2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
39 #include <llvm/Support/raw_ostream.h>
40 #include <clang/AST/ASTContext.h>
41 #include <clang/AST/ASTDiagnostic.h>
42 #include <clang/AST/Expr.h>
43 #include <clang/AST/RecursiveASTVisitor.h>
46 #include <isl/space.h>
59 #include "scop_plus.h"
61 #include "tree2scop.h"
66 using namespace clang
;
68 static enum pet_op_type
UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind
)
78 return pet_op_post_inc
;
80 return pet_op_post_dec
;
82 return pet_op_pre_inc
;
84 return pet_op_pre_dec
;
90 static enum pet_op_type
BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind
)
94 return pet_op_add_assign
;
96 return pet_op_sub_assign
;
98 return pet_op_mul_assign
;
100 return pet_op_div_assign
;
102 return pet_op_assign
;
144 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
145 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
147 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
148 SourceLocation(), var
, false, var
->getInnerLocStart(),
149 var
->getType(), VK_LValue
);
151 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
152 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
154 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
155 SourceLocation(), var
, var
->getInnerLocStart(), var
->getType(),
159 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
161 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
162 var
, var
->getInnerLocStart(), var
->getType(), VK_LValue
);
166 /* Check if the element type corresponding to the given array type
167 * has a const qualifier.
169 static bool const_base(QualType qt
)
171 const Type
*type
= qt
.getTypePtr();
173 if (type
->isPointerType())
174 return const_base(type
->getPointeeType());
175 if (type
->isArrayType()) {
176 const ArrayType
*atype
;
177 type
= type
->getCanonicalTypeInternal().getTypePtr();
178 atype
= cast
<ArrayType
>(type
);
179 return const_base(atype
->getElementType());
182 return qt
.isConstQualified();
185 /* Create an isl_id that refers to the named declarator "decl".
187 static __isl_give isl_id
*create_decl_id(isl_ctx
*ctx
, NamedDecl
*decl
)
189 return isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
194 std::map
<const Type
*, pet_expr
*>::iterator it
;
196 for (it
= type_size
.begin(); it
!= type_size
.end(); ++it
)
197 pet_expr_free(it
->second
);
199 isl_union_map_free(value_bounds
);
202 /* Report a diagnostic, unless autodetect is set.
204 void PetScan::report(Stmt
*stmt
, unsigned id
)
206 if (options
->autodetect
)
209 SourceLocation loc
= stmt
->getLocStart();
210 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
211 DiagnosticBuilder B
= diag
.Report(loc
, id
) << stmt
->getSourceRange();
214 /* Called if we found something we (currently) cannot handle.
215 * We'll provide more informative warnings later.
217 * We only actually complain if autodetect is false.
219 void PetScan::unsupported(Stmt
*stmt
)
221 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
222 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
227 /* Report a missing prototype, unless autodetect is set.
229 void PetScan::report_prototype_required(Stmt
*stmt
)
231 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
232 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
233 "prototype required");
237 /* Report a missing increment, unless autodetect is set.
239 void PetScan::report_missing_increment(Stmt
*stmt
)
241 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
242 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
243 "missing increment");
247 /* Extract an integer from "val", which is assumed to be non-negative.
249 static __isl_give isl_val
*extract_unsigned(isl_ctx
*ctx
,
250 const llvm::APInt
&val
)
253 const uint64_t *data
;
255 data
= val
.getRawData();
256 n
= val
.getNumWords();
257 return isl_val_int_from_chunks(ctx
, n
, sizeof(uint64_t), data
);
260 /* Extract an integer from "val". If "is_signed" is set, then "val"
261 * is signed. Otherwise it it unsigned.
263 static __isl_give isl_val
*extract_int(isl_ctx
*ctx
, bool is_signed
,
266 int is_negative
= is_signed
&& val
.isNegative();
272 v
= extract_unsigned(ctx
, val
);
279 /* Extract an integer from "expr".
281 __isl_give isl_val
*PetScan::extract_int(isl_ctx
*ctx
, IntegerLiteral
*expr
)
283 const Type
*type
= expr
->getType().getTypePtr();
284 bool is_signed
= type
->hasSignedIntegerRepresentation();
286 return ::extract_int(ctx
, is_signed
, expr
->getValue());
289 /* Extract an integer from "expr".
290 * Return NULL if "expr" does not (obviously) represent an integer.
292 __isl_give isl_val
*PetScan::extract_int(clang::ParenExpr
*expr
)
294 return extract_int(expr
->getSubExpr());
297 /* Extract an integer from "expr".
298 * Return NULL if "expr" does not (obviously) represent an integer.
300 __isl_give isl_val
*PetScan::extract_int(clang::Expr
*expr
)
302 if (expr
->getStmtClass() == Stmt::IntegerLiteralClass
)
303 return extract_int(ctx
, cast
<IntegerLiteral
>(expr
));
304 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
305 return extract_int(cast
<ParenExpr
>(expr
));
311 /* Extract a pet_expr from the APInt "val", which is assumed
312 * to be non-negative.
314 __isl_give pet_expr
*PetScan::extract_expr(const llvm::APInt
&val
)
316 return pet_expr_new_int(extract_unsigned(ctx
, val
));
319 /* Return the number of bits needed to represent the type "qt",
320 * if it is an integer type. Otherwise return 0.
321 * If qt is signed then return the opposite of the number of bits.
323 static int get_type_size(QualType qt
, ASTContext
&ast_context
)
327 if (!qt
->isIntegerType())
330 size
= ast_context
.getIntWidth(qt
);
331 if (!qt
->isUnsignedIntegerType())
337 /* Return the number of bits needed to represent the type of "decl",
338 * if it is an integer type. Otherwise return 0.
339 * If qt is signed then return the opposite of the number of bits.
341 static int get_type_size(ValueDecl
*decl
)
343 return get_type_size(decl
->getType(), decl
->getASTContext());
346 /* Bound parameter "pos" of "set" to the possible values of "decl".
348 static __isl_give isl_set
*set_parameter_bounds(__isl_take isl_set
*set
,
349 unsigned pos
, ValueDecl
*decl
)
355 ctx
= isl_set_get_ctx(set
);
356 type_size
= get_type_size(decl
);
358 isl_die(ctx
, isl_error_invalid
, "not an integer type",
359 return isl_set_free(set
));
361 set
= isl_set_lower_bound_si(set
, isl_dim_param
, pos
, 0);
362 bound
= isl_val_int_from_ui(ctx
, type_size
);
363 bound
= isl_val_2exp(bound
);
364 bound
= isl_val_sub_ui(bound
, 1);
365 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
, bound
);
367 bound
= isl_val_int_from_ui(ctx
, -type_size
- 1);
368 bound
= isl_val_2exp(bound
);
369 bound
= isl_val_sub_ui(bound
, 1);
370 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
,
371 isl_val_copy(bound
));
372 bound
= isl_val_neg(bound
);
373 bound
= isl_val_sub_ui(bound
, 1);
374 set
= isl_set_lower_bound_val(set
, isl_dim_param
, pos
, bound
);
380 __isl_give pet_expr
*PetScan::extract_index_expr(ImplicitCastExpr
*expr
)
382 return extract_index_expr(expr
->getSubExpr());
385 /* Return the depth of an array of the given type.
387 static int array_depth(const Type
*type
)
389 if (type
->isPointerType())
390 return 1 + array_depth(type
->getPointeeType().getTypePtr());
391 if (type
->isArrayType()) {
392 const ArrayType
*atype
;
393 type
= type
->getCanonicalTypeInternal().getTypePtr();
394 atype
= cast
<ArrayType
>(type
);
395 return 1 + array_depth(atype
->getElementType().getTypePtr());
400 /* Return the depth of the array accessed by the index expression "index".
401 * If "index" is an affine expression, i.e., if it does not access
402 * any array, then return 1.
403 * If "index" represent a member access, i.e., if its range is a wrapped
404 * relation, then return the sum of the depth of the array of structures
405 * and that of the member inside the structure.
407 static int extract_depth(__isl_keep isl_multi_pw_aff
*index
)
415 if (isl_multi_pw_aff_range_is_wrapping(index
)) {
416 int domain_depth
, range_depth
;
417 isl_multi_pw_aff
*domain
, *range
;
419 domain
= isl_multi_pw_aff_copy(index
);
420 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
421 domain_depth
= extract_depth(domain
);
422 isl_multi_pw_aff_free(domain
);
423 range
= isl_multi_pw_aff_copy(index
);
424 range
= isl_multi_pw_aff_range_factor_range(range
);
425 range_depth
= extract_depth(range
);
426 isl_multi_pw_aff_free(range
);
428 return domain_depth
+ range_depth
;
431 if (!isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
434 id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
437 decl
= (ValueDecl
*) isl_id_get_user(id
);
440 return array_depth(decl
->getType().getTypePtr());
443 /* Return the depth of the array accessed by the access expression "expr".
445 static int extract_depth(__isl_keep pet_expr
*expr
)
447 isl_multi_pw_aff
*index
;
450 index
= pet_expr_access_get_index(expr
);
451 depth
= extract_depth(index
);
452 isl_multi_pw_aff_free(index
);
457 /* Construct a pet_expr representing an index expression for an access
458 * to the variable referenced by "expr".
460 * If "expr" references an enum constant, then return an integer expression
461 * instead, representing the value of the enum constant.
463 __isl_give pet_expr
*PetScan::extract_index_expr(DeclRefExpr
*expr
)
465 return extract_index_expr(expr
->getDecl());
468 /* Construct a pet_expr representing an index expression for an access
469 * to the variable "decl".
471 * If "decl" is an enum constant, then we return an integer expression
472 * instead, representing the value of the enum constant.
474 __isl_give pet_expr
*PetScan::extract_index_expr(ValueDecl
*decl
)
479 if (isa
<EnumConstantDecl
>(decl
))
480 return extract_expr(cast
<EnumConstantDecl
>(decl
));
482 id
= create_decl_id(ctx
, decl
);
483 space
= isl_space_alloc(ctx
, 0, 0, 0);
484 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
486 return pet_expr_from_index(isl_multi_pw_aff_zero(space
));
489 /* Construct a pet_expr representing the index expression "expr"
490 * Return NULL on error.
492 * If "expr" is a reference to an enum constant, then return
493 * an integer expression instead, representing the value of the enum constant.
495 __isl_give pet_expr
*PetScan::extract_index_expr(Expr
*expr
)
497 switch (expr
->getStmtClass()) {
498 case Stmt::ImplicitCastExprClass
:
499 return extract_index_expr(cast
<ImplicitCastExpr
>(expr
));
500 case Stmt::DeclRefExprClass
:
501 return extract_index_expr(cast
<DeclRefExpr
>(expr
));
502 case Stmt::ArraySubscriptExprClass
:
503 return extract_index_expr(cast
<ArraySubscriptExpr
>(expr
));
504 case Stmt::IntegerLiteralClass
:
505 return extract_expr(cast
<IntegerLiteral
>(expr
));
506 case Stmt::MemberExprClass
:
507 return extract_index_expr(cast
<MemberExpr
>(expr
));
514 /* Extract an index expression from the given array subscript expression.
516 * We first extract an index expression from the base.
517 * This will result in an index expression with a range that corresponds
518 * to the earlier indices.
519 * We then extract the current index and let
520 * pet_expr_access_subscript combine the two.
522 __isl_give pet_expr
*PetScan::extract_index_expr(ArraySubscriptExpr
*expr
)
524 Expr
*base
= expr
->getBase();
525 Expr
*idx
= expr
->getIdx();
529 base_expr
= extract_index_expr(base
);
530 index
= extract_expr(idx
);
532 base_expr
= pet_expr_access_subscript(base_expr
, index
);
537 /* Extract an index expression from a member expression.
539 * If the base access (to the structure containing the member)
544 * and the member is called "f", then the member access is of
549 * If the member access is to an anonymous struct, then simply return
553 * If the member access in the source code is of the form
557 * then it is treated as
561 __isl_give pet_expr
*PetScan::extract_index_expr(MemberExpr
*expr
)
563 Expr
*base
= expr
->getBase();
564 FieldDecl
*field
= cast
<FieldDecl
>(expr
->getMemberDecl());
565 pet_expr
*base_index
;
568 base_index
= extract_index_expr(base
);
570 if (expr
->isArrow()) {
571 pet_expr
*index
= pet_expr_new_int(isl_val_zero(ctx
));
572 base_index
= pet_expr_access_subscript(base_index
, index
);
575 if (field
->isAnonymousStructOrUnion())
578 id
= create_decl_id(ctx
, field
);
580 return pet_expr_access_member(base_index
, id
);
583 /* Mark the given access pet_expr as a write.
585 static __isl_give pet_expr
*mark_write(__isl_take pet_expr
*access
)
587 access
= pet_expr_access_set_write(access
, 1);
588 access
= pet_expr_access_set_read(access
, 0);
593 /* Construct a pet_expr representing a unary operator expression.
595 __isl_give pet_expr
*PetScan::extract_expr(UnaryOperator
*expr
)
600 op
= UnaryOperatorKind2pet_op_type(expr
->getOpcode());
601 if (op
== pet_op_last
) {
606 arg
= extract_expr(expr
->getSubExpr());
608 if (expr
->isIncrementDecrementOp() &&
609 pet_expr_get_type(arg
) == pet_expr_access
) {
610 arg
= mark_write(arg
);
611 arg
= pet_expr_access_set_read(arg
, 1);
614 return pet_expr_new_unary(op
, arg
);
617 /* Construct a pet_expr representing a binary operator expression.
619 * If the top level operator is an assignment and the LHS is an access,
620 * then we mark that access as a write. If the operator is a compound
621 * assignment, the access is marked as both a read and a write.
623 __isl_give pet_expr
*PetScan::extract_expr(BinaryOperator
*expr
)
629 op
= BinaryOperatorKind2pet_op_type(expr
->getOpcode());
630 if (op
== pet_op_last
) {
635 lhs
= extract_expr(expr
->getLHS());
636 rhs
= extract_expr(expr
->getRHS());
638 if (expr
->isAssignmentOp() &&
639 pet_expr_get_type(lhs
) == pet_expr_access
) {
640 lhs
= mark_write(lhs
);
641 if (expr
->isCompoundAssignmentOp())
642 lhs
= pet_expr_access_set_read(lhs
, 1);
645 type_size
= get_type_size(expr
->getType(), ast_context
);
646 return pet_expr_new_binary(type_size
, op
, lhs
, rhs
);
649 /* Construct a pet_tree for a (single) variable declaration.
651 __isl_give pet_tree
*PetScan::extract(DeclStmt
*stmt
)
658 if (!stmt
->isSingleDecl()) {
663 decl
= stmt
->getSingleDecl();
664 vd
= cast
<VarDecl
>(decl
);
666 lhs
= extract_access_expr(vd
);
667 lhs
= mark_write(lhs
);
669 tree
= pet_tree_new_decl(lhs
);
671 rhs
= extract_expr(vd
->getInit());
672 tree
= pet_tree_new_decl_init(lhs
, rhs
);
678 /* Construct a pet_expr representing a conditional operation.
680 __isl_give pet_expr
*PetScan::extract_expr(ConditionalOperator
*expr
)
682 pet_expr
*cond
, *lhs
, *rhs
;
685 cond
= extract_expr(expr
->getCond());
686 lhs
= extract_expr(expr
->getTrueExpr());
687 rhs
= extract_expr(expr
->getFalseExpr());
689 return pet_expr_new_ternary(cond
, lhs
, rhs
);
692 __isl_give pet_expr
*PetScan::extract_expr(ImplicitCastExpr
*expr
)
694 return extract_expr(expr
->getSubExpr());
697 /* Construct a pet_expr representing a floating point value.
699 * If the floating point literal does not appear in a macro,
700 * then we use the original representation in the source code
701 * as the string representation. Otherwise, we use the pretty
702 * printer to produce a string representation.
704 __isl_give pet_expr
*PetScan::extract_expr(FloatingLiteral
*expr
)
708 const LangOptions
&LO
= PP
.getLangOpts();
709 SourceLocation loc
= expr
->getLocation();
711 if (!loc
.isMacroID()) {
712 SourceManager
&SM
= PP
.getSourceManager();
713 unsigned len
= Lexer::MeasureTokenLength(loc
, SM
, LO
);
714 s
= string(SM
.getCharacterData(loc
), len
);
716 llvm::raw_string_ostream
S(s
);
717 expr
->printPretty(S
, 0, PrintingPolicy(LO
));
720 d
= expr
->getValueAsApproximateDouble();
721 return pet_expr_new_double(ctx
, d
, s
.c_str());
724 /* Convert the index expression "index" into an access pet_expr of type "qt".
726 __isl_give pet_expr
*PetScan::extract_access_expr(QualType qt
,
727 __isl_take pet_expr
*index
)
732 depth
= extract_depth(index
);
733 type_size
= get_type_size(qt
, ast_context
);
735 index
= pet_expr_set_type_size(index
, type_size
);
736 index
= pet_expr_access_set_depth(index
, depth
);
741 /* Extract an index expression from "expr" and then convert it into
742 * an access pet_expr.
744 * If "expr" is a reference to an enum constant, then return
745 * an integer expression instead, representing the value of the enum constant.
747 __isl_give pet_expr
*PetScan::extract_access_expr(Expr
*expr
)
751 index
= extract_index_expr(expr
);
753 if (pet_expr_get_type(index
) == pet_expr_int
)
756 return extract_access_expr(expr
->getType(), index
);
759 /* Extract an index expression from "decl" and then convert it into
760 * an access pet_expr.
762 __isl_give pet_expr
*PetScan::extract_access_expr(ValueDecl
*decl
)
764 return extract_access_expr(decl
->getType(), extract_index_expr(decl
));
767 __isl_give pet_expr
*PetScan::extract_expr(ParenExpr
*expr
)
769 return extract_expr(expr
->getSubExpr());
772 /* Extract an assume statement from the argument "expr"
773 * of a __pencil_assume statement.
775 __isl_give pet_expr
*PetScan::extract_assume(Expr
*expr
)
777 return pet_expr_new_unary(pet_op_assume
, extract_expr(expr
));
780 /* Construct a pet_expr corresponding to the function call argument "expr".
781 * The argument appears in position "pos" of a call to function "fd".
783 * If we are passing along a pointer to an array element
784 * or an entire row or even higher dimensional slice of an array,
785 * then the function being called may write into the array.
787 * We assume here that if the function is declared to take a pointer
788 * to a const type, then the function will perform a read
789 * and that otherwise, it will perform a write.
791 __isl_give pet_expr
*PetScan::extract_argument(FunctionDecl
*fd
, int pos
,
795 int is_addr
= 0, is_partial
= 0;
798 if (expr
->getStmtClass() == Stmt::ImplicitCastExprClass
) {
799 ImplicitCastExpr
*ice
= cast
<ImplicitCastExpr
>(expr
);
800 expr
= ice
->getSubExpr();
802 if (expr
->getStmtClass() == Stmt::UnaryOperatorClass
) {
803 UnaryOperator
*op
= cast
<UnaryOperator
>(expr
);
804 if (op
->getOpcode() == UO_AddrOf
) {
806 expr
= op
->getSubExpr();
809 res
= extract_expr(expr
);
812 sc
= expr
->getStmtClass();
813 if ((sc
== Stmt::ArraySubscriptExprClass
||
814 sc
== Stmt::DeclRefExprClass
||
815 sc
== Stmt::MemberExprClass
) &&
816 array_depth(expr
->getType().getTypePtr()) > 0)
818 if ((is_addr
|| is_partial
) &&
819 pet_expr_get_type(res
) == pet_expr_access
) {
821 if (!fd
->hasPrototype()) {
822 report_prototype_required(expr
);
823 return pet_expr_free(res
);
825 parm
= fd
->getParamDecl(pos
);
826 if (!const_base(parm
->getType()))
827 res
= mark_write(res
);
831 res
= pet_expr_new_unary(pet_op_address_of
, res
);
835 /* Construct a pet_expr representing a function call.
837 * In the special case of a "call" to __pencil_assume,
838 * construct an assume expression instead.
840 __isl_give pet_expr
*PetScan::extract_expr(CallExpr
*expr
)
842 pet_expr
*res
= NULL
;
847 fd
= expr
->getDirectCallee();
853 name
= fd
->getDeclName().getAsString();
854 n_arg
= expr
->getNumArgs();
856 if (n_arg
== 1 && name
== "__pencil_assume")
857 return extract_assume(expr
->getArg(0));
859 res
= pet_expr_new_call(ctx
, name
.c_str(), n_arg
);
863 for (int i
= 0; i
< n_arg
; ++i
) {
864 Expr
*arg
= expr
->getArg(i
);
865 res
= pet_expr_set_arg(res
, i
,
866 PetScan::extract_argument(fd
, i
, arg
));
872 /* Construct a pet_expr representing a (C style) cast.
874 __isl_give pet_expr
*PetScan::extract_expr(CStyleCastExpr
*expr
)
879 arg
= extract_expr(expr
->getSubExpr());
883 type
= expr
->getTypeAsWritten();
884 return pet_expr_new_cast(type
.getAsString().c_str(), arg
);
887 /* Construct a pet_expr representing an integer.
889 __isl_give pet_expr
*PetScan::extract_expr(IntegerLiteral
*expr
)
891 return pet_expr_new_int(extract_int(expr
));
894 /* Construct a pet_expr representing the integer enum constant "ecd".
896 __isl_give pet_expr
*PetScan::extract_expr(EnumConstantDecl
*ecd
)
899 const llvm::APSInt
&init
= ecd
->getInitVal();
900 v
= ::extract_int(ctx
, init
.isSigned(), init
);
901 return pet_expr_new_int(v
);
904 /* Try and construct a pet_expr representing "expr".
906 __isl_give pet_expr
*PetScan::extract_expr(Expr
*expr
)
908 switch (expr
->getStmtClass()) {
909 case Stmt::UnaryOperatorClass
:
910 return extract_expr(cast
<UnaryOperator
>(expr
));
911 case Stmt::CompoundAssignOperatorClass
:
912 case Stmt::BinaryOperatorClass
:
913 return extract_expr(cast
<BinaryOperator
>(expr
));
914 case Stmt::ImplicitCastExprClass
:
915 return extract_expr(cast
<ImplicitCastExpr
>(expr
));
916 case Stmt::ArraySubscriptExprClass
:
917 case Stmt::DeclRefExprClass
:
918 case Stmt::MemberExprClass
:
919 return extract_access_expr(expr
);
920 case Stmt::IntegerLiteralClass
:
921 return extract_expr(cast
<IntegerLiteral
>(expr
));
922 case Stmt::FloatingLiteralClass
:
923 return extract_expr(cast
<FloatingLiteral
>(expr
));
924 case Stmt::ParenExprClass
:
925 return extract_expr(cast
<ParenExpr
>(expr
));
926 case Stmt::ConditionalOperatorClass
:
927 return extract_expr(cast
<ConditionalOperator
>(expr
));
928 case Stmt::CallExprClass
:
929 return extract_expr(cast
<CallExpr
>(expr
));
930 case Stmt::CStyleCastExprClass
:
931 return extract_expr(cast
<CStyleCastExpr
>(expr
));
938 /* Check if the given initialization statement is an assignment.
939 * If so, return that assignment. Otherwise return NULL.
941 BinaryOperator
*PetScan::initialization_assignment(Stmt
*init
)
945 if (init
->getStmtClass() != Stmt::BinaryOperatorClass
)
948 ass
= cast
<BinaryOperator
>(init
);
949 if (ass
->getOpcode() != BO_Assign
)
955 /* Check if the given initialization statement is a declaration
956 * of a single variable.
957 * If so, return that declaration. Otherwise return NULL.
959 Decl
*PetScan::initialization_declaration(Stmt
*init
)
963 if (init
->getStmtClass() != Stmt::DeclStmtClass
)
966 decl
= cast
<DeclStmt
>(init
);
968 if (!decl
->isSingleDecl())
971 return decl
->getSingleDecl();
974 /* Given the assignment operator in the initialization of a for loop,
975 * extract the induction variable, i.e., the (integer)variable being
978 ValueDecl
*PetScan::extract_induction_variable(BinaryOperator
*init
)
985 lhs
= init
->getLHS();
986 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
991 ref
= cast
<DeclRefExpr
>(lhs
);
992 decl
= ref
->getDecl();
993 type
= decl
->getType().getTypePtr();
995 if (!type
->isIntegerType()) {
1003 /* Given the initialization statement of a for loop and the single
1004 * declaration in this initialization statement,
1005 * extract the induction variable, i.e., the (integer) variable being
1008 VarDecl
*PetScan::extract_induction_variable(Stmt
*init
, Decl
*decl
)
1012 vd
= cast
<VarDecl
>(decl
);
1014 const QualType type
= vd
->getType();
1015 if (!type
->isIntegerType()) {
1020 if (!vd
->getInit()) {
1028 /* Check that op is of the form iv++ or iv--.
1029 * Return a pet_expr representing "1" or "-1" accordingly.
1031 __isl_give pet_expr
*PetScan::extract_unary_increment(
1032 clang::UnaryOperator
*op
, clang::ValueDecl
*iv
)
1038 if (!op
->isIncrementDecrementOp()) {
1043 sub
= op
->getSubExpr();
1044 if (sub
->getStmtClass() != Stmt::DeclRefExprClass
) {
1049 ref
= cast
<DeclRefExpr
>(sub
);
1050 if (ref
->getDecl() != iv
) {
1055 if (op
->isIncrementOp())
1056 v
= isl_val_one(ctx
);
1058 v
= isl_val_negone(ctx
);
1060 return pet_expr_new_int(v
);
1063 /* Check if op is of the form
1067 * and return the increment "expr - iv" as a pet_expr.
1069 __isl_give pet_expr
*PetScan::extract_binary_increment(BinaryOperator
*op
,
1070 clang::ValueDecl
*iv
)
1075 pet_expr
*expr
, *expr_iv
;
1077 if (op
->getOpcode() != BO_Assign
) {
1083 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1088 ref
= cast
<DeclRefExpr
>(lhs
);
1089 if (ref
->getDecl() != iv
) {
1094 expr
= extract_expr(op
->getRHS());
1095 expr_iv
= extract_expr(lhs
);
1097 type_size
= get_type_size(iv
->getType(), ast_context
);
1098 return pet_expr_new_binary(type_size
, pet_op_sub
, expr
, expr_iv
);
1101 /* Check that op is of the form iv += cst or iv -= cst
1102 * and return a pet_expr corresponding to cst or -cst accordingly.
1104 __isl_give pet_expr
*PetScan::extract_compound_increment(
1105 CompoundAssignOperator
*op
, clang::ValueDecl
*iv
)
1111 BinaryOperatorKind opcode
;
1113 opcode
= op
->getOpcode();
1114 if (opcode
!= BO_AddAssign
&& opcode
!= BO_SubAssign
) {
1118 if (opcode
== BO_SubAssign
)
1122 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1127 ref
= cast
<DeclRefExpr
>(lhs
);
1128 if (ref
->getDecl() != iv
) {
1133 expr
= extract_expr(op
->getRHS());
1135 expr
= pet_expr_new_unary(pet_op_minus
, expr
);
1140 /* Check that the increment of the given for loop increments
1141 * (or decrements) the induction variable "iv" and return
1142 * the increment as a pet_expr if successful.
1144 __isl_give pet_expr
*PetScan::extract_increment(clang::ForStmt
*stmt
,
1147 Stmt
*inc
= stmt
->getInc();
1150 report_missing_increment(stmt
);
1154 if (inc
->getStmtClass() == Stmt::UnaryOperatorClass
)
1155 return extract_unary_increment(cast
<UnaryOperator
>(inc
), iv
);
1156 if (inc
->getStmtClass() == Stmt::CompoundAssignOperatorClass
)
1157 return extract_compound_increment(
1158 cast
<CompoundAssignOperator
>(inc
), iv
);
1159 if (inc
->getStmtClass() == Stmt::BinaryOperatorClass
)
1160 return extract_binary_increment(cast
<BinaryOperator
>(inc
), iv
);
1166 /* Construct a pet_tree for a while loop.
1168 * If we were only able to extract part of the body, then simply
1171 __isl_give pet_tree
*PetScan::extract(WhileStmt
*stmt
)
1176 tree
= extract(stmt
->getBody());
1179 pe_cond
= extract_expr(stmt
->getCond());
1180 tree
= pet_tree_new_while(pe_cond
, tree
);
1185 /* Construct a pet_tree for a for statement.
1186 * The for loop is required to be of one of the following forms
1188 * for (i = init; condition; ++i)
1189 * for (i = init; condition; --i)
1190 * for (i = init; condition; i += constant)
1191 * for (i = init; condition; i -= constant)
1193 * We extract a pet_tree for the body and then include it in a pet_tree
1194 * of type pet_tree_for.
1196 * As a special case, we also allow a for loop of the form
1200 * in which case we return a pet_tree of type pet_tree_infinite_loop.
1202 * If we were only able to extract part of the body, then simply
1205 __isl_give pet_tree
*PetScan::extract_for(ForStmt
*stmt
)
1207 BinaryOperator
*ass
;
1213 struct pet_scop
*scop
;
1216 pet_expr
*pe_init
, *pe_inc
, *pe_iv
, *pe_cond
;
1218 independent
= is_current_stmt_marked_independent();
1220 if (!stmt
->getInit() && !stmt
->getCond() && !stmt
->getInc()) {
1221 tree
= extract(stmt
->getBody());
1224 tree
= pet_tree_new_infinite_loop(tree
);
1228 init
= stmt
->getInit();
1233 if ((ass
= initialization_assignment(init
)) != NULL
) {
1234 iv
= extract_induction_variable(ass
);
1237 lhs
= ass
->getLHS();
1238 rhs
= ass
->getRHS();
1239 } else if ((decl
= initialization_declaration(init
)) != NULL
) {
1240 VarDecl
*var
= extract_induction_variable(init
, decl
);
1244 rhs
= var
->getInit();
1245 lhs
= create_DeclRefExpr(var
);
1247 unsupported(stmt
->getInit());
1251 declared
= !initialization_assignment(stmt
->getInit());
1252 tree
= extract(stmt
->getBody());
1255 pe_iv
= extract_access_expr(iv
);
1256 pe_iv
= mark_write(pe_iv
);
1257 pe_init
= extract_expr(rhs
);
1258 if (!stmt
->getCond())
1259 pe_cond
= pet_expr_new_int(isl_val_one(ctx
));
1261 pe_cond
= extract_expr(stmt
->getCond());
1262 pe_inc
= extract_increment(stmt
, iv
);
1263 tree
= pet_tree_new_for(independent
, declared
, pe_iv
, pe_init
, pe_cond
,
1268 /* Try and construct a pet_tree corresponding to a compound statement.
1270 * "skip_declarations" is set if we should skip initial declarations
1271 * in the children of the compound statements. This then implies
1272 * that this sequence of children should not be treated as a block
1273 * since the initial statements may be skipped.
1275 __isl_give pet_tree
*PetScan::extract(CompoundStmt
*stmt
,
1276 bool skip_declarations
)
1278 return extract(stmt
->children(), !skip_declarations
, skip_declarations
);
1281 /* Return the file offset of the expansion location of "Loc".
1283 static unsigned getExpansionOffset(SourceManager
&SM
, SourceLocation Loc
)
1285 return SM
.getFileOffset(SM
.getExpansionLoc(Loc
));
1288 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
1290 /* Return a SourceLocation for the location after the first semicolon
1291 * after "loc". If Lexer::findLocationAfterToken is available, we simply
1292 * call it and also skip trailing spaces and newline.
1294 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
1295 const LangOptions
&LO
)
1297 return Lexer::findLocationAfterToken(loc
, tok::semi
, SM
, LO
, true);
1302 /* Return a SourceLocation for the location after the first semicolon
1303 * after "loc". If Lexer::findLocationAfterToken is not available,
1304 * we look in the underlying character data for the first semicolon.
1306 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
1307 const LangOptions
&LO
)
1310 const char *s
= SM
.getCharacterData(loc
);
1312 semi
= strchr(s
, ';');
1314 return SourceLocation();
1315 return loc
.getFileLocWithOffset(semi
+ 1 - s
);
1320 /* If the token at "loc" is the first token on the line, then return
1321 * a location referring to the start of the line and set *indent
1322 * to the indentation of "loc"
1323 * Otherwise, return "loc" and set *indent to "".
1325 * This function is used to extend a scop to the start of the line
1326 * if the first token of the scop is also the first token on the line.
1328 * We look for the first token on the line. If its location is equal to "loc",
1329 * then the latter is the location of the first token on the line.
1331 static SourceLocation
move_to_start_of_line_if_first_token(SourceLocation loc
,
1332 SourceManager
&SM
, const LangOptions
&LO
, char **indent
)
1334 std::pair
<FileID
, unsigned> file_offset_pair
;
1335 llvm::StringRef file
;
1338 SourceLocation token_loc
, line_loc
;
1342 loc
= SM
.getExpansionLoc(loc
);
1343 col
= SM
.getExpansionColumnNumber(loc
);
1344 line_loc
= loc
.getLocWithOffset(1 - col
);
1345 file_offset_pair
= SM
.getDecomposedLoc(line_loc
);
1346 file
= SM
.getBufferData(file_offset_pair
.first
, NULL
);
1347 pos
= file
.data() + file_offset_pair
.second
;
1349 Lexer
lexer(SM
.getLocForStartOfFile(file_offset_pair
.first
), LO
,
1350 file
.begin(), pos
, file
.end());
1351 lexer
.LexFromRawLexer(tok
);
1352 token_loc
= tok
.getLocation();
1354 s
= SM
.getCharacterData(line_loc
);
1355 *indent
= strndup(s
, token_loc
== loc
? col
- 1 : 0);
1357 if (token_loc
== loc
)
1363 /* Construct a pet_loc corresponding to the region covered by "range".
1364 * If "skip_semi" is set, then we assume "range" is followed by
1365 * a semicolon and also include this semicolon.
1367 __isl_give pet_loc
*PetScan::construct_pet_loc(SourceRange range
,
1370 SourceLocation loc
= range
.getBegin();
1371 SourceManager
&SM
= PP
.getSourceManager();
1372 const LangOptions
&LO
= PP
.getLangOpts();
1373 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
1374 unsigned start
, end
;
1377 loc
= move_to_start_of_line_if_first_token(loc
, SM
, LO
, &indent
);
1378 start
= getExpansionOffset(SM
, loc
);
1379 loc
= range
.getEnd();
1381 loc
= location_after_semi(loc
, SM
, LO
);
1383 loc
= PP
.getLocForEndOfToken(loc
);
1384 end
= getExpansionOffset(SM
, loc
);
1386 return pet_loc_alloc(ctx
, start
, end
, line
, indent
);
1389 /* Convert a top-level pet_expr to an expression pet_tree.
1391 __isl_give pet_tree
*PetScan::extract(__isl_take pet_expr
*expr
,
1392 SourceRange range
, bool skip_semi
)
1397 tree
= pet_tree_new_expr(expr
);
1398 loc
= construct_pet_loc(range
, skip_semi
);
1399 tree
= pet_tree_set_loc(tree
, loc
);
1404 /* Construct a pet_tree for an if statement.
1406 __isl_give pet_tree
*PetScan::extract(IfStmt
*stmt
)
1409 pet_tree
*tree
, *tree_else
;
1410 struct pet_scop
*scop
;
1413 pe_cond
= extract_expr(stmt
->getCond());
1414 tree
= extract(stmt
->getThen());
1415 if (stmt
->getElse()) {
1416 tree_else
= extract(stmt
->getElse());
1417 if (options
->autodetect
) {
1418 if (tree
&& !tree_else
) {
1420 pet_expr_free(pe_cond
);
1423 if (!tree
&& tree_else
) {
1425 pet_expr_free(pe_cond
);
1429 tree
= pet_tree_new_if_else(pe_cond
, tree
, tree_else
);
1431 tree
= pet_tree_new_if(pe_cond
, tree
);
1435 /* Try and construct a pet_tree for a label statement.
1436 * We currently only allow labels on expression statements.
1438 __isl_give pet_tree
*PetScan::extract(LabelStmt
*stmt
)
1444 sub
= stmt
->getSubStmt();
1445 if (!isa
<Expr
>(sub
)) {
1450 label
= isl_id_alloc(ctx
, stmt
->getName(), NULL
);
1452 tree
= extract(extract_expr(cast
<Expr
>(sub
)), stmt
->getSourceRange(),
1454 tree
= pet_tree_set_label(tree
, label
);
1458 /* Update the location of "tree" to include the source range of "stmt".
1460 * Actually, we create a new location based on the source range of "stmt" and
1461 * then extend this new location to include the region of the original location.
1462 * This ensures that the line number of the final location refers to "stmt".
1464 __isl_give pet_tree
*PetScan::update_loc(__isl_take pet_tree
*tree
, Stmt
*stmt
)
1466 pet_loc
*loc
, *tree_loc
;
1468 tree_loc
= pet_tree_get_loc(tree
);
1469 loc
= construct_pet_loc(stmt
->getSourceRange(), false);
1470 loc
= pet_loc_update_start_end_from_loc(loc
, tree_loc
);
1471 pet_loc_free(tree_loc
);
1473 tree
= pet_tree_set_loc(tree
, loc
);
1477 /* Try and construct a pet_tree corresponding to "stmt".
1479 * If "stmt" is a compound statement, then "skip_declarations"
1480 * indicates whether we should skip initial declarations in the
1481 * compound statement.
1483 * If the constructed pet_tree is not a (possibly) partial representation
1484 * of "stmt", we update start and end of the pet_scop to those of "stmt".
1485 * In particular, if skip_declarations is set, then we may have skipped
1486 * declarations inside "stmt" and so the pet_scop may not represent
1487 * the entire "stmt".
1488 * Note that this function may be called with "stmt" referring to the entire
1489 * body of the function, including the outer braces. In such cases,
1490 * skip_declarations will be set and the braces will not be taken into
1491 * account in tree->loc.
1493 __isl_give pet_tree
*PetScan::extract(Stmt
*stmt
, bool skip_declarations
)
1497 set_current_stmt(stmt
);
1499 if (isa
<Expr
>(stmt
))
1500 return extract(extract_expr(cast
<Expr
>(stmt
)),
1501 stmt
->getSourceRange(), true);
1503 switch (stmt
->getStmtClass()) {
1504 case Stmt::WhileStmtClass
:
1505 tree
= extract(cast
<WhileStmt
>(stmt
));
1507 case Stmt::ForStmtClass
:
1508 tree
= extract_for(cast
<ForStmt
>(stmt
));
1510 case Stmt::IfStmtClass
:
1511 tree
= extract(cast
<IfStmt
>(stmt
));
1513 case Stmt::CompoundStmtClass
:
1514 tree
= extract(cast
<CompoundStmt
>(stmt
), skip_declarations
);
1516 case Stmt::LabelStmtClass
:
1517 tree
= extract(cast
<LabelStmt
>(stmt
));
1519 case Stmt::ContinueStmtClass
:
1520 tree
= pet_tree_new_continue(ctx
);
1522 case Stmt::BreakStmtClass
:
1523 tree
= pet_tree_new_break(ctx
);
1525 case Stmt::DeclStmtClass
:
1526 tree
= extract(cast
<DeclStmt
>(stmt
));
1533 if (partial
|| skip_declarations
)
1536 return update_loc(tree
, stmt
);
1539 /* Try and construct a pet_tree corresponding to (part of)
1540 * a sequence of statements.
1542 * "block" is set if the sequence represents the children of
1543 * a compound statement.
1544 * "skip_declarations" is set if we should skip initial declarations
1545 * in the sequence of statements.
1547 * If autodetect is set, then we allow the extraction of only a subrange
1548 * of the sequence of statements. However, if there is at least one statement
1549 * for which we could not construct a scop and the final range contains
1550 * either no statements or at least one kill, then we discard the entire
1553 __isl_give pet_tree
*PetScan::extract(StmtRange stmt_range
, bool block
,
1554 bool skip_declarations
)
1558 bool has_kills
= false;
1559 bool partial_range
= false;
1561 set
<struct pet_stmt
*> kills
;
1562 set
<struct pet_stmt
*>::iterator it
;
1564 for (i
= stmt_range
.first
, j
= 0; i
!= stmt_range
.second
; ++i
, ++j
)
1567 tree
= pet_tree_new_block(ctx
, block
, j
);
1569 for (i
= stmt_range
.first
; i
!= stmt_range
.second
; ++i
) {
1573 if (pet_tree_block_n_child(tree
) == 0 && skip_declarations
&&
1574 child
->getStmtClass() == Stmt::DeclStmtClass
)
1577 tree_i
= extract(child
);
1578 if (pet_tree_block_n_child(tree
) != 0 && partial
) {
1579 pet_tree_free(tree_i
);
1582 if (tree_i
&& child
->getStmtClass() == Stmt::DeclStmtClass
&&
1585 if (options
->autodetect
) {
1587 tree
= pet_tree_block_add_child(tree
, tree_i
);
1589 partial_range
= true;
1590 if (pet_tree_block_n_child(tree
) != 0 && !tree_i
)
1593 tree
= pet_tree_block_add_child(tree
, tree_i
);
1596 if (partial
|| !tree
)
1600 if (tree
&& partial_range
) {
1601 if (pet_tree_block_n_child(tree
) == 0 || has_kills
) {
1602 pet_tree_free(tree
);
1611 /* Is "T" the type of a variable length array with static size?
1613 static bool is_vla_with_static_size(QualType T
)
1615 const VariableArrayType
*vlatype
;
1617 if (!T
->isVariableArrayType())
1619 vlatype
= cast
<VariableArrayType
>(T
);
1620 return vlatype
->getSizeModifier() == VariableArrayType::Static
;
1623 /* Return the type of "decl" as an array.
1625 * In particular, if "decl" is a parameter declaration that
1626 * is a variable length array with a static size, then
1627 * return the original type (i.e., the variable length array).
1628 * Otherwise, return the type of decl.
1630 static QualType
get_array_type(ValueDecl
*decl
)
1635 parm
= dyn_cast
<ParmVarDecl
>(decl
);
1637 return decl
->getType();
1639 T
= parm
->getOriginalType();
1640 if (!is_vla_with_static_size(T
))
1641 return decl
->getType();
1646 static __isl_give pet_expr
*get_array_size(__isl_keep pet_expr
*access
,
1648 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
1649 __isl_keep pet_context
*pc
, void *user
);
1652 /* Construct a pet_expr that holds the sizes of the array accessed
1654 * This function is used as a callback to pet_context_add_parameters,
1655 * which is also passed a pointer to the PetScan object.
1657 static __isl_give pet_expr
*get_array_size(__isl_keep pet_expr
*access
,
1660 PetScan
*ps
= (PetScan
*) user
;
1665 id
= pet_expr_access_get_id(access
);
1666 decl
= (ValueDecl
*) isl_id_get_user(id
);
1668 type
= get_array_type(decl
).getTypePtr();
1669 return ps
->get_array_size(type
);
1672 /* Construct and return a pet_array corresponding to the variable
1673 * accessed by "access".
1674 * This function is used as a callback to pet_scop_from_pet_tree,
1675 * which is also passed a pointer to the PetScan object.
1677 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
1678 __isl_keep pet_context
*pc
, void *user
)
1680 PetScan
*ps
= (PetScan
*) user
;
1685 ctx
= pet_expr_get_ctx(access
);
1686 id
= pet_expr_access_get_id(access
);
1687 iv
= (ValueDecl
*) isl_id_get_user(id
);
1689 return ps
->extract_array(ctx
, iv
, NULL
, pc
);
1692 /* Extract a pet_scop from "tree".
1694 * We simply call pet_scop_from_pet_tree with the appropriate arguments and
1695 * then add pet_arrays for all accessed arrays.
1696 * We populate the pet_context with assignments for all parameters used
1697 * inside "tree" or any of the size expressions for the arrays accessed
1698 * by "tree" so that they can be used in affine expressions.
1700 struct pet_scop
*PetScan::extract_scop(__isl_take pet_tree
*tree
)
1707 int_size
= ast_context
.getTypeInfo(ast_context
.IntTy
).first
/ 8;
1709 domain
= isl_set_universe(isl_space_set_alloc(ctx
, 0, 0));
1710 pc
= pet_context_alloc(domain
);
1711 pc
= pet_context_add_parameters(pc
, tree
, &::get_array_size
, this);
1712 scop
= pet_scop_from_pet_tree(tree
, int_size
,
1713 &::extract_array
, this, pc
);
1714 scop
= scan_arrays(scop
, pc
);
1715 pet_context_free(pc
);
1720 /* Check if the scop marked by the user is exactly this Stmt
1721 * or part of this Stmt.
1722 * If so, return a pet_scop corresponding to the marked region.
1723 * Otherwise, return NULL.
1725 struct pet_scop
*PetScan::scan(Stmt
*stmt
)
1727 SourceManager
&SM
= PP
.getSourceManager();
1728 unsigned start_off
, end_off
;
1730 start_off
= getExpansionOffset(SM
, stmt
->getLocStart());
1731 end_off
= getExpansionOffset(SM
, stmt
->getLocEnd());
1733 if (start_off
> loc
.end
)
1735 if (end_off
< loc
.start
)
1738 if (start_off
>= loc
.start
&& end_off
<= loc
.end
)
1739 return extract_scop(extract(stmt
));
1742 for (start
= stmt
->child_begin(); start
!= stmt
->child_end(); ++start
) {
1743 Stmt
*child
= *start
;
1746 start_off
= getExpansionOffset(SM
, child
->getLocStart());
1747 end_off
= getExpansionOffset(SM
, child
->getLocEnd());
1748 if (start_off
< loc
.start
&& end_off
>= loc
.end
)
1750 if (start_off
>= loc
.start
)
1755 for (end
= start
; end
!= stmt
->child_end(); ++end
) {
1757 start_off
= SM
.getFileOffset(child
->getLocStart());
1758 if (start_off
>= loc
.end
)
1762 return extract_scop(extract(StmtRange(start
, end
), false, false));
1765 /* Set the size of index "pos" of "array" to "size".
1766 * In particular, add a constraint of the form
1770 * to array->extent and a constraint of the form
1774 * to array->context.
1776 static struct pet_array
*update_size(struct pet_array
*array
, int pos
,
1777 __isl_take isl_pw_aff
*size
)
1790 valid
= isl_set_params(isl_pw_aff_nonneg_set(isl_pw_aff_copy(size
)));
1791 array
->context
= isl_set_intersect(array
->context
, valid
);
1793 dim
= isl_set_get_space(array
->extent
);
1794 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
1795 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, pos
, 1);
1796 univ
= isl_set_universe(isl_aff_get_domain_space(aff
));
1797 index
= isl_pw_aff_alloc(univ
, aff
);
1799 size
= isl_pw_aff_add_dims(size
, isl_dim_in
,
1800 isl_set_dim(array
->extent
, isl_dim_set
));
1801 id
= isl_set_get_tuple_id(array
->extent
);
1802 size
= isl_pw_aff_set_tuple_id(size
, isl_dim_in
, id
);
1803 bound
= isl_pw_aff_lt_set(index
, size
);
1805 array
->extent
= isl_set_intersect(array
->extent
, bound
);
1807 if (!array
->context
|| !array
->extent
)
1808 return pet_array_free(array
);
1812 isl_pw_aff_free(size
);
1816 #ifdef HAVE_DECAYEDTYPE
1818 /* If "type" is a decayed type, then set *decayed to true and
1819 * return the original type.
1821 static const Type
*undecay(const Type
*type
, bool *decayed
)
1823 *decayed
= isa
<DecayedType
>(type
);
1825 type
= cast
<DecayedType
>(type
)->getOriginalType().getTypePtr();
1831 /* If "type" is a decayed type, then set *decayed to true and
1832 * return the original type.
1833 * Since this version of clang does not define a DecayedType,
1834 * we cannot obtain the original type even if it had been decayed and
1835 * we set *decayed to false.
1837 static const Type
*undecay(const Type
*type
, bool *decayed
)
1845 /* Figure out the size of the array at position "pos" and all
1846 * subsequent positions from "type" and update the corresponding
1847 * argument of "expr" accordingly.
1849 * The initial type (when pos is zero) may be a pointer type decayed
1850 * from an array type, if this initial type is the type of a function
1851 * argument. This only happens if the original array type has
1852 * a constant size in the outer dimension as otherwise we get
1853 * a VariableArrayType. Try and obtain this original type (if available) and
1854 * take the outer array size into account if it was marked static.
1856 __isl_give pet_expr
*PetScan::set_upper_bounds(__isl_take pet_expr
*expr
,
1857 const Type
*type
, int pos
)
1859 const ArrayType
*atype
;
1861 bool decayed
= false;
1867 type
= undecay(type
, &decayed
);
1869 if (type
->isPointerType()) {
1870 type
= type
->getPointeeType().getTypePtr();
1871 return set_upper_bounds(expr
, type
, pos
+ 1);
1873 if (!type
->isArrayType())
1876 type
= type
->getCanonicalTypeInternal().getTypePtr();
1877 atype
= cast
<ArrayType
>(type
);
1879 if (decayed
&& atype
->getSizeModifier() != ArrayType::Static
) {
1880 type
= atype
->getElementType().getTypePtr();
1881 return set_upper_bounds(expr
, type
, pos
+ 1);
1884 if (type
->isConstantArrayType()) {
1885 const ConstantArrayType
*ca
= cast
<ConstantArrayType
>(atype
);
1886 size
= extract_expr(ca
->getSize());
1887 expr
= pet_expr_set_arg(expr
, pos
, size
);
1888 } else if (type
->isVariableArrayType()) {
1889 const VariableArrayType
*vla
= cast
<VariableArrayType
>(atype
);
1890 size
= extract_expr(vla
->getSizeExpr());
1891 expr
= pet_expr_set_arg(expr
, pos
, size
);
1894 type
= atype
->getElementType().getTypePtr();
1896 return set_upper_bounds(expr
, type
, pos
+ 1);
1899 /* Construct a pet_expr that holds the sizes of an array of the given type.
1900 * The returned expression is a call expression with as arguments
1901 * the sizes in each dimension. If we are unable to derive the size
1902 * in a given dimension, then the corresponding argument is set to infinity.
1903 * In fact, we initialize all arguments to infinity and then update
1904 * them if we are able to figure out the size.
1906 * The result is stored in the type_size cache so that we can reuse
1907 * it if this method gets called on the same type again later on.
1909 __isl_give pet_expr
*PetScan::get_array_size(const Type
*type
)
1912 pet_expr
*expr
, *inf
;
1914 if (type_size
.find(type
) != type_size
.end())
1915 return pet_expr_copy(type_size
[type
]);
1917 depth
= array_depth(type
);
1918 inf
= pet_expr_new_int(isl_val_infty(ctx
));
1919 expr
= pet_expr_new_call(ctx
, "bounds", depth
);
1920 for (int i
= 0; i
< depth
; ++i
)
1921 expr
= pet_expr_set_arg(expr
, i
, pet_expr_copy(inf
));
1924 expr
= set_upper_bounds(expr
, type
, 0);
1925 type_size
[type
] = pet_expr_copy(expr
);
1930 /* Does "expr" represent the "integer" infinity?
1932 static int is_infty(__isl_keep pet_expr
*expr
)
1937 if (pet_expr_get_type(expr
) != pet_expr_int
)
1939 v
= pet_expr_int_get_val(expr
);
1940 res
= isl_val_is_infty(v
);
1946 /* Figure out the dimensions of an array "array" based on its type
1947 * "type" and update "array" accordingly.
1949 * We first construct a pet_expr that holds the sizes of the array
1950 * in each dimension. The resulting expression may containing
1951 * infinity values for dimension where we are unable to derive
1952 * a size expression.
1954 * The arguments of the size expression that have a value different from
1955 * infinity are then converted to an affine expression
1956 * within the context "pc" and incorporated into the size of "array".
1957 * If we are unable to convert a size expression to an affine expression,
1958 * then we leave the corresponding size of "array" untouched.
1960 struct pet_array
*PetScan::set_upper_bounds(struct pet_array
*array
,
1961 const Type
*type
, __isl_keep pet_context
*pc
)
1969 expr
= get_array_size(type
);
1971 n
= pet_expr_get_n_arg(expr
);
1972 for (int i
= 0; i
< n
; ++i
) {
1976 arg
= pet_expr_get_arg(expr
, i
);
1977 if (!is_infty(arg
)) {
1978 size
= pet_expr_extract_affine(arg
, pc
);
1980 array
= pet_array_free(array
);
1981 else if (isl_pw_aff_involves_nan(size
))
1982 isl_pw_aff_free(size
);
1984 array
= update_size(array
, i
, size
);
1988 pet_expr_free(expr
);
1993 /* Does "decl" have definition that we can keep track of in a pet_type?
1995 static bool has_printable_definition(RecordDecl
*decl
)
1997 if (!decl
->getDeclName())
1999 return decl
->getLexicalDeclContext() == decl
->getDeclContext();
2002 /* Construct and return a pet_array corresponding to the variable "decl".
2003 * In particular, initialize array->extent to
2005 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2007 * and then call set_upper_bounds to set the upper bounds on the indices
2008 * based on the type of the variable. The upper bounds are converted
2009 * to affine expressions within the context "pc".
2011 * If the base type is that of a record with a top-level definition and
2012 * if "types" is not null, then the RecordDecl corresponding to the type
2013 * is added to "types".
2015 * If the base type is that of a record with no top-level definition,
2016 * then we replace it by "<subfield>".
2018 struct pet_array
*PetScan::extract_array(isl_ctx
*ctx
, ValueDecl
*decl
,
2019 lex_recorddecl_set
*types
, __isl_keep pet_context
*pc
)
2021 struct pet_array
*array
;
2022 QualType qt
= get_array_type(decl
);
2023 const Type
*type
= qt
.getTypePtr();
2024 int depth
= array_depth(type
);
2025 QualType base
= pet_clang_base_type(qt
);
2030 array
= isl_calloc_type(ctx
, struct pet_array
);
2034 id
= create_decl_id(ctx
, decl
);
2035 dim
= isl_space_set_alloc(ctx
, 0, depth
);
2036 dim
= isl_space_set_tuple_id(dim
, isl_dim_set
, id
);
2038 array
->extent
= isl_set_nat_universe(dim
);
2040 dim
= isl_space_params_alloc(ctx
, 0);
2041 array
->context
= isl_set_universe(dim
);
2043 array
= set_upper_bounds(array
, type
, pc
);
2047 name
= base
.getAsString();
2049 if (types
&& base
->isRecordType()) {
2050 RecordDecl
*decl
= pet_clang_record_decl(base
);
2051 if (has_printable_definition(decl
))
2052 types
->insert(decl
);
2054 name
= "<subfield>";
2057 array
->element_type
= strdup(name
.c_str());
2058 array
->element_is_record
= base
->isRecordType();
2059 array
->element_size
= decl
->getASTContext().getTypeInfo(base
).first
/ 8;
2064 /* Construct and return a pet_array corresponding to the sequence
2065 * of declarations "decls".
2066 * The upper bounds of the array are converted to affine expressions
2067 * within the context "pc".
2068 * If the sequence contains a single declaration, then it corresponds
2069 * to a simple array access. Otherwise, it corresponds to a member access,
2070 * with the declaration for the substructure following that of the containing
2071 * structure in the sequence of declarations.
2072 * We start with the outermost substructure and then combine it with
2073 * information from the inner structures.
2075 * Additionally, keep track of all required types in "types".
2077 struct pet_array
*PetScan::extract_array(isl_ctx
*ctx
,
2078 vector
<ValueDecl
*> decls
, lex_recorddecl_set
*types
,
2079 __isl_keep pet_context
*pc
)
2081 struct pet_array
*array
;
2082 vector
<ValueDecl
*>::iterator it
;
2086 array
= extract_array(ctx
, *it
, types
, pc
);
2088 for (++it
; it
!= decls
.end(); ++it
) {
2089 struct pet_array
*parent
;
2090 const char *base_name
, *field_name
;
2094 array
= extract_array(ctx
, *it
, types
, pc
);
2096 return pet_array_free(parent
);
2098 base_name
= isl_set_get_tuple_name(parent
->extent
);
2099 field_name
= isl_set_get_tuple_name(array
->extent
);
2100 product_name
= pet_array_member_access_name(ctx
,
2101 base_name
, field_name
);
2103 array
->extent
= isl_set_product(isl_set_copy(parent
->extent
),
2106 array
->extent
= isl_set_set_tuple_name(array
->extent
,
2108 array
->context
= isl_set_intersect(array
->context
,
2109 isl_set_copy(parent
->context
));
2111 pet_array_free(parent
);
2114 if (!array
->extent
|| !array
->context
|| !product_name
)
2115 return pet_array_free(array
);
2121 /* Add a pet_type corresponding to "decl" to "scop, provided
2122 * it is a member of "types" and it has not been added before
2123 * (i.e., it is not a member of "types_done".
2125 * Since we want the user to be able to print the types
2126 * in the order in which they appear in the scop, we need to
2127 * make sure that types of fields in a structure appear before
2128 * that structure. We therefore call ourselves recursively
2129 * on the types of all record subfields.
2131 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
2132 RecordDecl
*decl
, Preprocessor
&PP
, lex_recorddecl_set
&types
,
2133 lex_recorddecl_set
&types_done
)
2136 llvm::raw_string_ostream
S(s
);
2137 RecordDecl::field_iterator it
;
2139 if (types
.find(decl
) == types
.end())
2141 if (types_done
.find(decl
) != types_done
.end())
2144 for (it
= decl
->field_begin(); it
!= decl
->field_end(); ++it
) {
2146 QualType type
= it
->getType();
2148 if (!type
->isRecordType())
2150 record
= pet_clang_record_decl(type
);
2151 scop
= add_type(ctx
, scop
, record
, PP
, types
, types_done
);
2154 if (strlen(decl
->getName().str().c_str()) == 0)
2157 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
2160 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
2161 decl
->getName().str().c_str(), s
.c_str());
2162 if (!scop
->types
[scop
->n_type
])
2163 return pet_scop_free(scop
);
2165 types_done
.insert(decl
);
2172 /* Construct a list of pet_arrays, one for each array (or scalar)
2173 * accessed inside "scop", add this list to "scop" and return the result.
2174 * The upper bounds of the arrays are converted to affine expressions
2175 * within the context "pc".
2177 * The context of "scop" is updated with the intersection of
2178 * the contexts of all arrays, i.e., constraints on the parameters
2179 * that ensure that the arrays have a valid (non-negative) size.
2181 * If the any of the extracted arrays refers to a member access,
2182 * then also add the required types to "scop".
2184 struct pet_scop
*PetScan::scan_arrays(struct pet_scop
*scop
,
2185 __isl_keep pet_context
*pc
)
2188 array_desc_set arrays
;
2189 array_desc_set::iterator it
;
2190 lex_recorddecl_set types
;
2191 lex_recorddecl_set types_done
;
2192 lex_recorddecl_set::iterator types_it
;
2194 struct pet_array
**scop_arrays
;
2199 pet_scop_collect_arrays(scop
, arrays
);
2200 if (arrays
.size() == 0)
2203 n_array
= scop
->n_array
;
2205 scop_arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
2206 n_array
+ arrays
.size());
2209 scop
->arrays
= scop_arrays
;
2211 for (it
= arrays
.begin(), i
= 0; it
!= arrays
.end(); ++it
, ++i
) {
2212 struct pet_array
*array
;
2213 array
= extract_array(ctx
, *it
, &types
, pc
);
2214 scop
->arrays
[n_array
+ i
] = array
;
2215 if (!scop
->arrays
[n_array
+ i
])
2218 scop
->context
= isl_set_intersect(scop
->context
,
2219 isl_set_copy(array
->context
));
2224 if (types
.size() == 0)
2227 scop
->types
= isl_alloc_array(ctx
, struct pet_type
*, types
.size());
2231 for (types_it
= types
.begin(); types_it
!= types
.end(); ++types_it
)
2232 scop
= add_type(ctx
, scop
, *types_it
, PP
, types
, types_done
);
2236 pet_scop_free(scop
);
2240 /* Bound all parameters in scop->context to the possible values
2241 * of the corresponding C variable.
2243 static struct pet_scop
*add_parameter_bounds(struct pet_scop
*scop
)
2250 n
= isl_set_dim(scop
->context
, isl_dim_param
);
2251 for (int i
= 0; i
< n
; ++i
) {
2255 id
= isl_set_get_dim_id(scop
->context
, isl_dim_param
, i
);
2256 if (pet_nested_in_id(id
)) {
2258 isl_die(isl_set_get_ctx(scop
->context
),
2260 "unresolved nested parameter", goto error
);
2262 decl
= (ValueDecl
*) isl_id_get_user(id
);
2265 scop
->context
= set_parameter_bounds(scop
->context
, i
, decl
);
2273 pet_scop_free(scop
);
2277 /* Construct a pet_scop from the given function.
2279 * If the scop was delimited by scop and endscop pragmas, then we override
2280 * the file offsets by those derived from the pragmas.
2282 struct pet_scop
*PetScan::scan(FunctionDecl
*fd
)
2287 stmt
= fd
->getBody();
2289 if (options
->autodetect
) {
2290 set_current_stmt(stmt
);
2291 scop
= extract_scop(extract(stmt
, true));
2293 current_line
= loc
.start_line
;
2295 scop
= pet_scop_update_start_end(scop
, loc
.start
, loc
.end
);
2297 scop
= add_parameter_bounds(scop
);
2298 scop
= pet_scop_gist(scop
, value_bounds
);
2303 /* Update this->last_line and this->current_line based on the fact
2304 * that we are about to consider "stmt".
2306 void PetScan::set_current_stmt(Stmt
*stmt
)
2308 SourceLocation loc
= stmt
->getLocStart();
2309 SourceManager
&SM
= PP
.getSourceManager();
2311 last_line
= current_line
;
2312 current_line
= SM
.getExpansionLineNumber(loc
);
2315 /* Is the current statement marked by an independent pragma?
2316 * That is, is there an independent pragma on a line between
2317 * the line of the current statement and the line of the previous statement.
2318 * The search is not implemented very efficiently. We currently
2319 * assume that there are only a few independent pragmas, if any.
2321 bool PetScan::is_current_stmt_marked_independent()
2323 for (int i
= 0; i
< independent
.size(); ++i
) {
2324 unsigned line
= independent
[i
].line
;
2326 if (last_line
< line
&& line
< current_line
)