx(arg);
287 expr = pet_expr_alloc(ctx, pet_expr_op);
288 expr = pet_expr_set_n_arg(expr, 1);
289 if (!expr)
290 goto error;
292 expr->op = op;
293 expr->args[pet_un_arg] = arg;
295 return expr;
296 error:
297 pet_expr_free(arg);
298 return NULL;
301 /* Construct a binary pet_expr that performs "op" on "lhs" and "rhs",
302 * where the result is represented using a type of "type_size" bits
303 * (may be zero if unknown or if the type is not an integer).
305 __isl_give pet_expr *pet_expr_new_binary(int type_size, enum pet_op_type op,
306 __isl_take pet_expr *lhs, __isl_take pet_expr *rhs)
308 isl_ctx *ctx;
309 pet_expr *expr;
311 if (!lhs || !rhs)
312 goto error;
313 ctx = pet_expr_get_ctx(lhs);
314 expr = pet_expr_alloc(ctx, pet_expr_op);
315 expr = pet_expr_set_n_arg(expr, 2);
316 if (!expr)
317 goto error;
319 expr->op = op;
320 expr->type_size = type_size;
321 expr->args[pet_bin_lhs] = lhs;
322 expr->args[pet_bin_rhs] = rhs;
324 return expr;
325 error:
326 pet_expr_free(lhs);
327 pet_expr_free(rhs);
328 return NULL;
331 /* Construct a ternary pet_expr that performs "cond" ? "lhs" : "rhs".
333 __isl_give pet_expr *pet_expr_new_ternary(__isl_take pet_expr *cond,
334 __isl_take pet_expr *lhs, __isl_take pet_expr *rhs)
336 isl_ctx *ctx;
337 pet_expr *expr;
339 if (!cond || !lhs || !rhs)
340 goto error;
341 ctx = pet_expr_get_ctx(cond);
342 expr = pet_expr_alloc(ctx, pet_expr_op);
343 expr = pet_expr_set_n_arg(expr, 3);
344 if (!expr)
345 goto error;
347 expr->op = pet_op_cond;
348 expr->args[pet_ter_cond] = cond;
349 expr->args[pet_ter_true] = lhs;
350 expr->args[pet_ter_false] = rhs;
352 return expr;
353 error:
354 pet_expr_free(cond);
355 pet_expr_free(lhs);
356 pet_expr_free(rhs);
357 return NULL;
360 /* Construct a call pet_expr that calls function "name" with "n_arg"
361 * arguments. The caller is responsible for filling in the arguments.
363 __isl_give pet_expr *pet_expr_new_call(isl_ctx *ctx, const char *name,
364 unsigned n_arg)
366 pet_expr *expr;
368 expr = pet_expr_alloc(ctx, pet_expr_call);
369 expr = pet_expr_set_n_arg(expr, n_arg);
370 if (!expr)
371 return NULL;
373 expr->name = strdup(name);
374 if (!expr->name)
375 return pet_expr_free(expr);
377 return expr;
380 /* Construct a pet_expr that represents the cast of "arg" to "type_name".
382 __isl_give pet_expr *pet_expr_new_cast(const char *type_name,
383 __isl_take pet_expr *arg)
385 isl_ctx *ctx;
386 pet_expr *expr;
388 if (!arg)
389 return NULL;
391 ctx = pet_expr_get_ctx(arg);
392 expr = pet_expr_alloc(ctx, pet_expr_cast);
393 expr = pet_expr_set_n_arg(expr, 1);
394 if (!expr)
395 goto error;
397 expr->type_name = strdup(type_name);
398 if (!expr->type_name)
399 goto error;
401 expr->args[0] = arg;
403 return expr;
404 error:
405 pet_expr_free(arg);
406 pet_expr_free(expr);
407 return NULL;
410 /* Construct a pet_expr that represents the double "d".
412 __isl_give pet_expr *pet_expr_new_double(isl_ctx *ctx,
413 double val, const char *s)
415 pet_expr *expr;
417 expr = pet_expr_alloc(ctx, pet_expr_double);
418 if (!expr)
419 return NULL;
421 expr->d.val = val;
422 expr->d.s = strdup(s);
423 if (!expr->d.s)
424 return pet_expr_free(expr);
426 return expr;
429 /* Construct a pet_expr that represents the integer value "v".
431 __isl_give pet_expr *pet_expr_new_int(__isl_take isl_val *v)
433 isl_ctx *ctx;
434 pet_expr *expr;
436 if (!v)
437 return NULL;
439 ctx = isl_val_get_ctx(v);
440 expr = pet_expr_alloc(ctx, pet_expr_int);
441 if (!expr)
442 goto error;
444 expr->i = v;
446 return expr;
447 error:
448 isl_val_free(v);
449 return NULL;
452 static __isl_give pet_expr *pet_expr_dup(__isl_keep pet_expr *expr)
454 int i;
455 pet_expr *dup;
457 if (!expr)
458 return NULL;
460 dup = pet_expr_alloc(expr->ctx, expr->type);
461 dup = pet_expr_set_type_size(dup, expr->type_size);
462 dup = pet_expr_set_n_arg(dup, expr->n_arg);
463 for (i = 0; i < expr->n_arg; ++i)
464 dup = pet_expr_set_arg(dup, i, pet_expr_copy(expr->args[i]));
466 switch (expr->type) {
467 case pet_expr_access:
468 if (expr->acc.ref_id)
469 dup = pet_expr_access_set_ref_id(dup,
470 isl_id_copy(expr->acc.ref_id));
471 dup = pet_expr_access_set_access(dup,
472 isl_map_copy(expr->acc.access));
473 dup = pet_expr_access_set_index(dup,
474 isl_multi_pw_aff_copy(expr->acc.index));
475 dup = pet_expr_access_set_read(dup, expr->acc.read);
476 dup = pet_expr_access_set_write(dup, expr->acc.write);
477 break;
478 case pet_expr_call:
479 dup = pet_expr_call_set_name(dup, expr->name);
480 break;
481 case pet_expr_cast:
482 dup = pet_expr_cast_set_type_name(dup, expr->type_name);
483 break;
484 case pet_expr_double:
485 dup = pet_expr_double_set(dup, expr->d.val, expr->d.s);
486 break;
487 case pet_expr_int:
488 dup = pet_expr_int_set_val(dup, isl_val_copy(expr->i));
489 break;
490 case pet_expr_op:
491 dup = pet_expr_op_set_type(dup, expr->op);
492 break;
493 case pet_expr_error:
494 dup = pet_expr_free(dup);
495 break;
498 return dup;
501 __isl_give pet_expr *pet_expr_cow(__isl_take pet_expr *expr)
503 if (!expr)
504 return NULL;
506 if (expr->ref == 1)
507 return expr;
508 expr->ref--;
509 return pet_expr_dup(expr);
512 __isl_null pet_expr *pet_expr_free(__isl_take pet_expr *expr)
514 int i;
516 if (!expr)
517 return NULL;
518 if (--expr->ref > 0)
519 return NULL;
521 for (i = 0; i < expr->n_arg; ++i)
522 pet_expr_free(expr->args[i]);
523 free(expr->args);
525 switch (expr->type) {
526 case pet_expr_access:
527 isl_id_free(expr->acc.ref_id);
528 isl_map_free(expr->acc.access);
529 isl_multi_pw_aff_free(expr->acc.index);
530 break;
531 case pet_expr_call:
532 free(expr->name);
533 break;
534 case pet_expr_cast:
535 free(expr->type_name);
536 break;
537 case pet_expr_double:
538 free(expr->d.s);
539 break;
540 case pet_expr_int:
541 isl_val_free(expr->i);
542 break;
543 case pet_expr_op:
544 case pet_expr_error:
545 break;
548 isl_ctx_deref(expr->ctx);
549 free(expr);
550 return NULL;
553 /* Return an additional reference to "expr".
555 __isl_give pet_expr *pet_expr_copy(__isl_keep pet_expr *expr)
557 if (!expr)
558 return NULL;
560 expr->ref++;
561 return expr;
564 /* Return the isl_ctx in which "expr" was created.
566 isl_ctx *pet_expr_get_ctx(__isl_keep pet_expr *expr)
568 return expr ? expr->ctx : NULL;
571 /* Return the type of "expr".
573 enum pet_expr_type pet_expr_get_type(__isl_keep pet_expr *expr)
575 if (!expr)
576 return pet_expr_error;
577 return expr->type;
580 /* Return the number of arguments of "expr".
582 int pet_expr_get_n_arg(__isl_keep pet_expr *expr)
584 if (!expr)
585 return -1;
587 return expr->n_arg;
590 /* Set the number of arguments of "expr" to "n".
592 * If "expr" originally had more arguments, then remove the extra arguments.
593 * If "expr" originally had fewer arguments, then create space for
594 * the extra arguments ans initialize them to NULL.
596 __isl_give pet_expr *pet_expr_set_n_arg(__isl_take pet_expr *expr, int n)
598 int i;
599 pet_expr **args;
601 if (!expr)
602 return NULL;
603 if (expr->n_arg == n)
604 return expr;
605 expr = pet_expr_cow(expr);
606 if (!expr)
607 return NULL;
609 if (n < expr->n_arg) {
610 for (i = n; i < expr->n_arg; ++i)
611 pet_expr_free(expr->args[i]);
612 expr->n_arg = n;
613 return expr;
616 args = isl_realloc_array(expr->ctx, expr->args, pet_expr *, n);
617 if (!args)
618 return pet_expr_free(expr);
619 expr->args = args;
620 for (i = expr->n_arg; i < n; ++i)
621 expr->args[i] = NULL;
622 expr->n_arg = n;
624 return expr;
627 /* Return the argument of "expr" at position "pos".
629 __isl_give pet_expr *pet_expr_get_arg(__isl_keep pet_expr *expr, int pos)
631 if (!expr)
632 return NULL;
633 if (pos < 0 || pos >= expr->n_arg)
634 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
635 "position out of bounds", return NULL);
637 return pet_expr_copy(expr->args[pos]);
640 /* Replace the argument of "expr" at position "pos" by "arg".
642 __isl_give pet_expr *pet_expr_set_arg(__isl_take pet_expr *expr, int pos,
643 __isl_take pet_expr *arg)
645 if (!expr || !arg)
646 goto error;
647 if (pos < 0 || pos >= expr->n_arg)
648 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
649 "position out of bounds", goto error);
650 if (expr->args[pos] == arg) {
651 pet_expr_free(arg);
652 return expr;
655 expr = pet_expr_cow(expr);
656 if (!expr)
657 goto error;
659 pet_expr_free(expr->args[pos]);
660 expr->args[pos] = arg;
662 return expr;
663 error:
664 pet_expr_free(expr);
665 pet_expr_free(arg);
666 return NULL;
669 /* Does "expr" perform a comparison operation?
671 int pet_expr_is_comparison(__isl_keep pet_expr *expr)
673 if (!expr)
674 return -1;
675 if (expr->type != pet_expr_op)
676 return 0;
677 switch (expr->op) {
678 case pet_op_eq:
679 case pet_op_ne:
680 case pet_op_le:
681 case pet_op_ge:
682 case pet_op_lt:
683 case pet_op_gt:
684 return 1;
685 default:
686 return 0;
690 /* Does "expr" perform a boolean operation?
692 int pet_expr_is_boolean(__isl_keep pet_expr *expr)
694 if (!expr)
695 return -1;
696 if (expr->type != pet_expr_op)
697 return 0;
698 switch (expr->op) {
699 case pet_op_land:
700 case pet_op_lor:
701 case pet_op_lnot:
702 return 1;
703 default:
704 return 0;
708 /* Does "expr" perform a min operation?
710 int pet_expr_is_min(__isl_keep pet_expr *expr)
712 if (!expr)
713 return -1;
714 if (expr->type != pet_expr_call)
715 return 0;
716 if (expr->n_arg != 2)
717 return 0;
718 if (strcmp(expr->name, "min") != 0)
719 return 0;
720 return 1;
723 /* Does "expr" perform a max operation?
725 int pet_expr_is_max(__isl_keep pet_expr *expr)
727 if (!expr)
728 return -1;
729 if (expr->type != pet_expr_call)
730 return 0;
731 if (expr->n_arg != 2)
732 return 0;
733 if (strcmp(expr->name, "max") != 0)
734 return 0;
735 return 1;
738 /* Does "expr" represent an access to an unnamed space, i.e.,
739 * does it represent an affine expression?
741 int pet_expr_is_affine(__isl_keep pet_expr *expr)
743 int has_id;
745 if (!expr)
746 return -1;
747 if (expr->type != pet_expr_access)
748 return 0;
750 has_id = isl_map_has_tuple_id(expr->acc.access, isl_dim_out);
751 if (has_id < 0)
752 return -1;
754 return !has_id;
757 /* Does "expr" represent an access to a scalar, i.e., a zero-dimensional array,
758 * not part of any struct?
760 int pet_expr_is_scalar_access(__isl_keep pet_expr *expr)
762 if (!expr)
763 return -1;
764 if (expr->type != pet_expr_access)
765 return 0;
766 if (isl_map_range_is_wrapping(expr->acc.access))
767 return 0;
769 return isl_map_dim(expr->acc.access, isl_dim_out) == 0;
772 /* Return 1 if the two pet_exprs are equivalent.
774 int pet_expr_is_equal(__isl_keep pet_expr *expr1, __isl_keep pet_expr *expr2)
776 int i;
778 if (!expr1 || !expr2)
779 return 0;
781 if (expr1->type != expr2->type)
782 return 0;
783 if (expr1->n_arg != expr2->n_arg)
784 return 0;
785 for (i = 0; i < expr1->n_arg; ++i)
786 if (!pet_expr_is_equal(expr1->args[i], expr2->args[i]))
787 return 0;
788 switch (expr1->type) {
789 case pet_expr_error:
790 return -1;
791 case pet_expr_double:
792 if (strcmp(expr1->d.s, expr2->d.s))
793 return 0;
794 if (expr1->d.val != expr2->d.val)
795 return 0;
796 break;
797 case pet_expr_int:
798 if (!isl_val_eq(expr1->i, expr2->i))
799 return 0;
800 break;
801 case pet_expr_access:
802 if (expr1->acc.read != expr2->acc.read)
803 return 0;
804 if (expr1->acc.write != expr2->acc.write)
805 return 0;
806 if (expr1->acc.ref_id != expr2->acc.ref_id)
807 return 0;
808 if (!expr1->acc.access || !expr2->acc.access)
809 return 0;
810 if (!isl_map_is_equal(expr1->acc.access, expr2->acc.access))
811 return 0;
812 if (!expr1->acc.index || !expr2->acc.index)
813 return 0;
814 if (!isl_multi_pw_aff_plain_is_equal(expr1->acc.index,
815 expr2->acc.index))
816 return 0;
817 break;
818 case pet_expr_op:
819 if (expr1->op != expr2->op)
820 return 0;
821 break;
822 case pet_expr_call:
823 if (strcmp(expr1->name, expr2->name))
824 return 0;
825 break;
826 case pet_expr_cast:
827 if (strcmp(expr1->type_name, expr2->type_name))
828 return 0;
829 break;
832 return 1;
835 /* Does the access expression "expr" read the accessed elements?
837 int pet_expr_access_is_read(__isl_keep pet_expr *expr)
839 if (!expr)
840 return -1;
841 if (expr->type != pet_expr_access)
842 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
843 "not an access expression", return -1);
845 return expr->acc.read;
848 /* Does the access expression "expr" write to the accessed elements?
850 int pet_expr_access_is_write(__isl_keep pet_expr *expr)
852 if (!expr)
853 return -1;
854 if (expr->type != pet_expr_access)
855 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
856 "not an access expression", return -1);
858 return expr->acc.write;
861 /* Return the identifier of the array accessed by "expr".
863 * If "expr" represents a member access, then return the identifier
864 * of the outer structure array.
866 __isl_give isl_id *pet_expr_access_get_id(__isl_keep pet_expr *expr)
868 if (!expr)
869 return NULL;
870 if (expr->type != pet_expr_access)
871 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
872 "not an access expression", return NULL);
874 if (isl_map_range_is_wrapping(expr->acc.access)) {
875 isl_space *space;
876 isl_id *id;
878 space = isl_map_get_space(expr->acc.access);
879 space = isl_space_range(space);
880 while (space && isl_space_is_wrapping(space))
881 space = isl_space_domain(isl_space_unwrap(space));
882 id = isl_space_get_tuple_id(space, isl_dim_set);
883 isl_space_free(space);
885 return id;
888 return isl_map_get_tuple_id(expr->acc.access, isl_dim_out);
891 /* Return the parameter space of "expr".
893 __isl_give isl_space *pet_expr_access_get_parameter_space(
894 __isl_keep pet_expr *expr)
896 isl_space *space;
898 if (!expr)
899 return NULL;
900 if (expr->type != pet_expr_access)
901 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
902 "not an access expression", return NULL);
904 space = isl_multi_pw_aff_get_space(expr->acc.index);
905 space = isl_space_params(space);
907 return space;
910 /* Return the space of the data accessed by "expr".
912 __isl_give isl_space *pet_expr_access_get_data_space(__isl_keep pet_expr *expr)
914 isl_space *space;
916 if (!expr)
917 return NULL;
918 if (expr->type != pet_expr_access)
919 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
920 "not an access expression", return NULL);
922 space = isl_multi_pw_aff_get_space(expr->acc.index);
923 space = isl_space_range(space);
925 return space;
928 /* Modify all expressions of type pet_expr_access in "expr"
929 * by calling "fn" on them.
931 __isl_give pet_expr *pet_expr_map_access(__isl_take pet_expr *expr,
932 __isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user),
933 void *user)
935 int i, n;
937 n = pet_expr_get_n_arg(expr);
938 for (i = 0; i < n; ++i) {
939 pet_expr *arg = pet_expr_get_arg(expr, i);
940 arg = pet_expr_map_access(arg, fn, user);
941 expr = pet_expr_set_arg(expr, i, arg);
944 if (!expr)
945 return NULL;
947 if (expr->type == pet_expr_access)
948 expr = fn(expr, user);
950 return expr;
953 /* Call "fn" on each of the subexpressions of "expr" of type "type".
955 * Return -1 on error (where fn returning a negative value is treated as
956 * an error).
957 * Otherwise return 0.
959 int pet_expr_foreach_expr_of_type(__isl_keep pet_expr *expr,
960 enum pet_expr_type type,
961 int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
963 int i;
965 if (!expr)
966 return -1;
968 for (i = 0; i < expr->n_arg; ++i)
969 if (pet_expr_foreach_expr_of_type(expr->args[i],
970 type, fn, user) < 0)
971 return -1;
973 if (expr->type == type)
974 return fn(expr, user);
976 return 0;
979 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_access.
981 * Return -1 on error (where fn returning a negative value is treated as
982 * an error).
983 * Otherwise return 0.
985 int pet_expr_foreach_access_expr(__isl_keep pet_expr *expr,
986 int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
988 return pet_expr_foreach_expr_of_type(expr, pet_expr_access, fn, user);
991 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_call.
993 * Return -1 on error (where fn returning a negative value is treated as
994 * an error).
995 * Otherwise return 0.
997 int pet_expr_foreach_call_expr(__isl_keep pet_expr *expr,
998 int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
1000 return pet_expr_foreach_expr_of_type(expr, pet_expr_call, fn, user);
1003 /* Internal data structure for pet_expr_writes.
1004 * "id" is the identifier that we are looking for.
1005 * "found" is set if we have found the identifier being written to.
1007 struct pet_expr_writes_data {
1008 isl_id *id;
1009 int found;
1012 /* Given an access expression, check if it writes to data->id.
1013 * If so, set data->found and abort the search.
1015 static int writes(__isl_keep pet_expr *expr, void *user)
1017 struct pet_expr_writes_data *data = user;
1018 isl_id *write_id;
1020 if (!expr->acc.write)
1021 return 0;
1022 if (pet_expr_is_affine(expr))
1023 return 0;
1025 write_id = pet_expr_access_get_id(expr);
1026 isl_id_free(write_id);
1028 if (!write_id)
1029 return -1;
1031 if (write_id != data->id)
1032 return 0;
1034 data->found = 1;
1035 return -1;
1038 /* Does expression "expr" write to "id"?
1040 int pet_expr_writes(__isl_keep pet_expr *expr, __isl_keep isl_id *id)
1042 struct pet_expr_writes_data data;
1044 data.id = id;
1045 data.found = 0;
1046 if (pet_expr_foreach_access_expr(expr, &writes, &data) < 0 &&
1047 !data.found)
1048 return -1;
1050 return data.found;
1053 /* Move the "n" dimensions of "src_type" starting at "src_pos" of
1054 * index expression and access relation of "expr"
1055 * to dimensions of "dst_type" at "dst_pos".
1057 __isl_give pet_expr *pet_expr_access_move_dims(__isl_take pet_expr *expr,
1058 enum isl_dim_type dst_type, unsigned dst_pos,
1059 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
1061 expr = pet_expr_cow(expr);
1062 if (!expr)
1063 return NULL;
1064 if (expr->type != pet_expr_access)
1065 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1066 "not an access pet_expr", return pet_expr_free(expr));
1068 expr->acc.access = isl_map_move_dims(expr->acc.access,
1069 dst_type, dst_pos, src_type, src_pos, n);
1070 expr->acc.index = isl_multi_pw_aff_move_dims(expr->acc.index,
1071 dst_type, dst_pos, src_type, src_pos, n);
1072 if (!expr->acc.access || !expr->acc.index)
1073 return pet_expr_free(expr);
1075 return expr;
1078 /* Replace the index expression and access relation of "expr"
1079 * by their preimages under the function represented by "ma".
1081 __isl_give pet_expr *pet_expr_access_pullback_multi_aff(
1082 __isl_take pet_expr *expr, __isl_take isl_multi_aff *ma)
1084 expr = pet_expr_cow(expr);
1085 if (!expr || !ma)
1086 goto error;
1087 if (expr->type != pet_expr_access)
1088 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1089 "not an access pet_expr", goto error);
1091 expr->acc.access = isl_map_preimage_domain_multi_aff(expr->acc.access,
1092 isl_multi_aff_copy(ma));
1093 expr->acc.index = isl_multi_pw_aff_pullback_multi_aff(expr->acc.index,
1094 ma);
1095 if (!expr->acc.access || !expr->acc.index)
1096 return pet_expr_free(expr);
1098 return expr;
1099 error:
1100 isl_multi_aff_free(ma);
1101 pet_expr_free(expr);
1102 return NULL;
1105 /* Return the access relation of access expression "expr".
1107 __isl_give isl_map *pet_expr_access_get_access(__isl_keep pet_expr *expr)
1109 if (!expr)
1110 return NULL;
1111 if (expr->type != pet_expr_access)
1112 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1113 "not an access expression", return NULL);
1115 return isl_map_copy(expr->acc.access);
1118 /* Return the index expression of access expression "expr".
1120 __isl_give isl_multi_pw_aff *pet_expr_access_get_index(
1121 __isl_keep pet_expr *expr)
1123 if (!expr)
1124 return NULL;
1125 if (expr->type != pet_expr_access)
1126 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1127 "not an access expression", return NULL);
1129 return isl_multi_pw_aff_copy(expr->acc.index);
1132 /* Align the parameters of expr->acc.index and expr->acc.access.
1134 __isl_give pet_expr *pet_expr_access_align_params(__isl_take pet_expr *expr)
1136 expr = pet_expr_cow(expr);
1137 if (!expr)
1138 return NULL;
1139 if (expr->type != pet_expr_access)
1140 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1141 "not an access expression", return pet_expr_free(expr));
1143 expr->acc.access = isl_map_align_params(expr->acc.access,
1144 isl_multi_pw_aff_get_space(expr->acc.index));
1145 expr->acc.index = isl_multi_pw_aff_align_params(expr->acc.index,
1146 isl_map_get_space(expr->acc.access));
1147 if (!expr->acc.access || !expr->acc.index)
1148 return pet_expr_free(expr);
1150 return expr;
1153 /* Add extra conditions on the parameters to all access relations in "expr".
1155 * The conditions are not added to the index expression. Instead, they
1156 * are used to try and simplify the index expression.
1158 __isl_give pet_expr *pet_expr_restrict(__isl_take pet_expr *expr,
1159 __isl_take isl_set *cond)
1161 int i;
1163 expr = pet_expr_cow(expr);
1164 if (!expr)
1165 goto error;
1167 for (i = 0; i < expr->n_arg; ++i) {
1168 expr->args[i] = pet_expr_restrict(expr->args[i],
1169 isl_set_copy(cond));
1170 if (!expr->args[i])
1171 goto error;
1174 if (expr->type == pet_expr_access) {
1175 expr->acc.access = isl_map_intersect_params(expr->acc.access,
1176 isl_set_copy(cond));
1177 expr->acc.index = isl_multi_pw_aff_gist_params(
1178 expr->acc.index, isl_set_copy(cond));
1179 if (!expr->acc.access || !expr->acc.index)
1180 goto error;
1183 isl_set_free(cond);
1184 return expr;
1185 error:
1186 isl_set_free(cond);
1187 return pet_expr_free(expr);
1190 /* Modify the access relation and index expression
1191 * of the given access expression
1192 * based on the given iteration space transformation.
1193 * In particular, precompose the access relation and index expression
1194 * with the update function.
1196 * If the access has any arguments then the domain of the access relation
1197 * is a wrapped mapping from the iteration space to the space of
1198 * argument values. We only need to change the domain of this wrapped
1199 * mapping, so we extend the input transformation with an identity mapping
1200 * on the space of argument values.
1202 __isl_give pet_expr *pet_expr_access_update_domain(__isl_take pet_expr *expr,
1203 __isl_keep isl_multi_pw_aff *update)
1205 isl_space *space;
1207 expr = pet_expr_cow(expr);
1208 if (!expr)
1209 return NULL;
1210 if (expr->type != pet_expr_access)
1211 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1212 "not an access expression", return pet_expr_free(expr));
1214 update = isl_multi_pw_aff_copy(update);
1216 space = isl_map_get_space(expr->acc.access);
1217 space = isl_space_domain(space);
1218 if (!isl_space_is_wrapping(space))
1219 isl_space_free(space);
1220 else {
1221 isl_multi_pw_aff *id;
1222 space = isl_space_unwrap(space);
1223 space = isl_space_range(space);
1224 space = isl_space_map_from_set(space);
1225 id = isl_multi_pw_aff_identity(space);
1226 update = isl_multi_pw_aff_product(update, id);
1229 expr->acc.access = isl_map_preimage_domain_multi_pw_aff(
1230 expr->acc.access,
1231 isl_multi_pw_aff_copy(update));
1232 expr->acc.index = isl_multi_pw_aff_pullback_multi_pw_aff(
1233 expr->acc.index, update);
1234 if (!expr->acc.access || !expr->acc.index)
1235 return pet_expr_free(expr);
1237 return expr;
1240 static __isl_give pet_expr *update_domain(__isl_take pet_expr *expr, void *user)
1242 isl_multi_pw_aff *update = user;
1244 return pet_expr_access_update_domain(expr, update);
1247 /* Modify all access relations in "expr" by precomposing them with
1248 * the given iteration space transformation.
1250 __isl_give pet_expr *pet_expr_update_domain(__isl_take pet_expr *expr,
1251 __isl_take isl_multi_pw_aff *update)
1253 expr = pet_expr_map_access(expr, &update_domain, update);
1254 isl_multi_pw_aff_free(update);
1255 return expr;
1258 /* Add all parameters in "space" to the access relation and index expression
1259 * of "expr".
1261 static __isl_give pet_expr *align_params(__isl_take pet_expr *expr, void *user)
1263 isl_space *space = user;
1265 expr = pet_expr_cow(expr);
1266 if (!expr)
1267 return NULL;
1268 if (expr->type != pet_expr_access)
1269 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1270 "not an access expression", return pet_expr_free(expr));
1272 expr->acc.access = isl_map_align_params(expr->acc.access,
1273 isl_space_copy(space));
1274 expr->acc.index = isl_multi_pw_aff_align_params(expr->acc.index,
1275 isl_space_copy(space));
1276 if (!expr->acc.access || !expr->acc.index)
1277 return pet_expr_free(expr);
1279 return expr;
1282 /* Add all parameters in "space" to all access relations and index expressions
1283 * in "expr".
1285 __isl_give pet_expr *pet_expr_align_params(__isl_take pet_expr *expr,
1286 __isl_take isl_space *space)
1288 expr = pet_expr_map_access(expr, &align_params, space);
1289 isl_space_free(space);
1290 return expr;
1293 /* Insert an argument expression corresponding to "test" in front
1294 * of the list of arguments described by *n_arg and *args.
1296 static __isl_give pet_expr *insert_access_arg(__isl_take pet_expr *expr,
1297 __isl_keep isl_multi_pw_aff *test)
1299 int i;
1300 isl_ctx *ctx = isl_multi_pw_aff_get_ctx(test);
1302 if (!test)
1303 return pet_expr_free(expr);
1304 expr = pet_expr_cow(expr);
1305 if (!expr)
1306 return NULL;
1308 if (!expr->args) {
1309 expr->args = isl_calloc_array(ctx, pet_expr *, 1);
1310 if (!expr->args)
1311 return pet_expr_free(expr);
1312 } else {
1313 pet_expr **ext;
1314 ext = isl_calloc_array(ctx, pet_expr *, 1 + expr->n_arg);
1315 if (!ext)
1316 return pet_expr_free(expr);
1317 for (i = 0; i < expr->n_arg; ++i)
1318 ext[1 + i] = expr->args[i];
1319 free(expr->args);
1320 expr->args = ext;
1322 expr->n_arg++;
1323 expr->args[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test));
1324 if (!expr->args[0])
1325 return pet_expr_free(expr);
1327 return expr;
1330 /* Make the expression "expr" depend on the value of "test"
1331 * being equal to "satisfied".
1333 * If "test" is an affine expression, we simply add the conditions
1334 * on the expression having the value "satisfied" to all access relations
1335 * and index expressions.
1337 * Otherwise, we add a filter to "expr" (which is then assumed to be
1338 * an access expression) corresponding to "test" being equal to "satisfied".
1340 __isl_give pet_expr *pet_expr_filter(__isl_take pet_expr *expr,
1341 __isl_take isl_multi_pw_aff *test, int satisfied)
1343 isl_id *id;
1344 isl_ctx *ctx;
1345 isl_space *space;
1346 isl_pw_multi_aff *pma;
1348 expr = pet_expr_cow(expr);
1349 if (!expr || !test)
1350 goto error;
1352 if (!isl_multi_pw_aff_has_tuple_id(test, isl_dim_out)) {
1353 isl_pw_aff *pa;
1354 isl_set *cond;
1356 pa = isl_multi_pw_aff_get_pw_aff(test, 0);
1357 isl_multi_pw_aff_free(test);
1358 if (satisfied)
1359 cond = isl_pw_aff_non_zero_set(pa);
1360 else
1361 cond = isl_pw_aff_zero_set(pa);
1362 return pet_expr_restrict(expr, isl_set_params(cond));
1365 ctx = isl_multi_pw_aff_get_ctx(test);
1366 if (expr->type != pet_expr_access)
1367 isl_die(ctx, isl_error_invalid,
1368 "can only filter access expressions", goto error);
1370 space = isl_space_domain(isl_map_get_space(expr->acc.access));
1371 id = isl_multi_pw_aff_get_tuple_id(test, isl_dim_out);
1372 pma = pet_filter_insert_pma(space, id, satisfied);
1374 expr->acc.access = isl_map_preimage_domain_pw_multi_aff(
1375 expr->acc.access,
1376 isl_pw_multi_aff_copy(pma));
1377 expr->acc.index = isl_multi_pw_aff_pullback_pw_multi_aff(
1378 expr->acc.index, pma);
1379 if (!expr->acc.access || !expr->acc.index)
1380 goto error;
1382 expr = insert_access_arg(expr, test);
1384 isl_multi_pw_aff_free(test);
1385 return expr;
1386 error:
1387 isl_multi_pw_aff_free(test);
1388 return pet_expr_free(expr);
1391 /* Check if the given index expression accesses a (0D) array that corresponds
1392 * to one of the parameters in "space". If so, replace the array access
1393 * by an access to the set of integers with as index (and value)
1394 * that parameter.
1396 static __isl_give isl_multi_pw_aff *index_detect_parameter(
1397 __isl_take isl_multi_pw_aff *index, __isl_take isl_space *space)
1399 isl_local_space *ls;
1400 isl_id *array_id = NULL;
1401 isl_aff *aff;
1402 int pos = -1;
1404 if (isl_multi_pw_aff_has_tuple_id(index, isl_dim_out)) {
1405 array_id = isl_multi_pw_aff_get_tuple_id(index, isl_dim_out);
1406 pos = isl_space_find_dim_by_id(space, isl_dim_param, array_id);
1408 isl_space_free(space);
1410 if (pos < 0) {
1411 isl_id_free(array_id);
1412 return index;
1415 space = isl_multi_pw_aff_get_domain_space(index);
1416 isl_multi_pw_aff_free(index);
1418 pos = isl_space_find_dim_by_id(space, isl_dim_param, array_id);
1419 if (pos < 0) {
1420 space = isl_space_insert_dims(space, isl_dim_param, 0, 1);
1421 space = isl_space_set_dim_id(space, isl_dim_param, 0, array_id);
1422 pos = 0;
1423 } else
1424 isl_id_free(array_id);
1426 ls = isl_local_space_from_space(space);
1427 aff = isl_aff_var_on_domain(ls, isl_dim_param, pos);
1428 index = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
1430 return index;
1433 /* Check if the given access relation accesses a (0D) array that corresponds
1434 * to one of the parameters in "space". If so, replace the array access
1435 * by an access to the set of integers with as index (and value)
1436 * that parameter.
1438 static __isl_give isl_map *access_detect_parameter(__isl_take isl_map *access,
1439 __isl_take isl_space *space)
1441 isl_id *array_id = NULL;
1442 int pos = -1;
1444 if (isl_map_has_tuple_id(access, isl_dim_out)) {
1445 array_id = isl_map_get_tuple_id(access, isl_dim_out);
1446 pos = isl_space_find_dim_by_id(space, isl_dim_param, array_id);
1448 isl_space_free(space);
1450 if (pos < 0) {
1451 isl_id_free(array_id);
1452 return access;
1455 pos = isl_map_find_dim_by_id(access, isl_dim_param, array_id);
1456 if (pos < 0) {
1457 access = isl_map_insert_dims(access, isl_dim_param, 0, 1);
1458 access = isl_map_set_dim_id(access, isl_dim_param, 0, array_id);
1459 pos = 0;
1460 } else
1461 isl_id_free(array_id);
1463 access = isl_map_insert_dims(access, isl_dim_out, 0, 1);
1464 access = isl_map_equate(access, isl_dim_param, pos, isl_dim_out, 0);
1466 return access;
1469 /* If "expr" accesses a (0D) array that corresponds to one of the parameters
1470 * in "space" then replace it by a value equal to the corresponding parameter.
1472 static __isl_give pet_expr *detect_parameter_accesses(__isl_take pet_expr *expr,
1473 void *user)
1475 isl_space *space = user;
1477 expr = pet_expr_cow(expr);
1478 if (!expr)
1479 return NULL;
1480 if (expr->type != pet_expr_access)
1481 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1482 "not an access expression", return pet_expr_free(expr));
1484 expr->acc.access = access_detect_parameter(expr->acc.access,
1485 isl_space_copy(space));
1486 expr->acc.index = index_detect_parameter(expr->acc.index,
1487 isl_space_copy(space));
1488 if (!expr->acc.access || !expr->acc.index)
1489 return pet_expr_free(expr);
1491 return expr;
1494 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
1495 * in "space" by a value equal to the corresponding parameter.
1497 __isl_give pet_expr *pet_expr_detect_parameter_accesses(
1498 __isl_take pet_expr *expr, __isl_take isl_space *space)
1500 expr = pet_expr_map_access(expr, &detect_parameter_accesses, space);
1501 isl_space_free(space);
1502 return expr;
1505 /* Add a reference identifier to access expression "expr".
1506 * "user" points to an integer that contains the sequence number
1507 * of the next reference.
1509 static __isl_give pet_expr *access_add_ref_id(__isl_take pet_expr *expr,
1510 void *user)
1512 isl_ctx *ctx;
1513 char name[50];
1514 int *n_ref = user;
1516 expr = pet_expr_cow(expr);
1517 if (!expr)
1518 return expr;
1519 if (expr->type != pet_expr_access)
1520 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1521 "not an access expression", return pet_expr_free(expr));
1523 ctx = isl_map_get_ctx(expr->acc.access);
1524 snprintf(name, sizeof(name), "__pet_ref_%d", (*n_ref)++);
1525 expr->acc.ref_id = isl_id_alloc(ctx, name, NULL);
1526 if (!expr->acc.ref_id)
1527 return pet_expr_free(expr);
1529 return expr;
1532 __isl_give pet_expr *pet_expr_add_ref_ids(__isl_take pet_expr *expr, int *n_ref)
1534 return pet_expr_map_access(expr, &access_add_ref_id, n_ref);
1537 /* Reset the user pointer on all parameter and tuple ids in
1538 * the access relation and the index expressions
1539 * of the access expression "expr".
1541 static __isl_give pet_expr *access_anonymize(__isl_take pet_expr *expr,
1542 void *user)
1544 expr = pet_expr_cow(expr);
1545 if (!expr)
1546 return expr;
1547 if (expr->type != pet_expr_access)
1548 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1549 "not an access expression", return pet_expr_free(expr));
1551 expr->acc.access = isl_map_reset_user(expr->acc.access);
1552 expr->acc.index = isl_multi_pw_aff_reset_user(expr->acc.index);
1553 if (!expr->acc.access || !expr->acc.index)
1554 return pet_expr_free(expr);
1556 return expr;
1559 __isl_give pet_expr *pet_expr_anonymize(__isl_take pet_expr *expr)
1561 return pet_expr_map_access(expr, &access_anonymize, NULL);
1564 /* Data used in access_gist() callback.
1566 struct pet_access_gist_data {
1567 isl_set *domain;
1568 isl_union_map *value_bounds;
1571 /* Given an expression "expr" of type pet_expr_access, compute
1572 * the gist of the associated access relation and index expression
1573 * with respect to data->domain and the bounds on the values of the arguments
1574 * of the expression.
1576 static __isl_give pet_expr *access_gist(__isl_take pet_expr *expr, void *user)
1578 struct pet_access_gist_data *data = user;
1579 isl_set *domain;
1581 expr = pet_expr_cow(expr);
1582 if (!expr)
1583 return expr;
1584 if (expr->type != pet_expr_access)
1585 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1586 "not an access expression", return pet_expr_free(expr));
1588 domain = isl_set_copy(data->domain);
1589 if (expr->n_arg > 0)
1590 domain = pet_value_bounds_apply(domain, expr->n_arg, expr->args,
1591 data->value_bounds);
1593 expr->acc.access = isl_map_gist_domain(expr->acc.access,
1594 isl_set_copy(domain));
1595 expr->acc.index = isl_multi_pw_aff_gist(expr->acc.index, domain);
1596 if (!expr->acc.access || !expr->acc.index)
1597 return pet_expr_free(expr);
1599 return expr;
1602 __isl_give pet_expr *pet_expr_gist(__isl_take pet_expr *expr,
1603 __isl_keep isl_set *context, __isl_keep isl_union_map *value_bounds)
1605 struct pet_access_gist_data data = { context, value_bounds };
1607 return pet_expr_map_access(expr, &access_gist, &data);
1610 /* Mark "expr" as a read dependening on "read".
1612 __isl_give pet_expr *pet_expr_access_set_read(__isl_take pet_expr *expr,
1613 int read)
1615 if (!expr)
1616 return pet_expr_free(expr);
1617 if (expr->type != pet_expr_access)
1618 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1619 "not an access expression", return pet_expr_free(expr));
1620 if (expr->acc.read == read)
1621 return expr;
1622 expr = pet_expr_cow(expr);
1623 if (!expr)
1624 return NULL;
1625 expr->acc.read = read;
1627 return expr;
1630 /* Mark "expr" as a write dependening on "write".
1632 __isl_give pet_expr *pet_expr_access_set_write(__isl_take pet_expr *expr,
1633 int write)
1635 if (!expr)
1636 return pet_expr_free(expr);
1637 if (expr->type != pet_expr_access)
1638 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1639 "not an access expression", return pet_expr_free(expr));
1640 if (expr->acc.write == write)
1641 return expr;
1642 expr = pet_expr_cow(expr);
1643 if (!expr)
1644 return NULL;
1645 expr->acc.write = write;
1647 return expr;
1650 /* Replace the access relation of "expr" by "access".
1652 __isl_give pet_expr *pet_expr_access_set_access(__isl_take pet_expr *expr,
1653 __isl_take isl_map *access)
1655 expr = pet_expr_cow(expr);
1656 if (!expr || !access)
1657 goto error;
1658 if (expr->type != pet_expr_access)
1659 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1660 "not an access expression", goto error);
1661 isl_map_free(expr->acc.access);
1662 expr->acc.access = access;
1664 return expr;
1665 error:
1666 isl_map_free(access);
1667 pet_expr_free(expr);
1668 return NULL;
1671 /* Replace the index expression of "expr" by "index".
1673 __isl_give pet_expr *pet_expr_access_set_index(__isl_take pet_expr *expr,
1674 __isl_take isl_multi_pw_aff *index)
1676 expr = pet_expr_cow(expr);
1677 if (!expr || !index)
1678 goto error;
1679 if (expr->type != pet_expr_access)
1680 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1681 "not an access expression", goto error);
1682 isl_multi_pw_aff_free(expr->acc.index);
1683 expr->acc.index = index;
1685 return expr;
1686 error:
1687 isl_multi_pw_aff_free(index);
1688 pet_expr_free(expr);
1689 return NULL;
1692 /* Return the reference identifier of access expression "expr".
1694 __isl_give isl_id *pet_expr_access_get_ref_id(__isl_keep pet_expr *expr)
1696 if (!expr)
1697 return NULL;
1698 if (expr->type != pet_expr_access)
1699 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1700 "not an access expression", return NULL);
1702 return isl_id_copy(expr->acc.ref_id);
1705 /* Replace the reference identifier of access expression "expr" by "ref_id".
1707 __isl_give pet_expr *pet_expr_access_set_ref_id(__isl_take pet_expr *expr,
1708 __isl_take isl_id *ref_id)
1710 expr = pet_expr_cow(expr);
1711 if (!expr || !ref_id)
1712 goto error;
1713 if (expr->type != pet_expr_access)
1714 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1715 "not an access expression", goto error);
1716 isl_id_free(expr->acc.ref_id);
1717 expr->acc.ref_id = ref_id;
1719 return expr;
1720 error:
1721 isl_id_free(ref_id);
1722 pet_expr_free(expr);
1723 return NULL;
1726 /* Tag the access relation "access" with "id".
1727 * That is, insert the id as the range of a wrapped relation
1728 * in the domain of "access".
1730 * If "access" is of the form
1732 * D[i] -> A[a]
1734 * then the result is of the form
1736 * [D[i] -> id[]] -> A[a]
1738 __isl_give isl_map *pet_expr_tag_access(__isl_keep pet_expr *expr,
1739 __isl_take isl_map *access)
1741 isl_space *space;
1742 isl_map *add_tag;
1743 isl_id *id;
1745 if (expr->type != pet_expr_access)
1746 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1747 "not an access expression",
1748 return isl_map_free(access));
1750 id = isl_id_copy(expr->acc.ref_id);
1751 space = isl_space_range(isl_map_get_space(access));
1752 space = isl_space_from_range(space);
1753 space = isl_space_set_tuple_id(space, isl_dim_in, id);
1754 add_tag = isl_map_universe(space);
1755 access = isl_map_domain_product(access, add_tag);
1757 return access;
1760 /* Return the relation mapping pairs of domain iterations and argument
1761 * values to the corresponding accessed data elements.
1763 __isl_give isl_map *pet_expr_access_get_dependent_access(
1764 __isl_keep pet_expr *expr)
1766 if (!expr)
1767 return NULL;
1768 if (expr->type != pet_expr_access)
1769 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1770 "not an access expression", return NULL);
1772 return isl_map_copy(expr->acc.access);
1775 /* Return the relation mapping domain iterations to all possibly
1776 * accessed data elements.
1777 * In particular, take the access relation and project out the values
1778 * of the arguments, if any.
1780 __isl_give isl_map *pet_expr_access_get_may_access(__isl_keep pet_expr *expr)
1782 isl_map *access;
1783 isl_space *space;
1784 isl_map *map;
1786 if (!expr)
1787 return NULL;
1788 if (expr->type != pet_expr_access)
1789 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1790 "not an access expression", return NULL);
1792 access = pet_expr_access_get_dependent_access(expr);
1793 if (expr->n_arg == 0)
1794 return access;
1796 space = isl_space_domain(isl_map_get_space(access));
1797 map = isl_map_universe(isl_space_unwrap(space));
1798 map = isl_map_domain_map(map);
1799 access = isl_map_apply_domain(access, map);
1801 return access;
1804 /* Return a relation mapping domain iterations to definitely
1805 * accessed data elements, assuming the statement containing
1806 * the expression is executed.
1808 * If there are no arguments, then all elements are accessed.
1809 * Otherwise, we conservatively return an empty relation.
1811 __isl_give isl_map *pet_expr_access_get_must_access(__isl_keep pet_expr *expr)
1813 isl_space *space;
1815 if (!expr)
1816 return NULL;
1817 if (expr->type != pet_expr_access)
1818 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1819 "not an access expression", return NULL);
1821 if (expr->n_arg == 0)
1822 return pet_expr_access_get_dependent_access(expr);
1824 space = isl_map_get_space(expr->acc.access);
1825 space = isl_space_domain_factor_domain(space);
1827 return isl_map_empty(space);
1830 /* Return the relation mapping domain iterations to all possibly
1831 * accessed data elements, with its domain tagged with the reference
1832 * identifier.
1834 __isl_give isl_map *pet_expr_access_get_tagged_may_access(
1835 __isl_keep pet_expr *expr)
1837 isl_map *access;
1839 if (!expr)
1840 return NULL;
1842 access = pet_expr_access_get_may_access(expr);
1843 access = pet_expr_tag_access(expr, access);
1845 return access;
1848 /* Return the operation type of operation expression "expr".
1850 enum pet_op_type pet_expr_op_get_type(__isl_keep pet_expr *expr)
1852 if (!expr)
1853 return pet_op_last;
1854 if (expr->type != pet_expr_op)
1855 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1856 "not an operation expression", return pet_op_last);
1858 return expr->op;
1861 /* Replace the operation type of operation expression "expr" by "type".
1863 __isl_give pet_expr *pet_expr_op_set_type(__isl_take pet_expr *expr,
1864 enum pet_op_type type)
1866 if (!expr)
1867 return pet_expr_free(expr);
1868 if (expr->type != pet_expr_op)
1869 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1870 "not an operation expression",
1871 return pet_expr_free(expr));
1872 if (expr->op == type)
1873 return expr;
1874 expr = pet_expr_cow(expr);
1875 if (!expr)
1876 return NULL;
1877 expr->op = type;
1879 return expr;
1882 /* Return the name of the function called by "expr".
1884 __isl_keep const char *pet_expr_call_get_name(__isl_keep pet_expr *expr)
1886 if (!expr)
1887 return NULL;
1888 if (expr->type != pet_expr_call)
1889 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1890 "not a call expression", return NULL);
1891 return expr->name;
1894 /* Replace the name of the function called by "expr" by "name".
1896 __isl_give pet_expr *pet_expr_call_set_name(__isl_take pet_expr *expr,
1897 __isl_keep const char *name)
1899 expr = pet_expr_cow(expr);
1900 if (!expr || !name)
1901 return pet_expr_free(expr);
1902 if (expr->type != pet_expr_call)
1903 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1904 "not a call expression", return pet_expr_free(expr));
1905 free(expr->name);
1906 expr->name = strdup(name);
1907 if (!expr->name)
1908 return pet_expr_free(expr);
1909 return expr;
1912 /* Replace the type of the cast performed by "expr" by "name".
1914 __isl_give pet_expr *pet_expr_cast_set_type_name(__isl_take pet_expr *expr,
1915 __isl_keep const char *name)
1917 expr = pet_expr_cow(expr);
1918 if (!expr || !name)
1919 return pet_expr_free(expr);
1920 if (expr->type != pet_expr_cast)
1921 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1922 "not a cast expression", return pet_expr_free(expr));
1923 free(expr->type_name);
1924 expr->type_name = strdup(name);
1925 if (!expr->type_name)
1926 return pet_expr_free(expr);
1927 return expr;
1930 /* Return the value of the integer represented by "expr".
1932 __isl_give isl_val *pet_expr_int_get_val(__isl_keep pet_expr *expr)
1934 if (!expr)
1935 return NULL;
1936 if (expr->type != pet_expr_int)
1937 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1938 "not an int expression", return NULL);
1940 return isl_val_copy(expr->i);
1943 /* Replace the value of the integer represented by "expr" by "v".
1945 __isl_give pet_expr *pet_expr_int_set_val(__isl_take pet_expr *expr,
1946 __isl_take isl_val *v)
1948 expr = pet_expr_cow(expr);
1949 if (!expr || !v)
1950 goto error;
1951 if (expr->type != pet_expr_int)
1952 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1953 "not an int expression", goto error);
1954 isl_val_free(expr->i);
1955 expr->i = v;
1957 return expr;
1958 error:
1959 isl_val_free(v);
1960 pet_expr_free(expr);
1961 return NULL;
1964 /* Replace the value and string representation of the double
1965 * represented by "expr" by "d" and "s".
1967 __isl_give pet_expr *pet_expr_double_set(__isl_take pet_expr *expr,
1968 double d, __isl_keep const char *s)
1970 expr = pet_expr_cow(expr);
1971 if (!expr || !s)
1972 return pet_expr_free(expr);
1973 if (expr->type != pet_expr_double)
1974 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1975 "not a double expression", return pet_expr_free(expr));
1976 expr->d.val = d;
1977 free(expr->d.s);
1978 expr->d.s = strdup(s);
1979 if (!expr->d.s)
1980 return pet_expr_free(expr);
1981 return expr;
1984 /* Return a string representation of the double expression "expr".
1986 __isl_give char *pet_expr_double_get_str(__isl_keep pet_expr *expr)
1988 if (!expr)
1989 return NULL;
1990 if (expr->type != pet_expr_double)
1991 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1992 "not a double expression", return NULL);
1993 return strdup(expr->d.s);
1996 /* Return a piecewise affine expression defined on the specified domain
1997 * that represents NaN.
1999 static __isl_give isl_pw_aff *non_affine(__isl_take isl_space *space)
2001 return isl_pw_aff_nan_on_domain(isl_local_space_from_space(space));
2004 /* This function is called when we come across an access that is
2005 * nested in what is supposed to be an affine expression.
2006 * "pc" is the context in which the affine expression is created.
2007 * If nesting is allowed in "pc", we return an affine expression that is
2008 * equal to a new parameter corresponding to this nested access.
2009 * Otherwise, we return NaN.
2011 * Note that we currently don't allow nested accesses themselves
2012 * to contain any nested accesses, so we check if "expr" itself
2013 * involves any nested accesses and return NaN if it does.
2015 * The new parameter is resolved in resolve_nested.
2017 static __isl_give isl_pw_aff *nested_access(__isl_keep pet_expr *expr,
2018 __isl_keep pet_context *pc)
2020 isl_ctx *ctx;
2021 isl_id *id;
2022 isl_space *space;
2023 isl_local_space *ls;
2024 isl_aff *aff;
2025 int nested;
2027 if (!expr || !pc)
2028 return NULL;
2029 if (!pet_context_allow_nesting(pc))
2030 return non_affine(pet_context_get_space(pc));
2032 if (pet_expr_get_type(expr) != pet_expr_access)
2033 isl_die(pet_expr_get_ctx(expr), isl_error_internal,
2034 "not an access expression", return NULL);
2036 space = pet_expr_access_get_parameter_space(expr);
2037 nested = pet_nested_any_in_space(space);
2038 isl_space_free(space);
2039 if (nested)
2040 return non_affine(pet_context_get_space(pc));
2042 ctx = pet_expr_get_ctx(expr);
2043 id = pet_nested_pet_expr(pet_expr_copy(expr));
2044 space = pet_context_get_space(pc);
2045 space = isl_space_insert_dims(space, isl_dim_param, 0, 1);
2047 space = isl_space_set_dim_id(space, isl_dim_param, 0, id);
2048 ls = isl_local_space_from_space(space);
2049 aff = isl_aff_var_on_domain(ls, isl_dim_param, 0);
2051 return isl_pw_aff_from_aff(aff);
2054 /* Extract an affine expression from the access pet_expr "expr".
2055 * "pc" is the context in which the affine expression is created.
2057 * If "expr" is actually an affine expression rather than
2058 * a real access, then we return that expression.
2059 * Otherwise, we require that "expr" is of an integral type.
2060 * If not, we return NaN.
2062 * If we are accessing a scalar (i.e., not an array and not a member)
2063 * and if that scalar can be treated as a parameter (because it is
2064 * not assigned a known or unknown value in the relevant part of the AST),
2065 * then we return an affine expression equal to that parameter.
2067 * If the variable has been assigned a known affine expression,
2068 * then we return that expression.
2070 * Otherwise, we return an expression that is equal to a parameter
2071 * representing "expr" (if "allow_nested" is set).
2073 static __isl_give isl_pw_aff *extract_affine_from_access(
2074 __isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2076 int pos;
2077 isl_id *id;
2078 isl_space *space;
2079 isl_local_space *ls;
2080 isl_aff *aff;
2082 if (pet_expr_is_affine(expr)) {
2083 isl_pw_aff *pa;
2084 isl_multi_pw_aff *mpa;
2086 mpa = pet_expr_access_get_index(expr);
2087 pa = isl_multi_pw_aff_get_pw_aff(mpa, 0);
2088 isl_multi_pw_aff_free(mpa);
2089 return pa;
2092 if (pet_expr_get_type_size(expr) == 0)
2093 return non_affine(pet_context_get_space(pc));
2095 if (!pet_expr_is_scalar_access(expr))
2096 return nested_access(expr, pc);
2098 id = pet_expr_access_get_id(expr);
2099 if (pet_context_is_assigned(pc, id)) {
2100 isl_pw_aff *pa;
2102 pa = pet_context_get_value(pc, id);
2103 if (!pa)
2104 return NULL;
2105 if (!isl_pw_aff_involves_nan(pa))
2106 return pa;
2107 isl_pw_aff_free(pa);
2108 return nested_access(expr, pc);
2111 space = pet_context_get_space(pc);
2113 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2114 if (pos >= 0) {
2115 isl_id_free(id);
2116 } else {
2117 pos = isl_space_dim(space, isl_dim_param);
2118 space = isl_space_add_dims(space, isl_dim_param, 1);
2119 space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
2122 ls = isl_local_space_from_space(space);
2123 aff = isl_aff_var_on_domain(ls, isl_dim_param, pos);
2125 return isl_pw_aff_from_aff(aff);
2128 /* Construct an affine expression from the integer constant "expr".
2129 * "pc" is the context in which the affine expression is created.
2131 static __isl_give isl_pw_aff *extract_affine_from_int(__isl_keep pet_expr *expr,
2132 __isl_keep pet_context *pc)
2134 isl_local_space *ls;
2135 isl_aff *aff;
2137 if (!expr)
2138 return NULL;
2140 ls = isl_local_space_from_space(pet_context_get_space(pc));
2141 aff = isl_aff_val_on_domain(ls, pet_expr_int_get_val(expr));
2143 return isl_pw_aff_from_aff(aff);
2146 /* Extract an affine expression from an addition or subtraction operation.
2147 * Return NaN if we are unable to extract an affine expression.
2149 * "pc" is the context in which the affine expression is created.
2151 static __isl_give isl_pw_aff *extract_affine_add_sub(__isl_keep pet_expr *expr,
2152 __isl_keep pet_context *pc)
2154 isl_pw_aff *lhs;
2155 isl_pw_aff *rhs;
2157 if (!expr)
2158 return NULL;
2159 if (expr->n_arg != 2)
2160 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2161 "expecting two arguments", return NULL);
2163 lhs = pet_expr_extract_affine(expr->args[0], pc);
2164 rhs = pet_expr_extract_affine(expr->args[1], pc);
2166 switch (pet_expr_op_get_type(expr)) {
2167 case pet_op_add:
2168 return isl_pw_aff_add(lhs, rhs);
2169 case pet_op_sub:
2170 return isl_pw_aff_sub(lhs, rhs);
2171 default:
2172 isl_pw_aff_free(lhs);
2173 isl_pw_aff_free(rhs);
2174 isl_die(pet_expr_get_ctx(expr), isl_error_internal,
2175 "not an addition or subtraction operation",
2176 return NULL);
2181 /* Extract an affine expression from an integer division or a modulo operation.
2182 * Return NaN if we are unable to extract an affine expression.
2184 * "pc" is the context in which the affine expression is created.
2186 * In particular, if "expr" is lhs/rhs, then return
2188 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
2190 * If "expr" is lhs%rhs, then return
2192 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
2194 * If the second argument (rhs) is not a (positive) integer constant,
2195 * then we fail to extract an affine expression.
2197 static __isl_give isl_pw_aff *extract_affine_div_mod(__isl_keep pet_expr *expr,
2198 __isl_keep pet_context *pc)
2200 int is_cst;
2201 isl_pw_aff *lhs;
2202 isl_pw_aff *rhs;
2204 if (!expr)
2205 return NULL;
2206 if (expr->n_arg != 2)
2207 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2208 "expecting two arguments", return NULL);
2210 rhs = pet_expr_extract_affine(expr->args[1], pc);
2212 is_cst = isl_pw_aff_is_cst(rhs);
2213 if (is_cst < 0 || !is_cst) {
2214 isl_pw_aff_free(rhs);
2215 return non_affine(pet_context_get_space(pc));
2218 lhs = pet_expr_extract_affine(expr->args[0], pc);
2220 switch (pet_expr_op_get_type(expr)) {
2221 case pet_op_div:
2222 return isl_pw_aff_tdiv_q(lhs, rhs);
2223 case pet_op_mod:
2224 return isl_pw_aff_tdiv_r(lhs, rhs);
2225 default:
2226 isl_pw_aff_free(lhs);
2227 isl_pw_aff_free(rhs);
2228 isl_die(pet_expr_get_ctx(expr), isl_error_internal,
2229 "not a div or mod operator", return NULL);
2234 /* Extract an affine expression from a multiplication operation.
2235 * Return NaN if we are unable to extract an affine expression.
2236 * In particular, if neither of the arguments is a (piecewise) constant
2237 * then we return NaN.
2239 * "pc" is the context in which the affine expression is created.
2241 static __isl_give isl_pw_aff *extract_affine_mul(__isl_keep pet_expr *expr,
2242 __isl_keep pet_context *pc)
2244 int lhs_cst, rhs_cst;
2245 isl_pw_aff *lhs;
2246 isl_pw_aff *rhs;
2248 if (!expr)
2249 return NULL;
2250 if (expr->n_arg != 2)
2251 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2252 "expecting two arguments", return NULL);
2254 lhs = pet_expr_extract_affine(expr->args[0], pc);
2255 rhs = pet_expr_extract_affine(expr->args[1], pc);
2257 lhs_cst = isl_pw_aff_is_cst(lhs);
2258 rhs_cst = isl_pw_aff_is_cst(rhs);
2259 if (lhs_cst < 0 || rhs_cst < 0 || (!lhs_cst && !rhs_cst)) {
2260 isl_pw_aff_free(lhs);
2261 isl_pw_aff_free(rhs);
2262 return non_affine(pet_context_get_space(pc));
2265 return isl_pw_aff_mul(lhs, rhs);
2268 /* Extract an affine expression from a negation operation.
2269 * Return NaN if we are unable to extract an affine expression.
2271 * "pc" is the context in which the affine expression is created.
2273 static __isl_give isl_pw_aff *extract_affine_neg(__isl_keep pet_expr *expr,
2274 __isl_keep pet_context *pc)
2276 isl_pw_aff *res;
2278 if (!expr)
2279 return NULL;
2280 if (expr->n_arg != 1)
2281 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2282 "expecting one argument", return NULL);
2284 res = pet_expr_extract_affine(expr->args[0], pc);
2285 return isl_pw_aff_neg(res);
2288 /* Extract an affine expression from a conditional operation.
2289 * Return NaN if we are unable to extract an affine expression.
2291 * "pc" is the context in which the affine expression is created.
2293 static __isl_give isl_pw_aff *extract_affine_cond(__isl_keep pet_expr *expr,
2294 __isl_keep pet_context *pc)
2296 isl_pw_aff *cond, *lhs, *rhs;
2298 if (!expr)
2299 return NULL;
2300 if (expr->n_arg != 3)
2301 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2302 "expecting three arguments", return NULL);
2304 cond = pet_expr_extract_affine_condition(expr->args[0], pc);
2305 lhs = pet_expr_extract_affine(expr->args[1], pc);
2306 rhs = pet_expr_extract_affine(expr->args[2], pc);
2308 return isl_pw_aff_cond(cond, lhs, rhs);
2311 /* Compute
2313 * pwaff mod 2^width
2315 static __isl_give isl_pw_aff *wrap(__isl_take isl_pw_aff *pwaff, unsigned width)
2317 isl_ctx *ctx;
2318 isl_val *mod;
2320 ctx = isl_pw_aff_get_ctx(pwaff);
2321 mod = isl_val_int_from_ui(ctx, width);
2322 mod = isl_val_2exp(mod);
2324 pwaff = isl_pw_aff_mod_val(pwaff, mod);
2326 return pwaff;
2329 /* Limit the domain of "pwaff" to those elements where the function
2330 * value satisfies
2332 * 2^{width-1} <= pwaff < 2^{width-1}
2334 static __isl_give isl_pw_aff *avoid_overflow(__isl_take isl_pw_aff *pwaff,
2335 unsigned width)
2337 isl_ctx *ctx;
2338 isl_val *v;
2339 isl_space *space = isl_pw_aff_get_domain_space(pwaff);
2340 isl_local_space *ls = isl_local_space_from_space(space);
2341 isl_aff *bound;
2342 isl_set *dom;
2343 isl_pw_aff *b;
2345 ctx = isl_pw_aff_get_ctx(pwaff);
2346 v = isl_val_int_from_ui(ctx, width - 1);
2347 v = isl_val_2exp(v);
2349 bound = isl_aff_zero_on_domain(ls);
2350 bound = isl_aff_add_constant_val(bound, v);
2351 b = isl_pw_aff_from_aff(bound);
2353 dom = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff), isl_pw_aff_copy(b));
2354 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
2356 b = isl_pw_aff_neg(b);
2357 dom = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff), b);
2358 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
2360 return pwaff;
2363 /* Handle potential overflows on signed computations.
2365 * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
2366 * then we adjust the domain of "pa" to avoid overflows.
2368 static __isl_give isl_pw_aff *signed_overflow(__isl_take isl_pw_aff *pa,
2369 unsigned width)
2371 isl_ctx *ctx;
2372 struct pet_options *options;
2374 if (!pa)
2375 return NULL;
2377 ctx = isl_pw_aff_get_ctx(pa);
2378 options = isl_ctx_peek_pet_options(ctx);
2379 if (!options || options->signed_overflow == PET_OVERFLOW_AVOID)
2380 pa = avoid_overflow(pa, width);
2382 return pa;
2385 /* Extract an affine expression from some an operation.
2386 * Return NaN if we are unable to extract an affine expression.
2387 * If the result of a binary (non boolean) operation is unsigned,
2388 * then we wrap it based on the size of the type. If the result is signed,
2389 * then we ensure that no overflow occurs.
2391 * "pc" is the context in which the affine expression is created.
2393 static __isl_give isl_pw_aff *extract_affine_from_op(__isl_keep pet_expr *expr,
2394 __isl_keep pet_context *pc)
2396 isl_pw_aff *res;
2397 int type_size;
2399 switch (pet_expr_op_get_type(expr)) {
2400 case pet_op_add:
2401 case pet_op_sub:
2402 res = extract_affine_add_sub(expr, pc);
2403 break;
2404 case pet_op_div:
2405 case pet_op_mod:
2406 res = extract_affine_div_mod(expr, pc);
2407 break;
2408 case pet_op_mul:
2409 res = extract_affine_mul(expr, pc);
2410 break;
2411 case pet_op_minus:
2412 return extract_affine_neg(expr, pc);
2413 case pet_op_cond:
2414 return extract_affine_cond(expr, pc);
2415 case pet_op_eq:
2416 case pet_op_ne:
2417 case pet_op_le:
2418 case pet_op_ge:
2419 case pet_op_lt:
2420 case pet_op_gt:
2421 case pet_op_land:
2422 case pet_op_lor:
2423 case pet_op_lnot:
2424 return pet_expr_extract_affine_condition(expr, pc);
2425 default:
2426 return non_affine(pet_context_get_space(pc));
2429 if (!res)
2430 return NULL;
2431 if (isl_pw_aff_involves_nan(res)) {
2432 isl_space *space = isl_pw_aff_get_domain_space(res);
2433 isl_pw_aff_free(res);
2434 return non_affine(space);
2437 type_size = pet_expr_get_type_size(expr);
2438 if (type_size > 0)
2439 res = wrap(res, type_size);
2440 else
2441 res = signed_overflow(res, -type_size);
2443 return res;
2446 /* Extract an affine expression from some special function calls.
2447 * Return NaN if we are unable to extract an affine expression.
2448 * In particular, we handle "min", "max", "ceild", "floord",
2449 * "intMod", "intFloor" and "intCeil".
2450 * In case of the latter five, the second argument needs to be
2451 * a (positive) integer constant.
2453 * "pc" is the context in which the affine expression is created.
2455 static __isl_give isl_pw_aff *extract_affine_from_call(
2456 __isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2458 isl_pw_aff *aff1, *aff2;
2459 int n;
2460 const char *name;
2462 n = pet_expr_get_n_arg(expr);
2463 name = pet_expr_call_get_name(expr);
2464 if (!(n == 2 && !strcmp(name, "min")) &&
2465 !(n == 2 && !strcmp(name, "max")) &&
2466 !(n == 2 && !strcmp(name, "intMod")) &&
2467 !(n == 2 && !strcmp(name, "intFloor")) &&
2468 !(n == 2 && !strcmp(name, "intCeil")) &&
2469 !(n == 2 && !strcmp(name, "floord")) &&
2470 !(n == 2 && !strcmp(name, "ceild")))
2471 return non_affine(pet_context_get_space(pc));
2473 if (!strcmp(name, "min") || !strcmp(name, "max")) {
2474 aff1 = pet_expr_extract_affine(expr->args[0], pc);
2475 aff2 = pet_expr_extract_affine(expr->args[1], pc);
2477 if (!strcmp(name, "min"))
2478 aff1 = isl_pw_aff_min(aff1, aff2);
2479 else
2480 aff1 = isl_pw_aff_max(aff1, aff2);
2481 } else if (!strcmp(name, "intMod")) {
2482 isl_val *v;
2484 if (pet_expr_get_type(expr->args[1]) != pet_expr_int)
2485 return non_affine(pet_context_get_space(pc));
2486 v = pet_expr_int_get_val(expr->args[1]);
2487 aff1 = pet_expr_extract_affine(expr->args[0], pc);
2488 aff1 = isl_pw_aff_mod_val(aff1, v);
2489 } else {
2490 isl_val *v;
2492 if (pet_expr_get_type(expr->args[1]) != pet_expr_int)
2493 return non_affine(pet_context_get_space(pc));
2494 v = pet_expr_int_get_val(expr->args[1]);
2495 aff1 = pet_expr_extract_affine(expr->args[0], pc);
2496 aff1 = isl_pw_aff_scale_down_val(aff1, v);
2497 if (!strcmp(name, "floord") || !strcmp(name, "intFloor"))
2498 aff1 = isl_pw_aff_floor(aff1);
2499 else
2500 aff1 = isl_pw_aff_ceil(aff1);
2503 return aff1;
2506 /* Extract an affine expression from "expr", if possible.
2507 * Otherwise return NaN.
2509 * "pc" is the context in which the affine expression is created.
2511 __isl_give isl_pw_aff *pet_expr_extract_affine(__isl_keep pet_expr *expr,
2512 __isl_keep pet_context *pc)
2514 if (!expr)
2515 return NULL;
2517 switch (pet_expr_get_type(expr)) {
2518 case pet_expr_access:
2519 return extract_affine_from_access(expr, pc);
2520 case pet_expr_int:
2521 return extract_affine_from_int(expr, pc);
2522 case pet_expr_op:
2523 return extract_affine_from_op(expr, pc);
2524 case pet_expr_call:
2525 return extract_affine_from_call(expr, pc);
2526 case pet_expr_cast:
2527 case pet_expr_double:
2528 case pet_expr_error:
2529 return non_affine(pet_context_get_space(pc));
2533 /* Extract an affine expressions representing the comparison "LHS op RHS"
2534 * Return NaN if we are unable to extract such an affine expression.
2536 * "pc" is the context in which the affine expression is created.
2538 * If the comparison is of the form
2540 * a <= min(b,c)
2542 * then the expression is constructed as the conjunction of
2543 * the comparisons
2545 * a <= b and a <= c
2547 * A similar optimization is performed for max(a,b) <= c.
2548 * We do this because that will lead to simpler representations
2549 * of the expression.
2550 * If isl is ever enhanced to explicitly deal with min and max expressions,
2551 * this optimization can be removed.
2553 __isl_give isl_pw_aff *pet_expr_extract_comparison(enum pet_op_type op,
2554 __isl_keep pet_expr *lhs, __isl_keep pet_expr *rhs,
2555 __isl_keep pet_context *pc)
2557 isl_pw_aff *lhs_pa, *rhs_pa;
2559 if (op == pet_op_gt)
2560 return pet_expr_extract_comparison(pet_op_lt, rhs, lhs, pc);
2561 if (op == pet_op_ge)
2562 return pet_expr_extract_comparison(pet_op_le, rhs, lhs, pc);
2564 if (op == pet_op_lt || op == pet_op_le) {
2565 if (pet_expr_is_min(rhs)) {
2566 lhs_pa = pet_expr_extract_comparison(op, lhs,
2567 rhs->args[0], pc);
2568 rhs_pa = pet_expr_extract_comparison(op, lhs,
2569 rhs->args[1], pc);
2570 return pet_and(lhs_pa, rhs_pa);
2572 if (pet_expr_is_max(lhs)) {
2573 lhs_pa = pet_expr_extract_comparison(op, lhs->args[0],
2574 rhs, pc);
2575 rhs_pa = pet_expr_extract_comparison(op, lhs->args[1],
2576 rhs, pc);
2577 return pet_and(lhs_pa, rhs_pa);
2581 lhs_pa = pet_expr_extract_affine(lhs, pc);
2582 rhs_pa = pet_expr_extract_affine(rhs, pc);
2584 return pet_comparison(op, lhs_pa, rhs_pa);
2587 /* Extract an affine expressions from the comparison "expr".
2588 * Return NaN if we are unable to extract such an affine expression.
2590 * "pc" is the context in which the affine expression is created.
2592 static __isl_give isl_pw_aff *extract_comparison(__isl_keep pet_expr *expr,
2593 __isl_keep pet_context *pc)
2595 enum pet_op_type type;
2597 if (!expr)
2598 return NULL;
2599 if (expr->n_arg != 2)
2600 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2601 "expecting two arguments", return NULL);
2603 type = pet_expr_op_get_type(expr);
2604 return pet_expr_extract_comparison(type, expr->args[0], expr->args[1],
2605 pc);
2608 /* Extract an affine expression representing the boolean operation
2609 * expressed by "expr".
2610 * Return NaN if we are unable to extract an affine expression.
2612 * "pc" is the context in which the affine expression is created.
2614 static __isl_give isl_pw_aff *extract_boolean(__isl_keep pet_expr *expr,
2615 __isl_keep pet_context *pc)
2617 isl_pw_aff *lhs, *rhs;
2618 int n;
2620 if (!expr)
2621 return NULL;
2623 n = pet_expr_get_n_arg(expr);
2624 lhs = pet_expr_extract_affine_condition(expr->args[0], pc);
2625 if (n == 1)
2626 return pet_not(lhs);
2628 rhs = pet_expr_extract_affine_condition(expr->args[1], pc);
2629 return pet_boolean(pet_expr_op_get_type(expr), lhs, rhs);
2632 /* Extract the affine expression "expr != 0 ? 1 : 0".
2633 * Return NaN if we are unable to extract an affine expression.
2635 * "pc" is the context in which the affine expression is created.
2637 static __isl_give isl_pw_aff *extract_implicit_condition(
2638 __isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2640 isl_pw_aff *res;
2642 res = pet_expr_extract_affine(expr, pc);
2643 return pet_to_bool(res);
2646 /* Extract a boolean affine expression from "expr".
2647 * Return NaN if we are unable to extract an affine expression.
2649 * "pc" is the context in which the affine expression is created.
2651 * If "expr" is neither a comparison nor a boolean operation,
2652 * then we assume it is an affine expression and return the
2653 * boolean expression "expr != 0 ? 1 : 0".
2655 __isl_give isl_pw_aff *pet_expr_extract_affine_condition(
2656 __isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2658 if (!expr)
2659 return NULL;
2661 if (pet_expr_is_comparison(expr))
2662 return extract_comparison(expr, pc);
2663 if (pet_expr_is_boolean(expr))
2664 return extract_boolean(expr, pc);
2666 return extract_implicit_condition(expr, pc);
2669 /* Return the number of bits needed to represent the type of "expr".
2670 * See the description of the type_size field of pet_expr.
2672 int pet_expr_get_type_size(__isl_keep pet_expr *expr)
2674 return expr ? expr->type_size : 0;
2677 /* Replace the number of bits needed to represent the type of "expr"
2678 * by "type_size".
2679 * See the description of the type_size field of pet_expr.
2681 __isl_give pet_expr *pet_expr_set_type_size(__isl_take pet_expr *expr,
2682 int type_size)
2684 expr = pet_expr_cow(expr);
2685 if (!expr)
2686 return NULL;
2688 expr->type_size = type_size;
2690 return expr;
2693 void pet_expr_dump_with_indent(__isl_keep pet_expr *expr, int indent)
2695 int i;
2697 if (!expr)
2698 return;
2700 fprintf(stderr, "%*s", indent, "");
2702 switch (expr->type) {
2703 case pet_expr_double:
2704 fprintf(stderr, "%s\n", expr->d.s);
2705 break;
2706 case pet_expr_int:
2707 isl_val_dump(expr->i);
2708 break;
2709 case pet_expr_access:
2710 if (expr->acc.ref_id) {
2711 isl_id_dump(expr->acc.ref_id);
2712 fprintf(stderr, "%*s", indent, "");
2714 isl_map_dump(expr->acc.access);
2715 fprintf(stderr, "%*s", indent, "");
2716 isl_multi_pw_aff_dump(expr->acc.index);
2717 fprintf(stderr, "%*sread: %d\n", indent + 2,
2718 "", expr->acc.read);
2719 fprintf(stderr, "%*swrite: %d\n", indent + 2,
2720 "", expr->acc.write);
2721 for (i = 0; i < expr->n_arg; ++i)
2722 pet_expr_dump_with_indent(expr->args[i], indent + 2);
2723 break;
2724 case pet_expr_op:
2725 fprintf(stderr, "%s\n", op_str[expr->op]);
2726 for (i = 0; i < expr->n_arg; ++i)
2727 pet_expr_dump_with_indent(expr->args[i], indent + 2);
2728 break;
2729 case pet_expr_call:
2730 fprintf(stderr, "%s/%d\n", expr->name, expr->n_arg);
2731 for (i = 0; i < expr->n_arg; ++i)
2732 pet_expr_dump_with_indent(expr->args[i], indent + 2);
2733 break;
2734 case pet_expr_cast:
2735 fprintf(stderr, "(%s)\n", expr->type_name);
2736 for (i = 0; i < expr->n_arg; ++i)
2737 pet_expr_dump_with_indent(expr->args[i], indent + 2);
2738 break;
2739 case pet_expr_error:
2740 fprintf(stderr, "ERROR\n");
2741 break;
2745 void pet_expr_dump(__isl_keep pet_expr *expr)
2747 pet_expr_dump_with_indent(expr, 0);