2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
44 #include "value_bounds.h"
46 #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array))
48 static char *type_str
[] = {
49 [pet_expr_access
] = "access",
50 [pet_expr_call
] = "call",
51 [pet_expr_cast
] = "cast",
52 [pet_expr_double
] = "double",
53 [pet_expr_int
] = "int",
57 static char *op_str
[] = {
58 [pet_op_add_assign
] = "+=",
59 [pet_op_sub_assign
] = "-=",
60 [pet_op_mul_assign
] = "*=",
61 [pet_op_div_assign
] = "/=",
62 [pet_op_assign
] = "=",
77 [pet_op_post_inc
] = "++",
78 [pet_op_post_dec
] = "--",
79 [pet_op_pre_inc
] = "++",
80 [pet_op_pre_dec
] = "--",
81 [pet_op_address_of
] = "&",
90 [pet_op_assume
] = "assume",
91 [pet_op_kill
] = "kill"
94 const char *pet_op_str(enum pet_op_type op
)
99 int pet_op_is_inc_dec(enum pet_op_type op
)
101 return op
== pet_op_post_inc
|| op
== pet_op_post_dec
||
102 op
== pet_op_pre_inc
|| op
== pet_op_pre_dec
;
105 const char *pet_type_str(enum pet_expr_type type
)
107 return type_str
[type
];
110 enum pet_op_type
pet_str_op(const char *str
)
114 for (i
= 0; i
< ARRAY_SIZE(op_str
); ++i
)
115 if (!strcmp(op_str
[i
], str
))
121 enum pet_expr_type
pet_str_type(const char *str
)
125 for (i
= 0; i
< ARRAY_SIZE(type_str
); ++i
)
126 if (!strcmp(type_str
[i
], str
))
132 /* Construct a pet_expr of the given type.
134 __isl_give pet_expr
*pet_expr_alloc(isl_ctx
*ctx
, enum pet_expr_type type
)
138 expr
= isl_calloc_type(ctx
, struct pet_expr
);
150 /* Construct an access pet_expr from an access relation and an index expression.
151 * By default, it is considered to be a read access.
153 __isl_give pet_expr
*pet_expr_from_access_and_index( __isl_take isl_map
*access
,
154 __isl_take isl_multi_pw_aff
*index
)
156 isl_ctx
*ctx
= isl_map_get_ctx(access
);
159 if (!index
|| !access
)
161 expr
= pet_expr_alloc(ctx
, pet_expr_access
);
165 expr
->acc
.access
= access
;
166 expr
->acc
.index
= index
;
172 isl_map_free(access
);
173 isl_multi_pw_aff_free(index
);
177 /* Construct an access pet_expr from an index expression.
178 * By default, the access is considered to be a read access.
180 __isl_give pet_expr
*pet_expr_from_index(__isl_take isl_multi_pw_aff
*index
)
184 access
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index
));
185 return pet_expr_from_access_and_index(access
, index
);
188 /* Extend the range of "access" with "n" dimensions, retaining
189 * the tuple identifier on this range.
191 * If "access" represents a member access, then extend the range
194 static __isl_give isl_map
*extend_range(__isl_take isl_map
*access
, int n
)
198 id
= isl_map_get_tuple_id(access
, isl_dim_out
);
200 if (!isl_map_range_is_wrapping(access
)) {
201 access
= isl_map_add_dims(access
, isl_dim_out
, n
);
205 domain
= isl_map_copy(access
);
206 domain
= isl_map_range_factor_domain(domain
);
207 access
= isl_map_range_factor_range(access
);
208 access
= extend_range(access
, n
);
209 access
= isl_map_range_product(domain
, access
);
212 access
= isl_map_set_tuple_id(access
, isl_dim_out
, id
);
217 /* Finalize the construction of an access expression by setting
218 * the depth of the accessed array.
220 * The index expression may have been updated by
221 * pet_expr_access_subscript and/or pet_expr_access_member
222 * without the access relation having been updated accordingly.
223 * We perform this update here, taking into account the depth
224 * of the accessed array.
226 * If the number of indices is smaller than the depth of the array,
227 * then we assume that all elements of the remaining dimensions
230 __isl_give pet_expr
*pet_expr_access_set_depth(__isl_take pet_expr
*expr
,
236 expr
= pet_expr_cow(expr
);
240 access
= isl_map_from_multi_pw_aff(pet_expr_access_get_index(expr
));
242 return pet_expr_free(expr
);
244 dim
= isl_map_dim(access
, isl_dim_out
);
246 isl_die(isl_map_get_ctx(access
), isl_error_internal
,
247 "number of indices greater than depth",
248 access
= isl_map_free(access
));
251 access
= extend_range(access
, depth
- dim
);
253 return pet_expr_access_set_access(expr
, access
);
256 /* Construct a pet_expr that kills the elements specified by
257 * the index expression "index" and the access relation "access".
259 __isl_give pet_expr
*pet_expr_kill_from_access_and_index(
260 __isl_take isl_map
*access
, __isl_take isl_multi_pw_aff
*index
)
264 if (!access
|| !index
)
267 expr
= pet_expr_from_access_and_index(access
, index
);
268 expr
= pet_expr_access_set_read(expr
, 0);
269 return pet_expr_new_unary(pet_op_kill
, expr
);
271 isl_map_free(access
);
272 isl_multi_pw_aff_free(index
);
276 /* Construct a unary pet_expr that performs "op" on "arg".
278 __isl_give pet_expr
*pet_expr_new_unary(enum pet_op_type op
,
279 __isl_take pet_expr
*arg
)
286 ctx
= pet_expr_get_ctx(arg
);
287 expr
= pet_expr_alloc(ctx
, pet_expr_op
);
288 expr
= pet_expr_set_n_arg(expr
, 1);
293 expr
->args
[pet_un_arg
] = arg
;
301 /* Construct a binary pet_expr that performs "op" on "lhs" and "rhs",
302 * where the result is represented using a type of "type_size" bits
303 * (may be zero if unknown or if the type is not an integer).
305 __isl_give pet_expr
*pet_expr_new_binary(int type_size
, enum pet_op_type op
,
306 __isl_take pet_expr
*lhs
, __isl_take pet_expr
*rhs
)
313 ctx
= pet_expr_get_ctx(lhs
);
314 expr
= pet_expr_alloc(ctx
, pet_expr_op
);
315 expr
= pet_expr_set_n_arg(expr
, 2);
320 expr
->type_size
= type_size
;
321 expr
->args
[pet_bin_lhs
] = lhs
;
322 expr
->args
[pet_bin_rhs
] = rhs
;
331 /* Construct a ternary pet_expr that performs "cond" ? "lhs" : "rhs".
333 __isl_give pet_expr
*pet_expr_new_ternary(__isl_take pet_expr
*cond
,
334 __isl_take pet_expr
*lhs
, __isl_take pet_expr
*rhs
)
339 if (!cond
|| !lhs
|| !rhs
)
341 ctx
= pet_expr_get_ctx(cond
);
342 expr
= pet_expr_alloc(ctx
, pet_expr_op
);
343 expr
= pet_expr_set_n_arg(expr
, 3);
347 expr
->op
= pet_op_cond
;
348 expr
->args
[pet_ter_cond
] = cond
;
349 expr
->args
[pet_ter_true
] = lhs
;
350 expr
->args
[pet_ter_false
] = rhs
;
360 /* Construct a call pet_expr that calls function "name" with "n_arg"
361 * arguments. The caller is responsible for filling in the arguments.
363 __isl_give pet_expr
*pet_expr_new_call(isl_ctx
*ctx
, const char *name
,
368 expr
= pet_expr_alloc(ctx
, pet_expr_call
);
369 expr
= pet_expr_set_n_arg(expr
, n_arg
);
373 expr
->name
= strdup(name
);
375 return pet_expr_free(expr
);
380 /* Construct a pet_expr that represents the cast of "arg" to "type_name".
382 __isl_give pet_expr
*pet_expr_new_cast(const char *type_name
,
383 __isl_take pet_expr
*arg
)
391 ctx
= pet_expr_get_ctx(arg
);
392 expr
= pet_expr_alloc(ctx
, pet_expr_cast
);
393 expr
= pet_expr_set_n_arg(expr
, 1);
397 expr
->type_name
= strdup(type_name
);
398 if (!expr
->type_name
)
410 /* Construct a pet_expr that represents the double "d".
412 __isl_give pet_expr
*pet_expr_new_double(isl_ctx
*ctx
,
413 double val
, const char *s
)
417 expr
= pet_expr_alloc(ctx
, pet_expr_double
);
422 expr
->d
.s
= strdup(s
);
424 return pet_expr_free(expr
);
429 /* Construct a pet_expr that represents the integer value "v".
431 __isl_give pet_expr
*pet_expr_new_int(__isl_take isl_val
*v
)
439 ctx
= isl_val_get_ctx(v
);
440 expr
= pet_expr_alloc(ctx
, pet_expr_int
);
452 static __isl_give pet_expr
*pet_expr_dup(__isl_keep pet_expr
*expr
)
460 dup
= pet_expr_alloc(expr
->ctx
, expr
->type
);
461 dup
= pet_expr_set_type_size(dup
, expr
->type_size
);
462 dup
= pet_expr_set_n_arg(dup
, expr
->n_arg
);
463 for (i
= 0; i
< expr
->n_arg
; ++i
)
464 dup
= pet_expr_set_arg(dup
, i
, pet_expr_copy(expr
->args
[i
]));
466 switch (expr
->type
) {
467 case pet_expr_access
:
468 if (expr
->acc
.ref_id
)
469 dup
= pet_expr_access_set_ref_id(dup
,
470 isl_id_copy(expr
->acc
.ref_id
));
471 dup
= pet_expr_access_set_access(dup
,
472 isl_map_copy(expr
->acc
.access
));
473 dup
= pet_expr_access_set_index(dup
,
474 isl_multi_pw_aff_copy(expr
->acc
.index
));
475 dup
= pet_expr_access_set_read(dup
, expr
->acc
.read
);
476 dup
= pet_expr_access_set_write(dup
, expr
->acc
.write
);
479 dup
= pet_expr_call_set_name(dup
, expr
->name
);
482 dup
= pet_expr_cast_set_type_name(dup
, expr
->type_name
);
484 case pet_expr_double
:
485 dup
= pet_expr_double_set(dup
, expr
->d
.val
, expr
->d
.s
);
488 dup
= pet_expr_int_set_val(dup
, isl_val_copy(expr
->i
));
491 dup
= pet_expr_op_set_type(dup
, expr
->op
);
494 dup
= pet_expr_free(dup
);
501 __isl_give pet_expr
*pet_expr_cow(__isl_take pet_expr
*expr
)
509 return pet_expr_dup(expr
);
512 __isl_null pet_expr
*pet_expr_free(__isl_take pet_expr
*expr
)
521 for (i
= 0; i
< expr
->n_arg
; ++i
)
522 pet_expr_free(expr
->args
[i
]);
525 switch (expr
->type
) {
526 case pet_expr_access
:
527 isl_id_free(expr
->acc
.ref_id
);
528 isl_map_free(expr
->acc
.access
);
529 isl_multi_pw_aff_free(expr
->acc
.index
);
535 free(expr
->type_name
);
537 case pet_expr_double
:
541 isl_val_free(expr
->i
);
548 isl_ctx_deref(expr
->ctx
);
553 /* Return an additional reference to "expr".
555 __isl_give pet_expr
*pet_expr_copy(__isl_keep pet_expr
*expr
)
564 /* Return the isl_ctx in which "expr" was created.
566 isl_ctx
*pet_expr_get_ctx(__isl_keep pet_expr
*expr
)
568 return expr
? expr
->ctx
: NULL
;
571 /* Return the type of "expr".
573 enum pet_expr_type
pet_expr_get_type(__isl_keep pet_expr
*expr
)
576 return pet_expr_error
;
580 /* Return the number of arguments of "expr".
582 int pet_expr_get_n_arg(__isl_keep pet_expr
*expr
)
590 /* Set the number of arguments of "expr" to "n".
592 * If "expr" originally had more arguments, then remove the extra arguments.
593 * If "expr" originally had fewer arguments, then create space for
594 * the extra arguments ans initialize them to NULL.
596 __isl_give pet_expr
*pet_expr_set_n_arg(__isl_take pet_expr
*expr
, int n
)
603 if (expr
->n_arg
== n
)
605 expr
= pet_expr_cow(expr
);
609 if (n
< expr
->n_arg
) {
610 for (i
= n
; i
< expr
->n_arg
; ++i
)
611 pet_expr_free(expr
->args
[i
]);
616 args
= isl_realloc_array(expr
->ctx
, expr
->args
, pet_expr
*, n
);
618 return pet_expr_free(expr
);
620 for (i
= expr
->n_arg
; i
< n
; ++i
)
621 expr
->args
[i
] = NULL
;
627 /* Return the argument of "expr" at position "pos".
629 __isl_give pet_expr
*pet_expr_get_arg(__isl_keep pet_expr
*expr
, int pos
)
633 if (pos
< 0 || pos
>= expr
->n_arg
)
634 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
635 "position out of bounds", return NULL
);
637 return pet_expr_copy(expr
->args
[pos
]);
640 /* Replace the argument of "expr" at position "pos" by "arg".
642 __isl_give pet_expr
*pet_expr_set_arg(__isl_take pet_expr
*expr
, int pos
,
643 __isl_take pet_expr
*arg
)
647 if (pos
< 0 || pos
>= expr
->n_arg
)
648 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
649 "position out of bounds", goto error
);
650 if (expr
->args
[pos
] == arg
) {
655 expr
= pet_expr_cow(expr
);
659 pet_expr_free(expr
->args
[pos
]);
660 expr
->args
[pos
] = arg
;
669 /* Does "expr" perform a comparison operation?
671 int pet_expr_is_comparison(__isl_keep pet_expr
*expr
)
675 if (expr
->type
!= pet_expr_op
)
690 /* Does "expr" perform a boolean operation?
692 int pet_expr_is_boolean(__isl_keep pet_expr
*expr
)
696 if (expr
->type
!= pet_expr_op
)
708 /* Is "expr" an assume statement?
710 int pet_expr_is_assume(__isl_keep pet_expr
*expr
)
714 if (expr
->type
!= pet_expr_op
)
716 return expr
->op
== pet_op_assume
;
719 /* Does "expr" perform a min operation?
721 int pet_expr_is_min(__isl_keep pet_expr
*expr
)
725 if (expr
->type
!= pet_expr_call
)
727 if (expr
->n_arg
!= 2)
729 if (strcmp(expr
->name
, "min") != 0)
734 /* Does "expr" perform a max operation?
736 int pet_expr_is_max(__isl_keep pet_expr
*expr
)
740 if (expr
->type
!= pet_expr_call
)
742 if (expr
->n_arg
!= 2)
744 if (strcmp(expr
->name
, "max") != 0)
749 /* Does "expr" represent an access to an unnamed space, i.e.,
750 * does it represent an affine expression?
752 int pet_expr_is_affine(__isl_keep pet_expr
*expr
)
758 if (expr
->type
!= pet_expr_access
)
761 has_id
= isl_map_has_tuple_id(expr
->acc
.access
, isl_dim_out
);
768 /* Does "expr" represent an access to a scalar, i.e., a zero-dimensional array,
769 * not part of any struct?
771 int pet_expr_is_scalar_access(__isl_keep pet_expr
*expr
)
775 if (expr
->type
!= pet_expr_access
)
777 if (isl_map_range_is_wrapping(expr
->acc
.access
))
780 return isl_map_dim(expr
->acc
.access
, isl_dim_out
) == 0;
783 /* Return 1 if the two pet_exprs are equivalent.
785 int pet_expr_is_equal(__isl_keep pet_expr
*expr1
, __isl_keep pet_expr
*expr2
)
789 if (!expr1
|| !expr2
)
792 if (expr1
->type
!= expr2
->type
)
794 if (expr1
->n_arg
!= expr2
->n_arg
)
796 for (i
= 0; i
< expr1
->n_arg
; ++i
)
797 if (!pet_expr_is_equal(expr1
->args
[i
], expr2
->args
[i
]))
799 switch (expr1
->type
) {
802 case pet_expr_double
:
803 if (strcmp(expr1
->d
.s
, expr2
->d
.s
))
805 if (expr1
->d
.val
!= expr2
->d
.val
)
809 if (!isl_val_eq(expr1
->i
, expr2
->i
))
812 case pet_expr_access
:
813 if (expr1
->acc
.read
!= expr2
->acc
.read
)
815 if (expr1
->acc
.write
!= expr2
->acc
.write
)
817 if (expr1
->acc
.ref_id
!= expr2
->acc
.ref_id
)
819 if (!expr1
->acc
.access
|| !expr2
->acc
.access
)
821 if (!isl_map_is_equal(expr1
->acc
.access
, expr2
->acc
.access
))
823 if (!expr1
->acc
.index
|| !expr2
->acc
.index
)
825 if (!isl_multi_pw_aff_plain_is_equal(expr1
->acc
.index
,
830 if (expr1
->op
!= expr2
->op
)
834 if (strcmp(expr1
->name
, expr2
->name
))
838 if (strcmp(expr1
->type_name
, expr2
->type_name
))
846 /* Does the access expression "expr" read the accessed elements?
848 int pet_expr_access_is_read(__isl_keep pet_expr
*expr
)
852 if (expr
->type
!= pet_expr_access
)
853 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
854 "not an access expression", return -1);
856 return expr
->acc
.read
;
859 /* Does the access expression "expr" write to the accessed elements?
861 int pet_expr_access_is_write(__isl_keep pet_expr
*expr
)
865 if (expr
->type
!= pet_expr_access
)
866 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
867 "not an access expression", return -1);
869 return expr
->acc
.write
;
872 /* Return the identifier of the array accessed by "expr".
874 * If "expr" represents a member access, then return the identifier
875 * of the outer structure array.
877 __isl_give isl_id
*pet_expr_access_get_id(__isl_keep pet_expr
*expr
)
881 if (expr
->type
!= pet_expr_access
)
882 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
883 "not an access expression", return NULL
);
885 if (isl_map_range_is_wrapping(expr
->acc
.access
)) {
889 space
= isl_map_get_space(expr
->acc
.access
);
890 space
= isl_space_range(space
);
891 while (space
&& isl_space_is_wrapping(space
))
892 space
= isl_space_domain(isl_space_unwrap(space
));
893 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
894 isl_space_free(space
);
899 return isl_map_get_tuple_id(expr
->acc
.access
, isl_dim_out
);
902 /* Return the parameter space of "expr".
904 __isl_give isl_space
*pet_expr_access_get_parameter_space(
905 __isl_keep pet_expr
*expr
)
911 if (expr
->type
!= pet_expr_access
)
912 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
913 "not an access expression", return NULL
);
915 space
= isl_multi_pw_aff_get_space(expr
->acc
.index
);
916 space
= isl_space_params(space
);
921 /* Return the domain space of "expr", without the arguments (if any).
923 __isl_give isl_space
*pet_expr_access_get_domain_space(
924 __isl_keep pet_expr
*expr
)
930 if (expr
->type
!= pet_expr_access
)
931 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
932 "not an access expression", return NULL
);
934 space
= isl_multi_pw_aff_get_space(expr
->acc
.index
);
935 space
= isl_space_domain(space
);
936 if (isl_space_is_wrapping(space
))
937 space
= isl_space_domain(isl_space_unwrap(space
));
942 /* Return the space of the data accessed by "expr".
944 __isl_give isl_space
*pet_expr_access_get_data_space(__isl_keep pet_expr
*expr
)
950 if (expr
->type
!= pet_expr_access
)
951 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
952 "not an access expression", return NULL
);
954 space
= isl_multi_pw_aff_get_space(expr
->acc
.index
);
955 space
= isl_space_range(space
);
960 /* Modify all expressions of type pet_expr_access in "expr"
961 * by calling "fn" on them.
963 __isl_give pet_expr
*pet_expr_map_access(__isl_take pet_expr
*expr
,
964 __isl_give pet_expr
*(*fn
)(__isl_take pet_expr
*expr
, void *user
),
969 n
= pet_expr_get_n_arg(expr
);
970 for (i
= 0; i
< n
; ++i
) {
971 pet_expr
*arg
= pet_expr_get_arg(expr
, i
);
972 arg
= pet_expr_map_access(arg
, fn
, user
);
973 expr
= pet_expr_set_arg(expr
, i
, arg
);
979 if (expr
->type
== pet_expr_access
)
980 expr
= fn(expr
, user
);
985 /* Call "fn" on each of the subexpressions of "expr" of type "type".
987 * Return -1 on error (where fn returning a negative value is treated as
989 * Otherwise return 0.
991 int pet_expr_foreach_expr_of_type(__isl_keep pet_expr
*expr
,
992 enum pet_expr_type type
,
993 int (*fn
)(__isl_keep pet_expr
*expr
, void *user
), void *user
)
1000 for (i
= 0; i
< expr
->n_arg
; ++i
)
1001 if (pet_expr_foreach_expr_of_type(expr
->args
[i
],
1002 type
, fn
, user
) < 0)
1005 if (expr
->type
== type
)
1006 return fn(expr
, user
);
1011 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_access.
1013 * Return -1 on error (where fn returning a negative value is treated as
1015 * Otherwise return 0.
1017 int pet_expr_foreach_access_expr(__isl_keep pet_expr
*expr
,
1018 int (*fn
)(__isl_keep pet_expr
*expr
, void *user
), void *user
)
1020 return pet_expr_foreach_expr_of_type(expr
, pet_expr_access
, fn
, user
);
1023 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_call.
1025 * Return -1 on error (where fn returning a negative value is treated as
1027 * Otherwise return 0.
1029 int pet_expr_foreach_call_expr(__isl_keep pet_expr
*expr
,
1030 int (*fn
)(__isl_keep pet_expr
*expr
, void *user
), void *user
)
1032 return pet_expr_foreach_expr_of_type(expr
, pet_expr_call
, fn
, user
);
1035 /* Internal data structure for pet_expr_writes.
1036 * "id" is the identifier that we are looking for.
1037 * "found" is set if we have found the identifier being written to.
1039 struct pet_expr_writes_data
{
1044 /* Given an access expression, check if it writes to data->id.
1045 * If so, set data->found and abort the search.
1047 static int writes(__isl_keep pet_expr
*expr
, void *user
)
1049 struct pet_expr_writes_data
*data
= user
;
1052 if (!expr
->acc
.write
)
1054 if (pet_expr_is_affine(expr
))
1057 write_id
= pet_expr_access_get_id(expr
);
1058 isl_id_free(write_id
);
1063 if (write_id
!= data
->id
)
1070 /* Does expression "expr" write to "id"?
1072 int pet_expr_writes(__isl_keep pet_expr
*expr
, __isl_keep isl_id
*id
)
1074 struct pet_expr_writes_data data
;
1078 if (pet_expr_foreach_access_expr(expr
, &writes
, &data
) < 0 &&
1085 /* Move the "n" dimensions of "src_type" starting at "src_pos" of
1086 * index expression and access relation of "expr"
1087 * to dimensions of "dst_type" at "dst_pos".
1089 __isl_give pet_expr
*pet_expr_access_move_dims(__isl_take pet_expr
*expr
,
1090 enum isl_dim_type dst_type
, unsigned dst_pos
,
1091 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
1093 expr
= pet_expr_cow(expr
);
1096 if (expr
->type
!= pet_expr_access
)
1097 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1098 "not an access pet_expr", return pet_expr_free(expr
));
1100 expr
->acc
.access
= isl_map_move_dims(expr
->acc
.access
,
1101 dst_type
, dst_pos
, src_type
, src_pos
, n
);
1102 expr
->acc
.index
= isl_multi_pw_aff_move_dims(expr
->acc
.index
,
1103 dst_type
, dst_pos
, src_type
, src_pos
, n
);
1104 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1105 return pet_expr_free(expr
);
1110 /* Replace the index expression and access relation of "expr"
1111 * by their preimages under the function represented by "ma".
1113 __isl_give pet_expr
*pet_expr_access_pullback_multi_aff(
1114 __isl_take pet_expr
*expr
, __isl_take isl_multi_aff
*ma
)
1116 expr
= pet_expr_cow(expr
);
1119 if (expr
->type
!= pet_expr_access
)
1120 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1121 "not an access pet_expr", goto error
);
1123 expr
->acc
.access
= isl_map_preimage_domain_multi_aff(expr
->acc
.access
,
1124 isl_multi_aff_copy(ma
));
1125 expr
->acc
.index
= isl_multi_pw_aff_pullback_multi_aff(expr
->acc
.index
,
1127 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1128 return pet_expr_free(expr
);
1132 isl_multi_aff_free(ma
);
1133 pet_expr_free(expr
);
1137 /* Replace the index expression and access relation of "expr"
1138 * by their preimages under the function represented by "mpa".
1140 __isl_give pet_expr
*pet_expr_access_pullback_multi_pw_aff(
1141 __isl_take pet_expr
*expr
, __isl_take isl_multi_pw_aff
*mpa
)
1143 expr
= pet_expr_cow(expr
);
1146 if (expr
->type
!= pet_expr_access
)
1147 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1148 "not an access pet_expr", goto error
);
1150 expr
->acc
.access
= isl_map_preimage_domain_multi_pw_aff(
1151 expr
->acc
.access
, isl_multi_pw_aff_copy(mpa
));
1152 expr
->acc
.index
= isl_multi_pw_aff_pullback_multi_pw_aff(
1153 expr
->acc
.index
, mpa
);
1154 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1155 return pet_expr_free(expr
);
1159 isl_multi_pw_aff_free(mpa
);
1160 pet_expr_free(expr
);
1164 /* Return the access relation of access expression "expr".
1166 __isl_give isl_map
*pet_expr_access_get_access(__isl_keep pet_expr
*expr
)
1170 if (expr
->type
!= pet_expr_access
)
1171 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1172 "not an access expression", return NULL
);
1174 return isl_map_copy(expr
->acc
.access
);
1177 /* Return the index expression of access expression "expr".
1179 __isl_give isl_multi_pw_aff
*pet_expr_access_get_index(
1180 __isl_keep pet_expr
*expr
)
1184 if (expr
->type
!= pet_expr_access
)
1185 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1186 "not an access expression", return NULL
);
1188 return isl_multi_pw_aff_copy(expr
->acc
.index
);
1191 /* Align the parameters of expr->acc.index and expr->acc.access.
1193 __isl_give pet_expr
*pet_expr_access_align_params(__isl_take pet_expr
*expr
)
1195 expr
= pet_expr_cow(expr
);
1198 if (expr
->type
!= pet_expr_access
)
1199 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1200 "not an access expression", return pet_expr_free(expr
));
1202 expr
->acc
.access
= isl_map_align_params(expr
->acc
.access
,
1203 isl_multi_pw_aff_get_space(expr
->acc
.index
));
1204 expr
->acc
.index
= isl_multi_pw_aff_align_params(expr
->acc
.index
,
1205 isl_map_get_space(expr
->acc
.access
));
1206 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1207 return pet_expr_free(expr
);
1212 /* Add extra conditions on the parameters to all access relations in "expr".
1214 * The conditions are not added to the index expression. Instead, they
1215 * are used to try and simplify the index expression.
1217 __isl_give pet_expr
*pet_expr_restrict(__isl_take pet_expr
*expr
,
1218 __isl_take isl_set
*cond
)
1222 expr
= pet_expr_cow(expr
);
1226 for (i
= 0; i
< expr
->n_arg
; ++i
) {
1227 expr
->args
[i
] = pet_expr_restrict(expr
->args
[i
],
1228 isl_set_copy(cond
));
1233 if (expr
->type
== pet_expr_access
) {
1234 expr
->acc
.access
= isl_map_intersect_params(expr
->acc
.access
,
1235 isl_set_copy(cond
));
1236 expr
->acc
.index
= isl_multi_pw_aff_gist_params(
1237 expr
->acc
.index
, isl_set_copy(cond
));
1238 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1246 return pet_expr_free(expr
);
1249 /* Modify the access relation and index expression
1250 * of the given access expression
1251 * based on the given iteration space transformation.
1252 * In particular, precompose the access relation and index expression
1253 * with the update function.
1255 * If the access has any arguments then the domain of the access relation
1256 * is a wrapped mapping from the iteration space to the space of
1257 * argument values. We only need to change the domain of this wrapped
1258 * mapping, so we extend the input transformation with an identity mapping
1259 * on the space of argument values.
1261 __isl_give pet_expr
*pet_expr_access_update_domain(__isl_take pet_expr
*expr
,
1262 __isl_keep isl_multi_pw_aff
*update
)
1266 expr
= pet_expr_cow(expr
);
1269 if (expr
->type
!= pet_expr_access
)
1270 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1271 "not an access expression", return pet_expr_free(expr
));
1273 update
= isl_multi_pw_aff_copy(update
);
1275 space
= isl_map_get_space(expr
->acc
.access
);
1276 space
= isl_space_domain(space
);
1277 if (!isl_space_is_wrapping(space
))
1278 isl_space_free(space
);
1280 isl_multi_pw_aff
*id
;
1281 space
= isl_space_unwrap(space
);
1282 space
= isl_space_range(space
);
1283 space
= isl_space_map_from_set(space
);
1284 id
= isl_multi_pw_aff_identity(space
);
1285 update
= isl_multi_pw_aff_product(update
, id
);
1288 expr
->acc
.access
= isl_map_preimage_domain_multi_pw_aff(
1290 isl_multi_pw_aff_copy(update
));
1291 expr
->acc
.index
= isl_multi_pw_aff_pullback_multi_pw_aff(
1292 expr
->acc
.index
, update
);
1293 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1294 return pet_expr_free(expr
);
1299 static __isl_give pet_expr
*update_domain(__isl_take pet_expr
*expr
, void *user
)
1301 isl_multi_pw_aff
*update
= user
;
1303 return pet_expr_access_update_domain(expr
, update
);
1306 /* Modify all access relations in "expr" by precomposing them with
1307 * the given iteration space transformation.
1309 __isl_give pet_expr
*pet_expr_update_domain(__isl_take pet_expr
*expr
,
1310 __isl_take isl_multi_pw_aff
*update
)
1312 expr
= pet_expr_map_access(expr
, &update_domain
, update
);
1313 isl_multi_pw_aff_free(update
);
1317 /* Add all parameters in "space" to the access relation and index expression
1320 static __isl_give pet_expr
*align_params(__isl_take pet_expr
*expr
, void *user
)
1322 isl_space
*space
= user
;
1324 expr
= pet_expr_cow(expr
);
1327 if (expr
->type
!= pet_expr_access
)
1328 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1329 "not an access expression", return pet_expr_free(expr
));
1331 expr
->acc
.access
= isl_map_align_params(expr
->acc
.access
,
1332 isl_space_copy(space
));
1333 expr
->acc
.index
= isl_multi_pw_aff_align_params(expr
->acc
.index
,
1334 isl_space_copy(space
));
1335 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1336 return pet_expr_free(expr
);
1341 /* Add all parameters in "space" to all access relations and index expressions
1344 __isl_give pet_expr
*pet_expr_align_params(__isl_take pet_expr
*expr
,
1345 __isl_take isl_space
*space
)
1347 expr
= pet_expr_map_access(expr
, &align_params
, space
);
1348 isl_space_free(space
);
1352 /* Insert an argument expression corresponding to "test" in front
1353 * of the list of arguments described by *n_arg and *args.
1355 static __isl_give pet_expr
*insert_access_arg(__isl_take pet_expr
*expr
,
1356 __isl_keep isl_multi_pw_aff
*test
)
1359 isl_ctx
*ctx
= isl_multi_pw_aff_get_ctx(test
);
1362 return pet_expr_free(expr
);
1363 expr
= pet_expr_cow(expr
);
1368 expr
->args
= isl_calloc_array(ctx
, pet_expr
*, 1);
1370 return pet_expr_free(expr
);
1373 ext
= isl_calloc_array(ctx
, pet_expr
*, 1 + expr
->n_arg
);
1375 return pet_expr_free(expr
);
1376 for (i
= 0; i
< expr
->n_arg
; ++i
)
1377 ext
[1 + i
] = expr
->args
[i
];
1382 expr
->args
[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test
));
1384 return pet_expr_free(expr
);
1389 /* Make the expression "expr" depend on the value of "test"
1390 * being equal to "satisfied".
1392 * If "test" is an affine expression, we simply add the conditions
1393 * on the expression having the value "satisfied" to all access relations
1394 * and index expressions.
1396 * Otherwise, we add a filter to "expr" (which is then assumed to be
1397 * an access expression) corresponding to "test" being equal to "satisfied".
1399 __isl_give pet_expr
*pet_expr_filter(__isl_take pet_expr
*expr
,
1400 __isl_take isl_multi_pw_aff
*test
, int satisfied
)
1405 isl_pw_multi_aff
*pma
;
1407 expr
= pet_expr_cow(expr
);
1411 if (!isl_multi_pw_aff_has_tuple_id(test
, isl_dim_out
)) {
1415 pa
= isl_multi_pw_aff_get_pw_aff(test
, 0);
1416 isl_multi_pw_aff_free(test
);
1418 cond
= isl_pw_aff_non_zero_set(pa
);
1420 cond
= isl_pw_aff_zero_set(pa
);
1421 return pet_expr_restrict(expr
, isl_set_params(cond
));
1424 ctx
= isl_multi_pw_aff_get_ctx(test
);
1425 if (expr
->type
!= pet_expr_access
)
1426 isl_die(ctx
, isl_error_invalid
,
1427 "can only filter access expressions", goto error
);
1429 space
= isl_space_domain(isl_map_get_space(expr
->acc
.access
));
1430 id
= isl_multi_pw_aff_get_tuple_id(test
, isl_dim_out
);
1431 pma
= pet_filter_insert_pma(space
, id
, satisfied
);
1433 expr
->acc
.access
= isl_map_preimage_domain_pw_multi_aff(
1435 isl_pw_multi_aff_copy(pma
));
1436 expr
->acc
.index
= isl_multi_pw_aff_pullback_pw_multi_aff(
1437 expr
->acc
.index
, pma
);
1438 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1441 expr
= insert_access_arg(expr
, test
);
1443 isl_multi_pw_aff_free(test
);
1446 isl_multi_pw_aff_free(test
);
1447 return pet_expr_free(expr
);
1450 /* Check if the given index expression accesses a (0D) array that corresponds
1451 * to one of the parameters in "space". If so, replace the array access
1452 * by an access to the set of integers with as index (and value)
1455 static __isl_give isl_multi_pw_aff
*index_detect_parameter(
1456 __isl_take isl_multi_pw_aff
*index
, __isl_take isl_space
*space
)
1458 isl_local_space
*ls
;
1459 isl_id
*array_id
= NULL
;
1463 if (isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
)) {
1464 array_id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
1465 pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, array_id
);
1467 isl_space_free(space
);
1470 isl_id_free(array_id
);
1474 space
= isl_multi_pw_aff_get_domain_space(index
);
1475 isl_multi_pw_aff_free(index
);
1477 pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, array_id
);
1479 space
= isl_space_insert_dims(space
, isl_dim_param
, 0, 1);
1480 space
= isl_space_set_dim_id(space
, isl_dim_param
, 0, array_id
);
1483 isl_id_free(array_id
);
1485 ls
= isl_local_space_from_space(space
);
1486 aff
= isl_aff_var_on_domain(ls
, isl_dim_param
, pos
);
1487 index
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
1492 /* Check if the given access relation accesses a (0D) array that corresponds
1493 * to one of the parameters in "space". If so, replace the array access
1494 * by an access to the set of integers with as index (and value)
1497 static __isl_give isl_map
*access_detect_parameter(__isl_take isl_map
*access
,
1498 __isl_take isl_space
*space
)
1500 isl_id
*array_id
= NULL
;
1503 if (isl_map_has_tuple_id(access
, isl_dim_out
)) {
1504 array_id
= isl_map_get_tuple_id(access
, isl_dim_out
);
1505 pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, array_id
);
1507 isl_space_free(space
);
1510 isl_id_free(array_id
);
1514 pos
= isl_map_find_dim_by_id(access
, isl_dim_param
, array_id
);
1516 access
= isl_map_insert_dims(access
, isl_dim_param
, 0, 1);
1517 access
= isl_map_set_dim_id(access
, isl_dim_param
, 0, array_id
);
1520 isl_id_free(array_id
);
1522 access
= isl_map_insert_dims(access
, isl_dim_out
, 0, 1);
1523 access
= isl_map_equate(access
, isl_dim_param
, pos
, isl_dim_out
, 0);
1528 /* If "expr" accesses a (0D) array that corresponds to one of the parameters
1529 * in "space" then replace it by a value equal to the corresponding parameter.
1531 static __isl_give pet_expr
*detect_parameter_accesses(__isl_take pet_expr
*expr
,
1534 isl_space
*space
= user
;
1536 expr
= pet_expr_cow(expr
);
1539 if (expr
->type
!= pet_expr_access
)
1540 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1541 "not an access expression", return pet_expr_free(expr
));
1543 expr
->acc
.access
= access_detect_parameter(expr
->acc
.access
,
1544 isl_space_copy(space
));
1545 expr
->acc
.index
= index_detect_parameter(expr
->acc
.index
,
1546 isl_space_copy(space
));
1547 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1548 return pet_expr_free(expr
);
1553 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
1554 * in "space" by a value equal to the corresponding parameter.
1556 __isl_give pet_expr
*pet_expr_detect_parameter_accesses(
1557 __isl_take pet_expr
*expr
, __isl_take isl_space
*space
)
1559 expr
= pet_expr_map_access(expr
, &detect_parameter_accesses
, space
);
1560 isl_space_free(space
);
1564 /* Add a reference identifier to access expression "expr".
1565 * "user" points to an integer that contains the sequence number
1566 * of the next reference.
1568 static __isl_give pet_expr
*access_add_ref_id(__isl_take pet_expr
*expr
,
1575 expr
= pet_expr_cow(expr
);
1578 if (expr
->type
!= pet_expr_access
)
1579 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1580 "not an access expression", return pet_expr_free(expr
));
1582 ctx
= isl_map_get_ctx(expr
->acc
.access
);
1583 snprintf(name
, sizeof(name
), "__pet_ref_%d", (*n_ref
)++);
1584 expr
->acc
.ref_id
= isl_id_alloc(ctx
, name
, NULL
);
1585 if (!expr
->acc
.ref_id
)
1586 return pet_expr_free(expr
);
1591 __isl_give pet_expr
*pet_expr_add_ref_ids(__isl_take pet_expr
*expr
, int *n_ref
)
1593 return pet_expr_map_access(expr
, &access_add_ref_id
, n_ref
);
1596 /* Reset the user pointer on all parameter and tuple ids in
1597 * the access relation and the index expressions
1598 * of the access expression "expr".
1600 static __isl_give pet_expr
*access_anonymize(__isl_take pet_expr
*expr
,
1603 expr
= pet_expr_cow(expr
);
1606 if (expr
->type
!= pet_expr_access
)
1607 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1608 "not an access expression", return pet_expr_free(expr
));
1610 expr
->acc
.access
= isl_map_reset_user(expr
->acc
.access
);
1611 expr
->acc
.index
= isl_multi_pw_aff_reset_user(expr
->acc
.index
);
1612 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1613 return pet_expr_free(expr
);
1618 __isl_give pet_expr
*pet_expr_anonymize(__isl_take pet_expr
*expr
)
1620 return pet_expr_map_access(expr
, &access_anonymize
, NULL
);
1623 /* Data used in access_gist() callback.
1625 struct pet_access_gist_data
{
1627 isl_union_map
*value_bounds
;
1630 /* Given an expression "expr" of type pet_expr_access, compute
1631 * the gist of the associated access relation and index expression
1632 * with respect to data->domain and the bounds on the values of the arguments
1633 * of the expression.
1635 * The arguments of "expr" have been gisted right before "expr" itself
1636 * is gisted. The gisted arguments may have become equal where before
1637 * they may not have been (obviously) equal. We therefore take
1638 * the opportunity to remove duplicate arguments here.
1640 static __isl_give pet_expr
*access_gist(__isl_take pet_expr
*expr
, void *user
)
1642 struct pet_access_gist_data
*data
= user
;
1645 expr
= pet_expr_remove_duplicate_args(expr
);
1646 expr
= pet_expr_cow(expr
);
1649 if (expr
->type
!= pet_expr_access
)
1650 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1651 "not an access expression", return pet_expr_free(expr
));
1653 domain
= isl_set_copy(data
->domain
);
1654 if (expr
->n_arg
> 0)
1655 domain
= pet_value_bounds_apply(domain
, expr
->n_arg
, expr
->args
,
1656 data
->value_bounds
);
1658 expr
->acc
.access
= isl_map_gist_domain(expr
->acc
.access
,
1659 isl_set_copy(domain
));
1660 expr
->acc
.index
= isl_multi_pw_aff_gist(expr
->acc
.index
, domain
);
1661 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1662 return pet_expr_free(expr
);
1667 __isl_give pet_expr
*pet_expr_gist(__isl_take pet_expr
*expr
,
1668 __isl_keep isl_set
*context
, __isl_keep isl_union_map
*value_bounds
)
1670 struct pet_access_gist_data data
= { context
, value_bounds
};
1672 return pet_expr_map_access(expr
, &access_gist
, &data
);
1675 /* Mark "expr" as a read dependening on "read".
1677 __isl_give pet_expr
*pet_expr_access_set_read(__isl_take pet_expr
*expr
,
1681 return pet_expr_free(expr
);
1682 if (expr
->type
!= pet_expr_access
)
1683 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1684 "not an access expression", return pet_expr_free(expr
));
1685 if (expr
->acc
.read
== read
)
1687 expr
= pet_expr_cow(expr
);
1690 expr
->acc
.read
= read
;
1695 /* Mark "expr" as a write dependening on "write".
1697 __isl_give pet_expr
*pet_expr_access_set_write(__isl_take pet_expr
*expr
,
1701 return pet_expr_free(expr
);
1702 if (expr
->type
!= pet_expr_access
)
1703 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1704 "not an access expression", return pet_expr_free(expr
));
1705 if (expr
->acc
.write
== write
)
1707 expr
= pet_expr_cow(expr
);
1710 expr
->acc
.write
= write
;
1715 /* Replace the access relation of "expr" by "access".
1717 __isl_give pet_expr
*pet_expr_access_set_access(__isl_take pet_expr
*expr
,
1718 __isl_take isl_map
*access
)
1720 expr
= pet_expr_cow(expr
);
1721 if (!expr
|| !access
)
1723 if (expr
->type
!= pet_expr_access
)
1724 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1725 "not an access expression", goto error
);
1726 isl_map_free(expr
->acc
.access
);
1727 expr
->acc
.access
= access
;
1731 isl_map_free(access
);
1732 pet_expr_free(expr
);
1736 /* Replace the index expression of "expr" by "index".
1738 __isl_give pet_expr
*pet_expr_access_set_index(__isl_take pet_expr
*expr
,
1739 __isl_take isl_multi_pw_aff
*index
)
1741 expr
= pet_expr_cow(expr
);
1742 if (!expr
|| !index
)
1744 if (expr
->type
!= pet_expr_access
)
1745 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1746 "not an access expression", goto error
);
1747 isl_multi_pw_aff_free(expr
->acc
.index
);
1748 expr
->acc
.index
= index
;
1752 isl_multi_pw_aff_free(index
);
1753 pet_expr_free(expr
);
1757 /* Return the reference identifier of access expression "expr".
1759 __isl_give isl_id
*pet_expr_access_get_ref_id(__isl_keep pet_expr
*expr
)
1763 if (expr
->type
!= pet_expr_access
)
1764 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1765 "not an access expression", return NULL
);
1767 return isl_id_copy(expr
->acc
.ref_id
);
1770 /* Replace the reference identifier of access expression "expr" by "ref_id".
1772 __isl_give pet_expr
*pet_expr_access_set_ref_id(__isl_take pet_expr
*expr
,
1773 __isl_take isl_id
*ref_id
)
1775 expr
= pet_expr_cow(expr
);
1776 if (!expr
|| !ref_id
)
1778 if (expr
->type
!= pet_expr_access
)
1779 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1780 "not an access expression", goto error
);
1781 isl_id_free(expr
->acc
.ref_id
);
1782 expr
->acc
.ref_id
= ref_id
;
1786 isl_id_free(ref_id
);
1787 pet_expr_free(expr
);
1791 /* Tag the access relation "access" with "id".
1792 * That is, insert the id as the range of a wrapped relation
1793 * in the domain of "access".
1795 * If "access" is of the form
1799 * then the result is of the form
1801 * [D[i] -> id[]] -> A[a]
1803 __isl_give isl_map
*pet_expr_tag_access(__isl_keep pet_expr
*expr
,
1804 __isl_take isl_map
*access
)
1810 if (expr
->type
!= pet_expr_access
)
1811 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1812 "not an access expression",
1813 return isl_map_free(access
));
1815 id
= isl_id_copy(expr
->acc
.ref_id
);
1816 space
= isl_space_range(isl_map_get_space(access
));
1817 space
= isl_space_from_range(space
);
1818 space
= isl_space_set_tuple_id(space
, isl_dim_in
, id
);
1819 add_tag
= isl_map_universe(space
);
1820 access
= isl_map_domain_product(access
, add_tag
);
1825 /* Return the relation mapping pairs of domain iterations and argument
1826 * values to the corresponding accessed data elements.
1828 __isl_give isl_map
*pet_expr_access_get_dependent_access(
1829 __isl_keep pet_expr
*expr
)
1833 if (expr
->type
!= pet_expr_access
)
1834 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1835 "not an access expression", return NULL
);
1837 return isl_map_copy(expr
->acc
.access
);
1840 /* Return the relation mapping domain iterations to all possibly
1841 * accessed data elements.
1842 * In particular, take the access relation and project out the values
1843 * of the arguments, if any.
1845 __isl_give isl_map
*pet_expr_access_get_may_access(__isl_keep pet_expr
*expr
)
1853 if (expr
->type
!= pet_expr_access
)
1854 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1855 "not an access expression", return NULL
);
1857 access
= pet_expr_access_get_dependent_access(expr
);
1858 if (expr
->n_arg
== 0)
1861 space
= isl_space_domain(isl_map_get_space(access
));
1862 map
= isl_map_universe(isl_space_unwrap(space
));
1863 map
= isl_map_domain_map(map
);
1864 access
= isl_map_apply_domain(access
, map
);
1869 /* Return a relation mapping domain iterations to definitely
1870 * accessed data elements, assuming the statement containing
1871 * the expression is executed.
1873 * If there are no arguments, then all elements are accessed.
1874 * Otherwise, we conservatively return an empty relation.
1876 __isl_give isl_map
*pet_expr_access_get_must_access(__isl_keep pet_expr
*expr
)
1882 if (expr
->type
!= pet_expr_access
)
1883 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1884 "not an access expression", return NULL
);
1886 if (expr
->n_arg
== 0)
1887 return pet_expr_access_get_dependent_access(expr
);
1889 space
= isl_map_get_space(expr
->acc
.access
);
1890 space
= isl_space_domain_factor_domain(space
);
1892 return isl_map_empty(space
);
1895 /* Return the relation mapping domain iterations to all possibly
1896 * accessed data elements, with its domain tagged with the reference
1899 __isl_give isl_map
*pet_expr_access_get_tagged_may_access(
1900 __isl_keep pet_expr
*expr
)
1907 access
= pet_expr_access_get_may_access(expr
);
1908 access
= pet_expr_tag_access(expr
, access
);
1913 /* Return the operation type of operation expression "expr".
1915 enum pet_op_type
pet_expr_op_get_type(__isl_keep pet_expr
*expr
)
1919 if (expr
->type
!= pet_expr_op
)
1920 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1921 "not an operation expression", return pet_op_last
);
1926 /* Replace the operation type of operation expression "expr" by "type".
1928 __isl_give pet_expr
*pet_expr_op_set_type(__isl_take pet_expr
*expr
,
1929 enum pet_op_type type
)
1932 return pet_expr_free(expr
);
1933 if (expr
->type
!= pet_expr_op
)
1934 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1935 "not an operation expression",
1936 return pet_expr_free(expr
));
1937 if (expr
->op
== type
)
1939 expr
= pet_expr_cow(expr
);
1947 /* Return the name of the function called by "expr".
1949 __isl_keep
const char *pet_expr_call_get_name(__isl_keep pet_expr
*expr
)
1953 if (expr
->type
!= pet_expr_call
)
1954 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1955 "not a call expression", return NULL
);
1959 /* Replace the name of the function called by "expr" by "name".
1961 __isl_give pet_expr
*pet_expr_call_set_name(__isl_take pet_expr
*expr
,
1962 __isl_keep
const char *name
)
1964 expr
= pet_expr_cow(expr
);
1966 return pet_expr_free(expr
);
1967 if (expr
->type
!= pet_expr_call
)
1968 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1969 "not a call expression", return pet_expr_free(expr
));
1971 expr
->name
= strdup(name
);
1973 return pet_expr_free(expr
);
1977 /* Replace the type of the cast performed by "expr" by "name".
1979 __isl_give pet_expr
*pet_expr_cast_set_type_name(__isl_take pet_expr
*expr
,
1980 __isl_keep
const char *name
)
1982 expr
= pet_expr_cow(expr
);
1984 return pet_expr_free(expr
);
1985 if (expr
->type
!= pet_expr_cast
)
1986 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
1987 "not a cast expression", return pet_expr_free(expr
));
1988 free(expr
->type_name
);
1989 expr
->type_name
= strdup(name
);
1990 if (!expr
->type_name
)
1991 return pet_expr_free(expr
);
1995 /* Return the value of the integer represented by "expr".
1997 __isl_give isl_val
*pet_expr_int_get_val(__isl_keep pet_expr
*expr
)
2001 if (expr
->type
!= pet_expr_int
)
2002 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2003 "not an int expression", return NULL
);
2005 return isl_val_copy(expr
->i
);
2008 /* Replace the value of the integer represented by "expr" by "v".
2010 __isl_give pet_expr
*pet_expr_int_set_val(__isl_take pet_expr
*expr
,
2011 __isl_take isl_val
*v
)
2013 expr
= pet_expr_cow(expr
);
2016 if (expr
->type
!= pet_expr_int
)
2017 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2018 "not an int expression", goto error
);
2019 isl_val_free(expr
->i
);
2025 pet_expr_free(expr
);
2029 /* Replace the value and string representation of the double
2030 * represented by "expr" by "d" and "s".
2032 __isl_give pet_expr
*pet_expr_double_set(__isl_take pet_expr
*expr
,
2033 double d
, __isl_keep
const char *s
)
2035 expr
= pet_expr_cow(expr
);
2037 return pet_expr_free(expr
);
2038 if (expr
->type
!= pet_expr_double
)
2039 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2040 "not a double expression", return pet_expr_free(expr
));
2043 expr
->d
.s
= strdup(s
);
2045 return pet_expr_free(expr
);
2049 /* Return a string representation of the double expression "expr".
2051 __isl_give
char *pet_expr_double_get_str(__isl_keep pet_expr
*expr
)
2055 if (expr
->type
!= pet_expr_double
)
2056 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2057 "not a double expression", return NULL
);
2058 return strdup(expr
->d
.s
);
2061 /* Return a piecewise affine expression defined on the specified domain
2062 * that represents NaN.
2064 static __isl_give isl_pw_aff
*non_affine(__isl_take isl_space
*space
)
2066 return isl_pw_aff_nan_on_domain(isl_local_space_from_space(space
));
2069 /* This function is called when we come across an access that is
2070 * nested in what is supposed to be an affine expression.
2071 * "pc" is the context in which the affine expression is created.
2072 * If nesting is allowed in "pc", we return an affine expression that is
2073 * equal to a new parameter corresponding to this nested access.
2074 * Otherwise, we return NaN.
2076 * Note that we currently don't allow nested accesses themselves
2077 * to contain any nested accesses, so we check if "expr" itself
2078 * involves any nested accesses (either explicitly as arguments
2079 * or implicitly through parameters) and return NaN if it does.
2081 * The new parameter is resolved in resolve_nested.
2083 static __isl_give isl_pw_aff
*nested_access(__isl_keep pet_expr
*expr
,
2084 __isl_keep pet_context
*pc
)
2089 isl_local_space
*ls
;
2095 if (!pet_context_allow_nesting(pc
))
2096 return non_affine(pet_context_get_space(pc
));
2098 if (pet_expr_get_type(expr
) != pet_expr_access
)
2099 isl_die(pet_expr_get_ctx(expr
), isl_error_internal
,
2100 "not an access expression", return NULL
);
2102 if (expr
->n_arg
> 0)
2103 return non_affine(pet_context_get_space(pc
));
2105 space
= pet_expr_access_get_parameter_space(expr
);
2106 nested
= pet_nested_any_in_space(space
);
2107 isl_space_free(space
);
2109 return non_affine(pet_context_get_space(pc
));
2111 ctx
= pet_expr_get_ctx(expr
);
2112 id
= pet_nested_pet_expr(pet_expr_copy(expr
));
2113 space
= pet_context_get_space(pc
);
2114 space
= isl_space_insert_dims(space
, isl_dim_param
, 0, 1);
2116 space
= isl_space_set_dim_id(space
, isl_dim_param
, 0, id
);
2117 ls
= isl_local_space_from_space(space
);
2118 aff
= isl_aff_var_on_domain(ls
, isl_dim_param
, 0);
2120 return isl_pw_aff_from_aff(aff
);
2123 /* Extract an affine expression from the access pet_expr "expr".
2124 * "pc" is the context in which the affine expression is created.
2126 * If "expr" is actually an affine expression rather than
2127 * a real access, then we return that expression.
2128 * Otherwise, we require that "expr" is of an integral type.
2129 * If not, we return NaN.
2131 * If we are accessing a scalar (i.e., not an array and not a member)
2132 * and if that scalar can be treated as a parameter (because it is
2133 * not assigned a known or unknown value in the relevant part of the AST),
2134 * then we return an affine expression equal to that parameter.
2136 * If the variable has been assigned a known affine expression,
2137 * then we return that expression.
2139 * Otherwise, we return an expression that is equal to a parameter
2140 * representing "expr" (if "allow_nested" is set).
2142 static __isl_give isl_pw_aff
*extract_affine_from_access(
2143 __isl_keep pet_expr
*expr
, __isl_keep pet_context
*pc
)
2148 isl_local_space
*ls
;
2151 if (pet_expr_is_affine(expr
)) {
2153 isl_multi_pw_aff
*mpa
;
2155 mpa
= pet_expr_access_get_index(expr
);
2156 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, 0);
2157 isl_multi_pw_aff_free(mpa
);
2161 if (pet_expr_get_type_size(expr
) == 0)
2162 return non_affine(pet_context_get_space(pc
));
2164 if (!pet_expr_is_scalar_access(expr
))
2165 return nested_access(expr
, pc
);
2167 id
= pet_expr_access_get_id(expr
);
2168 if (pet_context_is_assigned(pc
, id
)) {
2171 pa
= pet_context_get_value(pc
, id
);
2174 if (!isl_pw_aff_involves_nan(pa
))
2176 isl_pw_aff_free(pa
);
2177 return nested_access(expr
, pc
);
2180 space
= pet_context_get_space(pc
);
2182 pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, id
);
2186 pos
= isl_space_dim(space
, isl_dim_param
);
2187 space
= isl_space_add_dims(space
, isl_dim_param
, 1);
2188 space
= isl_space_set_dim_id(space
, isl_dim_param
, pos
, id
);
2191 ls
= isl_local_space_from_space(space
);
2192 aff
= isl_aff_var_on_domain(ls
, isl_dim_param
, pos
);
2194 return isl_pw_aff_from_aff(aff
);
2197 /* Construct an affine expression from the integer constant "expr".
2198 * "pc" is the context in which the affine expression is created.
2200 static __isl_give isl_pw_aff
*extract_affine_from_int(__isl_keep pet_expr
*expr
,
2201 __isl_keep pet_context
*pc
)
2203 isl_local_space
*ls
;
2209 ls
= isl_local_space_from_space(pet_context_get_space(pc
));
2210 aff
= isl_aff_val_on_domain(ls
, pet_expr_int_get_val(expr
));
2212 return isl_pw_aff_from_aff(aff
);
2215 /* Extract an affine expression from an addition or subtraction operation.
2216 * Return NaN if we are unable to extract an affine expression.
2218 * "pc" is the context in which the affine expression is created.
2220 static __isl_give isl_pw_aff
*extract_affine_add_sub(__isl_keep pet_expr
*expr
,
2221 __isl_keep pet_context
*pc
)
2228 if (expr
->n_arg
!= 2)
2229 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2230 "expecting two arguments", return NULL
);
2232 lhs
= pet_expr_extract_affine(expr
->args
[0], pc
);
2233 rhs
= pet_expr_extract_affine(expr
->args
[1], pc
);
2235 switch (pet_expr_op_get_type(expr
)) {
2237 return isl_pw_aff_add(lhs
, rhs
);
2239 return isl_pw_aff_sub(lhs
, rhs
);
2241 isl_pw_aff_free(lhs
);
2242 isl_pw_aff_free(rhs
);
2243 isl_die(pet_expr_get_ctx(expr
), isl_error_internal
,
2244 "not an addition or subtraction operation",
2250 /* Extract an affine expression from an integer division or a modulo operation.
2251 * Return NaN if we are unable to extract an affine expression.
2253 * "pc" is the context in which the affine expression is created.
2255 * In particular, if "expr" is lhs/rhs, then return
2257 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
2259 * If "expr" is lhs%rhs, then return
2261 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
2263 * If the second argument (rhs) is not a (positive) integer constant,
2264 * then we fail to extract an affine expression.
2266 static __isl_give isl_pw_aff
*extract_affine_div_mod(__isl_keep pet_expr
*expr
,
2267 __isl_keep pet_context
*pc
)
2275 if (expr
->n_arg
!= 2)
2276 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2277 "expecting two arguments", return NULL
);
2279 rhs
= pet_expr_extract_affine(expr
->args
[1], pc
);
2281 is_cst
= isl_pw_aff_is_cst(rhs
);
2282 if (is_cst
< 0 || !is_cst
) {
2283 isl_pw_aff_free(rhs
);
2284 return non_affine(pet_context_get_space(pc
));
2287 lhs
= pet_expr_extract_affine(expr
->args
[0], pc
);
2289 switch (pet_expr_op_get_type(expr
)) {
2291 return isl_pw_aff_tdiv_q(lhs
, rhs
);
2293 return isl_pw_aff_tdiv_r(lhs
, rhs
);
2295 isl_pw_aff_free(lhs
);
2296 isl_pw_aff_free(rhs
);
2297 isl_die(pet_expr_get_ctx(expr
), isl_error_internal
,
2298 "not a div or mod operator", return NULL
);
2303 /* Extract an affine expression from a multiplication operation.
2304 * Return NaN if we are unable to extract an affine expression.
2305 * In particular, if neither of the arguments is a (piecewise) constant
2306 * then we return NaN.
2308 * "pc" is the context in which the affine expression is created.
2310 static __isl_give isl_pw_aff
*extract_affine_mul(__isl_keep pet_expr
*expr
,
2311 __isl_keep pet_context
*pc
)
2313 int lhs_cst
, rhs_cst
;
2319 if (expr
->n_arg
!= 2)
2320 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2321 "expecting two arguments", return NULL
);
2323 lhs
= pet_expr_extract_affine(expr
->args
[0], pc
);
2324 rhs
= pet_expr_extract_affine(expr
->args
[1], pc
);
2326 lhs_cst
= isl_pw_aff_is_cst(lhs
);
2327 rhs_cst
= isl_pw_aff_is_cst(rhs
);
2328 if (lhs_cst
< 0 || rhs_cst
< 0 || (!lhs_cst
&& !rhs_cst
)) {
2329 isl_pw_aff_free(lhs
);
2330 isl_pw_aff_free(rhs
);
2331 return non_affine(pet_context_get_space(pc
));
2334 return isl_pw_aff_mul(lhs
, rhs
);
2337 /* Extract an affine expression from a negation operation.
2338 * Return NaN if we are unable to extract an affine expression.
2340 * "pc" is the context in which the affine expression is created.
2342 static __isl_give isl_pw_aff
*extract_affine_neg(__isl_keep pet_expr
*expr
,
2343 __isl_keep pet_context
*pc
)
2349 if (expr
->n_arg
!= 1)
2350 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2351 "expecting one argument", return NULL
);
2353 res
= pet_expr_extract_affine(expr
->args
[0], pc
);
2354 return isl_pw_aff_neg(res
);
2357 /* Extract an affine expression from a conditional operation.
2358 * Return NaN if we are unable to extract an affine expression.
2360 * "pc" is the context in which the affine expression is created.
2362 static __isl_give isl_pw_aff
*extract_affine_cond(__isl_keep pet_expr
*expr
,
2363 __isl_keep pet_context
*pc
)
2365 isl_pw_aff
*cond
, *lhs
, *rhs
;
2369 if (expr
->n_arg
!= 3)
2370 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2371 "expecting three arguments", return NULL
);
2373 cond
= pet_expr_extract_affine_condition(expr
->args
[0], pc
);
2374 lhs
= pet_expr_extract_affine(expr
->args
[1], pc
);
2375 rhs
= pet_expr_extract_affine(expr
->args
[2], pc
);
2377 return isl_pw_aff_cond(cond
, lhs
, rhs
);
2384 static __isl_give isl_pw_aff
*wrap(__isl_take isl_pw_aff
*pwaff
, unsigned width
)
2389 ctx
= isl_pw_aff_get_ctx(pwaff
);
2390 mod
= isl_val_int_from_ui(ctx
, width
);
2391 mod
= isl_val_2exp(mod
);
2393 pwaff
= isl_pw_aff_mod_val(pwaff
, mod
);
2398 /* Limit the domain of "pwaff" to those elements where the function
2401 * 2^{width-1} <= pwaff < 2^{width-1}
2403 static __isl_give isl_pw_aff
*avoid_overflow(__isl_take isl_pw_aff
*pwaff
,
2408 isl_space
*space
= isl_pw_aff_get_domain_space(pwaff
);
2409 isl_local_space
*ls
= isl_local_space_from_space(space
);
2414 ctx
= isl_pw_aff_get_ctx(pwaff
);
2415 v
= isl_val_int_from_ui(ctx
, width
- 1);
2416 v
= isl_val_2exp(v
);
2418 bound
= isl_aff_zero_on_domain(ls
);
2419 bound
= isl_aff_add_constant_val(bound
, v
);
2420 b
= isl_pw_aff_from_aff(bound
);
2422 dom
= isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff
), isl_pw_aff_copy(b
));
2423 pwaff
= isl_pw_aff_intersect_domain(pwaff
, dom
);
2425 b
= isl_pw_aff_neg(b
);
2426 dom
= isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff
), b
);
2427 pwaff
= isl_pw_aff_intersect_domain(pwaff
, dom
);
2432 /* Handle potential overflows on signed computations.
2434 * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
2435 * then we adjust the domain of "pa" to avoid overflows.
2437 static __isl_give isl_pw_aff
*signed_overflow(__isl_take isl_pw_aff
*pa
,
2441 struct pet_options
*options
;
2446 ctx
= isl_pw_aff_get_ctx(pa
);
2447 options
= isl_ctx_peek_pet_options(ctx
);
2448 if (!options
|| options
->signed_overflow
== PET_OVERFLOW_AVOID
)
2449 pa
= avoid_overflow(pa
, width
);
2454 /* Extract an affine expression from some an operation.
2455 * Return NaN if we are unable to extract an affine expression.
2456 * If the result of a binary (non boolean) operation is unsigned,
2457 * then we wrap it based on the size of the type. If the result is signed,
2458 * then we ensure that no overflow occurs.
2460 * "pc" is the context in which the affine expression is created.
2462 static __isl_give isl_pw_aff
*extract_affine_from_op(__isl_keep pet_expr
*expr
,
2463 __isl_keep pet_context
*pc
)
2468 switch (pet_expr_op_get_type(expr
)) {
2471 res
= extract_affine_add_sub(expr
, pc
);
2475 res
= extract_affine_div_mod(expr
, pc
);
2478 res
= extract_affine_mul(expr
, pc
);
2481 return extract_affine_neg(expr
, pc
);
2483 return extract_affine_cond(expr
, pc
);
2493 return pet_expr_extract_affine_condition(expr
, pc
);
2495 return non_affine(pet_context_get_space(pc
));
2500 if (isl_pw_aff_involves_nan(res
)) {
2501 isl_space
*space
= isl_pw_aff_get_domain_space(res
);
2502 isl_pw_aff_free(res
);
2503 return non_affine(space
);
2506 type_size
= pet_expr_get_type_size(expr
);
2508 res
= wrap(res
, type_size
);
2510 res
= signed_overflow(res
, -type_size
);
2515 /* Extract an affine expression from some special function calls.
2516 * Return NaN if we are unable to extract an affine expression.
2517 * In particular, we handle "min", "max", "ceild", "floord",
2518 * "intMod", "intFloor" and "intCeil".
2519 * In case of the latter five, the second argument needs to be
2520 * a (positive) integer constant.
2522 * "pc" is the context in which the affine expression is created.
2524 static __isl_give isl_pw_aff
*extract_affine_from_call(
2525 __isl_keep pet_expr
*expr
, __isl_keep pet_context
*pc
)
2527 isl_pw_aff
*aff1
, *aff2
;
2531 n
= pet_expr_get_n_arg(expr
);
2532 name
= pet_expr_call_get_name(expr
);
2533 if (!(n
== 2 && !strcmp(name
, "min")) &&
2534 !(n
== 2 && !strcmp(name
, "max")) &&
2535 !(n
== 2 && !strcmp(name
, "intMod")) &&
2536 !(n
== 2 && !strcmp(name
, "intFloor")) &&
2537 !(n
== 2 && !strcmp(name
, "intCeil")) &&
2538 !(n
== 2 && !strcmp(name
, "floord")) &&
2539 !(n
== 2 && !strcmp(name
, "ceild")))
2540 return non_affine(pet_context_get_space(pc
));
2542 if (!strcmp(name
, "min") || !strcmp(name
, "max")) {
2543 aff1
= pet_expr_extract_affine(expr
->args
[0], pc
);
2544 aff2
= pet_expr_extract_affine(expr
->args
[1], pc
);
2546 if (!strcmp(name
, "min"))
2547 aff1
= isl_pw_aff_min(aff1
, aff2
);
2549 aff1
= isl_pw_aff_max(aff1
, aff2
);
2550 } else if (!strcmp(name
, "intMod")) {
2553 if (pet_expr_get_type(expr
->args
[1]) != pet_expr_int
)
2554 return non_affine(pet_context_get_space(pc
));
2555 v
= pet_expr_int_get_val(expr
->args
[1]);
2556 aff1
= pet_expr_extract_affine(expr
->args
[0], pc
);
2557 aff1
= isl_pw_aff_mod_val(aff1
, v
);
2561 if (pet_expr_get_type(expr
->args
[1]) != pet_expr_int
)
2562 return non_affine(pet_context_get_space(pc
));
2563 v
= pet_expr_int_get_val(expr
->args
[1]);
2564 aff1
= pet_expr_extract_affine(expr
->args
[0], pc
);
2565 aff1
= isl_pw_aff_scale_down_val(aff1
, v
);
2566 if (!strcmp(name
, "floord") || !strcmp(name
, "intFloor"))
2567 aff1
= isl_pw_aff_floor(aff1
);
2569 aff1
= isl_pw_aff_ceil(aff1
);
2575 /* Extract an affine expression from "expr", if possible.
2576 * Otherwise return NaN.
2578 * "pc" is the context in which the affine expression is created.
2580 __isl_give isl_pw_aff
*pet_expr_extract_affine(__isl_keep pet_expr
*expr
,
2581 __isl_keep pet_context
*pc
)
2586 switch (pet_expr_get_type(expr
)) {
2587 case pet_expr_access
:
2588 return extract_affine_from_access(expr
, pc
);
2590 return extract_affine_from_int(expr
, pc
);
2592 return extract_affine_from_op(expr
, pc
);
2594 return extract_affine_from_call(expr
, pc
);
2596 case pet_expr_double
:
2597 case pet_expr_error
:
2598 return non_affine(pet_context_get_space(pc
));
2602 /* Extract an affine expressions representing the comparison "LHS op RHS"
2603 * Return NaN if we are unable to extract such an affine expression.
2605 * "pc" is the context in which the affine expression is created.
2607 * If the comparison is of the form
2611 * then the expression is constructed as the conjunction of
2616 * A similar optimization is performed for max(a,b) <= c.
2617 * We do this because that will lead to simpler representations
2618 * of the expression.
2619 * If isl is ever enhanced to explicitly deal with min and max expressions,
2620 * this optimization can be removed.
2622 __isl_give isl_pw_aff
*pet_expr_extract_comparison(enum pet_op_type op
,
2623 __isl_keep pet_expr
*lhs
, __isl_keep pet_expr
*rhs
,
2624 __isl_keep pet_context
*pc
)
2626 isl_pw_aff
*lhs_pa
, *rhs_pa
;
2628 if (op
== pet_op_gt
)
2629 return pet_expr_extract_comparison(pet_op_lt
, rhs
, lhs
, pc
);
2630 if (op
== pet_op_ge
)
2631 return pet_expr_extract_comparison(pet_op_le
, rhs
, lhs
, pc
);
2633 if (op
== pet_op_lt
|| op
== pet_op_le
) {
2634 if (pet_expr_is_min(rhs
)) {
2635 lhs_pa
= pet_expr_extract_comparison(op
, lhs
,
2637 rhs_pa
= pet_expr_extract_comparison(op
, lhs
,
2639 return pet_and(lhs_pa
, rhs_pa
);
2641 if (pet_expr_is_max(lhs
)) {
2642 lhs_pa
= pet_expr_extract_comparison(op
, lhs
->args
[0],
2644 rhs_pa
= pet_expr_extract_comparison(op
, lhs
->args
[1],
2646 return pet_and(lhs_pa
, rhs_pa
);
2650 lhs_pa
= pet_expr_extract_affine(lhs
, pc
);
2651 rhs_pa
= pet_expr_extract_affine(rhs
, pc
);
2653 return pet_comparison(op
, lhs_pa
, rhs_pa
);
2656 /* Extract an affine expressions from the comparison "expr".
2657 * Return NaN if we are unable to extract such an affine expression.
2659 * "pc" is the context in which the affine expression is created.
2661 static __isl_give isl_pw_aff
*extract_comparison(__isl_keep pet_expr
*expr
,
2662 __isl_keep pet_context
*pc
)
2664 enum pet_op_type type
;
2668 if (expr
->n_arg
!= 2)
2669 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2670 "expecting two arguments", return NULL
);
2672 type
= pet_expr_op_get_type(expr
);
2673 return pet_expr_extract_comparison(type
, expr
->args
[0], expr
->args
[1],
2677 /* Extract an affine expression representing the boolean operation
2678 * expressed by "expr".
2679 * Return NaN if we are unable to extract an affine expression.
2681 * "pc" is the context in which the affine expression is created.
2683 static __isl_give isl_pw_aff
*extract_boolean(__isl_keep pet_expr
*expr
,
2684 __isl_keep pet_context
*pc
)
2686 isl_pw_aff
*lhs
, *rhs
;
2692 n
= pet_expr_get_n_arg(expr
);
2693 lhs
= pet_expr_extract_affine_condition(expr
->args
[0], pc
);
2695 return pet_not(lhs
);
2697 rhs
= pet_expr_extract_affine_condition(expr
->args
[1], pc
);
2698 return pet_boolean(pet_expr_op_get_type(expr
), lhs
, rhs
);
2701 /* Extract the affine expression "expr != 0 ? 1 : 0".
2702 * Return NaN if we are unable to extract an affine expression.
2704 * "pc" is the context in which the affine expression is created.
2706 static __isl_give isl_pw_aff
*extract_implicit_condition(
2707 __isl_keep pet_expr
*expr
, __isl_keep pet_context
*pc
)
2711 res
= pet_expr_extract_affine(expr
, pc
);
2712 return pet_to_bool(res
);
2715 /* Extract a boolean affine expression from "expr".
2716 * Return NaN if we are unable to extract an affine expression.
2718 * "pc" is the context in which the affine expression is created.
2720 * If "expr" is neither a comparison nor a boolean operation,
2721 * then we assume it is an affine expression and return the
2722 * boolean expression "expr != 0 ? 1 : 0".
2724 __isl_give isl_pw_aff
*pet_expr_extract_affine_condition(
2725 __isl_keep pet_expr
*expr
, __isl_keep pet_context
*pc
)
2730 if (pet_expr_is_comparison(expr
))
2731 return extract_comparison(expr
, pc
);
2732 if (pet_expr_is_boolean(expr
))
2733 return extract_boolean(expr
, pc
);
2735 return extract_implicit_condition(expr
, pc
);
2738 /* Check if "expr" is an assume expression and if its single argument
2739 * can be converted to an affine expression in the context of "pc".
2740 * If so, replace the argument by the affine expression.
2742 __isl_give pet_expr
*pet_expr_resolve_assume(__isl_take pet_expr
*expr
,
2743 __isl_keep pet_context
*pc
)
2746 isl_multi_pw_aff
*index
;
2750 if (!pet_expr_is_assume(expr
))
2752 if (expr
->n_arg
!= 1)
2753 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2754 "expecting one argument", return pet_expr_free(expr
));
2756 cond
= pet_expr_extract_affine_condition(expr
->args
[0], pc
);
2758 return pet_expr_free(expr
);
2759 if (isl_pw_aff_involves_nan(cond
)) {
2760 isl_pw_aff_free(cond
);
2764 index
= isl_multi_pw_aff_from_pw_aff(cond
);
2765 expr
= pet_expr_set_arg(expr
, 0, pet_expr_from_index(index
));
2770 /* Return the number of bits needed to represent the type of "expr".
2771 * See the description of the type_size field of pet_expr.
2773 int pet_expr_get_type_size(__isl_keep pet_expr
*expr
)
2775 return expr
? expr
->type_size
: 0;
2778 /* Replace the number of bits needed to represent the type of "expr"
2780 * See the description of the type_size field of pet_expr.
2782 __isl_give pet_expr
*pet_expr_set_type_size(__isl_take pet_expr
*expr
,
2785 expr
= pet_expr_cow(expr
);
2789 expr
->type_size
= type_size
;
2794 /* Extend an access expression "expr" with an additional index "index".
2795 * In particular, add "index" as an extra argument to "expr" and
2796 * adjust the index expression of "expr" to refer to this extra argument.
2797 * The caller is responsible for calling pet_expr_access_set_depth
2798 * to update the corresponding access relation.
2800 * Note that we only collect the individual index expressions as
2801 * arguments of "expr" here.
2802 * An attempt to integrate them into the index expression of "expr"
2803 * is performed in pet_expr_access_plug_in_args.
2805 __isl_give pet_expr
*pet_expr_access_subscript(__isl_take pet_expr
*expr
,
2806 __isl_take pet_expr
*index
)
2810 isl_local_space
*ls
;
2813 expr
= pet_expr_cow(expr
);
2814 if (!expr
|| !index
)
2816 if (expr
->type
!= pet_expr_access
)
2817 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2818 "not an access pet_expr", goto error
);
2820 n
= pet_expr_get_n_arg(expr
);
2821 expr
= pet_expr_insert_arg(expr
, n
, index
);
2825 space
= isl_multi_pw_aff_get_domain_space(expr
->acc
.index
);
2826 ls
= isl_local_space_from_space(space
);
2827 pa
= isl_pw_aff_from_aff(isl_aff_var_on_domain(ls
, isl_dim_set
, n
));
2828 expr
->acc
.index
= pet_array_subscript(expr
->acc
.index
, pa
);
2829 if (!expr
->acc
.index
)
2830 return pet_expr_free(expr
);
2834 pet_expr_free(expr
);
2835 pet_expr_free(index
);
2839 /* Extend an access expression "expr" with an additional member acces to "id".
2840 * In particular, extend the index expression of "expr" to include
2841 * the additional member access.
2842 * The caller is responsible for calling pet_expr_access_set_depth
2843 * to update the corresponding access relation.
2845 __isl_give pet_expr
*pet_expr_access_member(__isl_take pet_expr
*expr
,
2846 __isl_take isl_id
*id
)
2849 isl_multi_pw_aff
*field_access
;
2851 expr
= pet_expr_cow(expr
);
2854 if (expr
->type
!= pet_expr_access
)
2855 isl_die(pet_expr_get_ctx(expr
), isl_error_invalid
,
2856 "not an access pet_expr", goto error
);
2858 space
= isl_multi_pw_aff_get_domain_space(expr
->acc
.index
);
2859 space
= isl_space_from_domain(space
);
2860 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
2861 field_access
= isl_multi_pw_aff_zero(space
);
2862 expr
->acc
.index
= pet_array_member(expr
->acc
.index
, field_access
);
2863 if (!expr
->acc
.index
)
2864 return pet_expr_free(expr
);
2868 pet_expr_free(expr
);
2873 void pet_expr_dump_with_indent(__isl_keep pet_expr
*expr
, int indent
)
2880 fprintf(stderr
, "%*s", indent
, "");
2882 switch (expr
->type
) {
2883 case pet_expr_double
:
2884 fprintf(stderr
, "%s\n", expr
->d
.s
);
2887 isl_val_dump(expr
->i
);
2889 case pet_expr_access
:
2890 if (expr
->acc
.ref_id
) {
2891 isl_id_dump(expr
->acc
.ref_id
);
2892 fprintf(stderr
, "%*s", indent
, "");
2894 isl_map_dump(expr
->acc
.access
);
2895 fprintf(stderr
, "%*s", indent
, "");
2896 isl_multi_pw_aff_dump(expr
->acc
.index
);
2897 fprintf(stderr
, "%*sread: %d\n", indent
+ 2,
2898 "", expr
->acc
.read
);
2899 fprintf(stderr
, "%*swrite: %d\n", indent
+ 2,
2900 "", expr
->acc
.write
);
2901 for (i
= 0; i
< expr
->n_arg
; ++i
)
2902 pet_expr_dump_with_indent(expr
->args
[i
], indent
+ 2);
2905 fprintf(stderr
, "%s\n", op_str
[expr
->op
]);
2906 for (i
= 0; i
< expr
->n_arg
; ++i
)
2907 pet_expr_dump_with_indent(expr
->args
[i
], indent
+ 2);
2910 fprintf(stderr
, "%s/%d\n", expr
->name
, expr
->n_arg
);
2911 for (i
= 0; i
< expr
->n_arg
; ++i
)
2912 pet_expr_dump_with_indent(expr
->args
[i
], indent
+ 2);
2915 fprintf(stderr
, "(%s)\n", expr
->type_name
);
2916 for (i
= 0; i
< expr
->n_arg
; ++i
)
2917 pet_expr_dump_with_indent(expr
->args
[i
], indent
+ 2);
2919 case pet_expr_error
:
2920 fprintf(stderr
, "ERROR\n");
2925 void pet_expr_dump(__isl_keep pet_expr
*expr
)
2927 pet_expr_dump_with_indent(expr
, 0);