2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
35 #include <isl/id_to_pw_aff.h>
44 #include "tree2scop.h"
46 /* Update "pc" by taking into account the writes in "stmt".
47 * That is, mark all scalar variables that are written by "stmt"
48 * as having an unknown value.
50 static __isl_give pet_context
*handle_writes(struct pet_stmt
*stmt
,
51 __isl_take pet_context
*pc
)
53 return pet_context_clear_writes_in_expr(pc
, stmt
->body
);
56 /* Update "pc" based on the write accesses in "scop".
58 static __isl_give pet_context
*scop_handle_writes(struct pet_scop
*scop
,
59 __isl_take pet_context
*pc
)
64 return pet_context_free(pc
);
65 for (i
= 0; i
< scop
->n_stmt
; ++i
)
66 pc
= handle_writes(scop
->stmts
[i
], pc
);
71 /* Convert a top-level pet_expr to a pet_scop with one statement
72 * within the context "pc".
73 * This mainly involves resolving nested expression parameters
74 * and setting the name of the iteration space.
75 * The name is given by "label" if it is non-NULL. Otherwise,
76 * it is of the form S_<stmt_nr>.
77 * The location of the statement is set to "loc".
79 static struct pet_scop
*scop_from_expr(__isl_take pet_expr
*expr
,
80 __isl_take isl_id
*label
, int stmt_nr
, __isl_take pet_loc
*loc
,
81 __isl_keep pet_context
*pc
)
87 space
= pet_context_get_space(pc
);
89 expr
= pet_expr_plug_in_args(expr
, pc
);
90 expr
= pet_expr_resolve_nested(expr
, space
);
91 expr
= pet_expr_resolve_assume(expr
, pc
);
92 domain
= pet_context_get_domain(pc
);
93 ps
= pet_stmt_from_pet_expr(domain
, loc
, label
, stmt_nr
, expr
);
94 return pet_scop_from_pet_stmt(space
, ps
);
97 /* Construct a pet_scop with a single statement killing the entire
99 * The location of the statement is set to "loc".
101 static struct pet_scop
*kill(__isl_take pet_loc
*loc
, struct pet_array
*array
,
102 __isl_keep pet_context
*pc
, struct pet_state
*state
)
107 isl_multi_pw_aff
*index
;
110 struct pet_scop
*scop
;
114 ctx
= isl_set_get_ctx(array
->extent
);
115 access
= isl_map_from_range(isl_set_copy(array
->extent
));
116 id
= isl_set_get_tuple_id(array
->extent
);
117 space
= isl_space_alloc(ctx
, 0, 0, 0);
118 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
119 index
= isl_multi_pw_aff_zero(space
);
120 expr
= pet_expr_kill_from_access_and_index(access
, index
);
121 return scop_from_expr(expr
, NULL
, state
->n_stmt
++, loc
, pc
);
127 /* Construct and return a pet_array corresponding to the variable
128 * accessed by "access" by calling the extract_array callback.
130 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
131 __isl_keep pet_context
*pc
, struct pet_state
*state
)
133 return state
->extract_array(access
, pc
, state
->user
);
136 /* Construct a pet_scop for a (single) variable declaration
137 * within the context "pc".
139 * The scop contains the variable being declared (as an array)
140 * and a statement killing the array.
142 * If the declaration comes with an initialization, then the scop
143 * also contains an assignment to the variable.
145 static struct pet_scop
*scop_from_decl(__isl_keep pet_tree
*tree
,
146 __isl_keep pet_context
*pc
, struct pet_state
*state
)
150 struct pet_array
*array
;
151 struct pet_scop
*scop_decl
, *scop
;
152 pet_expr
*lhs
, *rhs
, *pe
;
154 array
= extract_array(tree
->u
.d
.var
, pc
, state
);
157 scop_decl
= kill(pet_tree_get_loc(tree
), array
, pc
, state
);
158 scop_decl
= pet_scop_add_array(scop_decl
, array
);
160 if (tree
->type
!= pet_tree_decl_init
)
163 lhs
= pet_expr_copy(tree
->u
.d
.var
);
164 rhs
= pet_expr_copy(tree
->u
.d
.init
);
165 type_size
= pet_expr_get_type_size(lhs
);
166 pe
= pet_expr_new_binary(type_size
, pet_op_assign
, lhs
, rhs
);
167 scop
= scop_from_expr(pe
, NULL
, state
->n_stmt
++,
168 pet_tree_get_loc(tree
), pc
);
170 scop_decl
= pet_scop_prefix(scop_decl
, 0);
171 scop
= pet_scop_prefix(scop
, 1);
173 ctx
= pet_tree_get_ctx(tree
);
174 scop
= pet_scop_add_seq(ctx
, scop_decl
, scop
);
179 /* Embed the given iteration domain in an extra outer loop
180 * with induction variable "var".
181 * If this variable appeared as a parameter in the constraints,
182 * it is replaced by the new outermost dimension.
184 static __isl_give isl_set
*embed(__isl_take isl_set
*set
,
185 __isl_take isl_id
*var
)
189 set
= isl_set_insert_dims(set
, isl_dim_set
, 0, 1);
190 pos
= isl_set_find_dim_by_id(set
, isl_dim_param
, var
);
192 set
= isl_set_equate(set
, isl_dim_param
, pos
, isl_dim_set
, 0);
193 set
= isl_set_project_out(set
, isl_dim_param
, pos
, 1);
200 /* Return those elements in the space of "cond" that come after
201 * (based on "sign") an element in "cond".
203 static __isl_give isl_set
*after(__isl_take isl_set
*cond
, int sign
)
205 isl_map
*previous_to_this
;
208 previous_to_this
= isl_map_lex_lt(isl_set_get_space(cond
));
210 previous_to_this
= isl_map_lex_gt(isl_set_get_space(cond
));
212 cond
= isl_set_apply(cond
, previous_to_this
);
217 /* Remove those iterations of "domain" that have an earlier iteration
218 * (based on "sign") where "skip" is satisfied.
219 * "domain" has an extra outer loop compared to "skip".
220 * The skip condition is first embedded in the same space as "domain".
221 * If "apply_skip_map" is set, then "skip_map" is first applied
222 * to the embedded skip condition before removing it from the domain.
224 static __isl_give isl_set
*apply_affine_break(__isl_take isl_set
*domain
,
225 __isl_take isl_set
*skip
, int sign
,
226 int apply_skip_map
, __isl_keep isl_map
*skip_map
)
228 skip
= embed(skip
, isl_set_get_dim_id(domain
, isl_dim_set
, 0));
230 skip
= isl_set_apply(skip
, isl_map_copy(skip_map
));
231 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
232 return isl_set_subtract(domain
, after(skip
, sign
));
235 /* Create the infinite iteration domain
239 static __isl_give isl_set
*infinite_domain(__isl_take isl_id
*id
)
241 isl_ctx
*ctx
= isl_id_get_ctx(id
);
244 domain
= isl_set_nat_universe(isl_space_set_alloc(ctx
, 0, 1));
245 domain
= isl_set_set_dim_id(domain
, isl_dim_set
, 0, id
);
250 /* Create an identity affine expression on the space containing "domain",
251 * which is assumed to be one-dimensional.
253 static __isl_give isl_aff
*identity_aff(__isl_keep isl_set
*domain
)
257 ls
= isl_local_space_from_space(isl_set_get_space(domain
));
258 return isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
261 /* Create an affine expression that maps elements
262 * of a single-dimensional array "id_test" to the previous element
263 * (according to "inc"), provided this element belongs to "domain".
264 * That is, create the affine expression
266 * { id[x] -> id[x - inc] : x - inc in domain }
268 static __isl_give isl_multi_pw_aff
*map_to_previous(__isl_take isl_id
*id_test
,
269 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
274 isl_multi_pw_aff
*prev
;
276 space
= isl_set_get_space(domain
);
277 ls
= isl_local_space_from_space(space
);
278 aff
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
279 aff
= isl_aff_add_constant_val(aff
, isl_val_neg(inc
));
280 prev
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
281 domain
= isl_set_preimage_multi_pw_aff(domain
,
282 isl_multi_pw_aff_copy(prev
));
283 prev
= isl_multi_pw_aff_intersect_domain(prev
, domain
);
284 prev
= isl_multi_pw_aff_set_tuple_id(prev
, isl_dim_out
, id_test
);
289 /* Add an implication to "scop" expressing that if an element of
290 * virtual array "id_test" has value "satisfied" then all previous elements
291 * of this array also have that value. The set of previous elements
292 * is bounded by "domain". If "sign" is negative then the iterator
293 * is decreasing and we express that all subsequent array elements
294 * (but still defined previously) have the same value.
296 static struct pet_scop
*add_implication(struct pet_scop
*scop
,
297 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
, int sign
,
303 domain
= isl_set_set_tuple_id(domain
, id_test
);
304 space
= isl_set_get_space(domain
);
306 map
= isl_map_lex_ge(space
);
308 map
= isl_map_lex_le(space
);
309 map
= isl_map_intersect_range(map
, domain
);
310 scop
= pet_scop_add_implication(scop
, map
, satisfied
);
315 /* Add a filter to "scop" that imposes that it is only executed
316 * when the variable identified by "id_test" has a zero value
317 * for all previous iterations of "domain".
319 * In particular, add a filter that imposes that the array
320 * has a zero value at the previous iteration of domain and
321 * add an implication that implies that it then has that
322 * value for all previous iterations.
324 static struct pet_scop
*scop_add_break(struct pet_scop
*scop
,
325 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
,
326 __isl_take isl_val
*inc
)
328 isl_multi_pw_aff
*prev
;
329 int sign
= isl_val_sgn(inc
);
331 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
332 scop
= add_implication(scop
, id_test
, domain
, sign
, 0);
333 scop
= pet_scop_filter(scop
, prev
, 0);
338 static struct pet_scop
*scop_from_tree(__isl_keep pet_tree
*tree
,
339 __isl_keep pet_context
*pc
, struct pet_state
*state
);
341 /* Construct a pet_scop for an infinite loop around the given body
342 * within the context "pc".
344 * We extract a pet_scop for the body and then embed it in a loop with
353 * If the body contains any break, then it is taken into
354 * account in apply_affine_break (if the skip condition is affine)
355 * or in scop_add_break (if the skip condition is not affine).
357 * Note that in case of an affine skip condition,
358 * since we are dealing with a loop without loop iterator,
359 * the skip condition cannot refer to the current loop iterator and
360 * so effectively, the iteration domain is of the form
362 * { [0]; [t] : t >= 1 and not skip }
364 static struct pet_scop
*scop_from_infinite_loop(__isl_keep pet_tree
*body
,
365 __isl_keep pet_context
*pc
, struct pet_state
*state
)
368 isl_id
*id
, *id_test
;
372 struct pet_scop
*scop
;
373 int has_affine_break
;
376 ctx
= pet_tree_get_ctx(body
);
377 id
= isl_id_alloc(ctx
, "t", NULL
);
378 domain
= infinite_domain(isl_id_copy(id
));
379 ident
= identity_aff(domain
);
381 scop
= scop_from_tree(body
, pc
, state
);
383 has_affine_break
= pet_scop_has_affine_skip(scop
, pet_skip_later
);
384 if (has_affine_break
)
385 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
386 has_var_break
= pet_scop_has_var_skip(scop
, pet_skip_later
);
388 id_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
390 scop
= pet_scop_embed(scop
, isl_set_copy(domain
),
391 isl_aff_copy(ident
), ident
, id
);
392 if (has_affine_break
) {
393 domain
= apply_affine_break(domain
, skip
, 1, 0, NULL
);
394 scop
= pet_scop_intersect_domain_prefix(scop
,
395 isl_set_copy(domain
));
398 scop
= scop_add_break(scop
, id_test
, domain
, isl_val_one(ctx
));
400 isl_set_free(domain
);
405 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
410 * within the context "pc".
412 static struct pet_scop
*scop_from_infinite_for(__isl_keep pet_tree
*tree
,
413 __isl_keep pet_context
*pc
, struct pet_state
*state
)
415 struct pet_scop
*scop
;
417 pc
= pet_context_copy(pc
);
418 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
420 scop
= scop_from_infinite_loop(tree
->u
.l
.body
, pc
, state
);
422 pet_context_free(pc
);
427 /* Construct a pet_scop for a while loop of the form
432 * within the context "pc".
433 * In particular, construct a scop for an infinite loop around body and
434 * intersect the domain with the affine expression.
435 * Note that this intersection may result in an empty loop.
437 static struct pet_scop
*scop_from_affine_while(__isl_keep pet_tree
*tree
,
438 __isl_take isl_pw_aff
*pa
, __isl_take pet_context
*pc
,
439 struct pet_state
*state
)
441 struct pet_scop
*scop
;
445 valid
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
446 dom
= isl_pw_aff_non_zero_set(pa
);
447 scop
= scop_from_infinite_loop(tree
->u
.l
.body
, pc
, state
);
448 scop
= pet_scop_restrict(scop
, isl_set_params(dom
));
449 scop
= pet_scop_restrict_context(scop
, isl_set_params(valid
));
451 pet_context_free(pc
);
455 /* Construct a scop for a while, given the scops for the condition
456 * and the body, the filter identifier and the iteration domain of
459 * In particular, the scop for the condition is filtered to depend
460 * on "id_test" evaluating to true for all previous iterations
461 * of the loop, while the scop for the body is filtered to depend
462 * on "id_test" evaluating to true for all iterations up to the
464 * The actual filter only imposes that this virtual array has
465 * value one on the previous or the current iteration.
466 * The fact that this condition also applies to the previous
467 * iterations is enforced by an implication.
469 * These filtered scops are then combined into a single scop.
471 * "sign" is positive if the iterator increases and negative
474 static struct pet_scop
*scop_add_while(struct pet_scop
*scop_cond
,
475 struct pet_scop
*scop_body
, __isl_take isl_id
*id_test
,
476 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
478 isl_ctx
*ctx
= isl_set_get_ctx(domain
);
480 isl_multi_pw_aff
*test_index
;
481 isl_multi_pw_aff
*prev
;
482 int sign
= isl_val_sgn(inc
);
483 struct pet_scop
*scop
;
485 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
486 scop_cond
= pet_scop_filter(scop_cond
, prev
, 1);
488 space
= isl_space_map_from_set(isl_set_get_space(domain
));
489 test_index
= isl_multi_pw_aff_identity(space
);
490 test_index
= isl_multi_pw_aff_set_tuple_id(test_index
, isl_dim_out
,
491 isl_id_copy(id_test
));
492 scop_body
= pet_scop_filter(scop_body
, test_index
, 1);
494 scop
= pet_scop_add_seq(ctx
, scop_cond
, scop_body
);
495 scop
= add_implication(scop
, id_test
, domain
, sign
, 1);
500 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
501 * evaluating "cond" and writing the result to a virtual scalar,
502 * as expressed by "index".
503 * Do so within the context "pc".
504 * The location of the statement is set to "loc".
506 static struct pet_scop
*scop_from_non_affine_condition(
507 __isl_take pet_expr
*cond
, int stmt_nr
,
508 __isl_take isl_multi_pw_aff
*index
,
509 __isl_take pet_loc
*loc
, __isl_keep pet_context
*pc
)
511 pet_expr
*expr
, *write
;
513 write
= pet_expr_from_index(index
);
514 write
= pet_expr_access_set_write(write
, 1);
515 write
= pet_expr_access_set_read(write
, 0);
516 expr
= pet_expr_new_binary(1, pet_op_assign
, write
, cond
);
518 return scop_from_expr(expr
, NULL
, stmt_nr
, loc
, pc
);
521 /* Construct a generic while scop, with iteration domain
522 * { [t] : t >= 0 } around the scop for "tree_body" within the context "pc".
523 * The scop consists of two parts,
524 * one for evaluating the condition "cond" and one for the body.
525 * If "expr_inc" is not NULL, then a scop for evaluating this expression
526 * is added at the end of the body,
527 * after replacing any skip conditions resulting from continue statements
528 * by the skip conditions resulting from break statements (if any).
530 * The schedule is adjusted to reflect that the condition is evaluated
531 * before the body is executed and the body is filtered to depend
532 * on the result of the condition evaluating to true on all iterations
533 * up to the current iteration, while the evaluation of the condition itself
534 * is filtered to depend on the result of the condition evaluating to true
535 * on all previous iterations.
536 * The context of the scop representing the body is dropped
537 * because we don't know how many times the body will be executed,
540 * If the body contains any break, then it is taken into
541 * account in apply_affine_break (if the skip condition is affine)
542 * or in scop_add_break (if the skip condition is not affine).
544 * Note that in case of an affine skip condition,
545 * since we are dealing with a loop without loop iterator,
546 * the skip condition cannot refer to the current loop iterator and
547 * so effectively, the iteration domain is of the form
549 * { [0]; [t] : t >= 1 and not skip }
551 static struct pet_scop
*scop_from_non_affine_while(__isl_take pet_expr
*cond
,
552 __isl_take pet_loc
*loc
, __isl_keep pet_tree
*tree_body
,
553 __isl_take pet_expr
*expr_inc
, __isl_take pet_context
*pc
,
554 struct pet_state
*state
)
557 isl_id
*id
, *id_test
, *id_break_test
;
559 isl_multi_pw_aff
*test_index
;
563 struct pet_scop
*scop
, *scop_body
;
564 int has_affine_break
;
568 space
= pet_context_get_space(pc
);
569 test_index
= pet_create_test_index(space
, state
->n_test
++);
570 scop
= scop_from_non_affine_condition(cond
, state
->n_stmt
++,
571 isl_multi_pw_aff_copy(test_index
),
572 pet_loc_copy(loc
), pc
);
573 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
, isl_dim_out
);
574 domain
= pet_context_get_domain(pc
);
575 scop
= pet_scop_add_boolean_array(scop
, domain
,
576 test_index
, state
->int_size
);
578 id
= isl_id_alloc(ctx
, "t", NULL
);
579 domain
= infinite_domain(isl_id_copy(id
));
580 ident
= identity_aff(domain
);
582 scop_body
= scop_from_tree(tree_body
, pc
, state
);
584 has_affine_break
= pet_scop_has_affine_skip(scop_body
, pet_skip_later
);
585 if (has_affine_break
)
586 skip
= pet_scop_get_affine_skip_domain(scop_body
,
588 has_var_break
= pet_scop_has_var_skip(scop_body
, pet_skip_later
);
590 id_break_test
= pet_scop_get_skip_id(scop_body
, pet_skip_later
);
592 scop
= pet_scop_prefix(scop
, 0);
593 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), isl_aff_copy(ident
),
594 isl_aff_copy(ident
), isl_id_copy(id
));
595 scop_body
= pet_scop_reset_context(scop_body
);
596 scop_body
= pet_scop_prefix(scop_body
, 1);
598 struct pet_scop
*scop_inc
;
599 scop_inc
= scop_from_expr(expr_inc
, NULL
, state
->n_stmt
++,
601 scop_inc
= pet_scop_prefix(scop_inc
, 2);
602 if (pet_scop_has_skip(scop_body
, pet_skip_later
)) {
603 isl_multi_pw_aff
*skip
;
604 skip
= pet_scop_get_skip(scop_body
, pet_skip_later
);
605 scop_body
= pet_scop_set_skip(scop_body
,
608 pet_scop_reset_skip(scop_body
, pet_skip_now
);
609 scop_body
= pet_scop_add_seq(ctx
, scop_body
, scop_inc
);
612 scop_body
= pet_scop_embed(scop_body
, isl_set_copy(domain
),
613 isl_aff_copy(ident
), ident
, id
);
615 if (has_affine_break
) {
616 domain
= apply_affine_break(domain
, skip
, 1, 0, NULL
);
617 scop
= pet_scop_intersect_domain_prefix(scop
,
618 isl_set_copy(domain
));
619 scop_body
= pet_scop_intersect_domain_prefix(scop_body
,
620 isl_set_copy(domain
));
623 scop
= scop_add_break(scop
, isl_id_copy(id_break_test
),
624 isl_set_copy(domain
), isl_val_one(ctx
));
625 scop_body
= scop_add_break(scop_body
, id_break_test
,
626 isl_set_copy(domain
), isl_val_one(ctx
));
628 scop
= scop_add_while(scop
, scop_body
, id_test
, domain
,
631 pet_context_free(pc
);
635 /* Check if the while loop is of the form
637 * while (affine expression)
640 * If so, call scop_from_affine_while to construct a scop.
642 * Otherwise, pass control to scop_from_non_affine_while.
644 * "pc" is the context in which the affine expressions in the scop are created.
646 static struct pet_scop
*scop_from_while(__isl_keep pet_tree
*tree
,
647 __isl_keep pet_context
*pc
, struct pet_state
*state
)
655 pc
= pet_context_copy(pc
);
656 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
658 cond_expr
= pet_expr_copy(tree
->u
.l
.cond
);
659 cond_expr
= pet_expr_plug_in_args(cond_expr
, pc
);
660 pa
= pet_expr_extract_affine_condition(cond_expr
, pc
);
661 pet_expr_free(cond_expr
);
666 if (!isl_pw_aff_involves_nan(pa
))
667 return scop_from_affine_while(tree
, pa
, pc
, state
);
669 return scop_from_non_affine_while(pet_expr_copy(tree
->u
.l
.cond
),
670 pet_tree_get_loc(tree
), tree
->u
.l
.body
, NULL
,
673 pet_context_free(pc
);
677 /* Check whether "cond" expresses a simple loop bound
678 * on the only set dimension.
679 * In particular, if "up" is set then "cond" should contain only
680 * upper bounds on the set dimension.
681 * Otherwise, it should contain only lower bounds.
683 static int is_simple_bound(__isl_keep isl_set
*cond
, __isl_keep isl_val
*inc
)
685 if (isl_val_is_pos(inc
))
686 return !isl_set_dim_has_any_lower_bound(cond
, isl_dim_set
, 0);
688 return !isl_set_dim_has_any_upper_bound(cond
, isl_dim_set
, 0);
691 /* Extend a condition on a given iteration of a loop to one that
692 * imposes the same condition on all previous iterations.
693 * "domain" expresses the lower [upper] bound on the iterations
694 * when inc is positive [negative].
696 * In particular, we construct the condition (when inc is positive)
698 * forall i' : (domain(i') and i' <= i) => cond(i')
700 * which is equivalent to
702 * not exists i' : domain(i') and i' <= i and not cond(i')
704 * We construct this set by negating cond, applying a map
706 * { [i'] -> [i] : domain(i') and i' <= i }
708 * and then negating the result again.
710 static __isl_give isl_set
*valid_for_each_iteration(__isl_take isl_set
*cond
,
711 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
713 isl_map
*previous_to_this
;
715 if (isl_val_is_pos(inc
))
716 previous_to_this
= isl_map_lex_le(isl_set_get_space(domain
));
718 previous_to_this
= isl_map_lex_ge(isl_set_get_space(domain
));
720 previous_to_this
= isl_map_intersect_domain(previous_to_this
, domain
);
722 cond
= isl_set_complement(cond
);
723 cond
= isl_set_apply(cond
, previous_to_this
);
724 cond
= isl_set_complement(cond
);
731 /* Construct a domain of the form
733 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
735 static __isl_give isl_set
*strided_domain(__isl_take isl_id
*id
,
736 __isl_take isl_pw_aff
*init
, __isl_take isl_val
*inc
)
742 init
= isl_pw_aff_insert_dims(init
, isl_dim_in
, 0, 1);
743 dim
= isl_pw_aff_get_domain_space(init
);
744 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
745 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_in
, 0, inc
);
746 init
= isl_pw_aff_add(init
, isl_pw_aff_from_aff(aff
));
748 dim
= isl_space_set_alloc(isl_pw_aff_get_ctx(init
), 1, 1);
749 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
750 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
751 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
753 set
= isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff
), init
);
755 set
= isl_set_lower_bound_si(set
, isl_dim_set
, 0, 0);
757 return isl_set_params(set
);
760 /* Assuming "cond" represents a bound on a loop where the loop
761 * iterator "iv" is incremented (or decremented) by one, check if wrapping
764 * Under the given assumptions, wrapping is only possible if "cond" allows
765 * for the last value before wrapping, i.e., 2^width - 1 in case of an
766 * increasing iterator and 0 in case of a decreasing iterator.
768 static int can_wrap(__isl_keep isl_set
*cond
, __isl_keep pet_expr
*iv
,
769 __isl_keep isl_val
*inc
)
776 test
= isl_set_copy(cond
);
778 ctx
= isl_set_get_ctx(test
);
779 if (isl_val_is_neg(inc
))
780 limit
= isl_val_zero(ctx
);
782 limit
= isl_val_int_from_ui(ctx
, pet_expr_get_type_size(iv
));
783 limit
= isl_val_2exp(limit
);
784 limit
= isl_val_sub_ui(limit
, 1);
787 test
= isl_set_fix_val(cond
, isl_dim_set
, 0, limit
);
788 cw
= !isl_set_is_empty(test
);
794 /* Given a one-dimensional space, construct the following affine expression
797 * { [v] -> [v mod 2^width] }
799 * where width is the number of bits used to represent the values
800 * of the unsigned variable "iv".
802 static __isl_give isl_aff
*compute_wrapping(__isl_take isl_space
*dim
,
803 __isl_keep pet_expr
*iv
)
809 ctx
= isl_space_get_ctx(dim
);
810 mod
= isl_val_int_from_ui(ctx
, pet_expr_get_type_size(iv
));
811 mod
= isl_val_2exp(mod
);
813 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
814 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
815 aff
= isl_aff_mod_val(aff
, mod
);
820 /* Project out the parameter "id" from "set".
822 static __isl_give isl_set
*set_project_out_by_id(__isl_take isl_set
*set
,
823 __isl_keep isl_id
*id
)
827 pos
= isl_set_find_dim_by_id(set
, isl_dim_param
, id
);
829 set
= isl_set_project_out(set
, isl_dim_param
, pos
, 1);
834 /* Compute the set of parameters for which "set1" is a subset of "set2".
836 * set1 is a subset of set2 if
838 * forall i in set1 : i in set2
842 * not exists i in set1 and i not in set2
846 * not exists i in set1 \ set2
848 static __isl_give isl_set
*enforce_subset(__isl_take isl_set
*set1
,
849 __isl_take isl_set
*set2
)
851 return isl_set_complement(isl_set_params(isl_set_subtract(set1
, set2
)));
854 /* Compute the set of parameter values for which "cond" holds
855 * on the next iteration for each element of "dom".
857 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
858 * and then compute the set of parameters for which the result is a subset
861 static __isl_give isl_set
*valid_on_next(__isl_take isl_set
*cond
,
862 __isl_take isl_set
*dom
, __isl_take isl_val
*inc
)
868 space
= isl_set_get_space(dom
);
869 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
870 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
871 aff
= isl_aff_add_constant_val(aff
, inc
);
872 next
= isl_map_from_basic_map(isl_basic_map_from_aff(aff
));
874 dom
= isl_set_apply(dom
, next
);
876 return enforce_subset(dom
, cond
);
879 /* Extract the for loop "tree" as a while loop within the context "pc".
881 * That is, the for loop has the form
883 * for (iv = init; cond; iv += inc)
894 * except that the skips resulting from any continue statements
895 * in body do not apply to the increment, but are replaced by the skips
896 * resulting from break statements.
898 * If the loop iterator is declared in the for loop, then it is killed before
899 * and after the loop.
901 static struct pet_scop
*scop_from_non_affine_for(__isl_keep pet_tree
*tree
,
902 __isl_take pet_context
*pc
, struct pet_state
*state
)
906 pet_expr
*expr_iv
, *init
, *inc
;
907 struct pet_scop
*scop_init
, *scop
;
909 struct pet_array
*array
;
910 struct pet_scop
*scop_kill
;
912 iv
= pet_expr_access_get_id(tree
->u
.l
.iv
);
913 pc
= pet_context_mark_assigned(pc
, iv
);
915 declared
= tree
->u
.l
.declared
;
917 expr_iv
= pet_expr_copy(tree
->u
.l
.iv
);
918 type_size
= pet_expr_get_type_size(expr_iv
);
919 init
= pet_expr_copy(tree
->u
.l
.init
);
920 init
= pet_expr_new_binary(type_size
, pet_op_assign
, expr_iv
, init
);
921 scop_init
= scop_from_expr(init
, NULL
, state
->n_stmt
++,
922 pet_tree_get_loc(tree
), pc
);
923 scop_init
= pet_scop_prefix(scop_init
, declared
);
925 expr_iv
= pet_expr_copy(tree
->u
.l
.iv
);
926 type_size
= pet_expr_get_type_size(expr_iv
);
927 inc
= pet_expr_copy(tree
->u
.l
.inc
);
928 inc
= pet_expr_new_binary(type_size
, pet_op_add_assign
, expr_iv
, inc
);
930 scop
= scop_from_non_affine_while(pet_expr_copy(tree
->u
.l
.cond
),
931 pet_tree_get_loc(tree
), tree
->u
.l
.body
, inc
,
932 pet_context_copy(pc
), state
);
934 scop
= pet_scop_prefix(scop
, declared
+ 1);
935 scop
= pet_scop_add_seq(state
->ctx
, scop_init
, scop
);
938 pet_context_free(pc
);
942 array
= extract_array(tree
->u
.l
.iv
, pc
, state
);
945 scop_kill
= kill(pet_tree_get_loc(tree
), array
, pc
, state
);
946 scop_kill
= pet_scop_prefix(scop_kill
, 0);
947 scop
= pet_scop_add_seq(state
->ctx
, scop_kill
, scop
);
948 scop_kill
= kill(pet_tree_get_loc(tree
), array
, pc
, state
);
949 scop_kill
= pet_scop_add_array(scop_kill
, array
);
950 scop_kill
= pet_scop_prefix(scop_kill
, 3);
951 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_kill
);
953 pet_context_free(pc
);
957 /* Given an access expression "expr", is the variable accessed by
958 * "expr" assigned anywhere inside "tree"?
960 static int is_assigned(__isl_keep pet_expr
*expr
, __isl_keep pet_tree
*tree
)
965 id
= pet_expr_access_get_id(expr
);
966 assigned
= pet_tree_writes(tree
, id
);
972 /* Are all nested access parameters in "pa" allowed given "tree".
973 * In particular, is none of them written by anywhere inside "tree".
975 * If "tree" has any continue nodes in the current loop level,
976 * then no nested access parameters are allowed.
977 * In particular, if there is any nested access in a guard
978 * for a piece of code containing a "continue", then we want to introduce
979 * a separate statement for evaluating this guard so that we can express
980 * that the result is false for all previous iterations.
982 static int is_nested_allowed(__isl_keep isl_pw_aff
*pa
,
983 __isl_keep pet_tree
*tree
)
990 if (!pet_nested_any_in_pw_aff(pa
))
993 if (pet_tree_has_continue(tree
))
996 nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
997 for (i
= 0; i
< nparam
; ++i
) {
998 isl_id
*id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
1002 if (!pet_nested_in_id(id
)) {
1007 expr
= pet_nested_extract_expr(id
);
1008 allowed
= pet_expr_get_type(expr
) == pet_expr_access
&&
1009 !is_assigned(expr
, tree
);
1011 pet_expr_free(expr
);
1021 /* Construct a pet_scop for a for tree with static affine initialization
1022 * and constant increment within the context "pc".
1024 * The condition is allowed to contain nested accesses, provided
1025 * they are not being written to inside the body of the loop.
1026 * Otherwise, or if the condition is otherwise non-affine, the for loop is
1027 * essentially treated as a while loop, with iteration domain
1028 * { [i] : i >= init }.
1030 * We extract a pet_scop for the body and then embed it in a loop with
1031 * iteration domain and schedule
1033 * { [i] : i >= init and condition' }
1038 * { [i] : i <= init and condition' }
1041 * Where condition' is equal to condition if the latter is
1042 * a simple upper [lower] bound and a condition that is extended
1043 * to apply to all previous iterations otherwise.
1045 * If the condition is non-affine, then we drop the condition from the
1046 * iteration domain and instead create a separate statement
1047 * for evaluating the condition. The body is then filtered to depend
1048 * on the result of the condition evaluating to true on all iterations
1049 * up to the current iteration, while the evaluation the condition itself
1050 * is filtered to depend on the result of the condition evaluating to true
1051 * on all previous iterations.
1052 * The context of the scop representing the body is dropped
1053 * because we don't know how many times the body will be executed,
1056 * If the stride of the loop is not 1, then "i >= init" is replaced by
1058 * (exists a: i = init + stride * a and a >= 0)
1060 * If the loop iterator i is unsigned, then wrapping may occur.
1061 * We therefore use a virtual iterator instead that does not wrap.
1062 * However, the condition in the code applies
1063 * to the wrapped value, so we need to change condition(i)
1064 * into condition([i % 2^width]). Similarly, we replace all accesses
1065 * to the original iterator by the wrapping of the virtual iterator.
1066 * Note that there may be no need to perform this final wrapping
1067 * if the loop condition (after wrapping) satisfies certain conditions.
1068 * However, the is_simple_bound condition is not enough since it doesn't
1069 * check if there even is an upper bound.
1071 * Wrapping on unsigned iterators can be avoided entirely if
1072 * loop condition is simple, the loop iterator is incremented
1073 * [decremented] by one and the last value before wrapping cannot
1074 * possibly satisfy the loop condition.
1076 * Valid parameters for a for loop are those for which the initial
1077 * value itself, the increment on each domain iteration and
1078 * the condition on both the initial value and
1079 * the result of incrementing the iterator for each iteration of the domain
1081 * If the loop condition is non-affine, then we only consider validity
1082 * of the initial value.
1084 * If the body contains any break, then we keep track of it in "skip"
1085 * (if the skip condition is affine) or it is handled in scop_add_break
1086 * (if the skip condition is not affine).
1087 * Note that the affine break condition needs to be considered with
1088 * respect to previous iterations in the virtual domain (if any).
1090 static struct pet_scop
*scop_from_affine_for(__isl_keep pet_tree
*tree
,
1091 __isl_take isl_pw_aff
*init_val
, __isl_take isl_pw_aff
*pa_inc
,
1092 __isl_take isl_val
*inc
, __isl_take pet_context
*pc
,
1093 struct pet_state
*state
)
1095 isl_local_space
*ls
;
1098 isl_set
*cond
= NULL
;
1099 isl_set
*skip
= NULL
;
1100 isl_id
*id
, *id_test
= NULL
, *id_break_test
;
1101 struct pet_scop
*scop
, *scop_cond
= NULL
;
1107 int has_affine_break
;
1109 isl_map
*rev_wrap
= NULL
;
1110 isl_aff
*wrap
= NULL
;
1112 isl_set
*valid_init
;
1113 isl_set
*valid_cond
;
1114 isl_set
*valid_cond_init
;
1115 isl_set
*valid_cond_next
;
1117 pet_expr
*cond_expr
;
1118 pet_context
*pc_nested
;
1120 id
= pet_expr_access_get_id(tree
->u
.l
.iv
);
1122 cond_expr
= pet_expr_copy(tree
->u
.l
.cond
);
1123 cond_expr
= pet_expr_plug_in_args(cond_expr
, pc
);
1124 pc_nested
= pet_context_copy(pc
);
1125 pc_nested
= pet_context_set_allow_nested(pc_nested
, 1);
1126 pa
= pet_expr_extract_affine_condition(cond_expr
, pc_nested
);
1127 pet_context_free(pc_nested
);
1128 pet_expr_free(cond_expr
);
1130 valid_inc
= isl_pw_aff_domain(pa_inc
);
1132 is_unsigned
= pet_expr_get_type_size(tree
->u
.l
.iv
) > 0;
1134 is_non_affine
= isl_pw_aff_involves_nan(pa
) ||
1135 !is_nested_allowed(pa
, tree
->u
.l
.body
);
1137 pa
= isl_pw_aff_free(pa
);
1139 valid_cond
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1140 cond
= isl_pw_aff_non_zero_set(pa
);
1142 cond
= isl_set_universe(isl_space_set_alloc(state
->ctx
, 0, 0));
1144 cond
= embed(cond
, isl_id_copy(id
));
1145 valid_cond
= isl_set_coalesce(valid_cond
);
1146 valid_cond
= embed(valid_cond
, isl_id_copy(id
));
1147 valid_inc
= embed(valid_inc
, isl_id_copy(id
));
1148 is_one
= isl_val_is_one(inc
) || isl_val_is_negone(inc
);
1149 is_virtual
= is_unsigned
&&
1150 (!is_one
|| can_wrap(cond
, tree
->u
.l
.iv
, inc
));
1152 valid_cond_init
= enforce_subset(
1153 isl_map_range(isl_map_from_pw_aff(isl_pw_aff_copy(init_val
))),
1154 isl_set_copy(valid_cond
));
1155 if (is_one
&& !is_virtual
) {
1156 isl_pw_aff_free(init_val
);
1157 pa
= pet_expr_extract_comparison(
1158 isl_val_is_pos(inc
) ? pet_op_ge
: pet_op_le
,
1159 tree
->u
.l
.iv
, tree
->u
.l
.init
, pc
);
1160 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1161 valid_init
= set_project_out_by_id(valid_init
, id
);
1162 domain
= isl_pw_aff_non_zero_set(pa
);
1164 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(init_val
));
1165 domain
= strided_domain(isl_id_copy(id
), init_val
,
1169 domain
= embed(domain
, isl_id_copy(id
));
1171 wrap
= compute_wrapping(isl_set_get_space(cond
), tree
->u
.l
.iv
);
1172 rev_wrap
= isl_map_from_aff(isl_aff_copy(wrap
));
1173 rev_wrap
= isl_map_reverse(rev_wrap
);
1174 cond
= isl_set_apply(cond
, isl_map_copy(rev_wrap
));
1175 valid_cond
= isl_set_apply(valid_cond
, isl_map_copy(rev_wrap
));
1176 valid_inc
= isl_set_apply(valid_inc
, isl_map_copy(rev_wrap
));
1178 is_simple
= is_simple_bound(cond
, inc
);
1180 cond
= isl_set_gist(cond
, isl_set_copy(domain
));
1181 is_simple
= is_simple_bound(cond
, inc
);
1184 cond
= valid_for_each_iteration(cond
,
1185 isl_set_copy(domain
), isl_val_copy(inc
));
1186 domain
= isl_set_intersect(domain
, cond
);
1187 domain
= isl_set_set_dim_id(domain
, isl_dim_set
, 0, isl_id_copy(id
));
1188 ls
= isl_local_space_from_space(isl_set_get_space(domain
));
1189 sched
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
1190 if (isl_val_is_neg(inc
))
1191 sched
= isl_aff_neg(sched
);
1193 valid_cond_next
= valid_on_next(valid_cond
, isl_set_copy(domain
),
1195 valid_inc
= enforce_subset(isl_set_copy(domain
), valid_inc
);
1198 wrap
= identity_aff(domain
);
1200 if (is_non_affine
) {
1202 isl_multi_pw_aff
*test_index
;
1203 space
= pet_context_get_space(pc
);
1204 test_index
= pet_create_test_index(space
, state
->n_test
++);
1205 scop_cond
= scop_from_non_affine_condition(
1206 pet_expr_copy(tree
->u
.l
.cond
), state
->n_stmt
++,
1207 isl_multi_pw_aff_copy(test_index
),
1208 pet_tree_get_loc(tree
), pc
);
1209 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
,
1211 scop_cond
= pet_scop_add_boolean_array(scop_cond
,
1212 pet_context_get_domain(pc
), test_index
,
1214 scop_cond
= pet_scop_prefix(scop_cond
, 0);
1215 scop_cond
= pet_scop_embed(scop_cond
, isl_set_copy(domain
),
1216 isl_aff_copy(sched
), isl_aff_copy(wrap
),
1220 scop
= scop_from_tree(tree
->u
.l
.body
, pc
, state
);
1221 has_affine_break
= scop
&&
1222 pet_scop_has_affine_skip(scop
, pet_skip_later
);
1223 if (has_affine_break
)
1224 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
1225 has_var_break
= scop
&& pet_scop_has_var_skip(scop
, pet_skip_later
);
1227 id_break_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
1228 if (is_non_affine
) {
1229 scop
= pet_scop_reset_context(scop
);
1230 scop
= pet_scop_prefix(scop
, 1);
1232 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), sched
, wrap
, id
);
1233 scop
= pet_scop_resolve_nested(scop
);
1234 if (has_affine_break
) {
1235 domain
= apply_affine_break(domain
, skip
, isl_val_sgn(inc
),
1236 is_virtual
, rev_wrap
);
1237 scop
= pet_scop_intersect_domain_prefix(scop
,
1238 isl_set_copy(domain
));
1240 isl_map_free(rev_wrap
);
1242 scop
= scop_add_break(scop
, id_break_test
, isl_set_copy(domain
),
1244 if (is_non_affine
) {
1245 scop
= scop_add_while(scop_cond
, scop
, id_test
, domain
,
1247 isl_set_free(valid_inc
);
1249 scop
= pet_scop_restrict_context(scop
, valid_inc
);
1250 scop
= pet_scop_restrict_context(scop
, valid_cond_next
);
1251 scop
= pet_scop_restrict_context(scop
, valid_cond_init
);
1252 isl_set_free(domain
);
1257 scop
= pet_scop_restrict_context(scop
, isl_set_params(valid_init
));
1259 pet_context_free(pc
);
1263 /* Construct a pet_scop for a for statement within the context of "pc".
1265 * We update the context to reflect the writes to the loop variable and
1266 * the writes inside the body.
1268 * Then we check if the initialization of the for loop
1269 * is a static affine value and the increment is a constant.
1270 * If so, we construct the pet_scop using scop_from_affine_for.
1271 * Otherwise, we treat the for loop as a while loop
1272 * in scop_from_non_affine_for.
1274 static struct pet_scop
*scop_from_for(__isl_keep pet_tree
*tree
,
1275 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1279 isl_pw_aff
*pa_inc
, *init_val
;
1280 pet_context
*pc_init_val
;
1285 iv
= pet_expr_access_get_id(tree
->u
.l
.iv
);
1286 pc
= pet_context_copy(pc
);
1287 pc
= pet_context_clear_value(pc
, iv
);
1288 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
1290 pc_init_val
= pet_context_copy(pc
);
1291 pc_init_val
= pet_context_mark_unknown(pc_init_val
, isl_id_copy(iv
));
1292 init_val
= pet_expr_extract_affine(tree
->u
.l
.init
, pc_init_val
);
1293 pet_context_free(pc_init_val
);
1294 pa_inc
= pet_expr_extract_affine(tree
->u
.l
.inc
, pc
);
1295 inc
= pet_extract_cst(pa_inc
);
1296 if (!pa_inc
|| !init_val
|| !inc
)
1298 if (!isl_pw_aff_involves_nan(pa_inc
) &&
1299 !isl_pw_aff_involves_nan(init_val
) && !isl_val_is_nan(inc
))
1300 return scop_from_affine_for(tree
, init_val
, pa_inc
, inc
,
1303 isl_pw_aff_free(pa_inc
);
1304 isl_pw_aff_free(init_val
);
1306 return scop_from_non_affine_for(tree
, pc
, state
);
1308 isl_pw_aff_free(pa_inc
);
1309 isl_pw_aff_free(init_val
);
1311 pet_context_free(pc
);
1315 /* Check whether "expr" is an affine constraint within the context "pc".
1317 static int is_affine_condition(__isl_keep pet_expr
*expr
,
1318 __isl_keep pet_context
*pc
)
1323 pa
= pet_expr_extract_affine_condition(expr
, pc
);
1326 is_affine
= !isl_pw_aff_involves_nan(pa
);
1327 isl_pw_aff_free(pa
);
1332 /* Check if the given if statement is a conditional assignement
1333 * with a non-affine condition.
1335 * In particular we check if "stmt" is of the form
1342 * where the condition is non-affine and a is some array or scalar access.
1344 static int is_conditional_assignment(__isl_keep pet_tree
*tree
,
1345 __isl_keep pet_context
*pc
)
1349 pet_expr
*expr1
, *expr2
;
1351 ctx
= pet_tree_get_ctx(tree
);
1352 if (!pet_options_get_detect_conditional_assignment(ctx
))
1354 if (tree
->type
!= pet_tree_if_else
)
1356 if (tree
->u
.i
.then_body
->type
!= pet_tree_expr
)
1358 if (tree
->u
.i
.else_body
->type
!= pet_tree_expr
)
1360 expr1
= tree
->u
.i
.then_body
->u
.e
.expr
;
1361 expr2
= tree
->u
.i
.else_body
->u
.e
.expr
;
1362 if (pet_expr_get_type(expr1
) != pet_expr_op
)
1364 if (pet_expr_get_type(expr2
) != pet_expr_op
)
1366 if (pet_expr_op_get_type(expr1
) != pet_op_assign
)
1368 if (pet_expr_op_get_type(expr2
) != pet_op_assign
)
1370 expr1
= pet_expr_get_arg(expr1
, 0);
1371 expr2
= pet_expr_get_arg(expr2
, 0);
1372 equal
= pet_expr_is_equal(expr1
, expr2
);
1373 pet_expr_free(expr1
);
1374 pet_expr_free(expr2
);
1375 if (equal
< 0 || !equal
)
1377 if (is_affine_condition(tree
->u
.i
.cond
, pc
))
1383 /* Given that "tree" is of the form
1390 * where a is some array or scalar access, construct a pet_scop
1391 * corresponding to this conditional assignment within the context "pc".
1393 * The constructed pet_scop then corresponds to the expression
1395 * a = condition ? f(...) : g(...)
1397 * All access relations in f(...) are intersected with condition
1398 * while all access relation in g(...) are intersected with the complement.
1400 static struct pet_scop
*scop_from_conditional_assignment(
1401 __isl_keep pet_tree
*tree
, __isl_take pet_context
*pc
,
1402 struct pet_state
*state
)
1406 isl_set
*cond
, *comp
;
1407 isl_multi_pw_aff
*index
;
1408 pet_expr
*expr1
, *expr2
;
1409 pet_expr
*pe_cond
, *pe_then
, *pe_else
, *pe
, *pe_write
;
1410 pet_context
*pc_nested
;
1411 struct pet_scop
*scop
;
1413 pe_cond
= pet_expr_copy(tree
->u
.i
.cond
);
1414 pe_cond
= pet_expr_plug_in_args(pe_cond
, pc
);
1415 pc_nested
= pet_context_copy(pc
);
1416 pc_nested
= pet_context_set_allow_nested(pc_nested
, 1);
1417 pa
= pet_expr_extract_affine_condition(pe_cond
, pc_nested
);
1418 pet_context_free(pc_nested
);
1419 pet_expr_free(pe_cond
);
1420 cond
= isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa
));
1421 comp
= isl_pw_aff_zero_set(isl_pw_aff_copy(pa
));
1422 index
= isl_multi_pw_aff_from_pw_aff(pa
);
1424 expr1
= tree
->u
.i
.then_body
->u
.e
.expr
;
1425 expr2
= tree
->u
.i
.else_body
->u
.e
.expr
;
1427 pe_cond
= pet_expr_from_index(index
);
1429 pe_then
= pet_expr_get_arg(expr1
, 1);
1430 pe_then
= pet_expr_restrict(pe_then
, cond
);
1431 pe_else
= pet_expr_get_arg(expr2
, 1);
1432 pe_else
= pet_expr_restrict(pe_else
, comp
);
1433 pe_write
= pet_expr_get_arg(expr1
, 0);
1435 pe
= pet_expr_new_ternary(pe_cond
, pe_then
, pe_else
);
1436 type_size
= pet_expr_get_type_size(pe_write
);
1437 pe
= pet_expr_new_binary(type_size
, pet_op_assign
, pe_write
, pe
);
1439 scop
= scop_from_expr(pe
, NULL
, state
->n_stmt
++,
1440 pet_tree_get_loc(tree
), pc
);
1442 pet_context_free(pc
);
1447 /* Construct a pet_scop for a non-affine if statement within the context "pc".
1449 * We create a separate statement that writes the result
1450 * of the non-affine condition to a virtual scalar.
1451 * A constraint requiring the value of this virtual scalar to be one
1452 * is added to the iteration domains of the then branch.
1453 * Similarly, a constraint requiring the value of this virtual scalar
1454 * to be zero is added to the iteration domains of the else branch, if any.
1455 * We adjust the schedules to ensure that the virtual scalar is written
1456 * before it is read.
1458 * If there are any breaks or continues in the then and/or else
1459 * branches, then we may have to compute a new skip condition.
1460 * This is handled using a pet_skip_info object.
1461 * On initialization, the object checks if skip conditions need
1462 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
1463 * adds them in pet_skip_info_if_add.
1465 static struct pet_scop
*scop_from_non_affine_if(__isl_keep pet_tree
*tree
,
1466 __isl_take pet_context
*pc
, struct pet_state
*state
)
1471 isl_multi_pw_aff
*test_index
;
1472 struct pet_skip_info skip
;
1473 struct pet_scop
*scop
, *scop_then
, *scop_else
= NULL
;
1475 has_else
= tree
->type
== pet_tree_if_else
;
1477 space
= pet_context_get_space(pc
);
1478 test_index
= pet_create_test_index(space
, state
->n_test
++);
1479 scop
= scop_from_non_affine_condition(pet_expr_copy(tree
->u
.i
.cond
),
1480 state
->n_stmt
++, isl_multi_pw_aff_copy(test_index
),
1481 pet_tree_get_loc(tree
), pc
);
1482 domain
= pet_context_get_domain(pc
);
1483 scop
= pet_scop_add_boolean_array(scop
, domain
,
1484 isl_multi_pw_aff_copy(test_index
), state
->int_size
);
1486 scop_then
= scop_from_tree(tree
->u
.i
.then_body
, pc
, state
);
1488 scop_else
= scop_from_tree(tree
->u
.i
.else_body
, pc
, state
);
1490 pet_skip_info_if_init(&skip
, state
->ctx
, scop_then
, scop_else
,
1492 pet_skip_info_if_extract_index(&skip
, test_index
, pc
, state
);
1494 scop
= pet_scop_prefix(scop
, 0);
1495 scop_then
= pet_scop_prefix(scop_then
, 1);
1496 scop_then
= pet_scop_filter(scop_then
,
1497 isl_multi_pw_aff_copy(test_index
), 1);
1499 scop_else
= pet_scop_prefix(scop_else
, 1);
1500 scop_else
= pet_scop_filter(scop_else
, test_index
, 0);
1501 scop_then
= pet_scop_add_par(state
->ctx
, scop_then
, scop_else
);
1503 isl_multi_pw_aff_free(test_index
);
1505 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_then
);
1507 scop
= pet_skip_info_if_add(&skip
, scop
, 2);
1509 pet_context_free(pc
);
1513 /* Construct a pet_scop for an affine if statement within the context "pc".
1515 * The condition is added to the iteration domains of the then branch,
1516 * while the opposite of the condition in added to the iteration domains
1517 * of the else branch, if any.
1519 * If there are any breaks or continues in the then and/or else
1520 * branches, then we may have to compute a new skip condition.
1521 * This is handled using a pet_skip_info_if object.
1522 * On initialization, the object checks if skip conditions need
1523 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
1524 * adds them in pet_skip_info_if_add.
1526 static struct pet_scop
*scop_from_affine_if(__isl_keep pet_tree
*tree
,
1527 __isl_take isl_pw_aff
*cond
, __isl_take pet_context
*pc
,
1528 struct pet_state
*state
)
1534 struct pet_skip_info skip
;
1535 struct pet_scop
*scop
, *scop_then
, *scop_else
= NULL
;
1537 ctx
= pet_tree_get_ctx(tree
);
1539 has_else
= tree
->type
== pet_tree_if_else
;
1541 scop_then
= scop_from_tree(tree
->u
.i
.then_body
, pc
, state
);
1543 scop_else
= scop_from_tree(tree
->u
.i
.else_body
, pc
, state
);
1545 pet_skip_info_if_init(&skip
, ctx
, scop_then
, scop_else
, has_else
, 1);
1546 pet_skip_info_if_extract_cond(&skip
, cond
, pc
, state
);
1548 valid
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
1549 set
= isl_pw_aff_non_zero_set(cond
);
1550 scop
= pet_scop_restrict(scop_then
, isl_set_params(isl_set_copy(set
)));
1553 set
= isl_set_subtract(isl_set_copy(valid
), set
);
1554 scop_else
= pet_scop_restrict(scop_else
, isl_set_params(set
));
1555 scop
= pet_scop_add_par(ctx
, scop
, scop_else
);
1558 scop
= pet_scop_resolve_nested(scop
);
1559 scop
= pet_scop_restrict_context(scop
, isl_set_params(valid
));
1561 if (pet_skip_info_has_skip(&skip
))
1562 scop
= pet_scop_prefix(scop
, 0);
1563 scop
= pet_skip_info_if_add(&skip
, scop
, 1);
1565 pet_context_free(pc
);
1569 /* Construct a pet_scop for an if statement within the context "pc".
1571 * If the condition fits the pattern of a conditional assignment,
1572 * then it is handled by scop_from_conditional_assignment.
1574 * Otherwise, we check if the condition is affine.
1575 * If so, we construct the scop in scop_from_affine_if.
1576 * Otherwise, we construct the scop in scop_from_non_affine_if.
1578 * We allow the condition to be dynamic, i.e., to refer to
1579 * scalars or array elements that may be written to outside
1580 * of the given if statement. These nested accesses are then represented
1581 * as output dimensions in the wrapping iteration domain.
1582 * If it is also written _inside_ the then or else branch, then
1583 * we treat the condition as non-affine.
1584 * As explained in extract_non_affine_if, this will introduce
1585 * an extra statement.
1586 * For aesthetic reasons, we want this statement to have a statement
1587 * number that is lower than those of the then and else branches.
1588 * In order to evaluate if we will need such a statement, however, we
1589 * first construct scops for the then and else branches.
1590 * We therefore reserve a statement number if we might have to
1591 * introduce such an extra statement.
1593 static struct pet_scop
*scop_from_if(__isl_keep pet_tree
*tree
,
1594 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1598 pet_expr
*cond_expr
;
1599 pet_context
*pc_nested
;
1604 has_else
= tree
->type
== pet_tree_if_else
;
1606 pc
= pet_context_copy(pc
);
1607 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.i
.then_body
);
1609 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.i
.else_body
);
1611 if (is_conditional_assignment(tree
, pc
))
1612 return scop_from_conditional_assignment(tree
, pc
, state
);
1614 cond_expr
= pet_expr_copy(tree
->u
.i
.cond
);
1615 cond_expr
= pet_expr_plug_in_args(cond_expr
, pc
);
1616 pc_nested
= pet_context_copy(pc
);
1617 pc_nested
= pet_context_set_allow_nested(pc_nested
, 1);
1618 cond
= pet_expr_extract_affine_condition(cond_expr
, pc_nested
);
1619 pet_context_free(pc_nested
);
1620 pet_expr_free(cond_expr
);
1623 pet_context_free(pc
);
1627 if (isl_pw_aff_involves_nan(cond
)) {
1628 isl_pw_aff_free(cond
);
1629 return scop_from_non_affine_if(tree
, pc
, state
);
1632 if ((!is_nested_allowed(cond
, tree
->u
.i
.then_body
) ||
1633 (has_else
&& !is_nested_allowed(cond
, tree
->u
.i
.else_body
)))) {
1634 isl_pw_aff_free(cond
);
1635 return scop_from_non_affine_if(tree
, pc
, state
);
1638 return scop_from_affine_if(tree
, cond
, pc
, state
);
1641 /* Return a one-dimensional multi piecewise affine expression that is equal
1642 * to the constant 1 and is defined over the given domain.
1644 static __isl_give isl_multi_pw_aff
*one_mpa(__isl_take isl_space
*space
)
1646 isl_local_space
*ls
;
1649 ls
= isl_local_space_from_space(space
);
1650 aff
= isl_aff_zero_on_domain(ls
);
1651 aff
= isl_aff_set_constant_si(aff
, 1);
1653 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
1656 /* Construct a pet_scop for a continue statement with the given domain space.
1658 * We simply create an empty scop with a universal pet_skip_now
1659 * skip condition. This skip condition will then be taken into
1660 * account by the enclosing loop construct, possibly after
1661 * being incorporated into outer skip conditions.
1663 static struct pet_scop
*scop_from_continue(__isl_keep pet_tree
*tree
,
1664 __isl_take isl_space
*space
)
1666 struct pet_scop
*scop
;
1668 scop
= pet_scop_empty(isl_space_copy(space
));
1670 scop
= pet_scop_set_skip(scop
, pet_skip_now
, one_mpa(space
));
1675 /* Construct a pet_scop for a break statement with the given domain space.
1677 * We simply create an empty scop with both a universal pet_skip_now
1678 * skip condition and a universal pet_skip_later skip condition.
1679 * These skip conditions will then be taken into
1680 * account by the enclosing loop construct, possibly after
1681 * being incorporated into outer skip conditions.
1683 static struct pet_scop
*scop_from_break(__isl_keep pet_tree
*tree
,
1684 __isl_take isl_space
*space
)
1686 struct pet_scop
*scop
;
1687 isl_multi_pw_aff
*skip
;
1689 scop
= pet_scop_empty(isl_space_copy(space
));
1691 skip
= one_mpa(space
);
1692 scop
= pet_scop_set_skip(scop
, pet_skip_now
,
1693 isl_multi_pw_aff_copy(skip
));
1694 scop
= pet_scop_set_skip(scop
, pet_skip_later
, skip
);
1699 /* Extract a clone of the kill statement in "scop".
1700 * The domain of the clone is given by "domain".
1701 * "scop" is expected to have been created from a DeclStmt
1702 * and should have the kill as its first statement.
1704 static struct pet_scop
*extract_kill(__isl_keep isl_set
*domain
,
1705 struct pet_scop
*scop
, struct pet_state
*state
)
1708 struct pet_stmt
*stmt
;
1709 isl_multi_pw_aff
*index
;
1713 if (!domain
|| !scop
)
1715 if (scop
->n_stmt
< 1)
1716 isl_die(isl_set_get_ctx(domain
), isl_error_internal
,
1717 "expecting at least one statement", return NULL
);
1718 stmt
= scop
->stmts
[0];
1719 if (!pet_stmt_is_kill(stmt
))
1720 isl_die(isl_set_get_ctx(domain
), isl_error_internal
,
1721 "expecting kill statement", return NULL
);
1723 arg
= pet_expr_get_arg(stmt
->body
, 0);
1724 index
= pet_expr_access_get_index(arg
);
1725 access
= pet_expr_access_get_access(arg
);
1727 index
= isl_multi_pw_aff_reset_tuple_id(index
, isl_dim_in
);
1728 access
= isl_map_reset_tuple_id(access
, isl_dim_in
);
1729 kill
= pet_expr_kill_from_access_and_index(access
, index
);
1730 stmt
= pet_stmt_from_pet_expr(isl_set_copy(domain
),
1731 pet_loc_copy(stmt
->loc
), NULL
, state
->n_stmt
++, kill
);
1732 return pet_scop_from_pet_stmt(isl_set_get_space(domain
), stmt
);
1735 /* Does "tree" represent an assignment to a variable?
1737 * The assignment may be one of
1738 * - a declaration with initialization
1739 * - an expression with a top-level assignment operator
1741 static int is_assignment(__isl_keep pet_tree
*tree
)
1745 if (tree
->type
== pet_tree_decl_init
)
1747 return pet_tree_is_assign(tree
);
1750 /* Update "pc" by taking into account the assignment performed by "tree",
1751 * where "tree" satisfies is_assignment.
1753 * In particular, if the lhs of the assignment is a scalar variable and
1754 * if the rhs is an affine expression, then keep track of this value in "pc"
1755 * so that we can plug it in when we later come across the same variable.
1757 * The variable has already been marked as having been assigned
1758 * an unknown value by scop_handle_writes.
1760 static __isl_give pet_context
*handle_assignment(__isl_take pet_context
*pc
,
1761 __isl_keep pet_tree
*tree
)
1763 pet_expr
*var
, *val
;
1767 if (pet_tree_get_type(tree
) == pet_tree_decl_init
) {
1768 var
= pet_tree_decl_get_var(tree
);
1769 val
= pet_tree_decl_get_init(tree
);
1772 expr
= pet_tree_expr_get_expr(tree
);
1773 var
= pet_expr_get_arg(expr
, 0);
1774 val
= pet_expr_get_arg(expr
, 1);
1775 pet_expr_free(expr
);
1778 if (!pet_expr_is_scalar_access(var
)) {
1784 pa
= pet_expr_extract_affine(val
, pc
);
1786 pc
= pet_context_free(pc
);
1788 if (!isl_pw_aff_involves_nan(pa
)) {
1789 id
= pet_expr_access_get_id(var
);
1790 pc
= pet_context_set_value(pc
, id
, pa
);
1792 isl_pw_aff_free(pa
);
1800 /* Mark all arrays in "scop" as being exposed.
1802 static struct pet_scop
*mark_exposed(struct pet_scop
*scop
)
1808 for (i
= 0; i
< scop
->n_array
; ++i
)
1809 scop
->arrays
[i
]->exposed
= 1;
1813 /* Try and construct a pet_scop corresponding to (part of)
1814 * a sequence of statements within the context "pc".
1816 * After extracting a statement, we update "pc"
1817 * based on the top-level assignments in the statement
1818 * so that we can exploit them in subsequent statements in the same block.
1820 * If there are any breaks or continues in the individual statements,
1821 * then we may have to compute a new skip condition.
1822 * This is handled using a pet_skip_info object.
1823 * On initialization, the object checks if skip conditions need
1824 * to be computed. If so, it does so in pet_skip_info_seq_extract and
1825 * adds them in pet_skip_info_seq_add.
1827 * If "block" is set, then we need to insert kill statements at
1828 * the end of the block for any array that has been declared by
1829 * one of the statements in the sequence. Each of these declarations
1830 * results in the construction of a kill statement at the place
1831 * of the declaration, so we simply collect duplicates of
1832 * those kill statements and append these duplicates to the constructed scop.
1834 * If "block" is not set, then any array declared by one of the statements
1835 * in the sequence is marked as being exposed.
1837 * If autodetect is set, then we allow the extraction of only a subrange
1838 * of the sequence of statements. However, if there is at least one statement
1839 * for which we could not construct a scop and the final range contains
1840 * either no statements or at least one kill, then we discard the entire
1843 static struct pet_scop
*scop_from_block(__isl_keep pet_tree
*tree
,
1844 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1850 struct pet_scop
*scop
, *kills
;
1852 ctx
= pet_tree_get_ctx(tree
);
1854 space
= pet_context_get_space(pc
);
1855 domain
= pet_context_get_domain(pc
);
1856 pc
= pet_context_copy(pc
);
1857 scop
= pet_scop_empty(isl_space_copy(space
));
1858 kills
= pet_scop_empty(space
);
1859 for (i
= 0; i
< tree
->u
.b
.n
; ++i
) {
1860 struct pet_scop
*scop_i
;
1862 scop_i
= scop_from_tree(tree
->u
.b
.child
[i
], pc
, state
);
1863 pc
= scop_handle_writes(scop_i
, pc
);
1864 if (is_assignment(tree
->u
.b
.child
[i
]))
1865 pc
= handle_assignment(pc
, tree
->u
.b
.child
[i
]);
1866 struct pet_skip_info skip
;
1867 pet_skip_info_seq_init(&skip
, ctx
, scop
, scop_i
);
1868 pet_skip_info_seq_extract(&skip
, pc
, state
);
1869 if (pet_skip_info_has_skip(&skip
))
1870 scop_i
= pet_scop_prefix(scop_i
, 0);
1871 if (scop_i
&& pet_tree_is_decl(tree
->u
.b
.child
[i
])) {
1872 if (tree
->u
.b
.block
) {
1873 struct pet_scop
*kill
;
1874 kill
= extract_kill(domain
, scop_i
, state
);
1875 kills
= pet_scop_add_par(ctx
, kills
, kill
);
1877 scop_i
= mark_exposed(scop_i
);
1879 scop_i
= pet_scop_prefix(scop_i
, i
);
1880 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
1882 scop
= pet_skip_info_seq_add(&skip
, scop
, i
);
1887 isl_set_free(domain
);
1889 kills
= pet_scop_prefix(kills
, tree
->u
.b
.n
);
1890 scop
= pet_scop_add_seq(ctx
, scop
, kills
);
1892 pet_context_free(pc
);
1897 /* Construct a pet_scop that corresponds to the pet_tree "tree"
1898 * within the context "pc" by calling the appropriate function
1899 * based on the type of "tree".
1901 static struct pet_scop
*scop_from_tree(__isl_keep pet_tree
*tree
,
1902 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1907 switch (tree
->type
) {
1908 case pet_tree_error
:
1910 case pet_tree_block
:
1911 return scop_from_block(tree
, pc
, state
);
1912 case pet_tree_break
:
1913 return scop_from_break(tree
, pet_context_get_space(pc
));
1914 case pet_tree_continue
:
1915 return scop_from_continue(tree
, pet_context_get_space(pc
));
1917 case pet_tree_decl_init
:
1918 return scop_from_decl(tree
, pc
, state
);
1920 return scop_from_expr(pet_expr_copy(tree
->u
.e
.expr
),
1921 isl_id_copy(tree
->label
),
1923 pet_tree_get_loc(tree
), pc
);
1925 case pet_tree_if_else
:
1926 return scop_from_if(tree
, pc
, state
);
1928 return scop_from_for(tree
, pc
, state
);
1929 case pet_tree_while
:
1930 return scop_from_while(tree
, pc
, state
);
1931 case pet_tree_infinite_loop
:
1932 return scop_from_infinite_for(tree
, pc
, state
);
1935 isl_die(tree
->ctx
, isl_error_internal
, "unhandled type",
1939 /* Construct a pet_scop that corresponds to the pet_tree "tree".
1940 * "int_size" is the number of bytes need to represent an integer.
1941 * "extract_array" is a callback that we can use to create a pet_array
1942 * that corresponds to the variable accessed by an expression.
1944 * Initialize the global state, construct a context and then
1945 * construct the pet_scop by recursively visiting the tree.
1947 struct pet_scop
*pet_scop_from_pet_tree(__isl_take pet_tree
*tree
, int int_size
,
1948 struct pet_array
*(*extract_array
)(__isl_keep pet_expr
*access
,
1949 __isl_keep pet_context
*pc
, void *user
), void *user
,
1950 __isl_keep pet_context
*pc
)
1952 struct pet_scop
*scop
;
1953 struct pet_state state
= { 0 };
1958 state
.ctx
= pet_tree_get_ctx(tree
);
1959 state
.int_size
= int_size
;
1960 state
.extract_array
= extract_array
;
1963 scop
= scop_from_tree(tree
, pc
, &state
);
1964 scop
= pet_scop_set_loc(scop
, pet_tree_get_loc(tree
));
1966 pet_tree_free(tree
);