PetScan::extract_expr(BinaryOperator *): improve error message
[pet.git] / scan.cc
blobb74f9c8232cf32071b61c8f0a45d81caa116587b
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2015 Ecole Normale Superieure. All rights reserved.
4 * Copyright 2015-2016 Sven Verdoolaege. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
19 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
22 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
23 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
24 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
25 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * The views and conclusions contained in the software and documentation
31 * are those of the authors and should not be interpreted as
32 * representing official policies, either expressed or implied, of
33 * Leiden University.
34 */
36 #include "config.h"
38 #include <string.h>
39 #include <set>
40 #include <map>
41 #include <iostream>
42 #include <sstream>
43 #include <llvm/Support/raw_ostream.h>
44 #include <clang/AST/ASTContext.h>
45 #include <clang/AST/ASTDiagnostic.h>
46 #include <clang/AST/Attr.h>
47 #include <clang/AST/Expr.h>
48 #include <clang/AST/RecursiveASTVisitor.h>
50 #include <isl/id.h>
51 #include <isl/space.h>
52 #include <isl/aff.h>
53 #include <isl/set.h>
54 #include <isl/union_set.h>
56 #include "aff.h"
57 #include "array.h"
58 #include "clang.h"
59 #include "context.h"
60 #include "expr.h"
61 #include "id.h"
62 #include "inliner.h"
63 #include "killed_locals.h"
64 #include "nest.h"
65 #include "options.h"
66 #include "scan.h"
67 #include "scop.h"
68 #include "scop_plus.h"
69 #include "substituter.h"
70 #include "tree.h"
71 #include "tree2scop.h"
73 using namespace std;
74 using namespace clang;
76 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
78 switch (kind) {
79 case UO_Minus:
80 return pet_op_minus;
81 case UO_Not:
82 return pet_op_not;
83 case UO_LNot:
84 return pet_op_lnot;
85 case UO_PostInc:
86 return pet_op_post_inc;
87 case UO_PostDec:
88 return pet_op_post_dec;
89 case UO_PreInc:
90 return pet_op_pre_inc;
91 case UO_PreDec:
92 return pet_op_pre_dec;
93 default:
94 return pet_op_last;
98 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
100 switch (kind) {
101 case BO_AddAssign:
102 return pet_op_add_assign;
103 case BO_SubAssign:
104 return pet_op_sub_assign;
105 case BO_MulAssign:
106 return pet_op_mul_assign;
107 case BO_DivAssign:
108 return pet_op_div_assign;
109 case BO_Assign:
110 return pet_op_assign;
111 case BO_Add:
112 return pet_op_add;
113 case BO_Sub:
114 return pet_op_sub;
115 case BO_Mul:
116 return pet_op_mul;
117 case BO_Div:
118 return pet_op_div;
119 case BO_Rem:
120 return pet_op_mod;
121 case BO_Shl:
122 return pet_op_shl;
123 case BO_Shr:
124 return pet_op_shr;
125 case BO_EQ:
126 return pet_op_eq;
127 case BO_NE:
128 return pet_op_ne;
129 case BO_LE:
130 return pet_op_le;
131 case BO_GE:
132 return pet_op_ge;
133 case BO_LT:
134 return pet_op_lt;
135 case BO_GT:
136 return pet_op_gt;
137 case BO_And:
138 return pet_op_and;
139 case BO_Xor:
140 return pet_op_xor;
141 case BO_Or:
142 return pet_op_or;
143 case BO_LAnd:
144 return pet_op_land;
145 case BO_LOr:
146 return pet_op_lor;
147 default:
148 return pet_op_last;
152 #ifdef GETTYPEINFORETURNSTYPEINFO
154 static int size_in_bytes(ASTContext &context, QualType type)
156 return context.getTypeInfo(type).Width / 8;
159 #else
161 static int size_in_bytes(ASTContext &context, QualType type)
163 return context.getTypeInfo(type).first / 8;
166 #endif
168 /* Check if the element type corresponding to the given array type
169 * has a const qualifier.
171 static bool const_base(QualType qt)
173 const Type *type = qt.getTypePtr();
175 if (type->isPointerType())
176 return const_base(type->getPointeeType());
177 if (type->isArrayType()) {
178 const ArrayType *atype;
179 type = type->getCanonicalTypeInternal().getTypePtr();
180 atype = cast<ArrayType>(type);
181 return const_base(atype->getElementType());
184 return qt.isConstQualified();
187 PetScan::~PetScan()
189 std::map<const Type *, pet_expr *>::iterator it;
190 std::map<FunctionDecl *, pet_function_summary *>::iterator it_s;
192 for (it = type_size.begin(); it != type_size.end(); ++it)
193 pet_expr_free(it->second);
194 for (it_s = summary_cache.begin(); it_s != summary_cache.end(); ++it_s)
195 pet_function_summary_free(it_s->second);
197 isl_id_to_pet_expr_free(id_size);
198 isl_union_map_free(value_bounds);
201 /* Report a diagnostic on the range "range", unless autodetect is set.
203 void PetScan::report(SourceRange range, unsigned id)
205 if (options->autodetect)
206 return;
208 SourceLocation loc = range.getBegin();
209 DiagnosticsEngine &diag = PP.getDiagnostics();
210 DiagnosticBuilder B = diag.Report(loc, id) << range;
213 /* Report a diagnostic on "stmt", unless autodetect is set.
215 void PetScan::report(Stmt *stmt, unsigned id)
217 report(stmt->getSourceRange(), id);
220 /* Report a diagnostic on "decl", unless autodetect is set.
222 void PetScan::report(Decl *decl, unsigned id)
224 report(decl->getSourceRange(), id);
227 /* Called if we found something we (currently) cannot handle.
228 * We'll provide more informative warnings later.
230 * We only actually complain if autodetect is false.
232 void PetScan::unsupported(Stmt *stmt)
234 DiagnosticsEngine &diag = PP.getDiagnostics();
235 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
236 "unsupported");
237 report(stmt, id);
240 /* Report an unsupported unary operator, unless autodetect is set.
242 void PetScan::report_unsupported_unary_operator(Stmt *stmt)
244 DiagnosticsEngine &diag = PP.getDiagnostics();
245 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
246 "this type of unary operator is not supported");
247 report(stmt, id);
250 /* Report an unsupported binary operator, unless autodetect is set.
252 void PetScan::report_unsupported_binary_operator(Stmt *stmt)
254 DiagnosticsEngine &diag = PP.getDiagnostics();
255 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
256 "this type of binary operator is not supported");
257 report(stmt, id);
260 /* Report an unsupported statement type, unless autodetect is set.
262 void PetScan::report_unsupported_statement_type(Stmt *stmt)
264 DiagnosticsEngine &diag = PP.getDiagnostics();
265 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
266 "this type of statement is not supported");
267 report(stmt, id);
270 /* Report a missing prototype, unless autodetect is set.
272 void PetScan::report_prototype_required(Stmt *stmt)
274 DiagnosticsEngine &diag = PP.getDiagnostics();
275 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
276 "prototype required");
277 report(stmt, id);
280 /* Report a missing increment, unless autodetect is set.
282 void PetScan::report_missing_increment(Stmt *stmt)
284 DiagnosticsEngine &diag = PP.getDiagnostics();
285 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
286 "missing increment");
287 report(stmt, id);
290 /* Report a missing summary function, unless autodetect is set.
292 void PetScan::report_missing_summary_function(Stmt *stmt)
294 DiagnosticsEngine &diag = PP.getDiagnostics();
295 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
296 "missing summary function");
297 report(stmt, id);
300 /* Report a missing summary function body, unless autodetect is set.
302 void PetScan::report_missing_summary_function_body(Stmt *stmt)
304 DiagnosticsEngine &diag = PP.getDiagnostics();
305 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
306 "missing summary function body");
307 report(stmt, id);
310 /* Report an unsupported argument in a call to an inlined function,
311 * unless autodetect is set.
313 void PetScan::report_unsupported_inline_function_argument(Stmt *stmt)
315 DiagnosticsEngine &diag = PP.getDiagnostics();
316 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
317 "unsupported inline function call argument");
318 report(stmt, id);
321 /* Report an unsupported type of declaration, unless autodetect is set.
323 void PetScan::report_unsupported_declaration(Decl *decl)
325 DiagnosticsEngine &diag = PP.getDiagnostics();
326 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
327 "unsupported declaration");
328 report(decl, id);
331 /* Report an unbalanced pair of scop/endscop pragmas, unless autodetect is set.
333 void PetScan::report_unbalanced_pragmas(SourceLocation scop,
334 SourceLocation endscop)
336 if (options->autodetect)
337 return;
339 DiagnosticsEngine &diag = PP.getDiagnostics();
341 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
342 "unbalanced endscop pragma");
343 DiagnosticBuilder B2 = diag.Report(endscop, id);
346 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Note,
347 "corresponding scop pragma");
348 DiagnosticBuilder B = diag.Report(scop, id);
352 /* Extract an integer from "val", which is assumed to be non-negative.
354 static __isl_give isl_val *extract_unsigned(isl_ctx *ctx,
355 const llvm::APInt &val)
357 unsigned n;
358 const uint64_t *data;
360 data = val.getRawData();
361 n = val.getNumWords();
362 return isl_val_int_from_chunks(ctx, n, sizeof(uint64_t), data);
365 /* Extract an integer from "val". If "is_signed" is set, then "val"
366 * is signed. Otherwise it it unsigned.
368 static __isl_give isl_val *extract_int(isl_ctx *ctx, bool is_signed,
369 llvm::APInt val)
371 int is_negative = is_signed && val.isNegative();
372 isl_val *v;
374 if (is_negative)
375 val = -val;
377 v = extract_unsigned(ctx, val);
379 if (is_negative)
380 v = isl_val_neg(v);
381 return v;
384 /* Extract an integer from "expr".
386 __isl_give isl_val *PetScan::extract_int(isl_ctx *ctx, IntegerLiteral *expr)
388 const Type *type = expr->getType().getTypePtr();
389 bool is_signed = type->hasSignedIntegerRepresentation();
391 return ::extract_int(ctx, is_signed, expr->getValue());
394 /* Extract an integer from "expr".
395 * Return NULL if "expr" does not (obviously) represent an integer.
397 __isl_give isl_val *PetScan::extract_int(clang::ParenExpr *expr)
399 return extract_int(expr->getSubExpr());
402 /* Extract an integer from "expr".
403 * Return NULL if "expr" does not (obviously) represent an integer.
405 __isl_give isl_val *PetScan::extract_int(clang::Expr *expr)
407 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
408 return extract_int(ctx, cast<IntegerLiteral>(expr));
409 if (expr->getStmtClass() == Stmt::ParenExprClass)
410 return extract_int(cast<ParenExpr>(expr));
412 unsupported(expr);
413 return NULL;
416 /* Extract a pet_expr from the APInt "val", which is assumed
417 * to be non-negative.
419 __isl_give pet_expr *PetScan::extract_expr(const llvm::APInt &val)
421 return pet_expr_new_int(extract_unsigned(ctx, val));
424 /* Return the number of bits needed to represent the type of "decl",
425 * if it is an integer type. Otherwise return 0.
426 * If qt is signed then return the opposite of the number of bits.
428 static int get_type_size(ValueDecl *decl)
430 return pet_clang_get_type_size(decl->getType(), decl->getASTContext());
433 /* Bound parameter "pos" of "set" to the possible values of "decl".
435 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
436 unsigned pos, ValueDecl *decl)
438 int type_size;
439 isl_ctx *ctx;
440 isl_val *bound;
442 ctx = isl_set_get_ctx(set);
443 type_size = get_type_size(decl);
444 if (type_size == 0)
445 isl_die(ctx, isl_error_invalid, "not an integer type",
446 return isl_set_free(set));
447 if (type_size > 0) {
448 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
449 bound = isl_val_int_from_ui(ctx, type_size);
450 bound = isl_val_2exp(bound);
451 bound = isl_val_sub_ui(bound, 1);
452 set = isl_set_upper_bound_val(set, isl_dim_param, pos, bound);
453 } else {
454 bound = isl_val_int_from_ui(ctx, -type_size - 1);
455 bound = isl_val_2exp(bound);
456 bound = isl_val_sub_ui(bound, 1);
457 set = isl_set_upper_bound_val(set, isl_dim_param, pos,
458 isl_val_copy(bound));
459 bound = isl_val_neg(bound);
460 bound = isl_val_sub_ui(bound, 1);
461 set = isl_set_lower_bound_val(set, isl_dim_param, pos, bound);
464 return set;
467 __isl_give pet_expr *PetScan::extract_index_expr(ImplicitCastExpr *expr)
469 return extract_index_expr(expr->getSubExpr());
472 /* Return the depth of the array accessed by the index expression "index".
473 * If "index" is an affine expression, i.e., if it does not access
474 * any array, then return 1.
475 * If "index" represent a member access, i.e., if its range is a wrapped
476 * relation, then return the sum of the depth of the array of structures
477 * and that of the member inside the structure.
479 static int extract_depth(__isl_keep isl_multi_pw_aff *index)
481 isl_id *id;
482 ValueDecl *decl;
484 if (!index)
485 return -1;
487 if (isl_multi_pw_aff_range_is_wrapping(index)) {
488 int domain_depth, range_depth;
489 isl_multi_pw_aff *domain, *range;
491 domain = isl_multi_pw_aff_copy(index);
492 domain = isl_multi_pw_aff_range_factor_domain(domain);
493 domain_depth = extract_depth(domain);
494 isl_multi_pw_aff_free(domain);
495 range = isl_multi_pw_aff_copy(index);
496 range = isl_multi_pw_aff_range_factor_range(range);
497 range_depth = extract_depth(range);
498 isl_multi_pw_aff_free(range);
500 return domain_depth + range_depth;
503 if (!isl_multi_pw_aff_has_tuple_id(index, isl_dim_out))
504 return 1;
506 id = isl_multi_pw_aff_get_tuple_id(index, isl_dim_out);
507 if (!id)
508 return -1;
509 decl = pet_id_get_decl(id);
510 isl_id_free(id);
512 return pet_clang_array_depth(decl->getType());
515 /* Return the depth of the array accessed by the access expression "expr".
517 static int extract_depth(__isl_keep pet_expr *expr)
519 isl_multi_pw_aff *index;
520 int depth;
522 index = pet_expr_access_get_index(expr);
523 depth = extract_depth(index);
524 isl_multi_pw_aff_free(index);
526 return depth;
529 /* Construct a pet_expr representing an index expression for an access
530 * to the variable referenced by "expr".
532 * If "expr" references an enum constant, then return an integer expression
533 * instead, representing the value of the enum constant.
535 __isl_give pet_expr *PetScan::extract_index_expr(DeclRefExpr *expr)
537 return extract_index_expr(expr->getDecl());
540 /* Construct a pet_expr representing an index expression for an access
541 * to the variable "decl".
543 * If "decl" is an enum constant, then we return an integer expression
544 * instead, representing the value of the enum constant.
546 __isl_give pet_expr *PetScan::extract_index_expr(ValueDecl *decl)
548 isl_id *id;
550 if (isa<EnumConstantDecl>(decl))
551 return extract_expr(cast<EnumConstantDecl>(decl));
553 id = pet_id_from_decl(ctx, decl);
554 return pet_id_create_index_expr(id);
557 /* Construct a pet_expr representing the index expression "expr"
558 * Return NULL on error.
560 * If "expr" is a reference to an enum constant, then return
561 * an integer expression instead, representing the value of the enum constant.
563 __isl_give pet_expr *PetScan::extract_index_expr(Expr *expr)
565 switch (expr->getStmtClass()) {
566 case Stmt::ImplicitCastExprClass:
567 return extract_index_expr(cast<ImplicitCastExpr>(expr));
568 case Stmt::DeclRefExprClass:
569 return extract_index_expr(cast<DeclRefExpr>(expr));
570 case Stmt::ArraySubscriptExprClass:
571 return extract_index_expr(cast<ArraySubscriptExpr>(expr));
572 case Stmt::IntegerLiteralClass:
573 return extract_expr(cast<IntegerLiteral>(expr));
574 case Stmt::MemberExprClass:
575 return extract_index_expr(cast<MemberExpr>(expr));
576 default:
577 unsupported(expr);
579 return NULL;
582 /* Extract an index expression from the given array subscript expression.
584 * We first extract an index expression from the base.
585 * This will result in an index expression with a range that corresponds
586 * to the earlier indices.
587 * We then extract the current index and let
588 * pet_expr_access_subscript combine the two.
590 __isl_give pet_expr *PetScan::extract_index_expr(ArraySubscriptExpr *expr)
592 Expr *base = expr->getBase();
593 Expr *idx = expr->getIdx();
594 pet_expr *index;
595 pet_expr *base_expr;
597 base_expr = extract_index_expr(base);
598 index = extract_expr(idx);
600 base_expr = pet_expr_access_subscript(base_expr, index);
602 return base_expr;
605 /* Extract an index expression from a member expression.
607 * If the base access (to the structure containing the member)
608 * is of the form
610 * A[..]
612 * and the member is called "f", then the member access is of
613 * the form
615 * A_f[A[..] -> f[]]
617 * If the member access is to an anonymous struct, then simply return
619 * A[..]
621 * If the member access in the source code is of the form
623 * A->f
625 * then it is treated as
627 * A[0].f
629 __isl_give pet_expr *PetScan::extract_index_expr(MemberExpr *expr)
631 Expr *base = expr->getBase();
632 FieldDecl *field = cast<FieldDecl>(expr->getMemberDecl());
633 pet_expr *base_index;
634 isl_id *id;
636 base_index = extract_index_expr(base);
638 if (expr->isArrow()) {
639 pet_expr *index = pet_expr_new_int(isl_val_zero(ctx));
640 base_index = pet_expr_access_subscript(base_index, index);
643 if (field->isAnonymousStructOrUnion())
644 return base_index;
646 id = pet_id_from_decl(ctx, field);
648 return pet_expr_access_member(base_index, id);
651 /* Mark the given access pet_expr as a write.
653 static __isl_give pet_expr *mark_write(__isl_take pet_expr *access)
655 access = pet_expr_access_set_write(access, 1);
656 access = pet_expr_access_set_read(access, 0);
658 return access;
661 /* Mark the given (read) access pet_expr as also possibly being written.
662 * That is, initialize the may write access relation from the may read relation
663 * and initialize the must write access relation to the empty relation.
665 static __isl_give pet_expr *mark_may_write(__isl_take pet_expr *expr)
667 isl_union_map *access;
668 isl_union_map *empty;
670 access = pet_expr_access_get_dependent_access(expr,
671 pet_expr_access_may_read);
672 empty = isl_union_map_empty(isl_union_map_get_space(access));
673 expr = pet_expr_access_set_access(expr, pet_expr_access_may_write,
674 access);
675 expr = pet_expr_access_set_access(expr, pet_expr_access_must_write,
676 empty);
678 return expr;
681 /* Construct a pet_expr representing a unary operator expression.
683 __isl_give pet_expr *PetScan::extract_expr(UnaryOperator *expr)
685 int type_size;
686 pet_expr *arg;
687 enum pet_op_type op;
689 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
690 if (op == pet_op_last) {
691 report_unsupported_unary_operator(expr);
692 return NULL;
695 arg = extract_expr(expr->getSubExpr());
697 if (expr->isIncrementDecrementOp() &&
698 pet_expr_get_type(arg) == pet_expr_access) {
699 arg = mark_write(arg);
700 arg = pet_expr_access_set_read(arg, 1);
703 type_size = pet_clang_get_type_size(expr->getType(), ast_context);
704 return pet_expr_new_unary(type_size, op, arg);
707 /* Construct a pet_expr representing a binary operator expression.
709 * If the top level operator is an assignment and the LHS is an access,
710 * then we mark that access as a write. If the operator is a compound
711 * assignment, the access is marked as both a read and a write.
713 __isl_give pet_expr *PetScan::extract_expr(BinaryOperator *expr)
715 int type_size;
716 pet_expr *lhs, *rhs;
717 enum pet_op_type op;
719 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
720 if (op == pet_op_last) {
721 report_unsupported_binary_operator(expr);
722 return NULL;
725 lhs = extract_expr(expr->getLHS());
726 rhs = extract_expr(expr->getRHS());
728 if (expr->isAssignmentOp() &&
729 pet_expr_get_type(lhs) == pet_expr_access) {
730 lhs = mark_write(lhs);
731 if (expr->isCompoundAssignmentOp())
732 lhs = pet_expr_access_set_read(lhs, 1);
735 type_size = pet_clang_get_type_size(expr->getType(), ast_context);
736 return pet_expr_new_binary(type_size, op, lhs, rhs);
739 /* Construct a pet_tree for a variable declaration and
740 * add the declaration to the list of declarations
741 * inside the current compound statement.
743 __isl_give pet_tree *PetScan::extract(Decl *decl)
745 VarDecl *vd;
746 pet_expr *lhs, *rhs;
747 pet_tree *tree;
749 if (!isa<VarDecl>(decl)) {
750 report_unsupported_declaration(decl);
751 return NULL;
754 vd = cast<VarDecl>(decl);
755 declarations.push_back(vd);
757 lhs = extract_access_expr(vd);
758 lhs = mark_write(lhs);
759 if (!vd->getInit())
760 tree = pet_tree_new_decl(lhs);
761 else {
762 rhs = extract_expr(vd->getInit());
763 tree = pet_tree_new_decl_init(lhs, rhs);
766 return tree;
769 /* Construct a pet_tree for a variable declaration statement.
770 * If the declaration statement declares multiple variables,
771 * then return a group of pet_trees, one for each declared variable.
773 __isl_give pet_tree *PetScan::extract(DeclStmt *stmt)
775 pet_tree *tree;
776 unsigned n;
778 if (!stmt->isSingleDecl()) {
779 const DeclGroup &group = stmt->getDeclGroup().getDeclGroup();
780 n = group.size();
781 tree = pet_tree_new_block(ctx, 0, n);
783 for (unsigned i = 0; i < n; ++i) {
784 pet_tree *tree_i;
785 pet_loc *loc;
787 tree_i = extract(group[i]);
788 loc = construct_pet_loc(group[i]->getSourceRange(),
789 false);
790 tree_i = pet_tree_set_loc(tree_i, loc);
791 tree = pet_tree_block_add_child(tree, tree_i);
794 return tree;
797 return extract(stmt->getSingleDecl());
800 /* Construct a pet_expr representing a conditional operation.
802 __isl_give pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
804 pet_expr *cond, *lhs, *rhs;
806 cond = extract_expr(expr->getCond());
807 lhs = extract_expr(expr->getTrueExpr());
808 rhs = extract_expr(expr->getFalseExpr());
810 return pet_expr_new_ternary(cond, lhs, rhs);
813 __isl_give pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
815 return extract_expr(expr->getSubExpr());
818 /* Construct a pet_expr representing a floating point value.
820 * If the floating point literal does not appear in a macro,
821 * then we use the original representation in the source code
822 * as the string representation. Otherwise, we use the pretty
823 * printer to produce a string representation.
825 __isl_give pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
827 double d;
828 string s;
829 const LangOptions &LO = PP.getLangOpts();
830 SourceLocation loc = expr->getLocation();
832 if (!loc.isMacroID()) {
833 SourceManager &SM = PP.getSourceManager();
834 unsigned len = Lexer::MeasureTokenLength(loc, SM, LO);
835 s = string(SM.getCharacterData(loc), len);
836 } else {
837 llvm::raw_string_ostream S(s);
838 expr->printPretty(S, 0, PrintingPolicy(LO));
839 S.str();
841 d = expr->getValueAsApproximateDouble();
842 return pet_expr_new_double(ctx, d, s.c_str());
845 /* Convert the index expression "index" into an access pet_expr of type "qt".
847 __isl_give pet_expr *PetScan::extract_access_expr(QualType qt,
848 __isl_take pet_expr *index)
850 int depth;
851 int type_size;
853 depth = extract_depth(index);
854 type_size = pet_clang_get_type_size(qt, ast_context);
856 index = pet_expr_set_type_size(index, type_size);
857 index = pet_expr_access_set_depth(index, depth);
859 return index;
862 /* Extract an index expression from "expr" and then convert it into
863 * an access pet_expr.
865 * If "expr" is a reference to an enum constant, then return
866 * an integer expression instead, representing the value of the enum constant.
868 __isl_give pet_expr *PetScan::extract_access_expr(Expr *expr)
870 pet_expr *index;
872 index = extract_index_expr(expr);
874 if (pet_expr_get_type(index) == pet_expr_int)
875 return index;
877 return extract_access_expr(expr->getType(), index);
880 /* Extract an index expression from "decl" and then convert it into
881 * an access pet_expr.
883 __isl_give pet_expr *PetScan::extract_access_expr(ValueDecl *decl)
885 return extract_access_expr(decl->getType(), extract_index_expr(decl));
888 __isl_give pet_expr *PetScan::extract_expr(ParenExpr *expr)
890 return extract_expr(expr->getSubExpr());
893 /* Extract an assume statement from the argument "expr"
894 * of a __builtin_assume or __pencil_assume statement.
896 __isl_give pet_expr *PetScan::extract_assume(Expr *expr)
898 return pet_expr_new_unary(0, pet_op_assume, extract_expr(expr));
901 /* If "expr" is an address-of operator, then return its argument.
902 * Otherwise, return NULL.
904 static Expr *extract_addr_of_arg(Expr *expr)
906 UnaryOperator *op;
908 if (expr->getStmtClass() != Stmt::UnaryOperatorClass)
909 return NULL;
910 op = cast<UnaryOperator>(expr);
911 if (op->getOpcode() != UO_AddrOf)
912 return NULL;
913 return op->getSubExpr();
916 /* Construct a pet_expr corresponding to the function call argument "expr".
917 * The argument appears in position "pos" of a call to function "fd".
919 * If we are passing along a pointer to an array element
920 * or an entire row or even higher dimensional slice of an array,
921 * then the function being called may write into the array.
923 * We assume here that if the function is declared to take a pointer
924 * to a const type, then the function may only perform a read
925 * and that otherwise, it may either perform a read or a write (or both).
926 * We only perform this check if "detect_writes" is set.
928 __isl_give pet_expr *PetScan::extract_argument(FunctionDecl *fd, int pos,
929 Expr *expr, bool detect_writes)
931 Expr *arg;
932 pet_expr *res;
933 int is_addr = 0, is_partial = 0;
935 expr = pet_clang_strip_casts(expr);
936 arg = extract_addr_of_arg(expr);
937 if (arg) {
938 is_addr = 1;
939 expr = arg;
941 res = extract_expr(expr);
942 if (!res)
943 return NULL;
944 if (pet_clang_array_depth(expr->getType()) > 0)
945 is_partial = 1;
946 if (detect_writes && (is_addr || is_partial) &&
947 pet_expr_get_type(res) == pet_expr_access) {
948 ParmVarDecl *parm;
949 if (!fd->hasPrototype()) {
950 report_prototype_required(expr);
951 return pet_expr_free(res);
953 parm = fd->getParamDecl(pos);
954 if (!const_base(parm->getType()))
955 res = mark_may_write(res);
958 if (is_addr)
959 res = pet_expr_new_unary(0, pet_op_address_of, res);
960 return res;
963 /* Find the first FunctionDecl with the given name.
964 * "call" is the corresponding call expression and is only used
965 * for reporting errors.
967 * Return NULL on error.
969 FunctionDecl *PetScan::find_decl_from_name(CallExpr *call, string name)
971 TranslationUnitDecl *tu = ast_context.getTranslationUnitDecl();
972 DeclContext::decl_iterator begin = tu->decls_begin();
973 DeclContext::decl_iterator end = tu->decls_end();
974 for (DeclContext::decl_iterator i = begin; i != end; ++i) {
975 FunctionDecl *fd = dyn_cast<FunctionDecl>(*i);
976 if (!fd)
977 continue;
978 if (fd->getName().str().compare(name) != 0)
979 continue;
980 if (fd->hasBody())
981 return fd;
982 report_missing_summary_function_body(call);
983 return NULL;
985 report_missing_summary_function(call);
986 return NULL;
989 /* Return the FunctionDecl for the summary function associated to the
990 * function called by "call".
992 * In particular, if the pencil option is set, then
993 * search for an annotate attribute formatted as
994 * "pencil_access(name)", where "name" is the name of the summary function.
996 * If no summary function was specified, then return the FunctionDecl
997 * that is actually being called.
999 * Return NULL on error.
1001 FunctionDecl *PetScan::get_summary_function(CallExpr *call)
1003 FunctionDecl *decl = call->getDirectCallee();
1004 if (!decl)
1005 return NULL;
1007 if (!options->pencil)
1008 return decl;
1010 specific_attr_iterator<AnnotateAttr> begin, end, i;
1011 begin = decl->specific_attr_begin<AnnotateAttr>();
1012 end = decl->specific_attr_end<AnnotateAttr>();
1013 for (i = begin; i != end; ++i) {
1014 string attr = (*i)->getAnnotation().str();
1016 const char prefix[] = "pencil_access(";
1017 size_t start = attr.find(prefix);
1018 if (start == string::npos)
1019 continue;
1020 start += strlen(prefix);
1021 string name = attr.substr(start, attr.find(')') - start);
1023 return find_decl_from_name(call, name);
1026 return decl;
1029 /* Is "name" the name of an assume statement?
1030 * "pencil" indicates whether pencil builtins and pragmas should be supported.
1031 * "__builtin_assume" is always accepted.
1032 * If "pencil" is set, then "__pencil_assume" is also accepted.
1034 static bool is_assume(int pencil, const string &name)
1036 if (name == "__builtin_assume")
1037 return true;
1038 return pencil && name == "__pencil_assume";
1041 /* Construct a pet_expr representing a function call.
1043 * In the special case of a "call" to __builtin_assume or __pencil_assume,
1044 * construct an assume expression instead.
1046 * In the case of a "call" to __pencil_kill, the arguments
1047 * are neither read nor written (only killed), so there
1048 * is no need to check for writes to these arguments.
1050 * __pencil_assume and __pencil_kill are only recognized
1051 * when the pencil option is set.
1053 __isl_give pet_expr *PetScan::extract_expr(CallExpr *expr)
1055 pet_expr *res = NULL;
1056 FunctionDecl *fd;
1057 string name;
1058 unsigned n_arg;
1059 bool is_kill;
1061 fd = expr->getDirectCallee();
1062 if (!fd) {
1063 unsupported(expr);
1064 return NULL;
1067 name = fd->getDeclName().getAsString();
1068 n_arg = expr->getNumArgs();
1070 if (n_arg == 1 && is_assume(options->pencil, name))
1071 return extract_assume(expr->getArg(0));
1072 is_kill = options->pencil && name == "__pencil_kill";
1074 res = pet_expr_new_call(ctx, name.c_str(), n_arg);
1075 if (!res)
1076 return NULL;
1078 for (unsigned i = 0; i < n_arg; ++i) {
1079 Expr *arg = expr->getArg(i);
1080 res = pet_expr_set_arg(res, i,
1081 PetScan::extract_argument(fd, i, arg, !is_kill));
1084 fd = get_summary_function(expr);
1085 if (!fd)
1086 return pet_expr_free(res);
1088 res = set_summary(res, fd);
1090 return res;
1093 /* Construct a pet_expr representing a (C style) cast.
1095 __isl_give pet_expr *PetScan::extract_expr(CStyleCastExpr *expr)
1097 pet_expr *arg;
1098 QualType type;
1100 arg = extract_expr(expr->getSubExpr());
1101 if (!arg)
1102 return NULL;
1104 type = expr->getTypeAsWritten();
1105 return pet_expr_new_cast(type.getAsString().c_str(), arg);
1108 /* Construct a pet_expr representing an integer.
1110 __isl_give pet_expr *PetScan::extract_expr(IntegerLiteral *expr)
1112 return pet_expr_new_int(extract_int(expr));
1115 /* Construct a pet_expr representing the integer enum constant "ecd".
1117 __isl_give pet_expr *PetScan::extract_expr(EnumConstantDecl *ecd)
1119 isl_val *v;
1120 const llvm::APSInt &init = ecd->getInitVal();
1121 v = ::extract_int(ctx, init.isSigned(), init);
1122 return pet_expr_new_int(v);
1125 /* Try and construct a pet_expr representing "expr".
1127 __isl_give pet_expr *PetScan::extract_expr(Expr *expr)
1129 switch (expr->getStmtClass()) {
1130 case Stmt::UnaryOperatorClass:
1131 return extract_expr(cast<UnaryOperator>(expr));
1132 case Stmt::CompoundAssignOperatorClass:
1133 case Stmt::BinaryOperatorClass:
1134 return extract_expr(cast<BinaryOperator>(expr));
1135 case Stmt::ImplicitCastExprClass:
1136 return extract_expr(cast<ImplicitCastExpr>(expr));
1137 case Stmt::ArraySubscriptExprClass:
1138 case Stmt::DeclRefExprClass:
1139 case Stmt::MemberExprClass:
1140 return extract_access_expr(expr);
1141 case Stmt::IntegerLiteralClass:
1142 return extract_expr(cast<IntegerLiteral>(expr));
1143 case Stmt::FloatingLiteralClass:
1144 return extract_expr(cast<FloatingLiteral>(expr));
1145 case Stmt::ParenExprClass:
1146 return extract_expr(cast<ParenExpr>(expr));
1147 case Stmt::ConditionalOperatorClass:
1148 return extract_expr(cast<ConditionalOperator>(expr));
1149 case Stmt::CallExprClass:
1150 return extract_expr(cast<CallExpr>(expr));
1151 case Stmt::CStyleCastExprClass:
1152 return extract_expr(cast<CStyleCastExpr>(expr));
1153 default:
1154 unsupported(expr);
1156 return NULL;
1159 /* Check if the given initialization statement is an assignment.
1160 * If so, return that assignment. Otherwise return NULL.
1162 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1164 BinaryOperator *ass;
1166 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1167 return NULL;
1169 ass = cast<BinaryOperator>(init);
1170 if (ass->getOpcode() != BO_Assign)
1171 return NULL;
1173 return ass;
1176 /* Check if the given initialization statement is a declaration
1177 * of a single variable.
1178 * If so, return that declaration. Otherwise return NULL.
1180 Decl *PetScan::initialization_declaration(Stmt *init)
1182 DeclStmt *decl;
1184 if (init->getStmtClass() != Stmt::DeclStmtClass)
1185 return NULL;
1187 decl = cast<DeclStmt>(init);
1189 if (!decl->isSingleDecl())
1190 return NULL;
1192 return decl->getSingleDecl();
1195 /* Given the assignment operator in the initialization of a for loop,
1196 * extract the induction variable, i.e., the (integer)variable being
1197 * assigned.
1199 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1201 Expr *lhs;
1202 DeclRefExpr *ref;
1203 ValueDecl *decl;
1204 const Type *type;
1206 lhs = init->getLHS();
1207 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1208 unsupported(init);
1209 return NULL;
1212 ref = cast<DeclRefExpr>(lhs);
1213 decl = ref->getDecl();
1214 type = decl->getType().getTypePtr();
1216 if (!type->isIntegerType()) {
1217 unsupported(lhs);
1218 return NULL;
1221 return decl;
1224 /* Given the initialization statement of a for loop and the single
1225 * declaration in this initialization statement,
1226 * extract the induction variable, i.e., the (integer) variable being
1227 * declared.
1229 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1231 VarDecl *vd;
1233 vd = cast<VarDecl>(decl);
1235 const QualType type = vd->getType();
1236 if (!type->isIntegerType()) {
1237 unsupported(init);
1238 return NULL;
1241 if (!vd->getInit()) {
1242 unsupported(init);
1243 return NULL;
1246 return vd;
1249 /* Check that op is of the form iv++ or iv--.
1250 * Return a pet_expr representing "1" or "-1" accordingly.
1252 __isl_give pet_expr *PetScan::extract_unary_increment(
1253 clang::UnaryOperator *op, clang::ValueDecl *iv)
1255 Expr *sub;
1256 DeclRefExpr *ref;
1257 isl_val *v;
1259 if (!op->isIncrementDecrementOp()) {
1260 unsupported(op);
1261 return NULL;
1264 sub = op->getSubExpr();
1265 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1266 unsupported(op);
1267 return NULL;
1270 ref = cast<DeclRefExpr>(sub);
1271 if (ref->getDecl() != iv) {
1272 unsupported(op);
1273 return NULL;
1276 if (op->isIncrementOp())
1277 v = isl_val_one(ctx);
1278 else
1279 v = isl_val_negone(ctx);
1281 return pet_expr_new_int(v);
1284 /* Check if op is of the form
1286 * iv = expr
1288 * and return the increment "expr - iv" as a pet_expr.
1290 __isl_give pet_expr *PetScan::extract_binary_increment(BinaryOperator *op,
1291 clang::ValueDecl *iv)
1293 int type_size;
1294 Expr *lhs;
1295 DeclRefExpr *ref;
1296 pet_expr *expr, *expr_iv;
1298 if (op->getOpcode() != BO_Assign) {
1299 unsupported(op);
1300 return NULL;
1303 lhs = op->getLHS();
1304 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1305 unsupported(op);
1306 return NULL;
1309 ref = cast<DeclRefExpr>(lhs);
1310 if (ref->getDecl() != iv) {
1311 unsupported(op);
1312 return NULL;
1315 expr = extract_expr(op->getRHS());
1316 expr_iv = extract_expr(lhs);
1318 type_size = pet_clang_get_type_size(iv->getType(), ast_context);
1319 return pet_expr_new_binary(type_size, pet_op_sub, expr, expr_iv);
1322 /* Check that op is of the form iv += cst or iv -= cst
1323 * and return a pet_expr corresponding to cst or -cst accordingly.
1325 __isl_give pet_expr *PetScan::extract_compound_increment(
1326 CompoundAssignOperator *op, clang::ValueDecl *iv)
1328 Expr *lhs;
1329 DeclRefExpr *ref;
1330 bool neg = false;
1331 pet_expr *expr;
1332 BinaryOperatorKind opcode;
1334 opcode = op->getOpcode();
1335 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1336 unsupported(op);
1337 return NULL;
1339 if (opcode == BO_SubAssign)
1340 neg = true;
1342 lhs = op->getLHS();
1343 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1344 unsupported(op);
1345 return NULL;
1348 ref = cast<DeclRefExpr>(lhs);
1349 if (ref->getDecl() != iv) {
1350 unsupported(op);
1351 return NULL;
1354 expr = extract_expr(op->getRHS());
1355 if (neg) {
1356 int type_size;
1357 type_size = pet_clang_get_type_size(op->getType(), ast_context);
1358 expr = pet_expr_new_unary(type_size, pet_op_minus, expr);
1361 return expr;
1364 /* Check that the increment of the given for loop increments
1365 * (or decrements) the induction variable "iv" and return
1366 * the increment as a pet_expr if successful.
1368 __isl_give pet_expr *PetScan::extract_increment(clang::ForStmt *stmt,
1369 ValueDecl *iv)
1371 Stmt *inc = stmt->getInc();
1373 if (!inc) {
1374 report_missing_increment(stmt);
1375 return NULL;
1378 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1379 return extract_unary_increment(cast<UnaryOperator>(inc), iv);
1380 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1381 return extract_compound_increment(
1382 cast<CompoundAssignOperator>(inc), iv);
1383 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1384 return extract_binary_increment(cast<BinaryOperator>(inc), iv);
1386 unsupported(inc);
1387 return NULL;
1390 /* Construct a pet_tree for a while loop.
1392 * If we were only able to extract part of the body, then simply
1393 * return that part.
1395 __isl_give pet_tree *PetScan::extract(WhileStmt *stmt)
1397 pet_expr *pe_cond;
1398 pet_tree *tree;
1400 tree = extract(stmt->getBody());
1401 if (partial)
1402 return tree;
1403 pe_cond = extract_expr(stmt->getCond());
1404 tree = pet_tree_new_while(pe_cond, tree);
1406 return tree;
1409 /* Construct a pet_tree for a for statement.
1410 * The for loop is required to be of one of the following forms
1412 * for (i = init; condition; ++i)
1413 * for (i = init; condition; --i)
1414 * for (i = init; condition; i += constant)
1415 * for (i = init; condition; i -= constant)
1417 * We extract a pet_tree for the body and then include it in a pet_tree
1418 * of type pet_tree_for.
1420 * As a special case, we also allow a for loop of the form
1422 * for (;;)
1424 * in which case we return a pet_tree of type pet_tree_infinite_loop.
1426 * If we were only able to extract part of the body, then simply
1427 * return that part.
1429 __isl_give pet_tree *PetScan::extract_for(ForStmt *stmt)
1431 BinaryOperator *ass;
1432 Decl *decl;
1433 Stmt *init;
1434 Expr *rhs;
1435 ValueDecl *iv;
1436 pet_tree *tree;
1437 int independent;
1438 int declared;
1439 pet_expr *pe_init, *pe_inc, *pe_iv, *pe_cond;
1441 independent = is_current_stmt_marked_independent();
1443 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc()) {
1444 tree = extract(stmt->getBody());
1445 if (partial)
1446 return tree;
1447 tree = pet_tree_new_infinite_loop(tree);
1448 return tree;
1451 init = stmt->getInit();
1452 if (!init) {
1453 unsupported(stmt);
1454 return NULL;
1456 if ((ass = initialization_assignment(init)) != NULL) {
1457 iv = extract_induction_variable(ass);
1458 if (!iv)
1459 return NULL;
1460 rhs = ass->getRHS();
1461 } else if ((decl = initialization_declaration(init)) != NULL) {
1462 VarDecl *var = extract_induction_variable(init, decl);
1463 if (!var)
1464 return NULL;
1465 iv = var;
1466 rhs = var->getInit();
1467 } else {
1468 unsupported(stmt->getInit());
1469 return NULL;
1472 declared = !initialization_assignment(stmt->getInit());
1473 tree = extract(stmt->getBody());
1474 if (partial)
1475 return tree;
1476 pe_iv = extract_access_expr(iv);
1477 pe_iv = mark_write(pe_iv);
1478 pe_init = extract_expr(rhs);
1479 if (!stmt->getCond())
1480 pe_cond = pet_expr_new_int(isl_val_one(ctx));
1481 else
1482 pe_cond = extract_expr(stmt->getCond());
1483 pe_inc = extract_increment(stmt, iv);
1484 tree = pet_tree_new_for(independent, declared, pe_iv, pe_init, pe_cond,
1485 pe_inc, tree);
1486 return tree;
1489 /* Store the names of the variables declared in decl_context
1490 * in the set declared_names. Make sure to only do this once by
1491 * setting declared_names_collected.
1493 void PetScan::collect_declared_names()
1495 DeclContext *DC = decl_context;
1496 DeclContext::decl_iterator it;
1498 if (declared_names_collected)
1499 return;
1501 for (it = DC->decls_begin(); it != DC->decls_end(); ++it) {
1502 Decl *D = *it;
1503 NamedDecl *named;
1505 if (!isa<NamedDecl>(D))
1506 continue;
1507 named = cast<NamedDecl>(D);
1508 declared_names.insert(named->getName().str());
1511 declared_names_collected = true;
1514 /* Add the names in "names" that are not also in this->declared_names
1515 * to this->used_names.
1516 * It is up to the caller to make sure that declared_names has been
1517 * populated, if needed.
1519 void PetScan::add_new_used_names(const std::set<std::string> &names)
1521 std::set<std::string>::const_iterator it;
1523 for (it = names.begin(); it != names.end(); ++it) {
1524 if (declared_names.find(*it) != declared_names.end())
1525 continue;
1526 used_names.insert(*it);
1530 /* Is the name "name" used in any declaration other than "decl"?
1532 * If the name was found to be in use before, the consider it to be in use.
1533 * Otherwise, check the DeclContext of the function containing the scop
1534 * as well as all ancestors of this DeclContext for declarations
1535 * other than "decl" that declare something called "name".
1537 bool PetScan::name_in_use(const string &name, Decl *decl)
1539 DeclContext *DC;
1540 DeclContext::decl_iterator it;
1542 if (used_names.find(name) != used_names.end())
1543 return true;
1545 for (DC = decl_context; DC; DC = DC->getParent()) {
1546 for (it = DC->decls_begin(); it != DC->decls_end(); ++it) {
1547 Decl *D = *it;
1548 NamedDecl *named;
1550 if (D == decl)
1551 continue;
1552 if (!isa<NamedDecl>(D))
1553 continue;
1554 named = cast<NamedDecl>(D);
1555 if (named->getName().str() == name)
1556 return true;
1560 return false;
1563 /* Generate a new name based on "name" that is not in use.
1564 * Do so by adding a suffix _i, with i an integer.
1566 string PetScan::generate_new_name(const string &name)
1568 string new_name;
1570 do {
1571 std::ostringstream oss;
1572 oss << name << "_" << n_rename++;
1573 new_name = oss.str();
1574 } while (name_in_use(new_name, NULL));
1576 return new_name;
1579 /* Try and construct a pet_tree corresponding to a compound statement.
1581 * "skip_declarations" is set if we should skip initial declarations
1582 * in the children of the compound statements.
1584 * Collect a new set of declarations for the current compound statement.
1585 * If any of the names in these declarations is also used by another
1586 * declaration reachable from the current function, then rename it
1587 * to a name that is not already in use.
1588 * In particular, keep track of the old and new names in a pet_substituter
1589 * and apply the substitutions to the pet_tree corresponding to the
1590 * compound statement.
1592 __isl_give pet_tree *PetScan::extract(CompoundStmt *stmt,
1593 bool skip_declarations)
1595 pet_tree *tree;
1596 std::vector<VarDecl *> saved_declarations;
1597 std::vector<VarDecl *>::iterator it;
1598 pet_substituter substituter;
1600 saved_declarations = declarations;
1601 declarations.clear();
1602 tree = extract(stmt->children(), true, skip_declarations, stmt);
1603 for (it = declarations.begin(); it != declarations.end(); ++it) {
1604 isl_id *id;
1605 pet_expr *expr;
1606 VarDecl *decl = *it;
1607 string name = decl->getName().str();
1608 bool in_use = name_in_use(name, decl);
1610 used_names.insert(name);
1611 if (!in_use)
1612 continue;
1614 name = generate_new_name(name);
1615 id = pet_id_from_name_and_decl(ctx, name.c_str(), decl);
1616 expr = pet_id_create_index_expr(id);
1617 expr = extract_access_expr(decl->getType(), expr);
1618 id = pet_id_from_decl(ctx, decl);
1619 substituter.add_sub(id, expr);
1620 used_names.insert(name);
1622 tree = substituter.substitute(tree);
1623 declarations = saved_declarations;
1625 return tree;
1628 /* Return the file offset of the expansion location of "Loc".
1630 static unsigned getExpansionOffset(SourceManager &SM, SourceLocation Loc)
1632 return SM.getFileOffset(SM.getExpansionLoc(Loc));
1635 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
1637 /* Return a SourceLocation for the location after the first semicolon
1638 * after "loc". If Lexer::findLocationAfterToken is available, we simply
1639 * call it and also skip trailing spaces and newline.
1641 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
1642 const LangOptions &LO)
1644 return Lexer::findLocationAfterToken(loc, tok::semi, SM, LO, true);
1647 #else
1649 /* Return a SourceLocation for the location after the first semicolon
1650 * after "loc". If Lexer::findLocationAfterToken is not available,
1651 * we look in the underlying character data for the first semicolon.
1653 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
1654 const LangOptions &LO)
1656 const char *semi;
1657 const char *s = SM.getCharacterData(loc);
1659 semi = strchr(s, ';');
1660 if (!semi)
1661 return SourceLocation();
1662 return loc.getFileLocWithOffset(semi + 1 - s);
1665 #endif
1667 /* If the token at "loc" is the first token on the line, then return
1668 * a location referring to the start of the line and set *indent
1669 * to the indentation of "loc"
1670 * Otherwise, return "loc" and set *indent to "".
1672 * This function is used to extend a scop to the start of the line
1673 * if the first token of the scop is also the first token on the line.
1675 * We look for the first token on the line. If its location is equal to "loc",
1676 * then the latter is the location of the first token on the line.
1678 static SourceLocation move_to_start_of_line_if_first_token(SourceLocation loc,
1679 SourceManager &SM, const LangOptions &LO, char **indent)
1681 std::pair<FileID, unsigned> file_offset_pair;
1682 llvm::StringRef file;
1683 const char *pos;
1684 Token tok;
1685 SourceLocation token_loc, line_loc;
1686 int col;
1687 const char *s;
1689 loc = SM.getExpansionLoc(loc);
1690 col = SM.getExpansionColumnNumber(loc);
1691 line_loc = loc.getLocWithOffset(1 - col);
1692 file_offset_pair = SM.getDecomposedLoc(line_loc);
1693 file = SM.getBufferData(file_offset_pair.first, NULL);
1694 pos = file.data() + file_offset_pair.second;
1696 Lexer lexer(SM.getLocForStartOfFile(file_offset_pair.first), LO,
1697 file.begin(), pos, file.end());
1698 lexer.LexFromRawLexer(tok);
1699 token_loc = tok.getLocation();
1701 s = SM.getCharacterData(line_loc);
1702 *indent = strndup(s, token_loc == loc ? col - 1 : 0);
1704 if (token_loc == loc)
1705 return line_loc;
1706 else
1707 return loc;
1710 /* Construct a pet_loc corresponding to the region covered by "range".
1711 * If "skip_semi" is set, then we assume "range" is followed by
1712 * a semicolon and also include this semicolon.
1714 __isl_give pet_loc *PetScan::construct_pet_loc(SourceRange range,
1715 bool skip_semi)
1717 SourceLocation loc = range.getBegin();
1718 SourceManager &SM = PP.getSourceManager();
1719 const LangOptions &LO = PP.getLangOpts();
1720 int line = PP.getSourceManager().getExpansionLineNumber(loc);
1721 unsigned start, end;
1722 char *indent;
1724 loc = move_to_start_of_line_if_first_token(loc, SM, LO, &indent);
1725 start = getExpansionOffset(SM, loc);
1726 loc = range.getEnd();
1727 if (skip_semi)
1728 loc = location_after_semi(loc, SM, LO);
1729 else
1730 loc = PP.getLocForEndOfToken(loc);
1731 end = getExpansionOffset(SM, loc);
1733 return pet_loc_alloc(ctx, start, end, line, indent);
1736 /* Convert a top-level pet_expr to an expression pet_tree.
1738 __isl_give pet_tree *PetScan::extract(__isl_take pet_expr *expr,
1739 SourceRange range, bool skip_semi)
1741 pet_loc *loc;
1742 pet_tree *tree;
1744 tree = pet_tree_new_expr(expr);
1745 loc = construct_pet_loc(range, skip_semi);
1746 tree = pet_tree_set_loc(tree, loc);
1748 return tree;
1751 /* Construct a pet_tree for an if statement.
1753 __isl_give pet_tree *PetScan::extract(IfStmt *stmt)
1755 pet_expr *pe_cond;
1756 pet_tree *tree, *tree_else;
1758 pe_cond = extract_expr(stmt->getCond());
1759 tree = extract(stmt->getThen());
1760 if (stmt->getElse()) {
1761 tree_else = extract(stmt->getElse());
1762 if (options->autodetect) {
1763 if (tree && !tree_else) {
1764 partial = true;
1765 pet_expr_free(pe_cond);
1766 return tree;
1768 if (!tree && tree_else) {
1769 partial = true;
1770 pet_expr_free(pe_cond);
1771 return tree_else;
1774 tree = pet_tree_new_if_else(pe_cond, tree, tree_else);
1775 } else
1776 tree = pet_tree_new_if(pe_cond, tree);
1777 return tree;
1780 /* Try and construct a pet_tree for a label statement.
1782 __isl_give pet_tree *PetScan::extract(LabelStmt *stmt)
1784 isl_id *label;
1785 pet_tree *tree;
1787 label = isl_id_alloc(ctx, stmt->getName(), NULL);
1789 tree = extract(stmt->getSubStmt());
1790 tree = pet_tree_set_label(tree, label);
1791 return tree;
1794 /* Update the location of "tree" to include the source range of "stmt".
1796 * Actually, we create a new location based on the source range of "stmt" and
1797 * then extend this new location to include the region of the original location.
1798 * This ensures that the line number of the final location refers to "stmt".
1800 __isl_give pet_tree *PetScan::update_loc(__isl_take pet_tree *tree, Stmt *stmt)
1802 pet_loc *loc, *tree_loc;
1804 tree_loc = pet_tree_get_loc(tree);
1805 loc = construct_pet_loc(stmt->getSourceRange(), false);
1806 loc = pet_loc_update_start_end_from_loc(loc, tree_loc);
1807 pet_loc_free(tree_loc);
1809 tree = pet_tree_set_loc(tree, loc);
1810 return tree;
1813 /* Is "expr" of a type that can be converted to an access expression?
1815 static bool is_access_expr_type(Expr *expr)
1817 switch (expr->getStmtClass()) {
1818 case Stmt::ArraySubscriptExprClass:
1819 case Stmt::DeclRefExprClass:
1820 case Stmt::MemberExprClass:
1821 return true;
1822 default:
1823 return false;
1827 /* Tell the pet_inliner "inliner" about the formal arguments
1828 * in "fd" and the corresponding actual arguments in "call".
1829 * Return 0 if this was successful and -1 otherwise.
1831 * Any pointer argument is treated as an array.
1832 * The other arguments are treated as scalars.
1834 * In case of scalars, there is no restriction on the actual argument.
1835 * This actual argument is assigned to a variable with a name
1836 * that is derived from the name of the corresponding formal argument,
1837 * but made not to conflict with any variable names that are
1838 * already in use.
1840 * In case of arrays, the actual argument needs to be an expression
1841 * of a type that can be converted to an access expression or the address
1842 * of such an expression, ignoring implicit and redundant casts.
1844 int PetScan::set_inliner_arguments(pet_inliner &inliner, CallExpr *call,
1845 FunctionDecl *fd)
1847 unsigned n;
1849 n = fd->getNumParams();
1850 for (unsigned i = 0; i < n; ++i) {
1851 ParmVarDecl *parm = fd->getParamDecl(i);
1852 QualType type = parm->getType();
1853 Expr *arg, *sub;
1854 pet_expr *expr;
1855 int is_addr = 0;
1857 arg = call->getArg(i);
1858 if (pet_clang_array_depth(type) == 0) {
1859 string name = parm->getName().str();
1860 if (name_in_use(name, NULL))
1861 name = generate_new_name(name);
1862 used_names.insert(name);
1863 inliner.add_scalar_arg(parm, name, extract_expr(arg));
1864 continue;
1866 arg = pet_clang_strip_casts(arg);
1867 sub = extract_addr_of_arg(arg);
1868 if (sub) {
1869 is_addr = 1;
1870 arg = pet_clang_strip_casts(sub);
1872 if (!is_access_expr_type(arg)) {
1873 report_unsupported_inline_function_argument(arg);
1874 return -1;
1876 expr = extract_access_expr(arg);
1877 if (!expr)
1878 return -1;
1879 inliner.add_array_arg(parm, expr, is_addr);
1882 return 0;
1885 /* Internal data structure for PetScan::substitute_array_sizes.
1886 * ps is the PetScan on which the method was called.
1887 * substituter is the substituter that is used to substitute variables
1888 * in the size expressions.
1890 struct pet_substitute_array_sizes_data {
1891 PetScan *ps;
1892 pet_substituter *substituter;
1895 extern "C" {
1896 static int substitute_array_size(__isl_keep pet_tree *tree, void *user);
1899 /* If "tree" is a declaration, then perform the substitutions
1900 * in data->substituter on its size expression and store the result
1901 * in the size expression cache of data->ps such that the modified expression
1902 * will be used in subsequent calls to get_array_size.
1904 static int substitute_array_size(__isl_keep pet_tree *tree, void *user)
1906 struct pet_substitute_array_sizes_data *data;
1907 isl_id *id;
1908 pet_expr *var, *size;
1910 if (!pet_tree_is_decl(tree))
1911 return 0;
1913 data = (struct pet_substitute_array_sizes_data *) user;
1914 var = pet_tree_decl_get_var(tree);
1915 id = pet_expr_access_get_id(var);
1916 pet_expr_free(var);
1918 size = data->ps->get_array_size(id);
1919 size = data->substituter->substitute(size);
1920 data->ps->set_array_size(id, size);
1922 return 0;
1925 /* Perform the substitutions in "substituter" on all the arrays declared
1926 * inside "tree" and store the results in the size expression cache
1927 * such that the modified expressions will be used in subsequent calls
1928 * to get_array_size.
1930 int PetScan::substitute_array_sizes(__isl_keep pet_tree *tree,
1931 pet_substituter *substituter)
1933 struct pet_substitute_array_sizes_data data = { this, substituter };
1935 return pet_tree_foreach_sub_tree(tree, &substitute_array_size, &data);
1938 /* Try and construct a pet_tree from the body of "fd" using the actual
1939 * arguments in "call" in place of the formal arguments.
1940 * "fd" is assumed to point to the declaration with a function body.
1941 * In particular, construct a block that consists of assignments
1942 * of (parts of) the actual arguments to temporary variables
1943 * followed by the inlined function body with the formal arguments
1944 * replaced by (expressions containing) these temporary variables.
1946 * The actual inlining is taken care of by the pet_inliner object.
1947 * This function merely calls set_inliner_arguments to tell
1948 * the pet_inliner about the actual arguments, extracts a pet_tree
1949 * from the body of the called function and then passes this pet_tree
1950 * to the pet_inliner.
1951 * The substitutions performed by the inliner are also applied
1952 * to the size expressions of the arrays declared in the inlined
1953 * function. These size expressions are not stored in the tree
1954 * itself, but rather in the size expression cache.
1956 * During the extraction of the function body, all variables names
1957 * that are declared in the calling function as well all variable
1958 * names that are known to be in use are considered to be in use
1959 * in the called function to ensure that there is no naming conflict.
1960 * Similarly, the additional names that are in use in the called function
1961 * are considered to be in use in the calling function as well.
1963 * The location of the pet_tree is reset to the call site to ensure
1964 * that the extent of the scop does not include the body of the called
1965 * function.
1967 __isl_give pet_tree *PetScan::extract_inlined_call(CallExpr *call,
1968 FunctionDecl *fd)
1970 int save_autodetect;
1971 pet_tree *tree;
1972 pet_loc *tree_loc;
1973 pet_inliner inliner(ctx, n_arg, ast_context);
1975 if (set_inliner_arguments(inliner, call, fd) < 0)
1976 return NULL;
1978 save_autodetect = options->autodetect;
1979 options->autodetect = 0;
1980 PetScan body_scan(PP, ast_context, fd, loc, options,
1981 isl_union_map_copy(value_bounds), independent);
1982 collect_declared_names();
1983 body_scan.add_new_used_names(declared_names);
1984 body_scan.add_new_used_names(used_names);
1985 tree = body_scan.extract(fd->getBody(), false);
1986 add_new_used_names(body_scan.used_names);
1987 options->autodetect = save_autodetect;
1989 tree_loc = construct_pet_loc(call->getSourceRange(), true);
1990 tree = pet_tree_set_loc(tree, tree_loc);
1992 substitute_array_sizes(tree, &inliner);
1994 return inliner.inline_tree(tree);
1997 /* Try and construct a pet_tree corresponding
1998 * to the expression statement "stmt".
2000 * If the outer expression is a function call and if the corresponding
2001 * function body is marked "inline", then return a pet_tree
2002 * corresponding to the inlined function.
2004 __isl_give pet_tree *PetScan::extract_expr_stmt(Stmt *stmt)
2006 pet_expr *expr;
2008 if (stmt->getStmtClass() == Stmt::CallExprClass) {
2009 CallExpr *call = cast<CallExpr>(stmt);
2010 FunctionDecl *fd = call->getDirectCallee();
2011 fd = pet_clang_find_function_decl_with_body(fd);
2012 if (fd && fd->isInlineSpecified())
2013 return extract_inlined_call(call, fd);
2016 expr = extract_expr(cast<Expr>(stmt));
2017 return extract(expr, stmt->getSourceRange(), true);
2020 /* Try and construct a pet_tree corresponding to "stmt".
2022 * If "stmt" is a compound statement, then "skip_declarations"
2023 * indicates whether we should skip initial declarations in the
2024 * compound statement.
2026 * If the constructed pet_tree is not a (possibly) partial representation
2027 * of "stmt", we update start and end of the pet_scop to those of "stmt".
2028 * In particular, if skip_declarations is set, then we may have skipped
2029 * declarations inside "stmt" and so the pet_scop may not represent
2030 * the entire "stmt".
2031 * Note that this function may be called with "stmt" referring to the entire
2032 * body of the function, including the outer braces. In such cases,
2033 * skip_declarations will be set and the braces will not be taken into
2034 * account in tree->loc.
2036 __isl_give pet_tree *PetScan::extract(Stmt *stmt, bool skip_declarations)
2038 pet_tree *tree;
2040 set_current_stmt(stmt);
2042 if (isa<Expr>(stmt))
2043 return extract_expr_stmt(cast<Expr>(stmt));
2045 switch (stmt->getStmtClass()) {
2046 case Stmt::WhileStmtClass:
2047 tree = extract(cast<WhileStmt>(stmt));
2048 break;
2049 case Stmt::ForStmtClass:
2050 tree = extract_for(cast<ForStmt>(stmt));
2051 break;
2052 case Stmt::IfStmtClass:
2053 tree = extract(cast<IfStmt>(stmt));
2054 break;
2055 case Stmt::CompoundStmtClass:
2056 tree = extract(cast<CompoundStmt>(stmt), skip_declarations);
2057 break;
2058 case Stmt::LabelStmtClass:
2059 tree = extract(cast<LabelStmt>(stmt));
2060 break;
2061 case Stmt::ContinueStmtClass:
2062 tree = pet_tree_new_continue(ctx);
2063 break;
2064 case Stmt::BreakStmtClass:
2065 tree = pet_tree_new_break(ctx);
2066 break;
2067 case Stmt::DeclStmtClass:
2068 tree = extract(cast<DeclStmt>(stmt));
2069 break;
2070 case Stmt::NullStmtClass:
2071 tree = pet_tree_new_block(ctx, 0, 0);
2072 break;
2073 default:
2074 report_unsupported_statement_type(stmt);
2075 return NULL;
2078 if (partial || skip_declarations)
2079 return tree;
2081 return update_loc(tree, stmt);
2084 /* Given a sequence of statements "stmt_range" of which the first "n_decl"
2085 * are declarations and of which the remaining statements are represented
2086 * by "tree", try and extend "tree" to include the last sequence of
2087 * the initial declarations that can be completely extracted.
2089 * We start collecting the initial declarations and start over
2090 * whenever we come across a declaration that we cannot extract.
2091 * If we have been able to extract any declarations, then we
2092 * copy over the contents of "tree" at the end of the declarations.
2093 * Otherwise, we simply return the original "tree".
2095 __isl_give pet_tree *PetScan::insert_initial_declarations(
2096 __isl_take pet_tree *tree, int n_decl, StmtRange stmt_range)
2098 StmtIterator i;
2099 pet_tree *res;
2100 int n_stmt;
2101 int is_block;
2102 int j;
2104 n_stmt = pet_tree_block_n_child(tree);
2105 is_block = pet_tree_block_get_block(tree);
2106 res = pet_tree_new_block(ctx, is_block, n_decl + n_stmt);
2108 for (i = stmt_range.first; n_decl; ++i, --n_decl) {
2109 Stmt *child = *i;
2110 pet_tree *tree_i;
2112 tree_i = extract(child);
2113 if (tree_i && !partial) {
2114 res = pet_tree_block_add_child(res, tree_i);
2115 continue;
2117 pet_tree_free(tree_i);
2118 partial = false;
2119 if (pet_tree_block_n_child(res) == 0)
2120 continue;
2121 pet_tree_free(res);
2122 res = pet_tree_new_block(ctx, is_block, n_decl + n_stmt);
2125 if (pet_tree_block_n_child(res) == 0) {
2126 pet_tree_free(res);
2127 return tree;
2130 for (j = 0; j < n_stmt; ++j) {
2131 pet_tree *tree_i;
2133 tree_i = pet_tree_block_get_child(tree, j);
2134 res = pet_tree_block_add_child(res, tree_i);
2136 pet_tree_free(tree);
2138 return res;
2141 /* Try and construct a pet_tree corresponding to (part of)
2142 * a sequence of statements.
2144 * "block" is set if the sequence represents the children of
2145 * a compound statement.
2146 * "skip_declarations" is set if we should skip initial declarations
2147 * in the sequence of statements.
2148 * "parent" is the statement that has stmt_range as (some of) its children.
2150 * If autodetect is set, then we allow the extraction of only a subrange
2151 * of the sequence of statements. However, if there is at least one
2152 * kill and there is some subsequent statement for which we could not
2153 * construct a tree, then turn off the "block" property of the tree
2154 * such that no extra kill will be introduced at the end of the (partial)
2155 * block. If, on the other hand, the final range contains
2156 * no statements, then we discard the entire range.
2157 * If only a subrange of the sequence was extracted, but each statement
2158 * in the sequence was extracted completely, and if there are some
2159 * variable declarations in the sequence before or inside
2160 * the extracted subrange, then check if any of these variables are
2161 * not used after the extracted subrange. If so, add kills to these
2162 * variables.
2164 * If the entire range was extracted, apart from some initial declarations,
2165 * then we try and extend the range with the latest of those initial
2166 * declarations.
2168 __isl_give pet_tree *PetScan::extract(StmtRange stmt_range, bool block,
2169 bool skip_declarations, Stmt *parent)
2171 StmtIterator i;
2172 int j, skip;
2173 bool has_kills = false;
2174 bool partial_range = false;
2175 bool outer_partial = false;
2176 pet_tree *tree;
2177 SourceManager &SM = PP.getSourceManager();
2178 pet_killed_locals kl(SM);
2179 unsigned range_start, range_end;
2181 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j)
2184 tree = pet_tree_new_block(ctx, block, j);
2186 skip = 0;
2187 i = stmt_range.first;
2188 if (skip_declarations)
2189 for (; i != stmt_range.second; ++i) {
2190 if ((*i)->getStmtClass() != Stmt::DeclStmtClass)
2191 break;
2192 if (options->autodetect)
2193 kl.add_locals(cast<DeclStmt>(*i));
2194 ++skip;
2197 for (; i != stmt_range.second; ++i) {
2198 Stmt *child = *i;
2199 pet_tree *tree_i;
2201 tree_i = extract(child);
2202 if (pet_tree_block_n_child(tree) != 0 && partial) {
2203 pet_tree_free(tree_i);
2204 break;
2206 if (child->getStmtClass() == Stmt::DeclStmtClass) {
2207 if (options->autodetect)
2208 kl.add_locals(cast<DeclStmt>(child));
2209 if (tree_i && block)
2210 has_kills = true;
2212 if (options->autodetect) {
2213 if (tree_i) {
2214 range_end = getExpansionOffset(SM,
2215 child->getLocEnd());
2216 if (pet_tree_block_n_child(tree) == 0)
2217 range_start = getExpansionOffset(SM,
2218 child->getLocStart());
2219 tree = pet_tree_block_add_child(tree, tree_i);
2220 } else {
2221 partial_range = true;
2223 if (pet_tree_block_n_child(tree) != 0 && !tree_i)
2224 outer_partial = partial = true;
2225 } else {
2226 tree = pet_tree_block_add_child(tree, tree_i);
2229 if (partial || !tree)
2230 break;
2233 if (!tree)
2234 return NULL;
2236 if (partial) {
2237 if (has_kills)
2238 tree = pet_tree_block_set_block(tree, 0);
2239 if (outer_partial) {
2240 kl.remove_accessed_after(parent,
2241 range_start, range_end);
2242 tree = add_kills(tree, kl.locals);
2244 } else if (partial_range) {
2245 if (pet_tree_block_n_child(tree) == 0) {
2246 pet_tree_free(tree);
2247 return NULL;
2249 partial = true;
2250 } else if (skip > 0)
2251 tree = insert_initial_declarations(tree, skip, stmt_range);
2253 return tree;
2256 extern "C" {
2257 static __isl_give pet_expr *get_array_size(__isl_keep pet_expr *access,
2258 void *user);
2259 static struct pet_array *extract_array(__isl_keep pet_expr *access,
2260 __isl_keep pet_context *pc, void *user);
2263 /* Construct a pet_expr that holds the sizes of the array accessed
2264 * by "access".
2265 * This function is used as a callback to pet_context_add_parameters,
2266 * which is also passed a pointer to the PetScan object.
2268 static __isl_give pet_expr *get_array_size(__isl_keep pet_expr *access,
2269 void *user)
2271 PetScan *ps = (PetScan *) user;
2272 isl_id *id;
2273 pet_expr *size;
2275 id = pet_expr_access_get_id(access);
2276 size = ps->get_array_size(id);
2277 isl_id_free(id);
2279 return size;
2282 /* Construct and return a pet_array corresponding to the variable
2283 * accessed by "access".
2284 * This function is used as a callback to pet_scop_from_pet_tree,
2285 * which is also passed a pointer to the PetScan object.
2287 static struct pet_array *extract_array(__isl_keep pet_expr *access,
2288 __isl_keep pet_context *pc, void *user)
2290 PetScan *ps = (PetScan *) user;
2291 isl_id *id;
2292 pet_array *array;
2294 id = pet_expr_access_get_id(access);
2295 array = ps->extract_array(id, NULL, pc);
2296 isl_id_free(id);
2298 return array;
2301 /* Extract a function summary from the body of "fd".
2303 * We extract a scop from the function body in a context with as
2304 * parameters the integer arguments of the function.
2305 * We turn off autodetection (in case it was set) to ensure that
2306 * the entire function body is considered.
2307 * We then collect the accessed array elements and attach them
2308 * to the corresponding array arguments, taking into account
2309 * that the function body may access members of array elements.
2311 * The reason for representing the integer arguments as parameters in
2312 * the context is that if we were to instead start with a context
2313 * with the function arguments as initial dimensions, then we would not
2314 * be able to refer to them from the array extents, without turning
2315 * array extents into maps.
2317 * The result is stored in the summary_cache cache so that we can reuse
2318 * it if this method gets called on the same function again later on.
2320 __isl_give pet_function_summary *PetScan::get_summary(FunctionDecl *fd)
2322 isl_space *space;
2323 isl_set *domain;
2324 pet_context *pc;
2325 pet_tree *tree;
2326 pet_function_summary *summary;
2327 unsigned n;
2328 ScopLoc loc;
2329 int save_autodetect;
2330 struct pet_scop *scop;
2331 int int_size;
2332 isl_union_set *may_read, *may_write, *must_write;
2333 isl_union_map *to_inner;
2335 if (summary_cache.find(fd) != summary_cache.end())
2336 return pet_function_summary_copy(summary_cache[fd]);
2338 space = isl_space_set_alloc(ctx, 0, 0);
2340 n = fd->getNumParams();
2341 summary = pet_function_summary_alloc(ctx, n);
2342 for (unsigned i = 0; i < n; ++i) {
2343 ParmVarDecl *parm = fd->getParamDecl(i);
2344 QualType type = parm->getType();
2345 isl_id *id;
2347 if (!type->isIntegerType())
2348 continue;
2349 id = pet_id_from_decl(ctx, parm);
2350 space = isl_space_insert_dims(space, isl_dim_param, 0, 1);
2351 space = isl_space_set_dim_id(space, isl_dim_param, 0,
2352 isl_id_copy(id));
2353 summary = pet_function_summary_set_int(summary, i, id);
2356 save_autodetect = options->autodetect;
2357 options->autodetect = 0;
2358 PetScan body_scan(PP, ast_context, fd, loc, options,
2359 isl_union_map_copy(value_bounds), independent);
2361 tree = body_scan.extract(fd->getBody(), false);
2363 domain = isl_set_universe(space);
2364 pc = pet_context_alloc(domain);
2365 pc = pet_context_add_parameters(pc, tree,
2366 &::get_array_size, &body_scan);
2367 int_size = size_in_bytes(ast_context, ast_context.IntTy);
2368 scop = pet_scop_from_pet_tree(tree, int_size,
2369 &::extract_array, &body_scan, pc);
2370 scop = scan_arrays(scop, pc);
2371 may_read = isl_union_map_range(pet_scop_get_may_reads(scop));
2372 may_write = isl_union_map_range(pet_scop_get_may_writes(scop));
2373 must_write = isl_union_map_range(pet_scop_get_must_writes(scop));
2374 to_inner = pet_scop_compute_outer_to_inner(scop);
2375 pet_scop_free(scop);
2377 for (unsigned i = 0; i < n; ++i) {
2378 ParmVarDecl *parm = fd->getParamDecl(i);
2379 QualType type = parm->getType();
2380 struct pet_array *array;
2381 isl_space *space;
2382 isl_union_set *data_set;
2383 isl_union_set *may_read_i, *may_write_i, *must_write_i;
2385 if (pet_clang_array_depth(type) == 0)
2386 continue;
2388 array = body_scan.extract_array(parm, NULL, pc);
2389 space = array ? isl_set_get_space(array->extent) : NULL;
2390 pet_array_free(array);
2391 data_set = isl_union_set_from_set(isl_set_universe(space));
2392 data_set = isl_union_set_apply(data_set,
2393 isl_union_map_copy(to_inner));
2394 may_read_i = isl_union_set_intersect(
2395 isl_union_set_copy(may_read),
2396 isl_union_set_copy(data_set));
2397 may_write_i = isl_union_set_intersect(
2398 isl_union_set_copy(may_write),
2399 isl_union_set_copy(data_set));
2400 must_write_i = isl_union_set_intersect(
2401 isl_union_set_copy(must_write), data_set);
2402 summary = pet_function_summary_set_array(summary, i,
2403 may_read_i, may_write_i, must_write_i);
2406 isl_union_set_free(may_read);
2407 isl_union_set_free(may_write);
2408 isl_union_set_free(must_write);
2409 isl_union_map_free(to_inner);
2411 options->autodetect = save_autodetect;
2412 pet_context_free(pc);
2414 summary_cache[fd] = pet_function_summary_copy(summary);
2416 return summary;
2419 /* If "fd" has a function body, then extract a function summary from
2420 * this body and attach it to the call expression "expr".
2422 * Even if a function body is available, "fd" itself may point
2423 * to a declaration without function body. We therefore first
2424 * replace it by the declaration that comes with a body (if any).
2426 __isl_give pet_expr *PetScan::set_summary(__isl_take pet_expr *expr,
2427 FunctionDecl *fd)
2429 pet_function_summary *summary;
2431 if (!expr)
2432 return NULL;
2433 fd = pet_clang_find_function_decl_with_body(fd);
2434 if (!fd)
2435 return expr;
2437 summary = get_summary(fd);
2439 expr = pet_expr_call_set_summary(expr, summary);
2441 return expr;
2444 /* Extract a pet_scop from "tree".
2446 * We simply call pet_scop_from_pet_tree with the appropriate arguments and
2447 * then add pet_arrays for all accessed arrays.
2448 * We populate the pet_context with assignments for all parameters used
2449 * inside "tree" or any of the size expressions for the arrays accessed
2450 * by "tree" so that they can be used in affine expressions.
2452 struct pet_scop *PetScan::extract_scop(__isl_take pet_tree *tree)
2454 int int_size;
2455 isl_set *domain;
2456 pet_context *pc;
2457 pet_scop *scop;
2459 int_size = size_in_bytes(ast_context, ast_context.IntTy);
2461 domain = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
2462 pc = pet_context_alloc(domain);
2463 pc = pet_context_add_parameters(pc, tree, &::get_array_size, this);
2464 scop = pet_scop_from_pet_tree(tree, int_size,
2465 &::extract_array, this, pc);
2466 scop = scan_arrays(scop, pc);
2467 pet_context_free(pc);
2469 return scop;
2472 /* Add a call to __pencil_kill to the end of "tree" that kills
2473 * all the variables in "locals" and return the result.
2475 * No location is added to the kill because the most natural
2476 * location would lie outside the scop. Attaching such a location
2477 * to this tree would extend the scope of the final result
2478 * to include the location.
2480 __isl_give pet_tree *PetScan::add_kills(__isl_take pet_tree *tree,
2481 set<ValueDecl *> locals)
2483 int i;
2484 pet_expr *expr;
2485 pet_tree *kill, *block;
2486 set<ValueDecl *>::iterator it;
2488 if (locals.size() == 0)
2489 return tree;
2490 expr = pet_expr_new_call(ctx, "__pencil_kill", locals.size());
2491 i = 0;
2492 for (it = locals.begin(); it != locals.end(); ++it) {
2493 pet_expr *arg;
2494 arg = extract_access_expr(*it);
2495 expr = pet_expr_set_arg(expr, i++, arg);
2497 kill = pet_tree_new_expr(expr);
2498 block = pet_tree_new_block(ctx, 0, 2);
2499 block = pet_tree_block_add_child(block, tree);
2500 block = pet_tree_block_add_child(block, kill);
2502 return block;
2505 /* Check if the scop marked by the user is exactly this Stmt
2506 * or part of this Stmt.
2507 * If so, return a pet_scop corresponding to the marked region.
2508 * Otherwise, return NULL.
2510 * If the scop is not further nested inside a child of "stmt",
2511 * then check if there are any variable declarations before the scop
2512 * inside "stmt". If so, and if these variables are not used
2513 * after the scop, then add kills to the variables.
2515 * If the scop starts in the middle of one of the children, without
2516 * also ending in that child, then report an error.
2518 struct pet_scop *PetScan::scan(Stmt *stmt)
2520 SourceManager &SM = PP.getSourceManager();
2521 unsigned start_off, end_off;
2522 pet_tree *tree;
2524 start_off = getExpansionOffset(SM, stmt->getLocStart());
2525 end_off = getExpansionOffset(SM, stmt->getLocEnd());
2527 if (start_off > loc.end)
2528 return NULL;
2529 if (end_off < loc.start)
2530 return NULL;
2532 if (start_off >= loc.start && end_off <= loc.end)
2533 return extract_scop(extract(stmt));
2535 pet_killed_locals kl(SM);
2536 StmtIterator start;
2537 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
2538 Stmt *child = *start;
2539 if (!child)
2540 continue;
2541 start_off = getExpansionOffset(SM, child->getLocStart());
2542 end_off = getExpansionOffset(SM, child->getLocEnd());
2543 if (start_off < loc.start && end_off >= loc.end)
2544 return scan(child);
2545 if (start_off >= loc.start)
2546 break;
2547 if (loc.start < end_off) {
2548 report_unbalanced_pragmas(loc.scop, loc.endscop);
2549 return NULL;
2551 if (isa<DeclStmt>(child))
2552 kl.add_locals(cast<DeclStmt>(child));
2555 StmtIterator end;
2556 for (end = start; end != stmt->child_end(); ++end) {
2557 Stmt *child = *end;
2558 start_off = SM.getFileOffset(child->getLocStart());
2559 if (start_off >= loc.end)
2560 break;
2563 kl.remove_accessed_after(stmt, loc.start, loc.end);
2565 tree = extract(StmtRange(start, end), false, false, stmt);
2566 tree = add_kills(tree, kl.locals);
2567 return extract_scop(tree);
2570 /* Set the size of index "pos" of "array" to "size".
2571 * In particular, add a constraint of the form
2573 * i_pos < size
2575 * to array->extent and a constraint of the form
2577 * size >= 0
2579 * to array->context.
2581 * The domain of "size" is assumed to be zero-dimensional.
2583 static struct pet_array *update_size(struct pet_array *array, int pos,
2584 __isl_take isl_pw_aff *size)
2586 isl_set *valid;
2587 isl_set *univ;
2588 isl_set *bound;
2589 isl_space *dim;
2590 isl_aff *aff;
2591 isl_pw_aff *index;
2592 isl_id *id;
2594 if (!array)
2595 goto error;
2597 valid = isl_set_params(isl_pw_aff_nonneg_set(isl_pw_aff_copy(size)));
2598 array->context = isl_set_intersect(array->context, valid);
2600 dim = isl_set_get_space(array->extent);
2601 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2602 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
2603 univ = isl_set_universe(isl_aff_get_domain_space(aff));
2604 index = isl_pw_aff_alloc(univ, aff);
2606 size = isl_pw_aff_add_dims(size, isl_dim_in,
2607 isl_set_dim(array->extent, isl_dim_set));
2608 id = isl_set_get_tuple_id(array->extent);
2609 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
2610 bound = isl_pw_aff_lt_set(index, size);
2612 array->extent = isl_set_intersect(array->extent, bound);
2614 if (!array->context || !array->extent)
2615 return pet_array_free(array);
2617 return array;
2618 error:
2619 isl_pw_aff_free(size);
2620 return NULL;
2623 #ifdef HAVE_DECAYEDTYPE
2625 /* If "qt" is a decayed type, then set *decayed to true and
2626 * return the original type.
2628 static QualType undecay(QualType qt, bool *decayed)
2630 const Type *type = qt.getTypePtr();
2632 *decayed = isa<DecayedType>(type);
2633 if (*decayed)
2634 qt = cast<DecayedType>(type)->getOriginalType();
2635 return qt;
2638 #else
2640 /* If "qt" is a decayed type, then set *decayed to true and
2641 * return the original type.
2642 * Since this version of clang does not define a DecayedType,
2643 * we cannot obtain the original type even if it had been decayed and
2644 * we set *decayed to false.
2646 static QualType undecay(QualType qt, bool *decayed)
2648 *decayed = false;
2649 return qt;
2652 #endif
2654 /* Figure out the size of the array at position "pos" and all
2655 * subsequent positions from "qt" and update the corresponding
2656 * argument of "expr" accordingly.
2658 * The initial type (when pos is zero) may be a pointer type decayed
2659 * from an array type, if this initial type is the type of a function
2660 * argument. This only happens if the original array type has
2661 * a constant size in the outer dimension as otherwise we get
2662 * a VariableArrayType. Try and obtain this original type (if available) and
2663 * take the outer array size into account if it was marked static.
2665 __isl_give pet_expr *PetScan::set_upper_bounds(__isl_take pet_expr *expr,
2666 QualType qt, int pos)
2668 const ArrayType *atype;
2669 pet_expr *size;
2670 bool decayed = false;
2672 if (!expr)
2673 return NULL;
2675 if (pos == 0)
2676 qt = undecay(qt, &decayed);
2678 if (qt->isPointerType()) {
2679 qt = qt->getPointeeType();
2680 return set_upper_bounds(expr, qt, pos + 1);
2682 if (!qt->isArrayType())
2683 return expr;
2685 qt = qt->getCanonicalTypeInternal();
2686 atype = cast<ArrayType>(qt.getTypePtr());
2688 if (decayed && atype->getSizeModifier() != ArrayType::Static) {
2689 qt = atype->getElementType();
2690 return set_upper_bounds(expr, qt, pos + 1);
2693 if (qt->isConstantArrayType()) {
2694 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
2695 size = extract_expr(ca->getSize());
2696 expr = pet_expr_set_arg(expr, pos, size);
2697 } else if (qt->isVariableArrayType()) {
2698 const VariableArrayType *vla = cast<VariableArrayType>(atype);
2699 size = extract_expr(vla->getSizeExpr());
2700 expr = pet_expr_set_arg(expr, pos, size);
2703 qt = atype->getElementType();
2705 return set_upper_bounds(expr, qt, pos + 1);
2708 /* Construct a pet_expr that holds the sizes of the array represented by "id".
2709 * The returned expression is a call expression with as arguments
2710 * the sizes in each dimension. If we are unable to derive the size
2711 * in a given dimension, then the corresponding argument is set to infinity.
2712 * In fact, we initialize all arguments to infinity and then update
2713 * them if we are able to figure out the size.
2715 * The result is stored in the id_size cache so that it can be reused
2716 * if this method is called on the same array identifier later.
2717 * The result is also stored in the type_size cache in case
2718 * it gets called on a different array identifier with the same type.
2720 __isl_give pet_expr *PetScan::get_array_size(__isl_keep isl_id *id)
2722 QualType qt = pet_id_get_array_type(id);
2723 int depth;
2724 pet_expr *expr, *inf;
2725 const Type *type = qt.getTypePtr();
2726 isl_maybe_pet_expr m;
2728 m = isl_id_to_pet_expr_try_get(id_size, id);
2729 if (m.valid < 0 || m.valid)
2730 return m.value;
2731 if (type_size.find(type) != type_size.end())
2732 return pet_expr_copy(type_size[type]);
2734 depth = pet_clang_array_depth(qt);
2735 inf = pet_expr_new_int(isl_val_infty(ctx));
2736 expr = pet_expr_new_call(ctx, "bounds", depth);
2737 for (int i = 0; i < depth; ++i)
2738 expr = pet_expr_set_arg(expr, i, pet_expr_copy(inf));
2739 pet_expr_free(inf);
2741 expr = set_upper_bounds(expr, qt, 0);
2742 type_size[type] = pet_expr_copy(expr);
2743 id_size = isl_id_to_pet_expr_set(id_size, isl_id_copy(id),
2744 pet_expr_copy(expr));
2746 return expr;
2749 /* Set the array size of the array identified by "id" to "size",
2750 * replacing any previously stored value.
2752 void PetScan::set_array_size(__isl_take isl_id *id, __isl_take pet_expr *size)
2754 id_size = isl_id_to_pet_expr_set(id_size, id, size);
2757 /* Does "expr" represent the "integer" infinity?
2759 static int is_infty(__isl_keep pet_expr *expr)
2761 isl_val *v;
2762 int res;
2764 if (pet_expr_get_type(expr) != pet_expr_int)
2765 return 0;
2766 v = pet_expr_int_get_val(expr);
2767 res = isl_val_is_infty(v);
2768 isl_val_free(v);
2770 return res;
2773 /* Figure out the dimensions of an array "array" and
2774 * update "array" accordingly.
2776 * We first construct a pet_expr that holds the sizes of the array
2777 * in each dimension. The resulting expression may containing
2778 * infinity values for dimension where we are unable to derive
2779 * a size expression.
2781 * The arguments of the size expression that have a value different from
2782 * infinity are then converted to an affine expression
2783 * within the context "pc" and incorporated into the size of "array".
2784 * If we are unable to convert a size expression to an affine expression or
2785 * if the size is not a (symbolic) constant,
2786 * then we leave the corresponding size of "array" untouched.
2788 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
2789 __isl_keep pet_context *pc)
2791 int n;
2792 isl_id *id;
2793 pet_expr *expr;
2795 if (!array)
2796 return NULL;
2798 id = isl_set_get_tuple_id(array->extent);
2799 expr = get_array_size(id);
2800 isl_id_free(id);
2802 n = pet_expr_get_n_arg(expr);
2803 for (int i = 0; i < n; ++i) {
2804 pet_expr *arg;
2805 isl_pw_aff *size;
2807 arg = pet_expr_get_arg(expr, i);
2808 if (!is_infty(arg)) {
2809 int dim;
2811 size = pet_expr_extract_affine(arg, pc);
2812 dim = isl_pw_aff_dim(size, isl_dim_in);
2813 if (!size)
2814 array = pet_array_free(array);
2815 else if (isl_pw_aff_involves_nan(size) ||
2816 isl_pw_aff_involves_dims(size, isl_dim_in, 0, dim))
2817 isl_pw_aff_free(size);
2818 else {
2819 size = isl_pw_aff_drop_dims(size,
2820 isl_dim_in, 0, dim);
2821 array = update_size(array, i, size);
2824 pet_expr_free(arg);
2826 pet_expr_free(expr);
2828 return array;
2831 /* Does "decl" have a definition that we can keep track of in a pet_type?
2833 static bool has_printable_definition(RecordDecl *decl)
2835 if (!decl->getDeclName())
2836 return false;
2837 return decl->getLexicalDeclContext() == decl->getDeclContext();
2840 /* Add all TypedefType objects that appear when dereferencing "type"
2841 * to "types".
2843 static void insert_intermediate_typedefs(PetTypes *types, QualType type)
2845 type = pet_clang_base_or_typedef_type(type);
2846 while (isa<TypedefType>(type)) {
2847 const TypedefType *tt;
2849 tt = cast<TypedefType>(type);
2850 types->insert(tt->getDecl());
2851 type = tt->desugar();
2852 type = pet_clang_base_or_typedef_type(type);
2856 /* Construct and return a pet_array corresponding to the variable
2857 * represented by "id".
2858 * In particular, initialize array->extent to
2860 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2862 * and then call set_upper_bounds to set the upper bounds on the indices
2863 * based on the type of the variable. The upper bounds are converted
2864 * to affine expressions within the context "pc".
2866 * If the base type is that of a record with a top-level definition or
2867 * of a typedef and if "types" is not null, then the RecordDecl or
2868 * TypedefType corresponding to the type, as well as any intermediate
2869 * TypedefType, is added to "types".
2871 * If the base type is that of a record with no top-level definition,
2872 * then we replace it by "<subfield>".
2874 * If the variable is a scalar, i.e., a zero-dimensional array,
2875 * then the "const" qualifier, if any, is removed from the base type.
2876 * This makes it easier for users of pet to turn initializations
2877 * into assignments.
2879 struct pet_array *PetScan::extract_array(__isl_keep isl_id *id,
2880 PetTypes *types, __isl_keep pet_context *pc)
2882 struct pet_array *array;
2883 QualType qt = pet_id_get_array_type(id);
2884 int depth = pet_clang_array_depth(qt);
2885 QualType base = pet_clang_base_type(qt);
2886 string name;
2887 isl_space *space;
2889 array = isl_calloc_type(ctx, struct pet_array);
2890 if (!array)
2891 return NULL;
2893 space = isl_space_set_alloc(ctx, 0, depth);
2894 space = isl_space_set_tuple_id(space, isl_dim_set, isl_id_copy(id));
2896 array->extent = isl_set_nat_universe(space);
2898 space = isl_space_params_alloc(ctx, 0);
2899 array->context = isl_set_universe(space);
2901 array = set_upper_bounds(array, pc);
2902 if (!array)
2903 return NULL;
2905 if (depth == 0)
2906 base.removeLocalConst();
2907 name = base.getAsString();
2909 if (types) {
2910 insert_intermediate_typedefs(types, qt);
2911 if (isa<TypedefType>(base)) {
2912 types->insert(cast<TypedefType>(base)->getDecl());
2913 } else if (base->isRecordType()) {
2914 RecordDecl *decl = pet_clang_record_decl(base);
2915 TypedefNameDecl *typedecl;
2916 typedecl = decl->getTypedefNameForAnonDecl();
2917 if (typedecl)
2918 types->insert(typedecl);
2919 else if (has_printable_definition(decl))
2920 types->insert(decl);
2921 else
2922 name = "<subfield>";
2926 array->element_type = strdup(name.c_str());
2927 array->element_is_record = base->isRecordType();
2928 array->element_size = size_in_bytes(ast_context, base);
2930 return array;
2933 /* Construct and return a pet_array corresponding to the variable "decl".
2935 struct pet_array *PetScan::extract_array(ValueDecl *decl,
2936 PetTypes *types, __isl_keep pet_context *pc)
2938 isl_id *id;
2939 pet_array *array;
2941 id = pet_id_from_decl(ctx, decl);
2942 array = extract_array(id, types, pc);
2943 isl_id_free(id);
2945 return array;
2948 /* Construct and return a pet_array corresponding to the sequence
2949 * of declarations represented by "decls".
2950 * The upper bounds of the array are converted to affine expressions
2951 * within the context "pc".
2952 * If the sequence contains a single declaration, then it corresponds
2953 * to a simple array access. Otherwise, it corresponds to a member access,
2954 * with the declaration for the substructure following that of the containing
2955 * structure in the sequence of declarations.
2956 * We start with the outermost substructure and then combine it with
2957 * information from the inner structures.
2959 * Additionally, keep track of all required types in "types".
2961 struct pet_array *PetScan::extract_array(__isl_keep isl_id_list *decls,
2962 PetTypes *types, __isl_keep pet_context *pc)
2964 int i, n;
2965 isl_id *id;
2966 struct pet_array *array;
2968 id = isl_id_list_get_id(decls, 0);
2969 array = extract_array(id, types, pc);
2970 isl_id_free(id);
2972 n = isl_id_list_n_id(decls);
2973 for (i = 1; i < n; ++i) {
2974 struct pet_array *parent;
2975 const char *base_name, *field_name;
2976 char *product_name;
2978 parent = array;
2979 id = isl_id_list_get_id(decls, i);
2980 array = extract_array(id, types, pc);
2981 isl_id_free(id);
2982 if (!array)
2983 return pet_array_free(parent);
2985 base_name = isl_set_get_tuple_name(parent->extent);
2986 field_name = isl_set_get_tuple_name(array->extent);
2987 product_name = pet_array_member_access_name(ctx,
2988 base_name, field_name);
2990 array->extent = isl_set_product(isl_set_copy(parent->extent),
2991 array->extent);
2992 if (product_name)
2993 array->extent = isl_set_set_tuple_name(array->extent,
2994 product_name);
2995 array->context = isl_set_intersect(array->context,
2996 isl_set_copy(parent->context));
2998 pet_array_free(parent);
2999 free(product_name);
3001 if (!array->extent || !array->context || !product_name)
3002 return pet_array_free(array);
3005 return array;
3008 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
3009 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
3010 std::set<TypeDecl *> &types_done);
3011 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
3012 TypedefNameDecl *decl, Preprocessor &PP, PetTypes &types,
3013 std::set<TypeDecl *> &types_done);
3015 /* For each of the fields of "decl" that is itself a record type
3016 * or a typedef, or an array of such type, add a corresponding pet_type
3017 * to "scop".
3019 static struct pet_scop *add_field_types(isl_ctx *ctx, struct pet_scop *scop,
3020 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
3021 std::set<TypeDecl *> &types_done)
3023 RecordDecl::field_iterator it;
3025 for (it = decl->field_begin(); it != decl->field_end(); ++it) {
3026 QualType type = it->getType();
3028 type = pet_clang_base_or_typedef_type(type);
3029 if (isa<TypedefType>(type)) {
3030 TypedefNameDecl *typedefdecl;
3032 typedefdecl = cast<TypedefType>(type)->getDecl();
3033 scop = add_type(ctx, scop, typedefdecl,
3034 PP, types, types_done);
3035 } else if (type->isRecordType()) {
3036 RecordDecl *record;
3038 record = pet_clang_record_decl(type);
3039 scop = add_type(ctx, scop, record,
3040 PP, types, types_done);
3044 return scop;
3047 /* Add a pet_type corresponding to "decl" to "scop", provided
3048 * it is a member of types.records and it has not been added before
3049 * (i.e., it is not a member of "types_done").
3051 * Since we want the user to be able to print the types
3052 * in the order in which they appear in the scop, we need to
3053 * make sure that types of fields in a structure appear before
3054 * that structure. We therefore call ourselves recursively
3055 * through add_field_types on the types of all record subfields.
3057 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
3058 RecordDecl *decl, Preprocessor &PP, PetTypes &types,
3059 std::set<TypeDecl *> &types_done)
3061 string s;
3062 llvm::raw_string_ostream S(s);
3064 if (types.records.find(decl) == types.records.end())
3065 return scop;
3066 if (types_done.find(decl) != types_done.end())
3067 return scop;
3069 add_field_types(ctx, scop, decl, PP, types, types_done);
3071 if (strlen(decl->getName().str().c_str()) == 0)
3072 return scop;
3074 decl->print(S, PrintingPolicy(PP.getLangOpts()));
3075 S.str();
3077 scop->types[scop->n_type] = pet_type_alloc(ctx,
3078 decl->getName().str().c_str(), s.c_str());
3079 if (!scop->types[scop->n_type])
3080 return pet_scop_free(scop);
3082 types_done.insert(decl);
3084 scop->n_type++;
3086 return scop;
3089 /* Add a pet_type corresponding to "decl" to "scop", provided
3090 * it is a member of types.typedefs and it has not been added before
3091 * (i.e., it is not a member of "types_done").
3093 * If the underlying type is a structure, then we print the typedef
3094 * ourselves since clang does not print the definition of the structure
3095 * in the typedef. We also make sure in this case that the types of
3096 * the fields in the structure are added first.
3097 * Since the definition of the structure also gets printed this way,
3098 * add it to types_done such that it will not be printed again,
3099 * not even without the typedef.
3101 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
3102 TypedefNameDecl *decl, Preprocessor &PP, PetTypes &types,
3103 std::set<TypeDecl *> &types_done)
3105 string s;
3106 llvm::raw_string_ostream S(s);
3107 QualType qt = decl->getUnderlyingType();
3109 if (types.typedefs.find(decl) == types.typedefs.end())
3110 return scop;
3111 if (types_done.find(decl) != types_done.end())
3112 return scop;
3114 if (qt->isRecordType()) {
3115 RecordDecl *rec = pet_clang_record_decl(qt);
3117 add_field_types(ctx, scop, rec, PP, types, types_done);
3118 S << "typedef ";
3119 rec->print(S, PrintingPolicy(PP.getLangOpts()));
3120 S << " ";
3121 S << decl->getName();
3122 types_done.insert(rec);
3123 } else {
3124 decl->print(S, PrintingPolicy(PP.getLangOpts()));
3126 S.str();
3128 scop->types[scop->n_type] = pet_type_alloc(ctx,
3129 decl->getName().str().c_str(), s.c_str());
3130 if (!scop->types[scop->n_type])
3131 return pet_scop_free(scop);
3133 types_done.insert(decl);
3135 scop->n_type++;
3137 return scop;
3140 /* Construct a list of pet_arrays, one for each array (or scalar)
3141 * accessed inside "scop", add this list to "scop" and return the result.
3142 * The upper bounds of the arrays are converted to affine expressions
3143 * within the context "pc".
3145 * The context of "scop" is updated with the intersection of
3146 * the contexts of all arrays, i.e., constraints on the parameters
3147 * that ensure that the arrays have a valid (non-negative) size.
3149 * If any of the extracted arrays refers to a member access or
3150 * has a typedef'd type as base type,
3151 * then also add the required types to "scop".
3152 * The typedef types are printed first because their definitions
3153 * may include the definition of a struct and these struct definitions
3154 * should not be printed separately. While the typedef definition
3155 * is being printed, the struct is marked as having been printed as well,
3156 * such that the later printing of the struct by itself can be prevented.
3158 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop,
3159 __isl_keep pet_context *pc)
3161 int i, n;
3162 array_desc_set arrays;
3163 array_desc_set::iterator it;
3164 PetTypes types;
3165 std::set<TypeDecl *> types_done;
3166 std::set<clang::RecordDecl *, less_name>::iterator records_it;
3167 std::set<clang::TypedefNameDecl *, less_name>::iterator typedefs_it;
3168 int n_array;
3169 struct pet_array **scop_arrays;
3171 if (!scop)
3172 return NULL;
3174 pet_scop_collect_arrays(scop, arrays);
3175 if (arrays.size() == 0)
3176 return scop;
3178 n_array = scop->n_array;
3180 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
3181 n_array + arrays.size());
3182 if (!scop_arrays)
3183 goto error;
3184 scop->arrays = scop_arrays;
3186 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
3187 struct pet_array *array;
3188 array = extract_array(*it, &types, pc);
3189 scop->arrays[n_array + i] = array;
3190 if (!scop->arrays[n_array + i])
3191 goto error;
3192 scop->n_array++;
3193 scop->context = isl_set_intersect(scop->context,
3194 isl_set_copy(array->context));
3195 if (!scop->context)
3196 goto error;
3199 n = types.records.size() + types.typedefs.size();
3200 if (n == 0)
3201 return scop;
3203 scop->types = isl_alloc_array(ctx, struct pet_type *, n);
3204 if (!scop->types)
3205 goto error;
3207 for (typedefs_it = types.typedefs.begin();
3208 typedefs_it != types.typedefs.end(); ++typedefs_it)
3209 scop = add_type(ctx, scop, *typedefs_it, PP, types, types_done);
3211 for (records_it = types.records.begin();
3212 records_it != types.records.end(); ++records_it)
3213 scop = add_type(ctx, scop, *records_it, PP, types, types_done);
3215 return scop;
3216 error:
3217 pet_scop_free(scop);
3218 return NULL;
3221 /* Bound all parameters in scop->context to the possible values
3222 * of the corresponding C variable.
3224 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
3226 int n;
3228 if (!scop)
3229 return NULL;
3231 n = isl_set_dim(scop->context, isl_dim_param);
3232 for (int i = 0; i < n; ++i) {
3233 isl_id *id;
3234 ValueDecl *decl;
3236 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
3237 if (pet_nested_in_id(id)) {
3238 isl_id_free(id);
3239 isl_die(isl_set_get_ctx(scop->context),
3240 isl_error_internal,
3241 "unresolved nested parameter", goto error);
3243 decl = pet_id_get_decl(id);
3244 isl_id_free(id);
3246 scop->context = set_parameter_bounds(scop->context, i, decl);
3248 if (!scop->context)
3249 goto error;
3252 return scop;
3253 error:
3254 pet_scop_free(scop);
3255 return NULL;
3258 /* Construct a pet_scop from the given function.
3260 * If the scop was delimited by scop and endscop pragmas, then we override
3261 * the file offsets by those derived from the pragmas.
3263 struct pet_scop *PetScan::scan(FunctionDecl *fd)
3265 pet_scop *scop;
3266 Stmt *stmt;
3268 stmt = fd->getBody();
3270 if (options->autodetect) {
3271 set_current_stmt(stmt);
3272 scop = extract_scop(extract(stmt, true));
3273 } else {
3274 current_line = loc.start_line;
3275 scop = scan(stmt);
3276 scop = pet_scop_update_start_end(scop, loc.start, loc.end);
3278 scop = add_parameter_bounds(scop);
3279 scop = pet_scop_gist(scop, value_bounds);
3281 return scop;
3284 /* Update this->last_line and this->current_line based on the fact
3285 * that we are about to consider "stmt".
3287 void PetScan::set_current_stmt(Stmt *stmt)
3289 SourceLocation loc = stmt->getLocStart();
3290 SourceManager &SM = PP.getSourceManager();
3292 last_line = current_line;
3293 current_line = SM.getExpansionLineNumber(loc);
3296 /* Is the current statement marked by an independent pragma?
3297 * That is, is there an independent pragma on a line between
3298 * the line of the current statement and the line of the previous statement.
3299 * The search is not implemented very efficiently. We currently
3300 * assume that there are only a few independent pragmas, if any.
3302 bool PetScan::is_current_stmt_marked_independent()
3304 for (unsigned i = 0; i < independent.size(); ++i) {
3305 unsigned line = independent[i].line;
3307 if (last_line < line && line < current_line)
3308 return true;
3311 return false;