2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2013 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
36 #include <isl/constraint.h>
37 #include <isl/union_set.h>
42 #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array))
44 static char *type_str
[] = {
45 [pet_expr_access
] = "access",
46 [pet_expr_call
] = "call",
47 [pet_expr_cast
] = "cast",
48 [pet_expr_double
] = "double",
49 [pet_expr_unary
] = "unary",
50 [pet_expr_binary
] = "binary",
51 [pet_expr_ternary
] = "ternary"
54 static char *op_str
[] = {
55 [pet_op_add_assign
] = "+=",
56 [pet_op_sub_assign
] = "-=",
57 [pet_op_mul_assign
] = "*=",
58 [pet_op_div_assign
] = "/=",
59 [pet_op_assign
] = "=",
70 [pet_op_post_inc
] = "++",
71 [pet_op_post_dec
] = "--",
72 [pet_op_pre_inc
] = "++",
73 [pet_op_pre_dec
] = "--",
74 [pet_op_address_of
] = "&",
75 [pet_op_kill
] = "kill"
78 /* pet_scop with extra information that is used during parsing and printing.
80 * In particular, we keep track of conditions under which we want
81 * to skip the rest of the current loop iteration (skip[pet_skip_now])
82 * and of conditions under which we want to skip subsequent
83 * loop iterations (skip[pet_skip_later]).
85 * The conditions are represented as index expressions defined
86 * over a zero-dimensiona domain. The index expression is either
87 * a boolean affine expression or an access to a variable, which
88 * is assumed to attain values zero and one. The condition holds
89 * if the variable has value one or if the affine expression
90 * has value one (typically for only part of the parameter space).
92 * A missing condition (skip[type] == NULL) means that we don't want
95 * Additionally, we keep track of the original input file
96 * inside pet_transform_C_source.
101 isl_multi_pw_aff
*skip
[2];
105 const char *pet_op_str(enum pet_op_type op
)
110 int pet_op_is_inc_dec(enum pet_op_type op
)
112 return op
== pet_op_post_inc
|| op
== pet_op_post_dec
||
113 op
== pet_op_pre_inc
|| op
== pet_op_pre_dec
;
116 const char *pet_type_str(enum pet_expr_type type
)
118 return type_str
[type
];
121 enum pet_op_type
pet_str_op(const char *str
)
125 for (i
= 0; i
< ARRAY_SIZE(op_str
); ++i
)
126 if (!strcmp(op_str
[i
], str
))
132 enum pet_expr_type
pet_str_type(const char *str
)
136 for (i
= 0; i
< ARRAY_SIZE(type_str
); ++i
)
137 if (!strcmp(type_str
[i
], str
))
143 /* Construct an access pet_expr from an access relation and an index expression.
144 * By default, it is considered to be a read access.
146 struct pet_expr
*pet_expr_from_access_and_index( __isl_take isl_map
*access
,
147 __isl_take isl_multi_pw_aff
*index
)
149 isl_ctx
*ctx
= isl_map_get_ctx(access
);
150 struct pet_expr
*expr
;
152 if (!index
|| !access
)
154 expr
= isl_calloc_type(ctx
, struct pet_expr
);
158 expr
->type
= pet_expr_access
;
159 expr
->acc
.access
= access
;
160 expr
->acc
.index
= index
;
166 isl_map_free(access
);
167 isl_multi_pw_aff_free(index
);
171 /* Construct an access pet_expr from an index expression.
172 * By default, the access is considered to be a read access.
174 struct pet_expr
*pet_expr_from_index(__isl_take isl_multi_pw_aff
*index
)
178 access
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index
));
179 return pet_expr_from_access_and_index(access
, index
);
182 /* Extend the range of "access" with "n" dimensions, retaining
183 * the tuple identifier on this range.
185 static __isl_give isl_map
*extend_range(__isl_take isl_map
*access
, int n
)
189 id
= isl_map_get_tuple_id(access
, isl_dim_out
);
190 access
= isl_map_add_dims(access
, isl_dim_out
, n
);
191 access
= isl_map_set_tuple_id(access
, isl_dim_out
, id
);
196 /* Construct an access pet_expr from an index expression and
197 * the depth of the accessed array.
198 * By default, the access is considered to be a read access.
200 * If the number of indices is smaller than the depth of the array,
201 * then we assume that all elements of the remaining dimensions
204 struct pet_expr
*pet_expr_from_index_and_depth(
205 __isl_take isl_multi_pw_aff
*index
, int depth
)
210 access
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index
));
213 dim
= isl_map_dim(access
, isl_dim_out
);
215 isl_die(isl_map_get_ctx(access
), isl_error_internal
,
216 "number of indices greater than depth",
217 access
= isl_map_free(access
));
219 return pet_expr_from_access_and_index(access
, index
);
221 access
= extend_range(access
, depth
- dim
);
223 return pet_expr_from_access_and_index(access
, index
);
225 isl_multi_pw_aff_free(index
);
229 /* Construct a pet_expr that kills the elements specified by
230 * the index expression "index" and the access relation "access".
232 struct pet_expr
*pet_expr_kill_from_access_and_index(__isl_take isl_map
*access
,
233 __isl_take isl_multi_pw_aff
*index
)
236 struct pet_expr
*expr
;
238 if (!access
|| !index
)
241 ctx
= isl_multi_pw_aff_get_ctx(index
);
242 expr
= pet_expr_from_access_and_index(access
, index
);
246 return pet_expr_new_unary(ctx
, pet_op_kill
, expr
);
248 isl_map_free(access
);
249 isl_multi_pw_aff_free(index
);
253 /* Construct a unary pet_expr that performs "op" on "arg".
255 struct pet_expr
*pet_expr_new_unary(isl_ctx
*ctx
, enum pet_op_type op
,
256 struct pet_expr
*arg
)
258 struct pet_expr
*expr
;
262 expr
= isl_alloc_type(ctx
, struct pet_expr
);
266 expr
->type
= pet_expr_unary
;
269 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, 1);
272 expr
->args
[pet_un_arg
] = arg
;
280 /* Construct a binary pet_expr that performs "op" on "lhs" and "rhs".
282 struct pet_expr
*pet_expr_new_binary(isl_ctx
*ctx
, enum pet_op_type op
,
283 struct pet_expr
*lhs
, struct pet_expr
*rhs
)
285 struct pet_expr
*expr
;
289 expr
= isl_alloc_type(ctx
, struct pet_expr
);
293 expr
->type
= pet_expr_binary
;
296 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, 2);
299 expr
->args
[pet_bin_lhs
] = lhs
;
300 expr
->args
[pet_bin_rhs
] = rhs
;
309 /* Construct a ternary pet_expr that performs "cond" ? "lhs" : "rhs".
311 struct pet_expr
*pet_expr_new_ternary(isl_ctx
*ctx
, struct pet_expr
*cond
,
312 struct pet_expr
*lhs
, struct pet_expr
*rhs
)
314 struct pet_expr
*expr
;
316 if (!cond
|| !lhs
|| !rhs
)
318 expr
= isl_alloc_type(ctx
, struct pet_expr
);
322 expr
->type
= pet_expr_ternary
;
324 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, 3);
327 expr
->args
[pet_ter_cond
] = cond
;
328 expr
->args
[pet_ter_true
] = lhs
;
329 expr
->args
[pet_ter_false
] = rhs
;
339 /* Construct a call pet_expr that calls function "name" with "n_arg"
340 * arguments. The caller is responsible for filling in the arguments.
342 struct pet_expr
*pet_expr_new_call(isl_ctx
*ctx
, const char *name
,
345 struct pet_expr
*expr
;
347 expr
= isl_alloc_type(ctx
, struct pet_expr
);
351 expr
->type
= pet_expr_call
;
353 expr
->name
= strdup(name
);
354 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, n_arg
);
355 if (!expr
->name
|| !expr
->args
)
356 return pet_expr_free(expr
);
361 /* Construct a pet_expr that represents the cast of "arg" to "type_name".
363 struct pet_expr
*pet_expr_new_cast(isl_ctx
*ctx
, const char *type_name
,
364 struct pet_expr
*arg
)
366 struct pet_expr
*expr
;
371 expr
= isl_alloc_type(ctx
, struct pet_expr
);
375 expr
->type
= pet_expr_cast
;
377 expr
->type_name
= strdup(type_name
);
378 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, 1);
379 if (!expr
->type_name
|| !expr
->args
)
391 /* Construct a pet_expr that represents the double "d".
393 struct pet_expr
*pet_expr_new_double(isl_ctx
*ctx
, double val
, const char *s
)
395 struct pet_expr
*expr
;
397 expr
= isl_calloc_type(ctx
, struct pet_expr
);
401 expr
->type
= pet_expr_double
;
403 expr
->d
.s
= strdup(s
);
405 return pet_expr_free(expr
);
410 struct pet_expr
*pet_expr_free(struct pet_expr
*expr
)
417 for (i
= 0; i
< expr
->n_arg
; ++i
)
418 pet_expr_free(expr
->args
[i
]);
421 switch (expr
->type
) {
422 case pet_expr_access
:
423 isl_id_free(expr
->acc
.ref_id
);
424 isl_map_free(expr
->acc
.access
);
425 isl_multi_pw_aff_free(expr
->acc
.index
);
431 free(expr
->type_name
);
433 case pet_expr_double
:
437 case pet_expr_binary
:
438 case pet_expr_ternary
:
446 static void expr_dump(struct pet_expr
*expr
, int indent
)
453 fprintf(stderr
, "%*s", indent
, "");
455 switch (expr
->type
) {
456 case pet_expr_double
:
457 fprintf(stderr
, "%s\n", expr
->d
.s
);
459 case pet_expr_access
:
460 isl_id_dump(expr
->acc
.ref_id
);
461 fprintf(stderr
, "%*s", indent
, "");
462 isl_map_dump(expr
->acc
.access
);
463 fprintf(stderr
, "%*s", indent
, "");
464 isl_multi_pw_aff_dump(expr
->acc
.index
);
465 fprintf(stderr
, "%*sread: %d\n", indent
+ 2,
467 fprintf(stderr
, "%*swrite: %d\n", indent
+ 2,
468 "", expr
->acc
.write
);
469 for (i
= 0; i
< expr
->n_arg
; ++i
)
470 expr_dump(expr
->args
[i
], indent
+ 2);
473 fprintf(stderr
, "%s\n", op_str
[expr
->op
]);
474 expr_dump(expr
->args
[pet_un_arg
], indent
+ 2);
476 case pet_expr_binary
:
477 fprintf(stderr
, "%s\n", op_str
[expr
->op
]);
478 expr_dump(expr
->args
[pet_bin_lhs
], indent
+ 2);
479 expr_dump(expr
->args
[pet_bin_rhs
], indent
+ 2);
481 case pet_expr_ternary
:
482 fprintf(stderr
, "?:\n");
483 expr_dump(expr
->args
[pet_ter_cond
], indent
+ 2);
484 expr_dump(expr
->args
[pet_ter_true
], indent
+ 2);
485 expr_dump(expr
->args
[pet_ter_false
], indent
+ 2);
488 fprintf(stderr
, "%s/%d\n", expr
->name
, expr
->n_arg
);
489 for (i
= 0; i
< expr
->n_arg
; ++i
)
490 expr_dump(expr
->args
[i
], indent
+ 2);
493 fprintf(stderr
, "(%s)\n", expr
->type_name
);
494 for (i
= 0; i
< expr
->n_arg
; ++i
)
495 expr_dump(expr
->args
[i
], indent
+ 2);
500 void pet_expr_dump(struct pet_expr
*expr
)
505 /* Does "expr" represent an access to an unnamed space, i.e.,
506 * does it represent an affine expression?
508 int pet_expr_is_affine(struct pet_expr
*expr
)
514 if (expr
->type
!= pet_expr_access
)
517 has_id
= isl_map_has_tuple_id(expr
->acc
.access
, isl_dim_out
);
524 /* Return the identifier of the array accessed by "expr".
526 __isl_give isl_id
*pet_expr_access_get_id(struct pet_expr
*expr
)
530 if (expr
->type
!= pet_expr_access
)
532 return isl_map_get_tuple_id(expr
->acc
.access
, isl_dim_out
);
535 /* Align the parameters of expr->acc.index and expr->acc.access.
537 struct pet_expr
*pet_expr_access_align_params(struct pet_expr
*expr
)
541 if (expr
->type
!= pet_expr_access
)
542 return pet_expr_free(expr
);
544 expr
->acc
.access
= isl_map_align_params(expr
->acc
.access
,
545 isl_multi_pw_aff_get_space(expr
->acc
.index
));
546 expr
->acc
.index
= isl_multi_pw_aff_align_params(expr
->acc
.index
,
547 isl_map_get_space(expr
->acc
.access
));
548 if (!expr
->acc
.access
|| !expr
->acc
.index
)
549 return pet_expr_free(expr
);
554 /* Does "expr" represent an access to a scalar, i.e., zero-dimensional array?
556 int pet_expr_is_scalar_access(struct pet_expr
*expr
)
560 if (expr
->type
!= pet_expr_access
)
563 return isl_map_dim(expr
->acc
.access
, isl_dim_out
) == 0;
566 /* Return 1 if the two pet_exprs are equivalent.
568 int pet_expr_is_equal(struct pet_expr
*expr1
, struct pet_expr
*expr2
)
572 if (!expr1
|| !expr2
)
575 if (expr1
->type
!= expr2
->type
)
577 if (expr1
->n_arg
!= expr2
->n_arg
)
579 for (i
= 0; i
< expr1
->n_arg
; ++i
)
580 if (!pet_expr_is_equal(expr1
->args
[i
], expr2
->args
[i
]))
582 switch (expr1
->type
) {
583 case pet_expr_double
:
584 if (strcmp(expr1
->d
.s
, expr2
->d
.s
))
586 if (expr1
->d
.val
!= expr2
->d
.val
)
589 case pet_expr_access
:
590 if (expr1
->acc
.read
!= expr2
->acc
.read
)
592 if (expr1
->acc
.write
!= expr2
->acc
.write
)
594 if (expr1
->acc
.ref_id
!= expr2
->acc
.ref_id
)
596 if (!expr1
->acc
.access
|| !expr2
->acc
.access
)
598 if (!isl_map_is_equal(expr1
->acc
.access
, expr2
->acc
.access
))
600 if (!expr1
->acc
.index
|| !expr2
->acc
.index
)
602 if (!isl_multi_pw_aff_plain_is_equal(expr1
->acc
.index
,
607 case pet_expr_binary
:
608 case pet_expr_ternary
:
609 if (expr1
->op
!= expr2
->op
)
613 if (strcmp(expr1
->name
, expr2
->name
))
617 if (strcmp(expr1
->type_name
, expr2
->type_name
))
625 /* Add extra conditions on the parameters to all access relations in "expr".
627 * The conditions are not added to the index expression. Instead, they
628 * are used to try and simplifty the index expression.
630 struct pet_expr
*pet_expr_restrict(struct pet_expr
*expr
,
631 __isl_take isl_set
*cond
)
638 for (i
= 0; i
< expr
->n_arg
; ++i
) {
639 expr
->args
[i
] = pet_expr_restrict(expr
->args
[i
],
645 if (expr
->type
== pet_expr_access
) {
646 expr
->acc
.access
= isl_map_intersect_params(expr
->acc
.access
,
648 expr
->acc
.index
= isl_multi_pw_aff_gist_params(
649 expr
->acc
.index
, isl_set_copy(cond
));
650 if (!expr
->acc
.access
|| !expr
->acc
.index
)
658 return pet_expr_free(expr
);
661 /* Tag the access relation "access" with "id".
662 * That is, insert the id as the range of a wrapped relation
663 * in the domain of "access".
665 * If "access" is of the form
669 * then the result is of the form
671 * [D[i] -> id[]] -> A[a]
673 static __isl_give isl_map
*tag_access(__isl_take isl_map
*access
,
674 __isl_take isl_id
*id
)
679 space
= isl_space_range(isl_map_get_space(access
));
680 space
= isl_space_from_range(space
);
681 space
= isl_space_set_tuple_id(space
, isl_dim_in
, id
);
682 add_tag
= isl_map_universe(space
);
683 access
= isl_map_domain_product(access
, add_tag
);
688 /* Modify all expressions of type pet_expr_access in "expr"
689 * by calling "fn" on them.
691 struct pet_expr
*pet_expr_map_access(struct pet_expr
*expr
,
692 struct pet_expr
*(*fn
)(struct pet_expr
*expr
, void *user
),
700 for (i
= 0; i
< expr
->n_arg
; ++i
) {
701 expr
->args
[i
] = pet_expr_map_access(expr
->args
[i
], fn
, user
);
703 return pet_expr_free(expr
);
706 if (expr
->type
== pet_expr_access
)
707 expr
= fn(expr
, user
);
712 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_access.
714 * Return -1 on error (where fn return a negative value is treated as an error).
715 * Otherwise return 0.
717 int pet_expr_foreach_access_expr(struct pet_expr
*expr
,
718 int (*fn
)(struct pet_expr
*expr
, void *user
), void *user
)
725 for (i
= 0; i
< expr
->n_arg
; ++i
)
726 if (pet_expr_foreach_access_expr(expr
->args
[i
], fn
, user
) < 0)
729 if (expr
->type
== pet_expr_access
)
730 return fn(expr
, user
);
735 /* Modify the access relation and index expression
736 * of the given access expression
737 * based on the given iteration space transformation.
738 * In particular, precompose the access relation and index expression
739 * with the update function.
741 * If the access has any arguments then the domain of the access relation
742 * is a wrapped mapping from the iteration space to the space of
743 * argument values. We only need to change the domain of this wrapped
744 * mapping, so we extend the input transformation with an identity mapping
745 * on the space of argument values.
747 static struct pet_expr
*update_domain(struct pet_expr
*expr
, void *user
)
749 isl_multi_pw_aff
*update
= user
;
752 update
= isl_multi_pw_aff_copy(update
);
754 space
= isl_map_get_space(expr
->acc
.access
);
755 space
= isl_space_domain(space
);
756 if (!isl_space_is_wrapping(space
))
757 isl_space_free(space
);
759 isl_multi_pw_aff
*id
;
760 space
= isl_space_unwrap(space
);
761 space
= isl_space_range(space
);
762 space
= isl_space_map_from_set(space
);
763 id
= isl_multi_pw_aff_identity(space
);
764 update
= isl_multi_pw_aff_product(update
, id
);
767 expr
->acc
.access
= isl_map_preimage_domain_multi_pw_aff(
769 isl_multi_pw_aff_copy(update
));
770 expr
->acc
.index
= isl_multi_pw_aff_pullback_multi_pw_aff(
771 expr
->acc
.index
, update
);
772 if (!expr
->acc
.access
|| !expr
->acc
.index
)
773 return pet_expr_free(expr
);
778 /* Modify all access relations in "expr" by precomposing them with
779 * the given iteration space transformation.
781 static struct pet_expr
*expr_update_domain(struct pet_expr
*expr
,
782 __isl_take isl_multi_pw_aff
*update
)
784 expr
= pet_expr_map_access(expr
, &update_domain
, update
);
785 isl_multi_pw_aff_free(update
);
789 /* Construct a pet_stmt with given line number and statement
790 * number from a pet_expr.
791 * The initial iteration domain is the zero-dimensional universe.
792 * The name of the domain is given by "label" if it is non-NULL.
793 * Otherwise, the name is constructed as S_<id>.
794 * The domains of all access relations are modified to refer
795 * to the statement iteration domain.
797 struct pet_stmt
*pet_stmt_from_pet_expr(isl_ctx
*ctx
, int line
,
798 __isl_take isl_id
*label
, int id
, struct pet_expr
*expr
)
800 struct pet_stmt
*stmt
;
804 isl_multi_pw_aff
*add_name
;
810 stmt
= isl_calloc_type(ctx
, struct pet_stmt
);
814 dim
= isl_space_set_alloc(ctx
, 0, 0);
816 dim
= isl_space_set_tuple_id(dim
, isl_dim_set
, label
);
818 snprintf(name
, sizeof(name
), "S_%d", id
);
819 dim
= isl_space_set_tuple_name(dim
, isl_dim_set
, name
);
821 dom
= isl_set_universe(isl_space_copy(dim
));
822 sched
= isl_map_from_domain(isl_set_copy(dom
));
824 dim
= isl_space_from_domain(dim
);
825 add_name
= isl_multi_pw_aff_zero(dim
);
826 expr
= expr_update_domain(expr
, add_name
);
830 stmt
->schedule
= sched
;
833 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
834 return pet_stmt_free(stmt
);
843 void *pet_stmt_free(struct pet_stmt
*stmt
)
850 isl_set_free(stmt
->domain
);
851 isl_map_free(stmt
->schedule
);
852 pet_expr_free(stmt
->body
);
854 for (i
= 0; i
< stmt
->n_arg
; ++i
)
855 pet_expr_free(stmt
->args
[i
]);
862 static void stmt_dump(struct pet_stmt
*stmt
, int indent
)
869 fprintf(stderr
, "%*s%d\n", indent
, "", stmt
->line
);
870 fprintf(stderr
, "%*s", indent
, "");
871 isl_set_dump(stmt
->domain
);
872 fprintf(stderr
, "%*s", indent
, "");
873 isl_map_dump(stmt
->schedule
);
874 expr_dump(stmt
->body
, indent
);
875 for (i
= 0; i
< stmt
->n_arg
; ++i
)
876 expr_dump(stmt
->args
[i
], indent
+ 2);
879 void pet_stmt_dump(struct pet_stmt
*stmt
)
884 /* Allocate a new pet_type with the given "name" and "definition".
886 struct pet_type
*pet_type_alloc(isl_ctx
*ctx
, const char *name
,
887 const char *definition
)
889 struct pet_type
*type
;
891 type
= isl_alloc_type(ctx
, struct pet_type
);
895 type
->name
= strdup(name
);
896 type
->definition
= strdup(definition
);
898 if (!type
->name
|| !type
->definition
)
899 return pet_type_free(type
);
904 /* Free "type" and return NULL.
906 struct pet_type
*pet_type_free(struct pet_type
*type
)
912 free(type
->definition
);
918 struct pet_array
*pet_array_free(struct pet_array
*array
)
923 isl_set_free(array
->context
);
924 isl_set_free(array
->extent
);
925 isl_set_free(array
->value_bounds
);
926 free(array
->element_type
);
932 void pet_array_dump(struct pet_array
*array
)
937 isl_set_dump(array
->context
);
938 isl_set_dump(array
->extent
);
939 isl_set_dump(array
->value_bounds
);
940 fprintf(stderr
, "%s %s\n", array
->element_type
,
941 array
->live_out
? "live-out" : "");
944 /* Alloc a pet_scop structure, with extra room for information that
945 * is only used during parsing.
947 struct pet_scop
*pet_scop_alloc(isl_ctx
*ctx
)
949 return &isl_calloc_type(ctx
, struct pet_scop_ext
)->scop
;
952 /* Construct a pet_scop with room for n statements.
954 static struct pet_scop
*scop_alloc(isl_ctx
*ctx
, int n
)
957 struct pet_scop
*scop
;
959 scop
= pet_scop_alloc(ctx
);
963 space
= isl_space_params_alloc(ctx
, 0);
964 scop
->context
= isl_set_universe(isl_space_copy(space
));
965 scop
->context_value
= isl_set_universe(space
);
966 scop
->stmts
= isl_calloc_array(ctx
, struct pet_stmt
*, n
);
967 if (!scop
->context
|| !scop
->stmts
)
968 return pet_scop_free(scop
);
975 struct pet_scop
*pet_scop_empty(isl_ctx
*ctx
)
977 return scop_alloc(ctx
, 0);
980 /* Update "context" with respect to the valid parameter values for "access".
982 static __isl_give isl_set
*access_extract_context(__isl_keep isl_map
*access
,
983 __isl_take isl_set
*context
)
985 context
= isl_set_intersect(context
,
986 isl_map_params(isl_map_copy(access
)));
990 /* Update "context" with respect to the valid parameter values for "expr".
992 * If "expr" represents a ternary operator, then a parameter value
993 * needs to be valid for the condition and for at least one of the
994 * remaining two arguments.
995 * If the condition is an affine expression, then we can be a bit more specific.
996 * The parameter then has to be valid for the second argument for
997 * non-zero accesses and valid for the third argument for zero accesses.
999 static __isl_give isl_set
*expr_extract_context(struct pet_expr
*expr
,
1000 __isl_take isl_set
*context
)
1004 if (expr
->type
== pet_expr_ternary
) {
1006 isl_set
*context1
, *context2
;
1008 is_aff
= pet_expr_is_affine(expr
->args
[0]);
1012 context
= expr_extract_context(expr
->args
[0], context
);
1013 context1
= expr_extract_context(expr
->args
[1],
1014 isl_set_copy(context
));
1015 context2
= expr_extract_context(expr
->args
[2], context
);
1021 access
= isl_map_copy(expr
->args
[0]->acc
.access
);
1022 access
= isl_map_fix_si(access
, isl_dim_out
, 0, 0);
1023 zero_set
= isl_map_params(access
);
1024 context1
= isl_set_subtract(context1
,
1025 isl_set_copy(zero_set
));
1026 context2
= isl_set_intersect(context2
, zero_set
);
1029 context
= isl_set_union(context1
, context2
);
1030 context
= isl_set_coalesce(context
);
1035 for (i
= 0; i
< expr
->n_arg
; ++i
)
1036 context
= expr_extract_context(expr
->args
[i
], context
);
1038 if (expr
->type
== pet_expr_access
)
1039 context
= access_extract_context(expr
->acc
.access
, context
);
1043 isl_set_free(context
);
1047 /* Update "context" with respect to the valid parameter values for "stmt".
1049 static __isl_give isl_set
*stmt_extract_context(struct pet_stmt
*stmt
,
1050 __isl_take isl_set
*context
)
1054 for (i
= 0; i
< stmt
->n_arg
; ++i
)
1055 context
= expr_extract_context(stmt
->args
[i
], context
);
1057 context
= expr_extract_context(stmt
->body
, context
);
1062 /* Construct a pet_scop that contains the given pet_stmt.
1064 struct pet_scop
*pet_scop_from_pet_stmt(isl_ctx
*ctx
, struct pet_stmt
*stmt
)
1066 struct pet_scop
*scop
;
1071 scop
= scop_alloc(ctx
, 1);
1075 scop
->context
= stmt_extract_context(stmt
, scop
->context
);
1079 scop
->stmts
[0] = stmt
;
1083 pet_stmt_free(stmt
);
1084 pet_scop_free(scop
);
1088 /* Does "mpa" represent an access to an element of an unnamed space, i.e.,
1089 * does it represent an affine expression?
1091 static int multi_pw_aff_is_affine(__isl_keep isl_multi_pw_aff
*mpa
)
1095 has_id
= isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
);
1102 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
1104 static __isl_give isl_pw_aff
*indicator_function(__isl_take isl_set
*set
,
1105 __isl_take isl_set
*dom
)
1108 pa
= isl_set_indicator_function(set
);
1109 pa
= isl_pw_aff_intersect_domain(pa
, dom
);
1113 /* Return "lhs || rhs", defined on the shared definition domain.
1115 static __isl_give isl_pw_aff
*pw_aff_or(__isl_take isl_pw_aff
*lhs
,
1116 __isl_take isl_pw_aff
*rhs
)
1121 dom
= isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs
)),
1122 isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
1123 cond
= isl_set_union(isl_pw_aff_non_zero_set(lhs
),
1124 isl_pw_aff_non_zero_set(rhs
));
1125 cond
= isl_set_coalesce(cond
);
1126 return indicator_function(cond
, dom
);
1129 /* Combine ext1->skip[type] and ext2->skip[type] into ext->skip[type].
1130 * ext may be equal to either ext1 or ext2.
1132 * The two skips that need to be combined are assumed to be affine expressions.
1134 * We need to skip in ext if we need to skip in either ext1 or ext2.
1135 * We don't need to skip in ext if we don't need to skip in both ext1 and ext2.
1137 static struct pet_scop_ext
*combine_skips(struct pet_scop_ext
*ext
,
1138 struct pet_scop_ext
*ext1
, struct pet_scop_ext
*ext2
,
1141 isl_pw_aff
*skip
, *skip1
, *skip2
;
1145 if (!ext1
->skip
[type
] && !ext2
->skip
[type
])
1147 if (!ext1
->skip
[type
]) {
1150 ext
->skip
[type
] = ext2
->skip
[type
];
1151 ext2
->skip
[type
] = NULL
;
1154 if (!ext2
->skip
[type
]) {
1157 ext
->skip
[type
] = ext1
->skip
[type
];
1158 ext1
->skip
[type
] = NULL
;
1162 if (!multi_pw_aff_is_affine(ext1
->skip
[type
]) ||
1163 !multi_pw_aff_is_affine(ext2
->skip
[type
]))
1164 isl_die(isl_multi_pw_aff_get_ctx(ext1
->skip
[type
]),
1165 isl_error_internal
, "can only combine affine skips",
1168 skip1
= isl_multi_pw_aff_get_pw_aff(ext1
->skip
[type
], 0);
1169 skip2
= isl_multi_pw_aff_get_pw_aff(ext2
->skip
[type
], 0);
1170 skip
= pw_aff_or(skip1
, skip2
);
1171 isl_multi_pw_aff_free(ext1
->skip
[type
]);
1172 ext1
->skip
[type
] = NULL
;
1173 isl_multi_pw_aff_free(ext2
->skip
[type
]);
1174 ext2
->skip
[type
] = NULL
;
1175 ext
->skip
[type
] = isl_multi_pw_aff_from_pw_aff(skip
);
1176 if (!ext
->skip
[type
])
1181 pet_scop_free(&ext
->scop
);
1185 /* Combine scop1->skip[type] and scop2->skip[type] into scop->skip[type],
1186 * where type takes on the values pet_skip_now and pet_skip_later.
1187 * scop may be equal to either scop1 or scop2.
1189 static struct pet_scop
*scop_combine_skips(struct pet_scop
*scop
,
1190 struct pet_scop
*scop1
, struct pet_scop
*scop2
)
1192 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1193 struct pet_scop_ext
*ext1
= (struct pet_scop_ext
*) scop1
;
1194 struct pet_scop_ext
*ext2
= (struct pet_scop_ext
*) scop2
;
1196 ext
= combine_skips(ext
, ext1
, ext2
, pet_skip_now
);
1197 ext
= combine_skips(ext
, ext1
, ext2
, pet_skip_later
);
1201 /* Update scop->start and scop->end to include the region from "start"
1202 * to "end". In particular, if scop->end == 0, then "scop" does not
1203 * have any offset information yet and we simply take the information
1204 * from "start" and "end". Otherwise, we update the fields if the
1205 * region from "start" to "end" is not already included.
1207 struct pet_scop
*pet_scop_update_start_end(struct pet_scop
*scop
,
1208 unsigned start
, unsigned end
)
1212 if (scop
->end
== 0) {
1213 scop
->start
= start
;
1216 if (start
< scop
->start
)
1217 scop
->start
= start
;
1218 if (end
> scop
->end
)
1225 /* Does "implication" appear in the list of implications of "scop"?
1227 static int is_known_implication(struct pet_scop
*scop
,
1228 struct pet_implication
*implication
)
1232 for (i
= 0; i
< scop
->n_implication
; ++i
) {
1233 struct pet_implication
*pi
= scop
->implications
[i
];
1236 if (pi
->satisfied
!= implication
->satisfied
)
1238 equal
= isl_map_is_equal(pi
->extension
, implication
->extension
);
1248 /* Store the concatenation of the impliciations of "scop1" and "scop2"
1249 * in "scop", removing duplicates (i.e., implications in "scop2" that
1250 * already appear in "scop1").
1252 static struct pet_scop
*scop_collect_implications(isl_ctx
*ctx
,
1253 struct pet_scop
*scop
, struct pet_scop
*scop1
, struct pet_scop
*scop2
)
1260 if (scop2
->n_implication
== 0) {
1261 scop
->n_implication
= scop1
->n_implication
;
1262 scop
->implications
= scop1
->implications
;
1263 scop1
->n_implication
= 0;
1264 scop1
->implications
= NULL
;
1268 if (scop1
->n_implication
== 0) {
1269 scop
->n_implication
= scop2
->n_implication
;
1270 scop
->implications
= scop2
->implications
;
1271 scop2
->n_implication
= 0;
1272 scop2
->implications
= NULL
;
1276 scop
->implications
= isl_calloc_array(ctx
, struct pet_implication
*,
1277 scop1
->n_implication
+ scop2
->n_implication
);
1278 if (!scop
->implications
)
1279 return pet_scop_free(scop
);
1281 for (i
= 0; i
< scop1
->n_implication
; ++i
) {
1282 scop
->implications
[i
] = scop1
->implications
[i
];
1283 scop1
->implications
[i
] = NULL
;
1286 scop
->n_implication
= scop1
->n_implication
;
1287 j
= scop1
->n_implication
;
1288 for (i
= 0; i
< scop2
->n_implication
; ++i
) {
1291 known
= is_known_implication(scop
, scop2
->implications
[i
]);
1293 return pet_scop_free(scop
);
1296 scop
->implications
[j
++] = scop2
->implications
[i
];
1297 scop2
->implications
[i
] = NULL
;
1299 scop
->n_implication
= j
;
1304 /* Combine the offset information of "scop1" and "scop2" into "scop".
1306 static struct pet_scop
*scop_combine_start_end(struct pet_scop
*scop
,
1307 struct pet_scop
*scop1
, struct pet_scop
*scop2
)
1310 scop
= pet_scop_update_start_end(scop
,
1311 scop1
->start
, scop1
->end
);
1313 scop
= pet_scop_update_start_end(scop
,
1314 scop2
->start
, scop2
->end
);
1318 /* Construct a pet_scop that contains the offset information,
1319 * arrays, statements and skip information in "scop1" and "scop2".
1321 static struct pet_scop
*pet_scop_add(isl_ctx
*ctx
, struct pet_scop
*scop1
,
1322 struct pet_scop
*scop2
)
1325 struct pet_scop
*scop
= NULL
;
1327 if (!scop1
|| !scop2
)
1330 if (scop1
->n_stmt
== 0) {
1331 scop2
= scop_combine_skips(scop2
, scop1
, scop2
);
1332 pet_scop_free(scop1
);
1336 if (scop2
->n_stmt
== 0) {
1337 scop1
= scop_combine_skips(scop1
, scop1
, scop2
);
1338 pet_scop_free(scop2
);
1342 scop
= scop_alloc(ctx
, scop1
->n_stmt
+ scop2
->n_stmt
);
1346 scop
->arrays
= isl_calloc_array(ctx
, struct pet_array
*,
1347 scop1
->n_array
+ scop2
->n_array
);
1350 scop
->n_array
= scop1
->n_array
+ scop2
->n_array
;
1352 for (i
= 0; i
< scop1
->n_stmt
; ++i
) {
1353 scop
->stmts
[i
] = scop1
->stmts
[i
];
1354 scop1
->stmts
[i
] = NULL
;
1357 for (i
= 0; i
< scop2
->n_stmt
; ++i
) {
1358 scop
->stmts
[scop1
->n_stmt
+ i
] = scop2
->stmts
[i
];
1359 scop2
->stmts
[i
] = NULL
;
1362 for (i
= 0; i
< scop1
->n_array
; ++i
) {
1363 scop
->arrays
[i
] = scop1
->arrays
[i
];
1364 scop1
->arrays
[i
] = NULL
;
1367 for (i
= 0; i
< scop2
->n_array
; ++i
) {
1368 scop
->arrays
[scop1
->n_array
+ i
] = scop2
->arrays
[i
];
1369 scop2
->arrays
[i
] = NULL
;
1372 scop
= scop_collect_implications(ctx
, scop
, scop1
, scop2
);
1373 scop
= pet_scop_restrict_context(scop
, isl_set_copy(scop1
->context
));
1374 scop
= pet_scop_restrict_context(scop
, isl_set_copy(scop2
->context
));
1375 scop
= scop_combine_skips(scop
, scop1
, scop2
);
1376 scop
= scop_combine_start_end(scop
, scop1
, scop2
);
1378 pet_scop_free(scop1
);
1379 pet_scop_free(scop2
);
1382 pet_scop_free(scop1
);
1383 pet_scop_free(scop2
);
1384 pet_scop_free(scop
);
1388 /* Apply the skip condition "skip" to "scop".
1389 * That is, make sure "scop" is not executed when the condition holds.
1391 * If "skip" is an affine expression, we add the conditions under
1392 * which the expression is zero to the iteration domains.
1393 * Otherwise, we add a filter on the variable attaining the value zero.
1395 static struct pet_scop
*restrict_skip(struct pet_scop
*scop
,
1396 __isl_take isl_multi_pw_aff
*skip
)
1405 is_aff
= multi_pw_aff_is_affine(skip
);
1410 return pet_scop_filter(scop
, skip
, 0);
1412 pa
= isl_multi_pw_aff_get_pw_aff(skip
, 0);
1413 isl_multi_pw_aff_free(skip
);
1414 zero
= isl_set_params(isl_pw_aff_zero_set(pa
));
1415 scop
= pet_scop_restrict(scop
, zero
);
1419 isl_multi_pw_aff_free(skip
);
1420 return pet_scop_free(scop
);
1423 /* Construct a pet_scop that contains the arrays, statements and
1424 * skip information in "scop1" and "scop2", where the two scops
1425 * are executed "in sequence". That is, breaks and continues
1426 * in scop1 have an effect on scop2.
1428 struct pet_scop
*pet_scop_add_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
1429 struct pet_scop
*scop2
)
1431 if (scop1
&& pet_scop_has_skip(scop1
, pet_skip_now
))
1432 scop2
= restrict_skip(scop2
,
1433 pet_scop_get_skip(scop1
, pet_skip_now
));
1434 return pet_scop_add(ctx
, scop1
, scop2
);
1437 /* Construct a pet_scop that contains the arrays, statements and
1438 * skip information in "scop1" and "scop2", where the two scops
1439 * are executed "in parallel". That is, any break or continue
1440 * in scop1 has no effect on scop2.
1442 struct pet_scop
*pet_scop_add_par(isl_ctx
*ctx
, struct pet_scop
*scop1
,
1443 struct pet_scop
*scop2
)
1445 return pet_scop_add(ctx
, scop1
, scop2
);
1448 void *pet_implication_free(struct pet_implication
*implication
)
1455 isl_map_free(implication
->extension
);
1461 struct pet_scop
*pet_scop_free(struct pet_scop
*scop
)
1464 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1468 isl_set_free(scop
->context
);
1469 isl_set_free(scop
->context_value
);
1471 for (i
= 0; i
< scop
->n_type
; ++i
)
1472 pet_type_free(scop
->types
[i
]);
1475 for (i
= 0; i
< scop
->n_array
; ++i
)
1476 pet_array_free(scop
->arrays
[i
]);
1479 for (i
= 0; i
< scop
->n_stmt
; ++i
)
1480 pet_stmt_free(scop
->stmts
[i
]);
1482 if (scop
->implications
)
1483 for (i
= 0; i
< scop
->n_implication
; ++i
)
1484 pet_implication_free(scop
->implications
[i
]);
1485 free(scop
->implications
);
1486 isl_multi_pw_aff_free(ext
->skip
[pet_skip_now
]);
1487 isl_multi_pw_aff_free(ext
->skip
[pet_skip_later
]);
1492 void pet_type_dump(struct pet_type
*type
)
1497 fprintf(stderr
, "%s -> %s\n", type
->name
, type
->definition
);
1500 void pet_implication_dump(struct pet_implication
*implication
)
1505 fprintf(stderr
, "%d\n", implication
->satisfied
);
1506 isl_map_dump(implication
->extension
);
1509 void pet_scop_dump(struct pet_scop
*scop
)
1512 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1517 isl_set_dump(scop
->context
);
1518 isl_set_dump(scop
->context_value
);
1519 for (i
= 0; i
< scop
->n_type
; ++i
)
1520 pet_type_dump(scop
->types
[i
]);
1521 for (i
= 0; i
< scop
->n_array
; ++i
)
1522 pet_array_dump(scop
->arrays
[i
]);
1523 for (i
= 0; i
< scop
->n_stmt
; ++i
)
1524 pet_stmt_dump(scop
->stmts
[i
]);
1525 for (i
= 0; i
< scop
->n_implication
; ++i
)
1526 pet_implication_dump(scop
->implications
[i
]);
1529 fprintf(stderr
, "skip\n");
1530 isl_multi_pw_aff_dump(ext
->skip
[0]);
1531 isl_multi_pw_aff_dump(ext
->skip
[1]);
1535 /* Return 1 if the two pet_arrays are equivalent.
1537 * We don't compare element_size as this may be target dependent.
1539 int pet_array_is_equal(struct pet_array
*array1
, struct pet_array
*array2
)
1541 if (!array1
|| !array2
)
1544 if (!isl_set_is_equal(array1
->context
, array2
->context
))
1546 if (!isl_set_is_equal(array1
->extent
, array2
->extent
))
1548 if (!!array1
->value_bounds
!= !!array2
->value_bounds
)
1550 if (array1
->value_bounds
&&
1551 !isl_set_is_equal(array1
->value_bounds
, array2
->value_bounds
))
1553 if (strcmp(array1
->element_type
, array2
->element_type
))
1555 if (array1
->live_out
!= array2
->live_out
)
1557 if (array1
->uniquely_defined
!= array2
->uniquely_defined
)
1559 if (array1
->declared
!= array2
->declared
)
1561 if (array1
->exposed
!= array2
->exposed
)
1567 /* Return 1 if the two pet_stmts are equivalent.
1569 int pet_stmt_is_equal(struct pet_stmt
*stmt1
, struct pet_stmt
*stmt2
)
1573 if (!stmt1
|| !stmt2
)
1576 if (stmt1
->line
!= stmt2
->line
)
1578 if (!isl_set_is_equal(stmt1
->domain
, stmt2
->domain
))
1580 if (!isl_map_is_equal(stmt1
->schedule
, stmt2
->schedule
))
1582 if (!pet_expr_is_equal(stmt1
->body
, stmt2
->body
))
1584 if (stmt1
->n_arg
!= stmt2
->n_arg
)
1586 for (i
= 0; i
< stmt1
->n_arg
; ++i
) {
1587 if (!pet_expr_is_equal(stmt1
->args
[i
], stmt2
->args
[i
]))
1594 /* Return 1 if the two pet_types are equivalent.
1596 * We only compare the names of the types since the exact representation
1597 * of the definition may depend on the version of clang being used.
1599 int pet_type_is_equal(struct pet_type
*type1
, struct pet_type
*type2
)
1601 if (!type1
|| !type2
)
1604 if (strcmp(type1
->name
, type2
->name
))
1610 /* Return 1 if the two pet_implications are equivalent.
1612 int pet_implication_is_equal(struct pet_implication
*implication1
,
1613 struct pet_implication
*implication2
)
1615 if (!implication1
|| !implication2
)
1618 if (implication1
->satisfied
!= implication2
->satisfied
)
1620 if (!isl_map_is_equal(implication1
->extension
, implication2
->extension
))
1626 /* Return 1 if the two pet_scops are equivalent.
1628 int pet_scop_is_equal(struct pet_scop
*scop1
, struct pet_scop
*scop2
)
1632 if (!scop1
|| !scop2
)
1635 if (!isl_set_is_equal(scop1
->context
, scop2
->context
))
1637 if (!isl_set_is_equal(scop1
->context_value
, scop2
->context_value
))
1640 if (scop1
->n_type
!= scop2
->n_type
)
1642 for (i
= 0; i
< scop1
->n_type
; ++i
)
1643 if (!pet_type_is_equal(scop1
->types
[i
], scop2
->types
[i
]))
1646 if (scop1
->n_array
!= scop2
->n_array
)
1648 for (i
= 0; i
< scop1
->n_array
; ++i
)
1649 if (!pet_array_is_equal(scop1
->arrays
[i
], scop2
->arrays
[i
]))
1652 if (scop1
->n_stmt
!= scop2
->n_stmt
)
1654 for (i
= 0; i
< scop1
->n_stmt
; ++i
)
1655 if (!pet_stmt_is_equal(scop1
->stmts
[i
], scop2
->stmts
[i
]))
1658 if (scop1
->n_implication
!= scop2
->n_implication
)
1660 for (i
= 0; i
< scop1
->n_implication
; ++i
)
1661 if (!pet_implication_is_equal(scop1
->implications
[i
],
1662 scop2
->implications
[i
]))
1668 /* Prefix the schedule of "stmt" with an extra dimension with constant
1671 struct pet_stmt
*pet_stmt_prefix(struct pet_stmt
*stmt
, int pos
)
1676 stmt
->schedule
= isl_map_insert_dims(stmt
->schedule
, isl_dim_out
, 0, 1);
1677 stmt
->schedule
= isl_map_fix_si(stmt
->schedule
, isl_dim_out
, 0, pos
);
1678 if (!stmt
->schedule
)
1679 return pet_stmt_free(stmt
);
1684 /* Prefix the schedules of all statements in "scop" with an extra
1685 * dimension with constant value "pos".
1687 struct pet_scop
*pet_scop_prefix(struct pet_scop
*scop
, int pos
)
1694 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1695 scop
->stmts
[i
] = pet_stmt_prefix(scop
->stmts
[i
], pos
);
1696 if (!scop
->stmts
[i
])
1697 return pet_scop_free(scop
);
1703 /* Given a set with a parameter at "param_pos" that refers to the
1704 * iterator, "move" the iterator to the first set dimension.
1705 * That is, essentially equate the parameter to the first set dimension
1706 * and then project it out.
1708 * The first set dimension may however refer to a virtual iterator,
1709 * while the parameter refers to the "real" iterator.
1710 * We therefore need to take into account the affine expression "iv_map", which
1711 * expresses the real iterator in terms of the virtual iterator.
1712 * In particular, we equate the set dimension to the input of the map
1713 * and the parameter to the output of the map and then project out
1714 * everything we don't need anymore.
1716 static __isl_give isl_set
*internalize_iv(__isl_take isl_set
*set
,
1717 int param_pos
, __isl_take isl_aff
*iv_map
)
1719 isl_map
*map
, *map2
;
1720 map
= isl_map_from_domain(set
);
1721 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
1722 map
= isl_map_equate(map
, isl_dim_in
, 0, isl_dim_out
, 0);
1723 map2
= isl_map_from_aff(iv_map
);
1724 map2
= isl_map_align_params(map2
, isl_map_get_space(map
));
1725 map
= isl_map_apply_range(map
, map2
);
1726 map
= isl_map_equate(map
, isl_dim_param
, param_pos
, isl_dim_out
, 0);
1727 map
= isl_map_project_out(map
, isl_dim_param
, param_pos
, 1);
1728 return isl_map_domain(map
);
1731 /* Data used in embed_access.
1732 * extend adds an iterator to the iteration domain (through precomposition).
1733 * iv_map expresses the real iterator in terms of the virtual iterator
1734 * var_id represents the induction variable of the corresponding loop
1736 struct pet_embed_access
{
1737 isl_multi_pw_aff
*extend
;
1742 /* Given an index expression, return an expression for the outer iterator.
1744 static __isl_give isl_aff
*index_outer_iterator(
1745 __isl_take isl_multi_pw_aff
*index
)
1748 isl_local_space
*ls
;
1750 space
= isl_multi_pw_aff_get_domain_space(index
);
1751 isl_multi_pw_aff_free(index
);
1753 ls
= isl_local_space_from_space(space
);
1754 return isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
1757 /* Replace an index expression that references the new (outer) iterator variable
1758 * by one that references the corresponding (real) iterator.
1760 * The input index expression is of the form
1762 * { S[i',...] -> i[] }
1764 * where i' refers to the virtual iterator.
1766 * iv_map is of the form
1770 * Return the index expression
1772 * { S[i',...] -> [i] }
1774 static __isl_give isl_multi_pw_aff
*replace_by_iterator(
1775 __isl_take isl_multi_pw_aff
*index
, __isl_take isl_aff
*iv_map
)
1780 aff
= index_outer_iterator(index
);
1781 space
= isl_aff_get_space(aff
);
1782 iv_map
= isl_aff_align_params(iv_map
, space
);
1783 aff
= isl_aff_pullback_aff(iv_map
, aff
);
1785 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
1788 /* Given an index expression "index" that refers to the (real) iterator
1789 * through the parameter at position "pos", plug in "iv_map", expressing
1790 * the real iterator in terms of the virtual (outer) iterator.
1792 * In particular, the index expression is of the form
1794 * [..., i, ...] -> { S[i',...] -> ... i ... }
1796 * where i refers to the real iterator and i' refers to the virtual iterator.
1798 * iv_map is of the form
1802 * Return the index expression
1804 * [..., ...] -> { S[i',...] -> ... iv_map(i') ... }
1807 * We first move the parameter to the input
1809 * [..., ...] -> { [i, i',...] -> ... i ... }
1813 * { S[i',...] -> [i=iv_map(i'), i', ...] }
1815 * and then combine the two to obtain the desired result.
1817 static __isl_give isl_multi_pw_aff
*index_internalize_iv(
1818 __isl_take isl_multi_pw_aff
*index
, int pos
, __isl_take isl_aff
*iv_map
)
1820 isl_space
*space
= isl_multi_pw_aff_get_domain_space(index
);
1823 space
= isl_space_drop_dims(space
, isl_dim_param
, pos
, 1);
1824 index
= isl_multi_pw_aff_move_dims(index
, isl_dim_in
, 0,
1825 isl_dim_param
, pos
, 1);
1827 space
= isl_space_map_from_set(space
);
1828 ma
= isl_multi_aff_identity(isl_space_copy(space
));
1829 iv_map
= isl_aff_align_params(iv_map
, space
);
1830 iv_map
= isl_aff_pullback_aff(iv_map
, isl_multi_aff_get_aff(ma
, 0));
1831 ma
= isl_multi_aff_flat_range_product(
1832 isl_multi_aff_from_aff(iv_map
), ma
);
1833 index
= isl_multi_pw_aff_pullback_multi_aff(index
, ma
);
1838 /* Does the index expression "index" reference a virtual array, i.e.,
1839 * one with user pointer equal to NULL?
1841 static int index_is_virtual_array(__isl_keep isl_multi_pw_aff
*index
)
1846 if (!isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
1848 id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
1849 is_virtual
= !isl_id_get_user(id
);
1855 /* Does the access relation "access" reference a virtual array, i.e.,
1856 * one with user pointer equal to NULL?
1858 static int access_is_virtual_array(__isl_keep isl_map
*access
)
1863 if (!isl_map_has_tuple_id(access
, isl_dim_out
))
1865 id
= isl_map_get_tuple_id(access
, isl_dim_out
);
1866 is_virtual
= !isl_id_get_user(id
);
1872 /* Embed the given index expression in an extra outer loop.
1873 * The domain of the index expression has already been updated.
1875 * If the access refers to the induction variable, then it is
1876 * turned into an access to the set of integers with index (and value)
1877 * equal to the induction variable.
1879 * If the accessed array is a virtual array (with user
1880 * pointer equal to NULL), as created by create_test_index,
1881 * then it is extended along with the domain of the index expression.
1883 static __isl_give isl_multi_pw_aff
*embed_index_expression(
1884 __isl_take isl_multi_pw_aff
*index
, struct pet_embed_access
*data
)
1886 isl_id
*array_id
= NULL
;
1889 if (isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
1890 array_id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
1891 if (array_id
== data
->var_id
) {
1892 index
= replace_by_iterator(index
, isl_aff_copy(data
->iv_map
));
1893 } else if (index_is_virtual_array(index
)) {
1895 isl_multi_pw_aff
*mpa
;
1897 aff
= index_outer_iterator(isl_multi_pw_aff_copy(index
));
1898 mpa
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
1899 index
= isl_multi_pw_aff_flat_range_product(mpa
, index
);
1900 index
= isl_multi_pw_aff_set_tuple_id(index
, isl_dim_out
,
1901 isl_id_copy(array_id
));
1903 isl_id_free(array_id
);
1905 pos
= isl_multi_pw_aff_find_dim_by_id(index
,
1906 isl_dim_param
, data
->var_id
);
1908 index
= index_internalize_iv(index
, pos
,
1909 isl_aff_copy(data
->iv_map
));
1910 index
= isl_multi_pw_aff_set_dim_id(index
, isl_dim_in
, 0,
1911 isl_id_copy(data
->var_id
));
1916 /* Embed the given access relation in an extra outer loop.
1917 * The domain of the access relation has already been updated.
1919 * If the access refers to the induction variable, then it is
1920 * turned into an access to the set of integers with index (and value)
1921 * equal to the induction variable.
1923 * If the induction variable appears in the constraints (as a parameter),
1924 * then the parameter is equated to the newly introduced iteration
1925 * domain dimension and subsequently projected out.
1927 * Similarly, if the accessed array is a virtual array (with user
1928 * pointer equal to NULL), as created by create_test_index,
1929 * then it is extended along with the domain of the access.
1931 static __isl_give isl_map
*embed_access_relation(__isl_take isl_map
*access
,
1932 struct pet_embed_access
*data
)
1934 isl_id
*array_id
= NULL
;
1937 if (isl_map_has_tuple_id(access
, isl_dim_out
))
1938 array_id
= isl_map_get_tuple_id(access
, isl_dim_out
);
1939 if (array_id
== data
->var_id
|| access_is_virtual_array(access
)) {
1940 access
= isl_map_insert_dims(access
, isl_dim_out
, 0, 1);
1941 access
= isl_map_equate(access
,
1942 isl_dim_in
, 0, isl_dim_out
, 0);
1943 if (array_id
== data
->var_id
)
1944 access
= isl_map_apply_range(access
,
1945 isl_map_from_aff(isl_aff_copy(data
->iv_map
)));
1947 access
= isl_map_set_tuple_id(access
, isl_dim_out
,
1948 isl_id_copy(array_id
));
1950 isl_id_free(array_id
);
1952 pos
= isl_map_find_dim_by_id(access
, isl_dim_param
, data
->var_id
);
1954 isl_set
*set
= isl_map_wrap(access
);
1955 set
= internalize_iv(set
, pos
, isl_aff_copy(data
->iv_map
));
1956 access
= isl_set_unwrap(set
);
1958 access
= isl_map_set_dim_id(access
, isl_dim_in
, 0,
1959 isl_id_copy(data
->var_id
));
1964 /* Given an access expression, embed the associated access relation and
1965 * index expression in an extra outer loop.
1967 * We first update the domains to insert the extra dimension and
1968 * then update the access relation and index expression to take
1969 * into account the mapping "iv_map" from virtual iterator
1972 static struct pet_expr
*embed_access(struct pet_expr
*expr
, void *user
)
1975 struct pet_embed_access
*data
= user
;
1977 expr
= update_domain(expr
, data
->extend
);
1981 expr
->acc
.access
= embed_access_relation(expr
->acc
.access
, data
);
1982 expr
->acc
.index
= embed_index_expression(expr
->acc
.index
, data
);
1983 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1984 return pet_expr_free(expr
);
1989 /* Embed all access subexpressions of "expr" in an extra loop.
1990 * "extend" inserts an outer loop iterator in the iteration domains
1991 * (through precomposition).
1992 * "iv_map" expresses the real iterator in terms of the virtual iterator
1993 * "var_id" represents the induction variable.
1995 static struct pet_expr
*expr_embed(struct pet_expr
*expr
,
1996 __isl_take isl_multi_pw_aff
*extend
, __isl_take isl_aff
*iv_map
,
1997 __isl_keep isl_id
*var_id
)
1999 struct pet_embed_access data
=
2000 { .extend
= extend
, .iv_map
= iv_map
, .var_id
= var_id
};
2002 expr
= pet_expr_map_access(expr
, &embed_access
, &data
);
2003 isl_aff_free(iv_map
);
2004 isl_multi_pw_aff_free(extend
);
2008 /* Embed the given pet_stmt in an extra outer loop with iteration domain
2009 * "dom" and schedule "sched". "var_id" represents the induction variable
2010 * of the loop. "iv_map" maps a possibly virtual iterator to the real iterator.
2011 * That is, it expresses the iterator that some of the parameters in "stmt"
2012 * may refer to in terms of the iterator used in "dom" and
2013 * the domain of "sched".
2015 * The iteration domain and schedule of the statement are updated
2016 * according to the iteration domain and schedule of the new loop.
2017 * If stmt->domain is a wrapped map, then the iteration domain
2018 * is the domain of this map, so we need to be careful to adjust
2021 * If the induction variable appears in the constraints (as a parameter)
2022 * of the current iteration domain or the schedule of the statement,
2023 * then the parameter is equated to the newly introduced iteration
2024 * domain dimension and subsequently projected out.
2026 * Finally, all access relations are updated based on the extra loop.
2028 static struct pet_stmt
*pet_stmt_embed(struct pet_stmt
*stmt
,
2029 __isl_take isl_set
*dom
, __isl_take isl_map
*sched
,
2030 __isl_take isl_aff
*iv_map
, __isl_take isl_id
*var_id
)
2036 isl_multi_pw_aff
*extend
;
2041 if (isl_set_is_wrapping(stmt
->domain
)) {
2046 map
= isl_set_unwrap(stmt
->domain
);
2047 stmt_id
= isl_map_get_tuple_id(map
, isl_dim_in
);
2048 ran_dim
= isl_space_range(isl_map_get_space(map
));
2049 ext
= isl_map_from_domain_and_range(isl_set_copy(dom
),
2050 isl_set_universe(ran_dim
));
2051 map
= isl_map_flat_domain_product(ext
, map
);
2052 map
= isl_map_set_tuple_id(map
, isl_dim_in
,
2053 isl_id_copy(stmt_id
));
2054 dim
= isl_space_domain(isl_map_get_space(map
));
2055 stmt
->domain
= isl_map_wrap(map
);
2057 stmt_id
= isl_set_get_tuple_id(stmt
->domain
);
2058 stmt
->domain
= isl_set_flat_product(isl_set_copy(dom
),
2060 stmt
->domain
= isl_set_set_tuple_id(stmt
->domain
,
2061 isl_id_copy(stmt_id
));
2062 dim
= isl_set_get_space(stmt
->domain
);
2065 pos
= isl_set_find_dim_by_id(stmt
->domain
, isl_dim_param
, var_id
);
2067 stmt
->domain
= internalize_iv(stmt
->domain
, pos
,
2068 isl_aff_copy(iv_map
));
2070 stmt
->schedule
= isl_map_flat_product(sched
, stmt
->schedule
);
2071 stmt
->schedule
= isl_map_set_tuple_id(stmt
->schedule
,
2072 isl_dim_in
, stmt_id
);
2074 pos
= isl_map_find_dim_by_id(stmt
->schedule
, isl_dim_param
, var_id
);
2076 isl_set
*set
= isl_map_wrap(stmt
->schedule
);
2077 set
= internalize_iv(set
, pos
, isl_aff_copy(iv_map
));
2078 stmt
->schedule
= isl_set_unwrap(set
);
2081 dim
= isl_space_map_from_set(dim
);
2082 extend
= isl_multi_pw_aff_identity(dim
);
2083 extend
= isl_multi_pw_aff_drop_dims(extend
, isl_dim_out
, 0, 1);
2084 extend
= isl_multi_pw_aff_set_tuple_id(extend
, isl_dim_out
,
2085 isl_multi_pw_aff_get_tuple_id(extend
, isl_dim_in
));
2086 for (i
= 0; i
< stmt
->n_arg
; ++i
)
2087 stmt
->args
[i
] = expr_embed(stmt
->args
[i
],
2088 isl_multi_pw_aff_copy(extend
),
2089 isl_aff_copy(iv_map
), var_id
);
2090 stmt
->body
= expr_embed(stmt
->body
, extend
, iv_map
, var_id
);
2093 isl_id_free(var_id
);
2095 for (i
= 0; i
< stmt
->n_arg
; ++i
)
2097 return pet_stmt_free(stmt
);
2098 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
2099 return pet_stmt_free(stmt
);
2103 isl_map_free(sched
);
2104 isl_aff_free(iv_map
);
2105 isl_id_free(var_id
);
2109 /* Embed the given pet_array in an extra outer loop with iteration domain
2111 * This embedding only has an effect on virtual arrays (those with
2112 * user pointer equal to NULL), which need to be extended along with
2113 * the iteration domain.
2115 static struct pet_array
*pet_array_embed(struct pet_array
*array
,
2116 __isl_take isl_set
*dom
)
2118 isl_id
*array_id
= NULL
;
2123 if (isl_set_has_tuple_id(array
->extent
))
2124 array_id
= isl_set_get_tuple_id(array
->extent
);
2126 if (array_id
&& !isl_id_get_user(array_id
)) {
2127 array
->extent
= isl_set_flat_product(dom
, array
->extent
);
2128 array
->extent
= isl_set_set_tuple_id(array
->extent
, array_id
);
2130 return pet_array_free(array
);
2133 isl_id_free(array_id
);
2142 /* Project out all unnamed parameters from "set" and return the result.
2144 static __isl_give isl_set
*set_project_out_unnamed_params(
2145 __isl_take isl_set
*set
)
2149 n
= isl_set_dim(set
, isl_dim_param
);
2150 for (i
= n
- 1; i
>= 0; --i
) {
2151 if (isl_set_has_dim_name(set
, isl_dim_param
, i
))
2153 set
= isl_set_project_out(set
, isl_dim_param
, i
, 1);
2159 /* Update the context with respect to an embedding into a loop
2160 * with iteration domain "dom" and induction variable "id".
2161 * "iv_map" expresses the real iterator (parameter "id") in terms
2162 * of a possibly virtual iterator (used in "dom").
2164 * If the current context is independent of "id", we don't need
2166 * Otherwise, a parameter value is invalid for the embedding if
2167 * any of the corresponding iterator values is invalid.
2168 * That is, a parameter value is valid only if all the corresponding
2169 * iterator values are valid.
2170 * We therefore compute the set of parameters
2172 * forall i in dom : valid (i)
2176 * not exists i in dom : not valid(i)
2180 * not exists i in dom \ valid(i)
2182 * Before we subtract valid(i) from dom, we first need to substitute
2183 * the real iterator for the virtual iterator.
2185 * If there are any unnamed parameters in "dom", then we consider
2186 * a parameter value to be valid if it is valid for any value of those
2187 * unnamed parameters. They are therefore projected out at the end.
2189 static __isl_give isl_set
*context_embed(__isl_take isl_set
*context
,
2190 __isl_keep isl_set
*dom
, __isl_keep isl_aff
*iv_map
,
2191 __isl_keep isl_id
*id
)
2196 pos
= isl_set_find_dim_by_id(context
, isl_dim_param
, id
);
2200 context
= isl_set_from_params(context
);
2201 context
= isl_set_add_dims(context
, isl_dim_set
, 1);
2202 context
= isl_set_equate(context
, isl_dim_param
, pos
, isl_dim_set
, 0);
2203 context
= isl_set_project_out(context
, isl_dim_param
, pos
, 1);
2204 ma
= isl_multi_aff_from_aff(isl_aff_copy(iv_map
));
2205 context
= isl_set_preimage_multi_aff(context
, ma
);
2206 context
= isl_set_subtract(isl_set_copy(dom
), context
);
2207 context
= isl_set_params(context
);
2208 context
= isl_set_complement(context
);
2209 context
= set_project_out_unnamed_params(context
);
2213 /* Update the implication with respect to an embedding into a loop
2214 * with iteration domain "dom".
2216 * Since embed_access extends virtual arrays along with the domain
2217 * of the access, we need to do the same with domain and range
2218 * of the implication. Since the original implication is only valid
2219 * within a given iteration of the loop, the extended implication
2220 * maps the extra array dimension corresponding to the extra loop
2223 static struct pet_implication
*pet_implication_embed(
2224 struct pet_implication
*implication
, __isl_take isl_set
*dom
)
2232 map
= isl_set_identity(dom
);
2233 id
= isl_map_get_tuple_id(implication
->extension
, isl_dim_in
);
2234 map
= isl_map_flat_product(map
, implication
->extension
);
2235 map
= isl_map_set_tuple_id(map
, isl_dim_in
, isl_id_copy(id
));
2236 map
= isl_map_set_tuple_id(map
, isl_dim_out
, id
);
2237 implication
->extension
= map
;
2238 if (!implication
->extension
)
2239 return pet_implication_free(implication
);
2247 /* Embed all statements and arrays in "scop" in an extra outer loop
2248 * with iteration domain "dom" and schedule "sched".
2249 * "id" represents the induction variable of the loop.
2250 * "iv_map" maps a possibly virtual iterator to the real iterator.
2251 * That is, it expresses the iterator that some of the parameters in "scop"
2252 * may refer to in terms of the iterator used in "dom" and
2253 * the domain of "sched".
2255 * Any skip conditions within the loop have no effect outside of the loop.
2256 * The caller is responsible for making sure skip[pet_skip_later] has been
2257 * taken into account.
2259 struct pet_scop
*pet_scop_embed(struct pet_scop
*scop
, __isl_take isl_set
*dom
,
2260 __isl_take isl_map
*sched
, __isl_take isl_aff
*iv_map
,
2261 __isl_take isl_id
*id
)
2268 pet_scop_reset_skip(scop
, pet_skip_now
);
2269 pet_scop_reset_skip(scop
, pet_skip_later
);
2271 scop
->context
= context_embed(scop
->context
, dom
, iv_map
, id
);
2275 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2276 scop
->stmts
[i
] = pet_stmt_embed(scop
->stmts
[i
],
2277 isl_set_copy(dom
), isl_map_copy(sched
),
2278 isl_aff_copy(iv_map
), isl_id_copy(id
));
2279 if (!scop
->stmts
[i
])
2283 for (i
= 0; i
< scop
->n_array
; ++i
) {
2284 scop
->arrays
[i
] = pet_array_embed(scop
->arrays
[i
],
2286 if (!scop
->arrays
[i
])
2290 for (i
= 0; i
< scop
->n_implication
; ++i
) {
2291 scop
->implications
[i
] =
2292 pet_implication_embed(scop
->implications
[i
],
2294 if (!scop
->implications
[i
])
2299 isl_map_free(sched
);
2300 isl_aff_free(iv_map
);
2305 isl_map_free(sched
);
2306 isl_aff_free(iv_map
);
2308 return pet_scop_free(scop
);
2311 /* Add extra conditions on the parameters to iteration domain of "stmt".
2313 static struct pet_stmt
*stmt_restrict(struct pet_stmt
*stmt
,
2314 __isl_take isl_set
*cond
)
2319 stmt
->domain
= isl_set_intersect_params(stmt
->domain
, cond
);
2324 return pet_stmt_free(stmt
);
2327 /* Add extra conditions to scop->skip[type].
2329 * The new skip condition only holds if it held before
2330 * and the condition is true. It does not hold if it did not hold
2331 * before or the condition is false.
2333 * The skip condition is assumed to be an affine expression.
2335 static struct pet_scop
*pet_scop_restrict_skip(struct pet_scop
*scop
,
2336 enum pet_skip type
, __isl_keep isl_set
*cond
)
2338 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2344 if (!ext
->skip
[type
])
2347 if (!multi_pw_aff_is_affine(ext
->skip
[type
]))
2348 isl_die(isl_multi_pw_aff_get_ctx(ext
->skip
[type
]),
2349 isl_error_internal
, "can only resrict affine skips",
2350 return pet_scop_free(scop
));
2352 skip
= isl_multi_pw_aff_get_pw_aff(ext
->skip
[type
], 0);
2353 dom
= isl_pw_aff_domain(isl_pw_aff_copy(skip
));
2354 cond
= isl_set_copy(cond
);
2355 cond
= isl_set_from_params(cond
);
2356 cond
= isl_set_intersect(cond
, isl_pw_aff_non_zero_set(skip
));
2357 skip
= indicator_function(cond
, dom
);
2358 isl_multi_pw_aff_free(ext
->skip
[type
]);
2359 ext
->skip
[type
] = isl_multi_pw_aff_from_pw_aff(skip
);
2360 if (!ext
->skip
[type
])
2361 return pet_scop_free(scop
);
2366 /* Add extra conditions on the parameters to all iteration domains
2367 * and skip conditions.
2369 * A parameter value is valid for the result if it was valid
2370 * for the original scop and satisfies "cond" or if it does
2371 * not satisfy "cond" as in this case the scop is not executed
2372 * and the original constraints on the parameters are irrelevant.
2374 struct pet_scop
*pet_scop_restrict(struct pet_scop
*scop
,
2375 __isl_take isl_set
*cond
)
2379 scop
= pet_scop_restrict_skip(scop
, pet_skip_now
, cond
);
2380 scop
= pet_scop_restrict_skip(scop
, pet_skip_later
, cond
);
2385 scop
->context
= isl_set_intersect(scop
->context
, isl_set_copy(cond
));
2386 scop
->context
= isl_set_union(scop
->context
,
2387 isl_set_complement(isl_set_copy(cond
)));
2388 scop
->context
= isl_set_coalesce(scop
->context
);
2389 scop
->context
= set_project_out_unnamed_params(scop
->context
);
2393 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2394 scop
->stmts
[i
] = stmt_restrict(scop
->stmts
[i
],
2395 isl_set_copy(cond
));
2396 if (!scop
->stmts
[i
])
2404 return pet_scop_free(scop
);
2407 /* Construct a function that (upon precomposition) inserts
2408 * a filter value with name "id" and value "satisfied"
2409 * in the list of filter values embedded in the set space "space".
2411 * If "space" does not contain any filter values yet, we first create
2412 * a function that inserts 0 filter values, i.e.,
2414 * [space -> []] -> space
2416 * We can now assume that space is of the form [dom -> [filters]]
2417 * We construct an identity mapping on dom and a mapping on filters
2418 * that (upon precomposition) inserts the new filter
2421 * [satisfied, filters] -> [filters]
2423 * and then compute the cross product
2425 * [dom -> [satisfied, filters]] -> [dom -> [filters]]
2427 static __isl_give isl_pw_multi_aff
*insert_filter_pma(
2428 __isl_take isl_space
*space
, __isl_take isl_id
*id
, int satisfied
)
2432 isl_pw_multi_aff
*pma0
, *pma
, *pma_dom
, *pma_ran
;
2435 if (isl_space_is_wrapping(space
)) {
2436 space2
= isl_space_map_from_set(isl_space_copy(space
));
2437 ma
= isl_multi_aff_identity(space2
);
2438 space
= isl_space_unwrap(space
);
2440 space
= isl_space_from_domain(space
);
2441 ma
= isl_multi_aff_domain_map(isl_space_copy(space
));
2444 space2
= isl_space_domain(isl_space_copy(space
));
2445 pma_dom
= isl_pw_multi_aff_identity(isl_space_map_from_set(space2
));
2446 space
= isl_space_range(space
);
2447 space
= isl_space_insert_dims(space
, isl_dim_set
, 0, 1);
2448 pma_ran
= isl_pw_multi_aff_project_out_map(space
, isl_dim_set
, 0, 1);
2449 pma_ran
= isl_pw_multi_aff_set_dim_id(pma_ran
, isl_dim_in
, 0, id
);
2450 pma_ran
= isl_pw_multi_aff_fix_si(pma_ran
, isl_dim_in
, 0, satisfied
);
2451 pma
= isl_pw_multi_aff_product(pma_dom
, pma_ran
);
2453 pma0
= isl_pw_multi_aff_from_multi_aff(ma
);
2454 pma
= isl_pw_multi_aff_pullback_pw_multi_aff(pma0
, pma
);
2459 /* Insert an argument expression corresponding to "test" in front
2460 * of the list of arguments described by *n_arg and *args.
2462 static int args_insert_access(unsigned *n_arg
, struct pet_expr
***args
,
2463 __isl_keep isl_multi_pw_aff
*test
)
2466 isl_ctx
*ctx
= isl_multi_pw_aff_get_ctx(test
);
2472 *args
= isl_calloc_array(ctx
, struct pet_expr
*, 1);
2476 struct pet_expr
**ext
;
2477 ext
= isl_calloc_array(ctx
, struct pet_expr
*, 1 + *n_arg
);
2480 for (i
= 0; i
< *n_arg
; ++i
)
2481 ext
[1 + i
] = (*args
)[i
];
2486 (*args
)[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test
));
2493 /* Make the expression "expr" depend on the value of "test"
2494 * being equal to "satisfied".
2496 * If "test" is an affine expression, we simply add the conditions
2497 * on the expression having the value "satisfied" to all access relations
2498 * and index expressions.
2500 * Otherwise, we add a filter to "expr" (which is then assumed to be
2501 * an access expression) corresponding to "test" being equal to "satisfied".
2503 struct pet_expr
*pet_expr_filter(struct pet_expr
*expr
,
2504 __isl_take isl_multi_pw_aff
*test
, int satisfied
)
2509 isl_pw_multi_aff
*pma
;
2514 if (!isl_multi_pw_aff_has_tuple_id(test
, isl_dim_out
)) {
2518 pa
= isl_multi_pw_aff_get_pw_aff(test
, 0);
2519 isl_multi_pw_aff_free(test
);
2521 cond
= isl_pw_aff_non_zero_set(pa
);
2523 cond
= isl_pw_aff_zero_set(pa
);
2524 return pet_expr_restrict(expr
, isl_set_params(cond
));
2527 ctx
= isl_multi_pw_aff_get_ctx(test
);
2528 if (expr
->type
!= pet_expr_access
)
2529 isl_die(ctx
, isl_error_invalid
,
2530 "can only filter access expressions", goto error
);
2532 space
= isl_space_domain(isl_map_get_space(expr
->acc
.access
));
2533 id
= isl_multi_pw_aff_get_tuple_id(test
, isl_dim_out
);
2534 pma
= insert_filter_pma(space
, id
, satisfied
);
2536 expr
->acc
.access
= isl_map_preimage_domain_pw_multi_aff(
2538 isl_pw_multi_aff_copy(pma
));
2539 expr
->acc
.index
= isl_multi_pw_aff_pullback_pw_multi_aff(
2540 expr
->acc
.index
, pma
);
2541 if (!expr
->acc
.access
|| !expr
->acc
.index
)
2544 if (args_insert_access(&expr
->n_arg
, &expr
->args
, test
) < 0)
2547 isl_multi_pw_aff_free(test
);
2550 isl_multi_pw_aff_free(test
);
2551 return pet_expr_free(expr
);
2554 /* Look through the applications in "scop" for any that can be
2555 * applied to the filter expressed by "map" and "satisified".
2556 * If there is any, then apply it to "map" and return the result.
2557 * Otherwise, return "map".
2558 * "id" is the identifier of the virtual array.
2560 * We only introduce at most one implication for any given virtual array,
2561 * so we can apply the implication and return as soon as we find one.
2563 static __isl_give isl_map
*apply_implications(struct pet_scop
*scop
,
2564 __isl_take isl_map
*map
, __isl_keep isl_id
*id
, int satisfied
)
2568 for (i
= 0; i
< scop
->n_implication
; ++i
) {
2569 struct pet_implication
*pi
= scop
->implications
[i
];
2572 if (pi
->satisfied
!= satisfied
)
2574 pi_id
= isl_map_get_tuple_id(pi
->extension
, isl_dim_in
);
2579 return isl_map_apply_range(map
, isl_map_copy(pi
->extension
));
2585 /* Is the filter expressed by "test" and "satisfied" implied
2586 * by filter "pos" on "domain", with filter "expr", taking into
2587 * account the implications of "scop"?
2589 * For filter on domain implying that expressed by "test" and "satisfied",
2590 * the filter needs to be an access to the same (virtual) array as "test" and
2591 * the filter value needs to be equal to "satisfied".
2592 * Moreover, the filter access relation, possibly extended by
2593 * the implications in "scop" needs to contain "test".
2595 static int implies_filter(struct pet_scop
*scop
,
2596 __isl_keep isl_map
*domain
, int pos
, struct pet_expr
*expr
,
2597 __isl_keep isl_map
*test
, int satisfied
)
2599 isl_id
*test_id
, *arg_id
;
2606 if (expr
->type
!= pet_expr_access
)
2608 test_id
= isl_map_get_tuple_id(test
, isl_dim_out
);
2609 arg_id
= pet_expr_access_get_id(expr
);
2610 isl_id_free(arg_id
);
2611 isl_id_free(test_id
);
2612 if (test_id
!= arg_id
)
2614 val
= isl_map_plain_get_val_if_fixed(domain
, isl_dim_out
, pos
);
2615 is_int
= isl_val_is_int(val
);
2617 s
= isl_val_get_num_si(val
);
2626 implied
= isl_map_copy(expr
->acc
.access
);
2627 implied
= apply_implications(scop
, implied
, test_id
, satisfied
);
2628 is_subset
= isl_map_is_subset(test
, implied
);
2629 isl_map_free(implied
);
2634 /* Is the filter expressed by "test" and "satisfied" implied
2635 * by any of the filters on the domain of "stmt", taking into
2636 * account the implications of "scop"?
2638 static int filter_implied(struct pet_scop
*scop
,
2639 struct pet_stmt
*stmt
, __isl_keep isl_multi_pw_aff
*test
, int satisfied
)
2647 if (!scop
|| !stmt
|| !test
)
2649 if (scop
->n_implication
== 0)
2651 if (stmt
->n_arg
== 0)
2654 domain
= isl_set_unwrap(isl_set_copy(stmt
->domain
));
2655 test_map
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(test
));
2658 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2659 implied
= implies_filter(scop
, domain
, i
, stmt
->args
[i
],
2660 test_map
, satisfied
);
2661 if (implied
< 0 || implied
)
2665 isl_map_free(test_map
);
2666 isl_map_free(domain
);
2670 /* Make the statement "stmt" depend on the value of "test"
2671 * being equal to "satisfied" by adjusting stmt->domain.
2673 * The domain of "test" corresponds to the (zero or more) outer dimensions
2674 * of the iteration domain.
2676 * We first extend "test" to apply to the entire iteration domain and
2677 * then check if the filter that we are about to add is implied
2678 * by any of the current filters, possibly taking into account
2679 * the implications in "scop". If so, we leave "stmt" untouched and return.
2681 * Otherwise, we insert an argument corresponding to a read to "test"
2682 * from the iteration domain of "stmt" in front of the list of arguments.
2683 * We also insert a corresponding output dimension in the wrapped
2684 * map contained in stmt->domain, with value set to "satisfied".
2686 static struct pet_stmt
*stmt_filter(struct pet_scop
*scop
,
2687 struct pet_stmt
*stmt
, __isl_take isl_multi_pw_aff
*test
, int satisfied
)
2693 isl_pw_multi_aff
*pma
;
2694 isl_multi_aff
*add_dom
;
2696 isl_local_space
*ls
;
2702 space
= isl_set_get_space(stmt
->domain
);
2703 if (isl_space_is_wrapping(space
))
2704 space
= isl_space_domain(isl_space_unwrap(space
));
2705 n_test_dom
= isl_multi_pw_aff_dim(test
, isl_dim_in
);
2706 space
= isl_space_from_domain(space
);
2707 space
= isl_space_add_dims(space
, isl_dim_out
, n_test_dom
);
2708 add_dom
= isl_multi_aff_zero(isl_space_copy(space
));
2709 ls
= isl_local_space_from_space(isl_space_domain(space
));
2710 for (i
= 0; i
< n_test_dom
; ++i
) {
2712 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
2714 add_dom
= isl_multi_aff_set_aff(add_dom
, i
, aff
);
2716 isl_local_space_free(ls
);
2717 test
= isl_multi_pw_aff_pullback_multi_aff(test
, add_dom
);
2719 implied
= filter_implied(scop
, stmt
, test
, satisfied
);
2723 isl_multi_pw_aff_free(test
);
2727 id
= isl_multi_pw_aff_get_tuple_id(test
, isl_dim_out
);
2728 pma
= insert_filter_pma(isl_set_get_space(stmt
->domain
), id
, satisfied
);
2729 stmt
->domain
= isl_set_preimage_pw_multi_aff(stmt
->domain
, pma
);
2731 if (args_insert_access(&stmt
->n_arg
, &stmt
->args
, test
) < 0)
2734 isl_multi_pw_aff_free(test
);
2737 isl_multi_pw_aff_free(test
);
2738 return pet_stmt_free(stmt
);
2741 /* Does "scop" have a skip condition of the given "type"?
2743 int pet_scop_has_skip(struct pet_scop
*scop
, enum pet_skip type
)
2745 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2749 return ext
->skip
[type
] != NULL
;
2752 /* Does "scop" have a skip condition of the given "type" that
2753 * is an affine expression?
2755 int pet_scop_has_affine_skip(struct pet_scop
*scop
, enum pet_skip type
)
2757 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2761 if (!ext
->skip
[type
])
2763 return multi_pw_aff_is_affine(ext
->skip
[type
]);
2766 /* Does "scop" have a skip condition of the given "type" that
2767 * is not an affine expression?
2769 int pet_scop_has_var_skip(struct pet_scop
*scop
, enum pet_skip type
)
2771 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2776 if (!ext
->skip
[type
])
2778 aff
= multi_pw_aff_is_affine(ext
->skip
[type
]);
2784 /* Does "scop" have a skip condition of the given "type" that
2785 * is affine and holds on the entire domain?
2787 int pet_scop_has_universal_skip(struct pet_scop
*scop
, enum pet_skip type
)
2789 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2795 is_aff
= pet_scop_has_affine_skip(scop
, type
);
2796 if (is_aff
< 0 || !is_aff
)
2799 pa
= isl_multi_pw_aff_get_pw_aff(ext
->skip
[type
], 0);
2800 set
= isl_pw_aff_non_zero_set(pa
);
2801 is_univ
= isl_set_plain_is_universe(set
);
2807 /* Replace scop->skip[type] by "skip".
2809 struct pet_scop
*pet_scop_set_skip(struct pet_scop
*scop
,
2810 enum pet_skip type
, __isl_take isl_multi_pw_aff
*skip
)
2812 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2817 isl_multi_pw_aff_free(ext
->skip
[type
]);
2818 ext
->skip
[type
] = skip
;
2822 isl_multi_pw_aff_free(skip
);
2823 return pet_scop_free(scop
);
2826 /* Return a copy of scop->skip[type].
2828 __isl_give isl_multi_pw_aff
*pet_scop_get_skip(struct pet_scop
*scop
,
2831 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2836 return isl_multi_pw_aff_copy(ext
->skip
[type
]);
2839 /* Assuming scop->skip[type] is an affine expression,
2840 * return the constraints on the parameters for which the skip condition
2843 __isl_give isl_set
*pet_scop_get_affine_skip_domain(struct pet_scop
*scop
,
2846 isl_multi_pw_aff
*skip
;
2849 skip
= pet_scop_get_skip(scop
, type
);
2850 pa
= isl_multi_pw_aff_get_pw_aff(skip
, 0);
2851 isl_multi_pw_aff_free(skip
);
2852 return isl_set_params(isl_pw_aff_non_zero_set(pa
));
2855 /* Return the identifier of the variable that is accessed by
2856 * the skip condition of the given type.
2858 * The skip condition is assumed not to be an affine condition.
2860 __isl_give isl_id
*pet_scop_get_skip_id(struct pet_scop
*scop
,
2863 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2868 return isl_multi_pw_aff_get_tuple_id(ext
->skip
[type
], isl_dim_out
);
2871 /* Return an access pet_expr corresponding to the skip condition
2872 * of the given type.
2874 struct pet_expr
*pet_scop_get_skip_expr(struct pet_scop
*scop
,
2877 return pet_expr_from_index(pet_scop_get_skip(scop
, type
));
2880 /* Drop the the skip condition scop->skip[type].
2882 void pet_scop_reset_skip(struct pet_scop
*scop
, enum pet_skip type
)
2884 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2889 isl_multi_pw_aff_free(ext
->skip
[type
]);
2890 ext
->skip
[type
] = NULL
;
2893 /* Make the skip condition (if any) depend on the value of "test" being
2894 * equal to "satisfied".
2896 * We only support the case where the original skip condition is universal,
2897 * i.e., where skipping is unconditional, and where satisfied == 1.
2898 * In this case, the skip condition is changed to skip only when
2899 * "test" is equal to one.
2901 static struct pet_scop
*pet_scop_filter_skip(struct pet_scop
*scop
,
2902 enum pet_skip type
, __isl_keep isl_multi_pw_aff
*test
, int satisfied
)
2908 if (!pet_scop_has_skip(scop
, type
))
2912 is_univ
= pet_scop_has_universal_skip(scop
, type
);
2914 return pet_scop_free(scop
);
2915 if (satisfied
&& is_univ
) {
2916 isl_space
*space
= isl_multi_pw_aff_get_space(test
);
2917 isl_multi_pw_aff
*skip
;
2918 skip
= isl_multi_pw_aff_zero(space
);
2919 scop
= pet_scop_set_skip(scop
, type
, skip
);
2923 isl_die(isl_multi_pw_aff_get_ctx(test
), isl_error_internal
,
2924 "skip expression cannot be filtered",
2925 return pet_scop_free(scop
));
2931 /* Make all statements in "scop" depend on the value of "test"
2932 * being equal to "satisfied" by adjusting their domains.
2934 struct pet_scop
*pet_scop_filter(struct pet_scop
*scop
,
2935 __isl_take isl_multi_pw_aff
*test
, int satisfied
)
2939 scop
= pet_scop_filter_skip(scop
, pet_skip_now
, test
, satisfied
);
2940 scop
= pet_scop_filter_skip(scop
, pet_skip_later
, test
, satisfied
);
2945 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2946 scop
->stmts
[i
] = stmt_filter(scop
, scop
->stmts
[i
],
2947 isl_multi_pw_aff_copy(test
), satisfied
);
2948 if (!scop
->stmts
[i
])
2952 isl_multi_pw_aff_free(test
);
2955 isl_multi_pw_aff_free(test
);
2956 return pet_scop_free(scop
);
2959 /* Add all parameters in "expr" to "dim" and return the result.
2961 static __isl_give isl_space
*expr_collect_params(struct pet_expr
*expr
,
2962 __isl_take isl_space
*dim
)
2968 for (i
= 0; i
< expr
->n_arg
; ++i
)
2970 dim
= expr_collect_params(expr
->args
[i
], dim
);
2972 if (expr
->type
== pet_expr_access
)
2973 dim
= isl_space_align_params(dim
,
2974 isl_map_get_space(expr
->acc
.access
));
2978 pet_expr_free(expr
);
2979 return isl_space_free(dim
);
2982 /* Add all parameters in "stmt" to "dim" and return the result.
2984 static __isl_give isl_space
*stmt_collect_params(struct pet_stmt
*stmt
,
2985 __isl_take isl_space
*dim
)
2990 dim
= isl_space_align_params(dim
, isl_set_get_space(stmt
->domain
));
2991 dim
= isl_space_align_params(dim
, isl_map_get_space(stmt
->schedule
));
2992 dim
= expr_collect_params(stmt
->body
, dim
);
2996 isl_space_free(dim
);
2997 return pet_stmt_free(stmt
);
3000 /* Add all parameters in "array" to "dim" and return the result.
3002 static __isl_give isl_space
*array_collect_params(struct pet_array
*array
,
3003 __isl_take isl_space
*dim
)
3008 dim
= isl_space_align_params(dim
, isl_set_get_space(array
->context
));
3009 dim
= isl_space_align_params(dim
, isl_set_get_space(array
->extent
));
3013 pet_array_free(array
);
3014 return isl_space_free(dim
);
3017 /* Add all parameters in "scop" to "dim" and return the result.
3019 static __isl_give isl_space
*scop_collect_params(struct pet_scop
*scop
,
3020 __isl_take isl_space
*dim
)
3027 for (i
= 0; i
< scop
->n_array
; ++i
)
3028 dim
= array_collect_params(scop
->arrays
[i
], dim
);
3030 for (i
= 0; i
< scop
->n_stmt
; ++i
)
3031 dim
= stmt_collect_params(scop
->stmts
[i
], dim
);
3035 isl_space_free(dim
);
3036 pet_scop_free(scop
);
3040 /* Add all parameters in "dim" to all access relations and index expressions
3043 static struct pet_expr
*expr_propagate_params(struct pet_expr
*expr
,
3044 __isl_take isl_space
*dim
)
3051 for (i
= 0; i
< expr
->n_arg
; ++i
) {
3053 expr_propagate_params(expr
->args
[i
],
3054 isl_space_copy(dim
));
3059 if (expr
->type
== pet_expr_access
) {
3060 expr
->acc
.access
= isl_map_align_params(expr
->acc
.access
,
3061 isl_space_copy(dim
));
3062 expr
->acc
.index
= isl_multi_pw_aff_align_params(expr
->acc
.index
,
3063 isl_space_copy(dim
));
3064 if (!expr
->acc
.access
|| !expr
->acc
.index
)
3068 isl_space_free(dim
);
3071 isl_space_free(dim
);
3072 return pet_expr_free(expr
);
3075 /* Add all parameters in "dim" to the domain, schedule and
3076 * all access relations in "stmt".
3078 static struct pet_stmt
*stmt_propagate_params(struct pet_stmt
*stmt
,
3079 __isl_take isl_space
*dim
)
3084 stmt
->domain
= isl_set_align_params(stmt
->domain
, isl_space_copy(dim
));
3085 stmt
->schedule
= isl_map_align_params(stmt
->schedule
,
3086 isl_space_copy(dim
));
3087 stmt
->body
= expr_propagate_params(stmt
->body
, isl_space_copy(dim
));
3089 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
3092 isl_space_free(dim
);
3095 isl_space_free(dim
);
3096 return pet_stmt_free(stmt
);
3099 /* Add all parameters in "dim" to "array".
3101 static struct pet_array
*array_propagate_params(struct pet_array
*array
,
3102 __isl_take isl_space
*dim
)
3107 array
->context
= isl_set_align_params(array
->context
,
3108 isl_space_copy(dim
));
3109 array
->extent
= isl_set_align_params(array
->extent
,
3110 isl_space_copy(dim
));
3111 if (array
->value_bounds
) {
3112 array
->value_bounds
= isl_set_align_params(array
->value_bounds
,
3113 isl_space_copy(dim
));
3114 if (!array
->value_bounds
)
3118 if (!array
->context
|| !array
->extent
)
3121 isl_space_free(dim
);
3124 isl_space_free(dim
);
3125 return pet_array_free(array
);
3128 /* Add all parameters in "dim" to "scop".
3130 static struct pet_scop
*scop_propagate_params(struct pet_scop
*scop
,
3131 __isl_take isl_space
*dim
)
3138 for (i
= 0; i
< scop
->n_array
; ++i
) {
3139 scop
->arrays
[i
] = array_propagate_params(scop
->arrays
[i
],
3140 isl_space_copy(dim
));
3141 if (!scop
->arrays
[i
])
3145 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3146 scop
->stmts
[i
] = stmt_propagate_params(scop
->stmts
[i
],
3147 isl_space_copy(dim
));
3148 if (!scop
->stmts
[i
])
3152 isl_space_free(dim
);
3155 isl_space_free(dim
);
3156 return pet_scop_free(scop
);
3159 /* Update all isl_sets and isl_maps in "scop" such that they all
3160 * have the same parameters.
3162 struct pet_scop
*pet_scop_align_params(struct pet_scop
*scop
)
3169 dim
= isl_set_get_space(scop
->context
);
3170 dim
= scop_collect_params(scop
, dim
);
3172 scop
->context
= isl_set_align_params(scop
->context
, isl_space_copy(dim
));
3173 scop
= scop_propagate_params(scop
, dim
);
3178 /* Check if the given index expression accesses a (0D) array that corresponds
3179 * to one of the parameters in "dim". If so, replace the array access
3180 * by an access to the set of integers with as index (and value)
3183 static __isl_give isl_multi_pw_aff
*index_detect_parameter(
3184 __isl_take isl_multi_pw_aff
*index
, __isl_take isl_space
*space
)
3186 isl_local_space
*ls
;
3187 isl_id
*array_id
= NULL
;
3191 if (isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
)) {
3192 array_id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
3193 pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, array_id
);
3195 isl_space_free(space
);
3198 isl_id_free(array_id
);
3202 space
= isl_multi_pw_aff_get_domain_space(index
);
3203 isl_multi_pw_aff_free(index
);
3205 pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, array_id
);
3207 space
= isl_space_insert_dims(space
, isl_dim_param
, 0, 1);
3208 space
= isl_space_set_dim_id(space
, isl_dim_param
, 0, array_id
);
3211 isl_id_free(array_id
);
3213 ls
= isl_local_space_from_space(space
);
3214 aff
= isl_aff_var_on_domain(ls
, isl_dim_param
, pos
);
3215 index
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
3220 /* Check if the given access relation accesses a (0D) array that corresponds
3221 * to one of the parameters in "dim". If so, replace the array access
3222 * by an access to the set of integers with as index (and value)
3225 static __isl_give isl_map
*access_detect_parameter(__isl_take isl_map
*access
,
3226 __isl_take isl_space
*dim
)
3228 isl_id
*array_id
= NULL
;
3231 if (isl_map_has_tuple_id(access
, isl_dim_out
)) {
3232 array_id
= isl_map_get_tuple_id(access
, isl_dim_out
);
3233 pos
= isl_space_find_dim_by_id(dim
, isl_dim_param
, array_id
);
3235 isl_space_free(dim
);
3238 isl_id_free(array_id
);
3242 pos
= isl_map_find_dim_by_id(access
, isl_dim_param
, array_id
);
3244 access
= isl_map_insert_dims(access
, isl_dim_param
, 0, 1);
3245 access
= isl_map_set_dim_id(access
, isl_dim_param
, 0, array_id
);
3248 isl_id_free(array_id
);
3250 access
= isl_map_insert_dims(access
, isl_dim_out
, 0, 1);
3251 access
= isl_map_equate(access
, isl_dim_param
, pos
, isl_dim_out
, 0);
3256 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
3257 * in "dim" by a value equal to the corresponding parameter.
3259 static struct pet_expr
*expr_detect_parameter_accesses(struct pet_expr
*expr
,
3260 __isl_take isl_space
*dim
)
3267 for (i
= 0; i
< expr
->n_arg
; ++i
) {
3269 expr_detect_parameter_accesses(expr
->args
[i
],
3270 isl_space_copy(dim
));
3275 if (expr
->type
== pet_expr_access
) {
3276 expr
->acc
.access
= access_detect_parameter(expr
->acc
.access
,
3277 isl_space_copy(dim
));
3278 expr
->acc
.index
= index_detect_parameter(expr
->acc
.index
,
3279 isl_space_copy(dim
));
3280 if (!expr
->acc
.access
|| !expr
->acc
.index
)
3284 isl_space_free(dim
);
3287 isl_space_free(dim
);
3288 return pet_expr_free(expr
);
3291 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
3292 * in "dim" by a value equal to the corresponding parameter.
3294 static struct pet_stmt
*stmt_detect_parameter_accesses(struct pet_stmt
*stmt
,
3295 __isl_take isl_space
*dim
)
3300 stmt
->body
= expr_detect_parameter_accesses(stmt
->body
,
3301 isl_space_copy(dim
));
3303 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
3306 isl_space_free(dim
);
3309 isl_space_free(dim
);
3310 return pet_stmt_free(stmt
);
3313 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
3314 * in "dim" by a value equal to the corresponding parameter.
3316 static struct pet_scop
*scop_detect_parameter_accesses(struct pet_scop
*scop
,
3317 __isl_take isl_space
*dim
)
3324 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3325 scop
->stmts
[i
] = stmt_detect_parameter_accesses(scop
->stmts
[i
],
3326 isl_space_copy(dim
));
3327 if (!scop
->stmts
[i
])
3331 isl_space_free(dim
);
3334 isl_space_free(dim
);
3335 return pet_scop_free(scop
);
3338 /* Replace all accesses to (0D) arrays that correspond to any of
3339 * the parameters used in "scop" by a value equal
3340 * to the corresponding parameter.
3342 struct pet_scop
*pet_scop_detect_parameter_accesses(struct pet_scop
*scop
)
3349 dim
= isl_set_get_space(scop
->context
);
3350 dim
= scop_collect_params(scop
, dim
);
3352 scop
= scop_detect_parameter_accesses(scop
, dim
);
3357 /* Return the relation mapping domain iterations to all possibly
3358 * accessed data elements.
3359 * In particular, take the access relation and project out the values
3360 * of the arguments, if any.
3362 __isl_give isl_map
*pet_expr_access_get_may_access(struct pet_expr
*expr
)
3370 if (expr
->type
!= pet_expr_access
)
3373 access
= isl_map_copy(expr
->acc
.access
);
3374 if (expr
->n_arg
== 0)
3377 space
= isl_space_domain(isl_map_get_space(access
));
3378 map
= isl_map_universe(isl_space_unwrap(space
));
3379 map
= isl_map_domain_map(map
);
3380 access
= isl_map_apply_domain(access
, map
);
3385 /* Add all read access relations (if "read" is set) and/or all write
3386 * access relations (if "write" is set) to "accesses" and return the result.
3387 * The domains of the access relations are intersected with "domain".
3388 * If "tag" is set, then the access relations are tagged with
3389 * the corresponding reference identifiers.
3391 * If "must" is set, then we only add the accesses that are definitely
3392 * performed. Otherwise, we add all potential accesses.
3393 * In particular, if the access has any arguments, then if "must" is
3394 * set we currently skip the access completely. If "must" is not set,
3395 * we project out the values of the access arguments.
3397 static __isl_give isl_union_map
*expr_collect_accesses(struct pet_expr
*expr
,
3398 int read
, int write
, int must
, int tag
,
3399 __isl_take isl_union_map
*accesses
, __isl_keep isl_set
*domain
)
3406 return isl_union_map_free(accesses
);
3408 for (i
= 0; i
< expr
->n_arg
; ++i
)
3409 accesses
= expr_collect_accesses(expr
->args
[i
],
3410 read
, write
, must
, tag
, accesses
, domain
);
3412 if (expr
->type
== pet_expr_access
&& !pet_expr_is_affine(expr
) &&
3413 ((read
&& expr
->acc
.read
) || (write
&& expr
->acc
.write
)) &&
3414 (!must
|| expr
->n_arg
== 0)) {
3417 access
= pet_expr_access_get_may_access(expr
);
3418 access
= isl_map_intersect_domain(access
, isl_set_copy(domain
));
3420 access
= tag_access(access
,
3421 isl_id_copy(expr
->acc
.ref_id
));
3422 accesses
= isl_union_map_add_map(accesses
, access
);
3428 /* Collect and return all read access relations (if "read" is set)
3429 * and/or all write access relations (if "write" is set) in "stmt".
3430 * If "tag" is set, then the access relations are tagged with
3431 * the corresponding reference identifiers.
3433 * If "must" is set, then we only add the accesses that are definitely
3434 * performed. Otherwise, we add all potential accesses.
3435 * In particular, if the statement has any arguments, then if "must" is
3436 * set we currently skip the statement completely. If "must" is not set,
3437 * we project out the values of the statement arguments.
3439 static __isl_give isl_union_map
*stmt_collect_accesses(struct pet_stmt
*stmt
,
3440 int read
, int write
, int must
, int tag
, __isl_take isl_space
*dim
)
3442 isl_union_map
*accesses
;
3448 accesses
= isl_union_map_empty(dim
);
3450 if (must
&& stmt
->n_arg
> 0)
3453 domain
= isl_set_copy(stmt
->domain
);
3454 if (isl_set_is_wrapping(domain
))
3455 domain
= isl_map_domain(isl_set_unwrap(domain
));
3457 accesses
= expr_collect_accesses(stmt
->body
,
3458 read
, write
, must
, tag
, accesses
, domain
);
3459 isl_set_free(domain
);
3464 /* Collect and return all read access relations (if "read" is set)
3465 * and/or all write access relations (if "write" is set) in "scop".
3466 * If "must" is set, then we only add the accesses that are definitely
3467 * performed. Otherwise, we add all potential accesses.
3468 * If "tag" is set, then the access relations are tagged with
3469 * the corresponding reference identifiers.
3471 static __isl_give isl_union_map
*scop_collect_accesses(struct pet_scop
*scop
,
3472 int read
, int write
, int must
, int tag
)
3475 isl_union_map
*accesses
;
3476 isl_union_set
*arrays
;
3481 accesses
= isl_union_map_empty(isl_set_get_space(scop
->context
));
3483 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3484 isl_union_map
*accesses_i
;
3485 isl_space
*dim
= isl_set_get_space(scop
->context
);
3486 accesses_i
= stmt_collect_accesses(scop
->stmts
[i
],
3487 read
, write
, must
, tag
, dim
);
3488 accesses
= isl_union_map_union(accesses
, accesses_i
);
3491 arrays
= isl_union_set_empty(isl_union_map_get_space(accesses
));
3492 for (i
= 0; i
< scop
->n_array
; ++i
) {
3493 isl_set
*extent
= isl_set_copy(scop
->arrays
[i
]->extent
);
3494 arrays
= isl_union_set_add_set(arrays
, extent
);
3496 accesses
= isl_union_map_intersect_range(accesses
, arrays
);
3501 /* Collect all potential read access relations.
3503 __isl_give isl_union_map
*pet_scop_collect_may_reads(struct pet_scop
*scop
)
3505 return scop_collect_accesses(scop
, 1, 0, 0, 0);
3508 /* Collect all potential write access relations.
3510 __isl_give isl_union_map
*pet_scop_collect_may_writes(struct pet_scop
*scop
)
3512 return scop_collect_accesses(scop
, 0, 1, 0, 0);
3515 /* Collect all definite write access relations.
3517 __isl_give isl_union_map
*pet_scop_collect_must_writes(struct pet_scop
*scop
)
3519 return scop_collect_accesses(scop
, 0, 1, 1, 0);
3522 /* Collect all tagged potential read access relations.
3524 __isl_give isl_union_map
*pet_scop_collect_tagged_may_reads(
3525 struct pet_scop
*scop
)
3527 return scop_collect_accesses(scop
, 1, 0, 0, 1);
3530 /* Collect all tagged potential write access relations.
3532 __isl_give isl_union_map
*pet_scop_collect_tagged_may_writes(
3533 struct pet_scop
*scop
)
3535 return scop_collect_accesses(scop
, 0, 1, 0, 1);
3538 /* Collect all tagged definite write access relations.
3540 __isl_give isl_union_map
*pet_scop_collect_tagged_must_writes(
3541 struct pet_scop
*scop
)
3543 return scop_collect_accesses(scop
, 0, 1, 1, 1);
3546 /* Collect and return the union of iteration domains in "scop".
3548 __isl_give isl_union_set
*pet_scop_collect_domains(struct pet_scop
*scop
)
3552 isl_union_set
*domain
;
3557 domain
= isl_union_set_empty(isl_set_get_space(scop
->context
));
3559 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3560 domain_i
= isl_set_copy(scop
->stmts
[i
]->domain
);
3561 domain
= isl_union_set_add_set(domain
, domain_i
);
3567 /* Collect and return the schedules of the statements in "scop".
3568 * The range is normalized to the maximal number of scheduling
3571 __isl_give isl_union_map
*pet_scop_collect_schedule(struct pet_scop
*scop
)
3574 isl_map
*schedule_i
;
3575 isl_union_map
*schedule
;
3576 int depth
, max_depth
= 0;
3581 schedule
= isl_union_map_empty(isl_set_get_space(scop
->context
));
3583 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3584 depth
= isl_map_dim(scop
->stmts
[i
]->schedule
, isl_dim_out
);
3585 if (depth
> max_depth
)
3589 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3590 schedule_i
= isl_map_copy(scop
->stmts
[i
]->schedule
);
3591 depth
= isl_map_dim(schedule_i
, isl_dim_out
);
3592 schedule_i
= isl_map_add_dims(schedule_i
, isl_dim_out
,
3594 for (j
= depth
; j
< max_depth
; ++j
)
3595 schedule_i
= isl_map_fix_si(schedule_i
,
3597 schedule
= isl_union_map_add_map(schedule
, schedule_i
);
3603 /* Does expression "expr" write to "id"?
3605 static int expr_writes(struct pet_expr
*expr
, __isl_keep isl_id
*id
)
3610 for (i
= 0; i
< expr
->n_arg
; ++i
) {
3611 int writes
= expr_writes(expr
->args
[i
], id
);
3612 if (writes
< 0 || writes
)
3616 if (expr
->type
!= pet_expr_access
)
3618 if (!expr
->acc
.write
)
3620 if (pet_expr_is_affine(expr
))
3623 write_id
= pet_expr_access_get_id(expr
);
3624 isl_id_free(write_id
);
3629 return write_id
== id
;
3632 /* Does statement "stmt" write to "id"?
3634 static int stmt_writes(struct pet_stmt
*stmt
, __isl_keep isl_id
*id
)
3636 return expr_writes(stmt
->body
, id
);
3639 /* Is there any write access in "scop" that accesses "id"?
3641 int pet_scop_writes(struct pet_scop
*scop
, __isl_keep isl_id
*id
)
3648 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3649 int writes
= stmt_writes(scop
->stmts
[i
], id
);
3650 if (writes
< 0 || writes
)
3657 /* Add a reference identifier to access expression "expr".
3658 * "user" points to an integer that contains the sequence number
3659 * of the next reference.
3661 static struct pet_expr
*access_add_ref_id(struct pet_expr
*expr
, void *user
)
3670 ctx
= isl_map_get_ctx(expr
->acc
.access
);
3671 snprintf(name
, sizeof(name
), "__pet_ref_%d", (*n_ref
)++);
3672 expr
->acc
.ref_id
= isl_id_alloc(ctx
, name
, NULL
);
3673 if (!expr
->acc
.ref_id
)
3674 return pet_expr_free(expr
);
3679 /* Add a reference identifier to all access expressions in "stmt".
3680 * "n_ref" points to an integer that contains the sequence number
3681 * of the next reference.
3683 static struct pet_stmt
*stmt_add_ref_ids(struct pet_stmt
*stmt
, int *n_ref
)
3690 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
3691 stmt
->args
[i
] = pet_expr_map_access(stmt
->args
[i
],
3692 &access_add_ref_id
, n_ref
);
3694 return pet_stmt_free(stmt
);
3697 stmt
->body
= pet_expr_map_access(stmt
->body
, &access_add_ref_id
, n_ref
);
3699 return pet_stmt_free(stmt
);
3704 /* Add a reference identifier to all access expressions in "scop".
3706 struct pet_scop
*pet_scop_add_ref_ids(struct pet_scop
*scop
)
3715 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3716 scop
->stmts
[i
] = stmt_add_ref_ids(scop
->stmts
[i
], &n_ref
);
3717 if (!scop
->stmts
[i
])
3718 return pet_scop_free(scop
);
3724 /* Reset the user pointer on all parameter ids in "array".
3726 static struct pet_array
*array_anonymize(struct pet_array
*array
)
3731 array
->context
= isl_set_reset_user(array
->context
);
3732 array
->extent
= isl_set_reset_user(array
->extent
);
3733 if (!array
->context
|| !array
->extent
)
3734 return pet_array_free(array
);
3739 /* Reset the user pointer on all parameter and tuple ids in
3740 * the access relation and the index expressions
3741 * of the access expression "expr".
3743 static struct pet_expr
*access_anonymize(struct pet_expr
*expr
, void *user
)
3745 expr
->acc
.access
= isl_map_reset_user(expr
->acc
.access
);
3746 expr
->acc
.index
= isl_multi_pw_aff_reset_user(expr
->acc
.index
);
3747 if (!expr
->acc
.access
|| !expr
->acc
.index
)
3748 return pet_expr_free(expr
);
3753 /* Reset the user pointer on all parameter and tuple ids in "stmt".
3755 static struct pet_stmt
*stmt_anonymize(struct pet_stmt
*stmt
)
3764 stmt
->domain
= isl_set_reset_user(stmt
->domain
);
3765 stmt
->schedule
= isl_map_reset_user(stmt
->schedule
);
3766 if (!stmt
->domain
|| !stmt
->schedule
)
3767 return pet_stmt_free(stmt
);
3769 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
3770 stmt
->args
[i
] = pet_expr_map_access(stmt
->args
[i
],
3771 &access_anonymize
, NULL
);
3773 return pet_stmt_free(stmt
);
3776 stmt
->body
= pet_expr_map_access(stmt
->body
,
3777 &access_anonymize
, NULL
);
3779 return pet_stmt_free(stmt
);
3784 /* Reset the user pointer on the tuple ids and all parameter ids
3787 static struct pet_implication
*implication_anonymize(
3788 struct pet_implication
*implication
)
3793 implication
->extension
= isl_map_reset_user(implication
->extension
);
3794 if (!implication
->extension
)
3795 return pet_implication_free(implication
);
3800 /* Reset the user pointer on all parameter and tuple ids in "scop".
3802 struct pet_scop
*pet_scop_anonymize(struct pet_scop
*scop
)
3809 scop
->context
= isl_set_reset_user(scop
->context
);
3810 scop
->context_value
= isl_set_reset_user(scop
->context_value
);
3811 if (!scop
->context
|| !scop
->context_value
)
3812 return pet_scop_free(scop
);
3814 for (i
= 0; i
< scop
->n_array
; ++i
) {
3815 scop
->arrays
[i
] = array_anonymize(scop
->arrays
[i
]);
3816 if (!scop
->arrays
[i
])
3817 return pet_scop_free(scop
);
3820 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3821 scop
->stmts
[i
] = stmt_anonymize(scop
->stmts
[i
]);
3822 if (!scop
->stmts
[i
])
3823 return pet_scop_free(scop
);
3826 for (i
= 0; i
< scop
->n_implication
; ++i
) {
3827 scop
->implications
[i
] =
3828 implication_anonymize(scop
->implications
[i
]);
3829 if (!scop
->implications
[i
])
3830 return pet_scop_free(scop
);
3836 /* If "value_bounds" contains any bounds on the variable accessed by "arg",
3837 * then intersect the range of "map" with the valid set of values.
3839 static __isl_give isl_map
*access_apply_value_bounds(__isl_take isl_map
*map
,
3840 struct pet_expr
*arg
, __isl_keep isl_union_map
*value_bounds
)
3845 isl_ctx
*ctx
= isl_map_get_ctx(map
);
3847 id
= pet_expr_access_get_id(arg
);
3848 space
= isl_space_alloc(ctx
, 0, 0, 1);
3849 space
= isl_space_set_tuple_id(space
, isl_dim_in
, id
);
3850 vb
= isl_union_map_extract_map(value_bounds
, space
);
3851 if (!isl_map_plain_is_empty(vb
))
3852 map
= isl_map_intersect_range(map
, isl_map_range(vb
));
3859 /* Given a set "domain", return a wrapped relation with the given set
3860 * as domain and a range of dimension "n_arg", where each coordinate
3861 * is either unbounded or, if the corresponding element of args is of
3862 * type pet_expr_access, bounded by the bounds specified by "value_bounds".
3864 static __isl_give isl_set
*apply_value_bounds(__isl_take isl_set
*domain
,
3865 unsigned n_arg
, struct pet_expr
**args
,
3866 __isl_keep isl_union_map
*value_bounds
)
3872 map
= isl_map_from_domain(domain
);
3873 space
= isl_map_get_space(map
);
3874 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
3876 for (i
= 0; i
< n_arg
; ++i
) {
3878 struct pet_expr
*arg
= args
[i
];
3880 map_i
= isl_map_universe(isl_space_copy(space
));
3881 if (arg
->type
== pet_expr_access
)
3882 map_i
= access_apply_value_bounds(map_i
, arg
,
3884 map
= isl_map_flat_range_product(map
, map_i
);
3886 isl_space_free(space
);
3888 return isl_map_wrap(map
);
3891 /* Data used in access_gist() callback.
3893 struct pet_access_gist_data
{
3895 isl_union_map
*value_bounds
;
3898 /* Given an expression "expr" of type pet_expr_access, compute
3899 * the gist of the associated access relation and index expression
3900 * with respect to data->domain and the bounds on the values of the arguments
3901 * of the expression.
3903 static struct pet_expr
*access_gist(struct pet_expr
*expr
, void *user
)
3905 struct pet_access_gist_data
*data
= user
;
3908 domain
= isl_set_copy(data
->domain
);
3909 if (expr
->n_arg
> 0)
3910 domain
= apply_value_bounds(domain
, expr
->n_arg
, expr
->args
,
3911 data
->value_bounds
);
3913 expr
->acc
.access
= isl_map_gist_domain(expr
->acc
.access
,
3914 isl_set_copy(domain
));
3915 expr
->acc
.index
= isl_multi_pw_aff_gist(expr
->acc
.index
, domain
);
3916 if (!expr
->acc
.access
|| !expr
->acc
.index
)
3917 return pet_expr_free(expr
);
3922 /* Compute the gist of the iteration domain and all access relations
3923 * of "stmt" based on the constraints on the parameters specified by "context"
3924 * and the constraints on the values of nested accesses specified
3925 * by "value_bounds".
3927 static struct pet_stmt
*stmt_gist(struct pet_stmt
*stmt
,
3928 __isl_keep isl_set
*context
, __isl_keep isl_union_map
*value_bounds
)
3933 struct pet_access_gist_data data
;
3938 data
.domain
= isl_set_copy(stmt
->domain
);
3939 data
.value_bounds
= value_bounds
;
3940 if (stmt
->n_arg
> 0)
3941 data
.domain
= isl_map_domain(isl_set_unwrap(data
.domain
));
3943 data
.domain
= isl_set_intersect_params(data
.domain
,
3944 isl_set_copy(context
));
3946 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
3947 stmt
->args
[i
] = pet_expr_map_access(stmt
->args
[i
],
3948 &access_gist
, &data
);
3953 stmt
->body
= pet_expr_map_access(stmt
->body
, &access_gist
, &data
);
3957 isl_set_free(data
.domain
);
3959 space
= isl_set_get_space(stmt
->domain
);
3960 if (isl_space_is_wrapping(space
))
3961 space
= isl_space_domain(isl_space_unwrap(space
));
3962 domain
= isl_set_universe(space
);
3963 domain
= isl_set_intersect_params(domain
, isl_set_copy(context
));
3964 if (stmt
->n_arg
> 0)
3965 domain
= apply_value_bounds(domain
, stmt
->n_arg
, stmt
->args
,
3967 stmt
->domain
= isl_set_gist(stmt
->domain
, domain
);
3969 return pet_stmt_free(stmt
);
3973 isl_set_free(data
.domain
);
3974 return pet_stmt_free(stmt
);
3977 /* Compute the gist of the extent of the array
3978 * based on the constraints on the parameters specified by "context".
3980 static struct pet_array
*array_gist(struct pet_array
*array
,
3981 __isl_keep isl_set
*context
)
3986 array
->extent
= isl_set_gist_params(array
->extent
,
3987 isl_set_copy(context
));
3989 return pet_array_free(array
);
3994 /* Compute the gist of all sets and relations in "scop"
3995 * based on the constraints on the parameters specified by "scop->context"
3996 * and the constraints on the values of nested accesses specified
3997 * by "value_bounds".
3999 struct pet_scop
*pet_scop_gist(struct pet_scop
*scop
,
4000 __isl_keep isl_union_map
*value_bounds
)
4007 scop
->context
= isl_set_coalesce(scop
->context
);
4009 return pet_scop_free(scop
);
4011 for (i
= 0; i
< scop
->n_array
; ++i
) {
4012 scop
->arrays
[i
] = array_gist(scop
->arrays
[i
], scop
->context
);
4013 if (!scop
->arrays
[i
])
4014 return pet_scop_free(scop
);
4017 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
4018 scop
->stmts
[i
] = stmt_gist(scop
->stmts
[i
], scop
->context
,
4020 if (!scop
->stmts
[i
])
4021 return pet_scop_free(scop
);
4027 /* Intersect the context of "scop" with "context".
4028 * To ensure that we don't introduce any unnamed parameters in
4029 * the context of "scop", we first remove the unnamed parameters
4032 struct pet_scop
*pet_scop_restrict_context(struct pet_scop
*scop
,
4033 __isl_take isl_set
*context
)
4038 context
= set_project_out_unnamed_params(context
);
4039 scop
->context
= isl_set_intersect(scop
->context
, context
);
4041 return pet_scop_free(scop
);
4045 isl_set_free(context
);
4046 return pet_scop_free(scop
);
4049 /* Drop the current context of "scop". That is, replace the context
4050 * by a universal set.
4052 struct pet_scop
*pet_scop_reset_context(struct pet_scop
*scop
)
4059 space
= isl_set_get_space(scop
->context
);
4060 isl_set_free(scop
->context
);
4061 scop
->context
= isl_set_universe(space
);
4063 return pet_scop_free(scop
);
4068 /* Append "array" to the arrays of "scop".
4070 struct pet_scop
*pet_scop_add_array(struct pet_scop
*scop
,
4071 struct pet_array
*array
)
4074 struct pet_array
**arrays
;
4076 if (!array
|| !scop
)
4079 ctx
= isl_set_get_ctx(scop
->context
);
4080 arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
4084 scop
->arrays
= arrays
;
4085 scop
->arrays
[scop
->n_array
] = array
;
4090 pet_array_free(array
);
4091 return pet_scop_free(scop
);
4094 /* Create and return an implication on filter values equal to "satisfied"
4095 * with extension "map".
4097 static struct pet_implication
*new_implication(__isl_take isl_map
*map
,
4101 struct pet_implication
*implication
;
4105 ctx
= isl_map_get_ctx(map
);
4106 implication
= isl_alloc_type(ctx
, struct pet_implication
);
4110 implication
->extension
= map
;
4111 implication
->satisfied
= satisfied
;
4119 /* Add an implication on filter values equal to "satisfied"
4120 * with extension "map" to "scop".
4122 struct pet_scop
*pet_scop_add_implication(struct pet_scop
*scop
,
4123 __isl_take isl_map
*map
, int satisfied
)
4126 struct pet_implication
*implication
;
4127 struct pet_implication
**implications
;
4129 implication
= new_implication(map
, satisfied
);
4130 if (!scop
|| !implication
)
4133 ctx
= isl_set_get_ctx(scop
->context
);
4134 implications
= isl_realloc_array(ctx
, scop
->implications
,
4135 struct pet_implication
*,
4136 scop
->n_implication
+ 1);
4139 scop
->implications
= implications
;
4140 scop
->implications
[scop
->n_implication
] = implication
;
4141 scop
->n_implication
++;
4145 pet_implication_free(implication
);
4146 return pet_scop_free(scop
);
4149 /* Given an access expression, check if it is data dependent.
4150 * If so, set *found and abort the search.
4152 static int is_data_dependent(struct pet_expr
*expr
, void *user
)
4164 /* Does "scop" contain any data dependent accesses?
4166 * Check the body of each statement for such accesses.
4168 int pet_scop_has_data_dependent_accesses(struct pet_scop
*scop
)
4176 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
4177 int r
= pet_expr_foreach_access_expr(scop
->stmts
[i
]->body
,
4178 &is_data_dependent
, &found
);
4179 if (r
< 0 && !found
)
4188 /* Does "scop" contain and data dependent conditions?
4190 int pet_scop_has_data_dependent_conditions(struct pet_scop
*scop
)
4197 for (i
= 0; i
< scop
->n_stmt
; ++i
)
4198 if (scop
->stmts
[i
]->n_arg
> 0)
4204 /* Keep track of the "input" file inside the (extended) "scop".
4206 struct pet_scop
*pet_scop_set_input_file(struct pet_scop
*scop
, FILE *input
)
4208 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
4218 /* Print the original code corresponding to "scop" to printer "p".
4220 * pet_scop_print_original can only be called from
4221 * a pet_transform_C_source callback. This means that the input
4222 * file is stored in the extended scop and that the printer prints
4225 __isl_give isl_printer
*pet_scop_print_original(struct pet_scop
*scop
,
4226 __isl_take isl_printer
*p
)
4228 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
4232 return isl_printer_free(p
);
4235 isl_die(isl_printer_get_ctx(p
), isl_error_invalid
,
4236 "no input file stored in scop",
4237 return isl_printer_free(p
));
4239 output
= isl_printer_get_file(p
);
4241 return isl_printer_free(p
);
4243 if (copy(ext
->input
, output
, scop
->start
, scop
->end
) < 0)
4244 return isl_printer_free(p
);