1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
6 #include <linux/swap.h>
7 #include <linux/bio-integrity.h>
8 #include <linux/blkdev.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
22 #include <trace/events/block.h>
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
27 #define ALLOC_CACHE_THRESHOLD 16
28 #define ALLOC_CACHE_MAX 256
30 struct bio_alloc_cache
{
31 struct bio
*free_list
;
32 struct bio
*free_list_irq
;
37 static struct biovec_slab
{
40 struct kmem_cache
*slab
;
41 } bvec_slabs
[] __read_mostly
= {
42 { .nr_vecs
= 16, .name
= "biovec-16" },
43 { .nr_vecs
= 64, .name
= "biovec-64" },
44 { .nr_vecs
= 128, .name
= "biovec-128" },
45 { .nr_vecs
= BIO_MAX_VECS
, .name
= "biovec-max" },
48 static struct biovec_slab
*biovec_slab(unsigned short nr_vecs
)
51 /* smaller bios use inline vecs */
53 return &bvec_slabs
[0];
55 return &bvec_slabs
[1];
57 return &bvec_slabs
[2];
58 case 129 ... BIO_MAX_VECS
:
59 return &bvec_slabs
[3];
67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68 * IO code that does not need private memory pools.
70 struct bio_set fs_bio_set
;
71 EXPORT_SYMBOL(fs_bio_set
);
74 * Our slab pool management
77 struct kmem_cache
*slab
;
78 unsigned int slab_ref
;
79 unsigned int slab_size
;
82 static DEFINE_MUTEX(bio_slab_lock
);
83 static DEFINE_XARRAY(bio_slabs
);
85 static struct bio_slab
*create_bio_slab(unsigned int size
)
87 struct bio_slab
*bslab
= kzalloc(sizeof(*bslab
), GFP_KERNEL
);
92 snprintf(bslab
->name
, sizeof(bslab
->name
), "bio-%d", size
);
93 bslab
->slab
= kmem_cache_create(bslab
->name
, size
,
94 ARCH_KMALLOC_MINALIGN
,
95 SLAB_HWCACHE_ALIGN
| SLAB_TYPESAFE_BY_RCU
, NULL
);
100 bslab
->slab_size
= size
;
102 if (!xa_err(xa_store(&bio_slabs
, size
, bslab
, GFP_KERNEL
)))
105 kmem_cache_destroy(bslab
->slab
);
112 static inline unsigned int bs_bio_slab_size(struct bio_set
*bs
)
114 return bs
->front_pad
+ sizeof(struct bio
) + bs
->back_pad
;
117 static struct kmem_cache
*bio_find_or_create_slab(struct bio_set
*bs
)
119 unsigned int size
= bs_bio_slab_size(bs
);
120 struct bio_slab
*bslab
;
122 mutex_lock(&bio_slab_lock
);
123 bslab
= xa_load(&bio_slabs
, size
);
127 bslab
= create_bio_slab(size
);
128 mutex_unlock(&bio_slab_lock
);
135 static void bio_put_slab(struct bio_set
*bs
)
137 struct bio_slab
*bslab
= NULL
;
138 unsigned int slab_size
= bs_bio_slab_size(bs
);
140 mutex_lock(&bio_slab_lock
);
142 bslab
= xa_load(&bio_slabs
, slab_size
);
143 if (WARN(!bslab
, KERN_ERR
"bio: unable to find slab!\n"))
146 WARN_ON_ONCE(bslab
->slab
!= bs
->bio_slab
);
148 WARN_ON(!bslab
->slab_ref
);
150 if (--bslab
->slab_ref
)
153 xa_erase(&bio_slabs
, slab_size
);
155 kmem_cache_destroy(bslab
->slab
);
159 mutex_unlock(&bio_slab_lock
);
162 void bvec_free(mempool_t
*pool
, struct bio_vec
*bv
, unsigned short nr_vecs
)
164 BUG_ON(nr_vecs
> BIO_MAX_VECS
);
166 if (nr_vecs
== BIO_MAX_VECS
)
167 mempool_free(bv
, pool
);
168 else if (nr_vecs
> BIO_INLINE_VECS
)
169 kmem_cache_free(biovec_slab(nr_vecs
)->slab
, bv
);
173 * Make the first allocation restricted and don't dump info on allocation
174 * failures, since we'll fall back to the mempool in case of failure.
176 static inline gfp_t
bvec_alloc_gfp(gfp_t gfp
)
178 return (gfp
& ~(__GFP_DIRECT_RECLAIM
| __GFP_IO
)) |
179 __GFP_NOMEMALLOC
| __GFP_NORETRY
| __GFP_NOWARN
;
182 struct bio_vec
*bvec_alloc(mempool_t
*pool
, unsigned short *nr_vecs
,
185 struct biovec_slab
*bvs
= biovec_slab(*nr_vecs
);
187 if (WARN_ON_ONCE(!bvs
))
191 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 * We also rely on this in the bvec_free path.
194 *nr_vecs
= bvs
->nr_vecs
;
197 * Try a slab allocation first for all smaller allocations. If that
198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 * The mempool is sized to handle up to BIO_MAX_VECS entries.
201 if (*nr_vecs
< BIO_MAX_VECS
) {
204 bvl
= kmem_cache_alloc(bvs
->slab
, bvec_alloc_gfp(gfp_mask
));
205 if (likely(bvl
) || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
207 *nr_vecs
= BIO_MAX_VECS
;
210 return mempool_alloc(pool
, gfp_mask
);
213 void bio_uninit(struct bio
*bio
)
215 #ifdef CONFIG_BLK_CGROUP
217 blkg_put(bio
->bi_blkg
);
221 if (bio_integrity(bio
))
222 bio_integrity_free(bio
);
224 bio_crypt_free_ctx(bio
);
226 EXPORT_SYMBOL(bio_uninit
);
228 static void bio_free(struct bio
*bio
)
230 struct bio_set
*bs
= bio
->bi_pool
;
236 bvec_free(&bs
->bvec_pool
, bio
->bi_io_vec
, bio
->bi_max_vecs
);
237 mempool_free(p
- bs
->front_pad
, &bs
->bio_pool
);
241 * Users of this function have their own bio allocation. Subsequently,
242 * they must remember to pair any call to bio_init() with bio_uninit()
243 * when IO has completed, or when the bio is released.
245 void bio_init(struct bio
*bio
, struct block_device
*bdev
, struct bio_vec
*table
,
246 unsigned short max_vecs
, blk_opf_t opf
)
253 bio
->bi_write_hint
= 0;
255 bio
->bi_iter
.bi_sector
= 0;
256 bio
->bi_iter
.bi_size
= 0;
257 bio
->bi_iter
.bi_idx
= 0;
258 bio
->bi_iter
.bi_bvec_done
= 0;
259 bio
->bi_end_io
= NULL
;
260 bio
->bi_private
= NULL
;
261 #ifdef CONFIG_BLK_CGROUP
263 bio
->bi_issue
.value
= 0;
265 bio_associate_blkg(bio
);
266 #ifdef CONFIG_BLK_CGROUP_IOCOST
267 bio
->bi_iocost_cost
= 0;
270 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
271 bio
->bi_crypt_context
= NULL
;
273 #ifdef CONFIG_BLK_DEV_INTEGRITY
274 bio
->bi_integrity
= NULL
;
278 atomic_set(&bio
->__bi_remaining
, 1);
279 atomic_set(&bio
->__bi_cnt
, 1);
280 bio
->bi_cookie
= BLK_QC_T_NONE
;
282 bio
->bi_max_vecs
= max_vecs
;
283 bio
->bi_io_vec
= table
;
286 EXPORT_SYMBOL(bio_init
);
289 * bio_reset - reinitialize a bio
291 * @bdev: block device to use the bio for
292 * @opf: operation and flags for bio
295 * After calling bio_reset(), @bio will be in the same state as a freshly
296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 * preserved are the ones that are initialized by bio_alloc_bioset(). See
298 * comment in struct bio.
300 void bio_reset(struct bio
*bio
, struct block_device
*bdev
, blk_opf_t opf
)
303 memset(bio
, 0, BIO_RESET_BYTES
);
304 atomic_set(&bio
->__bi_remaining
, 1);
307 bio_associate_blkg(bio
);
310 EXPORT_SYMBOL(bio_reset
);
312 static struct bio
*__bio_chain_endio(struct bio
*bio
)
314 struct bio
*parent
= bio
->bi_private
;
316 if (bio
->bi_status
&& !parent
->bi_status
)
317 parent
->bi_status
= bio
->bi_status
;
322 static void bio_chain_endio(struct bio
*bio
)
324 bio_endio(__bio_chain_endio(bio
));
328 * bio_chain - chain bio completions
329 * @bio: the target bio
330 * @parent: the parent bio of @bio
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
336 * The caller must not set bi_private or bi_end_io in @bio.
338 void bio_chain(struct bio
*bio
, struct bio
*parent
)
340 BUG_ON(bio
->bi_private
|| bio
->bi_end_io
);
342 bio
->bi_private
= parent
;
343 bio
->bi_end_io
= bio_chain_endio
;
344 bio_inc_remaining(parent
);
346 EXPORT_SYMBOL(bio_chain
);
349 * bio_chain_and_submit - submit a bio after chaining it to another one
350 * @prev: bio to chain and submit
351 * @new: bio to chain to
353 * If @prev is non-NULL, chain it to @new and submit it.
357 struct bio
*bio_chain_and_submit(struct bio
*prev
, struct bio
*new)
360 bio_chain(prev
, new);
366 struct bio
*blk_next_bio(struct bio
*bio
, struct block_device
*bdev
,
367 unsigned int nr_pages
, blk_opf_t opf
, gfp_t gfp
)
369 return bio_chain_and_submit(bio
, bio_alloc(bdev
, nr_pages
, opf
, gfp
));
371 EXPORT_SYMBOL_GPL(blk_next_bio
);
373 static void bio_alloc_rescue(struct work_struct
*work
)
375 struct bio_set
*bs
= container_of(work
, struct bio_set
, rescue_work
);
379 spin_lock(&bs
->rescue_lock
);
380 bio
= bio_list_pop(&bs
->rescue_list
);
381 spin_unlock(&bs
->rescue_lock
);
386 submit_bio_noacct(bio
);
390 static void punt_bios_to_rescuer(struct bio_set
*bs
)
392 struct bio_list punt
, nopunt
;
395 if (WARN_ON_ONCE(!bs
->rescue_workqueue
))
398 * In order to guarantee forward progress we must punt only bios that
399 * were allocated from this bio_set; otherwise, if there was a bio on
400 * there for a stacking driver higher up in the stack, processing it
401 * could require allocating bios from this bio_set, and doing that from
402 * our own rescuer would be bad.
404 * Since bio lists are singly linked, pop them all instead of trying to
405 * remove from the middle of the list:
408 bio_list_init(&punt
);
409 bio_list_init(&nopunt
);
411 while ((bio
= bio_list_pop(¤t
->bio_list
[0])))
412 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
413 current
->bio_list
[0] = nopunt
;
415 bio_list_init(&nopunt
);
416 while ((bio
= bio_list_pop(¤t
->bio_list
[1])))
417 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
418 current
->bio_list
[1] = nopunt
;
420 spin_lock(&bs
->rescue_lock
);
421 bio_list_merge(&bs
->rescue_list
, &punt
);
422 spin_unlock(&bs
->rescue_lock
);
424 queue_work(bs
->rescue_workqueue
, &bs
->rescue_work
);
427 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache
*cache
)
431 /* cache->free_list must be empty */
432 if (WARN_ON_ONCE(cache
->free_list
))
435 local_irq_save(flags
);
436 cache
->free_list
= cache
->free_list_irq
;
437 cache
->free_list_irq
= NULL
;
438 cache
->nr
+= cache
->nr_irq
;
440 local_irq_restore(flags
);
443 static struct bio
*bio_alloc_percpu_cache(struct block_device
*bdev
,
444 unsigned short nr_vecs
, blk_opf_t opf
, gfp_t gfp
,
447 struct bio_alloc_cache
*cache
;
450 cache
= per_cpu_ptr(bs
->cache
, get_cpu());
451 if (!cache
->free_list
) {
452 if (READ_ONCE(cache
->nr_irq
) >= ALLOC_CACHE_THRESHOLD
)
453 bio_alloc_irq_cache_splice(cache
);
454 if (!cache
->free_list
) {
459 bio
= cache
->free_list
;
460 cache
->free_list
= bio
->bi_next
;
464 bio_init(bio
, bdev
, nr_vecs
? bio
->bi_inline_vecs
: NULL
, nr_vecs
, opf
);
470 * bio_alloc_bioset - allocate a bio for I/O
471 * @bdev: block device to allocate the bio for (can be %NULL)
472 * @nr_vecs: number of bvecs to pre-allocate
473 * @opf: operation and flags for bio
474 * @gfp_mask: the GFP_* mask given to the slab allocator
475 * @bs: the bio_set to allocate from.
477 * Allocate a bio from the mempools in @bs.
479 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
480 * allocate a bio. This is due to the mempool guarantees. To make this work,
481 * callers must never allocate more than 1 bio at a time from the general pool.
482 * Callers that need to allocate more than 1 bio must always submit the
483 * previously allocated bio for IO before attempting to allocate a new one.
484 * Failure to do so can cause deadlocks under memory pressure.
486 * Note that when running under submit_bio_noacct() (i.e. any block driver),
487 * bios are not submitted until after you return - see the code in
488 * submit_bio_noacct() that converts recursion into iteration, to prevent
491 * This would normally mean allocating multiple bios under submit_bio_noacct()
492 * would be susceptible to deadlocks, but we have
493 * deadlock avoidance code that resubmits any blocked bios from a rescuer
496 * However, we do not guarantee forward progress for allocations from other
497 * mempools. Doing multiple allocations from the same mempool under
498 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
499 * for per bio allocations.
501 * Returns: Pointer to new bio on success, NULL on failure.
503 struct bio
*bio_alloc_bioset(struct block_device
*bdev
, unsigned short nr_vecs
,
504 blk_opf_t opf
, gfp_t gfp_mask
,
507 gfp_t saved_gfp
= gfp_mask
;
511 /* should not use nobvec bioset for nr_vecs > 0 */
512 if (WARN_ON_ONCE(!mempool_initialized(&bs
->bvec_pool
) && nr_vecs
> 0))
515 if (opf
& REQ_ALLOC_CACHE
) {
516 if (bs
->cache
&& nr_vecs
<= BIO_INLINE_VECS
) {
517 bio
= bio_alloc_percpu_cache(bdev
, nr_vecs
, opf
,
522 * No cached bio available, bio returned below marked with
523 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
526 opf
&= ~REQ_ALLOC_CACHE
;
531 * submit_bio_noacct() converts recursion to iteration; this means if
532 * we're running beneath it, any bios we allocate and submit will not be
533 * submitted (and thus freed) until after we return.
535 * This exposes us to a potential deadlock if we allocate multiple bios
536 * from the same bio_set() while running underneath submit_bio_noacct().
537 * If we were to allocate multiple bios (say a stacking block driver
538 * that was splitting bios), we would deadlock if we exhausted the
541 * We solve this, and guarantee forward progress, with a rescuer
542 * workqueue per bio_set. If we go to allocate and there are bios on
543 * current->bio_list, we first try the allocation without
544 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
545 * blocking to the rescuer workqueue before we retry with the original
548 if (current
->bio_list
&&
549 (!bio_list_empty(¤t
->bio_list
[0]) ||
550 !bio_list_empty(¤t
->bio_list
[1])) &&
551 bs
->rescue_workqueue
)
552 gfp_mask
&= ~__GFP_DIRECT_RECLAIM
;
554 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
555 if (!p
&& gfp_mask
!= saved_gfp
) {
556 punt_bios_to_rescuer(bs
);
557 gfp_mask
= saved_gfp
;
558 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
562 if (!mempool_is_saturated(&bs
->bio_pool
))
563 opf
&= ~REQ_ALLOC_CACHE
;
565 bio
= p
+ bs
->front_pad
;
566 if (nr_vecs
> BIO_INLINE_VECS
) {
567 struct bio_vec
*bvl
= NULL
;
569 bvl
= bvec_alloc(&bs
->bvec_pool
, &nr_vecs
, gfp_mask
);
570 if (!bvl
&& gfp_mask
!= saved_gfp
) {
571 punt_bios_to_rescuer(bs
);
572 gfp_mask
= saved_gfp
;
573 bvl
= bvec_alloc(&bs
->bvec_pool
, &nr_vecs
, gfp_mask
);
578 bio_init(bio
, bdev
, bvl
, nr_vecs
, opf
);
579 } else if (nr_vecs
) {
580 bio_init(bio
, bdev
, bio
->bi_inline_vecs
, BIO_INLINE_VECS
, opf
);
582 bio_init(bio
, bdev
, NULL
, 0, opf
);
589 mempool_free(p
, &bs
->bio_pool
);
592 EXPORT_SYMBOL(bio_alloc_bioset
);
595 * bio_kmalloc - kmalloc a bio
596 * @nr_vecs: number of bio_vecs to allocate
597 * @gfp_mask: the GFP_* mask given to the slab allocator
599 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
600 * using bio_init() before use. To free a bio returned from this function use
601 * kfree() after calling bio_uninit(). A bio returned from this function can
602 * be reused by calling bio_uninit() before calling bio_init() again.
604 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
605 * function are not backed by a mempool can fail. Do not use this function
606 * for allocations in the file system I/O path.
608 * Returns: Pointer to new bio on success, NULL on failure.
610 struct bio
*bio_kmalloc(unsigned short nr_vecs
, gfp_t gfp_mask
)
614 if (nr_vecs
> UIO_MAXIOV
)
616 return kmalloc(struct_size(bio
, bi_inline_vecs
, nr_vecs
), gfp_mask
);
618 EXPORT_SYMBOL(bio_kmalloc
);
620 void zero_fill_bio_iter(struct bio
*bio
, struct bvec_iter start
)
623 struct bvec_iter iter
;
625 __bio_for_each_segment(bv
, bio
, iter
, start
)
628 EXPORT_SYMBOL(zero_fill_bio_iter
);
631 * bio_truncate - truncate the bio to small size of @new_size
632 * @bio: the bio to be truncated
633 * @new_size: new size for truncating the bio
636 * Truncate the bio to new size of @new_size. If bio_op(bio) is
637 * REQ_OP_READ, zero the truncated part. This function should only
638 * be used for handling corner cases, such as bio eod.
640 static void bio_truncate(struct bio
*bio
, unsigned new_size
)
643 struct bvec_iter iter
;
644 unsigned int done
= 0;
645 bool truncated
= false;
647 if (new_size
>= bio
->bi_iter
.bi_size
)
650 if (bio_op(bio
) != REQ_OP_READ
)
653 bio_for_each_segment(bv
, bio
, iter
) {
654 if (done
+ bv
.bv_len
> new_size
) {
658 offset
= new_size
- done
;
661 zero_user(bv
.bv_page
, bv
.bv_offset
+ offset
,
670 * Don't touch bvec table here and make it really immutable, since
671 * fs bio user has to retrieve all pages via bio_for_each_segment_all
672 * in its .end_bio() callback.
674 * It is enough to truncate bio by updating .bi_size since we can make
675 * correct bvec with the updated .bi_size for drivers.
677 bio
->bi_iter
.bi_size
= new_size
;
681 * guard_bio_eod - truncate a BIO to fit the block device
682 * @bio: bio to truncate
684 * This allows us to do IO even on the odd last sectors of a device, even if the
685 * block size is some multiple of the physical sector size.
687 * We'll just truncate the bio to the size of the device, and clear the end of
688 * the buffer head manually. Truly out-of-range accesses will turn into actual
689 * I/O errors, this only handles the "we need to be able to do I/O at the final
692 void guard_bio_eod(struct bio
*bio
)
694 sector_t maxsector
= bdev_nr_sectors(bio
->bi_bdev
);
700 * If the *whole* IO is past the end of the device,
701 * let it through, and the IO layer will turn it into
704 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
707 maxsector
-= bio
->bi_iter
.bi_sector
;
708 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
711 bio_truncate(bio
, maxsector
<< 9);
714 static int __bio_alloc_cache_prune(struct bio_alloc_cache
*cache
,
720 while ((bio
= cache
->free_list
) != NULL
) {
721 cache
->free_list
= bio
->bi_next
;
730 static void bio_alloc_cache_prune(struct bio_alloc_cache
*cache
,
733 nr
-= __bio_alloc_cache_prune(cache
, nr
);
734 if (!READ_ONCE(cache
->free_list
)) {
735 bio_alloc_irq_cache_splice(cache
);
736 __bio_alloc_cache_prune(cache
, nr
);
740 static int bio_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
744 bs
= hlist_entry_safe(node
, struct bio_set
, cpuhp_dead
);
746 struct bio_alloc_cache
*cache
= per_cpu_ptr(bs
->cache
, cpu
);
748 bio_alloc_cache_prune(cache
, -1U);
753 static void bio_alloc_cache_destroy(struct bio_set
*bs
)
760 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD
, &bs
->cpuhp_dead
);
761 for_each_possible_cpu(cpu
) {
762 struct bio_alloc_cache
*cache
;
764 cache
= per_cpu_ptr(bs
->cache
, cpu
);
765 bio_alloc_cache_prune(cache
, -1U);
767 free_percpu(bs
->cache
);
771 static inline void bio_put_percpu_cache(struct bio
*bio
)
773 struct bio_alloc_cache
*cache
;
775 cache
= per_cpu_ptr(bio
->bi_pool
->cache
, get_cpu());
776 if (READ_ONCE(cache
->nr_irq
) + cache
->nr
> ALLOC_CACHE_MAX
)
781 bio
->bi_next
= cache
->free_list
;
782 /* Not necessary but helps not to iopoll already freed bios */
784 cache
->free_list
= bio
;
786 } else if (in_hardirq()) {
787 lockdep_assert_irqs_disabled();
790 bio
->bi_next
= cache
->free_list_irq
;
791 cache
->free_list_irq
= bio
;
804 * bio_put - release a reference to a bio
805 * @bio: bio to release reference to
808 * Put a reference to a &struct bio, either one you have gotten with
809 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
811 void bio_put(struct bio
*bio
)
813 if (unlikely(bio_flagged(bio
, BIO_REFFED
))) {
814 BUG_ON(!atomic_read(&bio
->__bi_cnt
));
815 if (!atomic_dec_and_test(&bio
->__bi_cnt
))
818 if (bio
->bi_opf
& REQ_ALLOC_CACHE
)
819 bio_put_percpu_cache(bio
);
823 EXPORT_SYMBOL(bio_put
);
825 static int __bio_clone(struct bio
*bio
, struct bio
*bio_src
, gfp_t gfp
)
827 bio_set_flag(bio
, BIO_CLONED
);
828 bio
->bi_ioprio
= bio_src
->bi_ioprio
;
829 bio
->bi_write_hint
= bio_src
->bi_write_hint
;
830 bio
->bi_iter
= bio_src
->bi_iter
;
833 if (bio
->bi_bdev
== bio_src
->bi_bdev
&&
834 bio_flagged(bio_src
, BIO_REMAPPED
))
835 bio_set_flag(bio
, BIO_REMAPPED
);
836 bio_clone_blkg_association(bio
, bio_src
);
839 if (bio_crypt_clone(bio
, bio_src
, gfp
) < 0)
841 if (bio_integrity(bio_src
) &&
842 bio_integrity_clone(bio
, bio_src
, gfp
) < 0)
848 * bio_alloc_clone - clone a bio that shares the original bio's biovec
849 * @bdev: block_device to clone onto
850 * @bio_src: bio to clone from
851 * @gfp: allocation priority
852 * @bs: bio_set to allocate from
854 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
855 * bio, but not the actual data it points to.
857 * The caller must ensure that the return bio is not freed before @bio_src.
859 struct bio
*bio_alloc_clone(struct block_device
*bdev
, struct bio
*bio_src
,
860 gfp_t gfp
, struct bio_set
*bs
)
864 bio
= bio_alloc_bioset(bdev
, 0, bio_src
->bi_opf
, gfp
, bs
);
868 if (__bio_clone(bio
, bio_src
, gfp
) < 0) {
872 bio
->bi_io_vec
= bio_src
->bi_io_vec
;
876 EXPORT_SYMBOL(bio_alloc_clone
);
879 * bio_init_clone - clone a bio that shares the original bio's biovec
880 * @bdev: block_device to clone onto
881 * @bio: bio to clone into
882 * @bio_src: bio to clone from
883 * @gfp: allocation priority
885 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
886 * The caller owns the returned bio, but not the actual data it points to.
888 * The caller must ensure that @bio_src is not freed before @bio.
890 int bio_init_clone(struct block_device
*bdev
, struct bio
*bio
,
891 struct bio
*bio_src
, gfp_t gfp
)
895 bio_init(bio
, bdev
, bio_src
->bi_io_vec
, 0, bio_src
->bi_opf
);
896 ret
= __bio_clone(bio
, bio_src
, gfp
);
901 EXPORT_SYMBOL(bio_init_clone
);
904 * bio_full - check if the bio is full
906 * @len: length of one segment to be added
908 * Return true if @bio is full and one segment with @len bytes can't be
909 * added to the bio, otherwise return false
911 static inline bool bio_full(struct bio
*bio
, unsigned len
)
913 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
915 if (bio
->bi_iter
.bi_size
> UINT_MAX
- len
)
920 static bool bvec_try_merge_page(struct bio_vec
*bv
, struct page
*page
,
921 unsigned int len
, unsigned int off
, bool *same_page
)
923 size_t bv_end
= bv
->bv_offset
+ bv
->bv_len
;
924 phys_addr_t vec_end_addr
= page_to_phys(bv
->bv_page
) + bv_end
- 1;
925 phys_addr_t page_addr
= page_to_phys(page
);
927 if (vec_end_addr
+ 1 != page_addr
+ off
)
929 if (xen_domain() && !xen_biovec_phys_mergeable(bv
, page
))
931 if (!zone_device_pages_have_same_pgmap(bv
->bv_page
, page
))
934 *same_page
= ((vec_end_addr
& PAGE_MASK
) == ((page_addr
+ off
) &
937 if (IS_ENABLED(CONFIG_KMSAN
))
939 if (bv
->bv_page
+ bv_end
/ PAGE_SIZE
!= page
+ off
/ PAGE_SIZE
)
948 * Try to merge a page into a segment, while obeying the hardware segment
949 * size limit. This is not for normal read/write bios, but for passthrough
950 * or Zone Append operations that we can't split.
952 bool bvec_try_merge_hw_page(struct request_queue
*q
, struct bio_vec
*bv
,
953 struct page
*page
, unsigned len
, unsigned offset
,
956 unsigned long mask
= queue_segment_boundary(q
);
957 phys_addr_t addr1
= bvec_phys(bv
);
958 phys_addr_t addr2
= page_to_phys(page
) + offset
+ len
- 1;
960 if ((addr1
| mask
) != (addr2
| mask
))
962 if (len
> queue_max_segment_size(q
) - bv
->bv_len
)
964 return bvec_try_merge_page(bv
, page
, len
, offset
, same_page
);
968 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
969 * @q: the target queue
970 * @bio: destination bio
972 * @len: vec entry length
973 * @offset: vec entry offset
974 * @max_sectors: maximum number of sectors that can be added
975 * @same_page: return if the segment has been merged inside the same page
977 * Add a page to a bio while respecting the hardware max_sectors, max_segment
978 * and gap limitations.
980 int bio_add_hw_page(struct request_queue
*q
, struct bio
*bio
,
981 struct page
*page
, unsigned int len
, unsigned int offset
,
982 unsigned int max_sectors
, bool *same_page
)
984 unsigned int max_size
= max_sectors
<< SECTOR_SHIFT
;
986 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
989 len
= min3(len
, max_size
, queue_max_segment_size(q
));
990 if (len
> max_size
- bio
->bi_iter
.bi_size
)
993 if (bio
->bi_vcnt
> 0) {
994 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
996 if (bvec_try_merge_hw_page(q
, bv
, page
, len
, offset
,
998 bio
->bi_iter
.bi_size
+= len
;
1003 min(bio
->bi_max_vecs
, queue_max_segments(q
)))
1007 * If the queue doesn't support SG gaps and adding this segment
1008 * would create a gap, disallow it.
1010 if (bvec_gap_to_prev(&q
->limits
, bv
, offset
))
1014 bvec_set_page(&bio
->bi_io_vec
[bio
->bi_vcnt
], page
, len
, offset
);
1016 bio
->bi_iter
.bi_size
+= len
;
1021 * bio_add_hw_folio - attempt to add a folio to a bio with hw constraints
1022 * @q: the target queue
1023 * @bio: destination bio
1024 * @folio: folio to add
1025 * @len: vec entry length
1026 * @offset: vec entry offset in the folio
1027 * @max_sectors: maximum number of sectors that can be added
1028 * @same_page: return if the segment has been merged inside the same folio
1030 * Add a folio to a bio while respecting the hardware max_sectors, max_segment
1031 * and gap limitations.
1033 int bio_add_hw_folio(struct request_queue
*q
, struct bio
*bio
,
1034 struct folio
*folio
, size_t len
, size_t offset
,
1035 unsigned int max_sectors
, bool *same_page
)
1037 if (len
> UINT_MAX
|| offset
> UINT_MAX
)
1039 return bio_add_hw_page(q
, bio
, folio_page(folio
, 0), len
, offset
,
1040 max_sectors
, same_page
);
1044 * bio_add_pc_page - attempt to add page to passthrough bio
1045 * @q: the target queue
1046 * @bio: destination bio
1047 * @page: page to add
1048 * @len: vec entry length
1049 * @offset: vec entry offset
1051 * Attempt to add a page to the bio_vec maplist. This can fail for a
1052 * number of reasons, such as the bio being full or target block device
1053 * limitations. The target block device must allow bio's up to PAGE_SIZE,
1054 * so it is always possible to add a single page to an empty bio.
1056 * This should only be used by passthrough bios.
1058 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
,
1059 struct page
*page
, unsigned int len
, unsigned int offset
)
1061 bool same_page
= false;
1062 return bio_add_hw_page(q
, bio
, page
, len
, offset
,
1063 queue_max_hw_sectors(q
), &same_page
);
1065 EXPORT_SYMBOL(bio_add_pc_page
);
1068 * bio_add_zone_append_page - attempt to add page to zone-append bio
1069 * @bio: destination bio
1070 * @page: page to add
1071 * @len: vec entry length
1072 * @offset: vec entry offset
1074 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1075 * for a zone-append request. This can fail for a number of reasons, such as the
1076 * bio being full or the target block device is not a zoned block device or
1077 * other limitations of the target block device. The target block device must
1078 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1081 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1083 int bio_add_zone_append_page(struct bio
*bio
, struct page
*page
,
1084 unsigned int len
, unsigned int offset
)
1086 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1087 bool same_page
= false;
1089 if (WARN_ON_ONCE(bio_op(bio
) != REQ_OP_ZONE_APPEND
))
1092 if (WARN_ON_ONCE(!bdev_is_zoned(bio
->bi_bdev
)))
1095 return bio_add_hw_page(q
, bio
, page
, len
, offset
,
1096 queue_max_zone_append_sectors(q
), &same_page
);
1098 EXPORT_SYMBOL_GPL(bio_add_zone_append_page
);
1101 * __bio_add_page - add page(s) to a bio in a new segment
1102 * @bio: destination bio
1103 * @page: start page to add
1104 * @len: length of the data to add, may cross pages
1105 * @off: offset of the data relative to @page, may cross pages
1107 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1108 * that @bio has space for another bvec.
1110 void __bio_add_page(struct bio
*bio
, struct page
*page
,
1111 unsigned int len
, unsigned int off
)
1113 WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
));
1114 WARN_ON_ONCE(bio_full(bio
, len
));
1116 bvec_set_page(&bio
->bi_io_vec
[bio
->bi_vcnt
], page
, len
, off
);
1117 bio
->bi_iter
.bi_size
+= len
;
1120 EXPORT_SYMBOL_GPL(__bio_add_page
);
1123 * bio_add_page - attempt to add page(s) to bio
1124 * @bio: destination bio
1125 * @page: start page to add
1126 * @len: vec entry length, may cross pages
1127 * @offset: vec entry offset relative to @page, may cross pages
1129 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1130 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1132 int bio_add_page(struct bio
*bio
, struct page
*page
,
1133 unsigned int len
, unsigned int offset
)
1135 bool same_page
= false;
1137 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
1139 if (bio
->bi_iter
.bi_size
> UINT_MAX
- len
)
1142 if (bio
->bi_vcnt
> 0 &&
1143 bvec_try_merge_page(&bio
->bi_io_vec
[bio
->bi_vcnt
- 1],
1144 page
, len
, offset
, &same_page
)) {
1145 bio
->bi_iter
.bi_size
+= len
;
1149 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
1151 __bio_add_page(bio
, page
, len
, offset
);
1154 EXPORT_SYMBOL(bio_add_page
);
1156 void bio_add_folio_nofail(struct bio
*bio
, struct folio
*folio
, size_t len
,
1159 WARN_ON_ONCE(len
> UINT_MAX
);
1160 WARN_ON_ONCE(off
> UINT_MAX
);
1161 __bio_add_page(bio
, &folio
->page
, len
, off
);
1163 EXPORT_SYMBOL_GPL(bio_add_folio_nofail
);
1166 * bio_add_folio - Attempt to add part of a folio to a bio.
1167 * @bio: BIO to add to.
1168 * @folio: Folio to add.
1169 * @len: How many bytes from the folio to add.
1170 * @off: First byte in this folio to add.
1172 * Filesystems that use folios can call this function instead of calling
1173 * bio_add_page() for each page in the folio. If @off is bigger than
1174 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1175 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1177 * Return: Whether the addition was successful.
1179 bool bio_add_folio(struct bio
*bio
, struct folio
*folio
, size_t len
,
1182 if (len
> UINT_MAX
|| off
> UINT_MAX
)
1184 return bio_add_page(bio
, &folio
->page
, len
, off
) > 0;
1186 EXPORT_SYMBOL(bio_add_folio
);
1188 void __bio_release_pages(struct bio
*bio
, bool mark_dirty
)
1190 struct folio_iter fi
;
1192 bio_for_each_folio_all(fi
, bio
) {
1196 folio_lock(fi
.folio
);
1197 folio_mark_dirty(fi
.folio
);
1198 folio_unlock(fi
.folio
);
1200 nr_pages
= (fi
.offset
+ fi
.length
- 1) / PAGE_SIZE
-
1201 fi
.offset
/ PAGE_SIZE
+ 1;
1202 unpin_user_folio(fi
.folio
, nr_pages
);
1205 EXPORT_SYMBOL_GPL(__bio_release_pages
);
1207 void bio_iov_bvec_set(struct bio
*bio
, struct iov_iter
*iter
)
1209 size_t size
= iov_iter_count(iter
);
1211 WARN_ON_ONCE(bio
->bi_max_vecs
);
1213 if (bio_op(bio
) == REQ_OP_ZONE_APPEND
) {
1214 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1215 size_t max_sectors
= queue_max_zone_append_sectors(q
);
1217 size
= min(size
, max_sectors
<< SECTOR_SHIFT
);
1220 bio
->bi_vcnt
= iter
->nr_segs
;
1221 bio
->bi_io_vec
= (struct bio_vec
*)iter
->bvec
;
1222 bio
->bi_iter
.bi_bvec_done
= iter
->iov_offset
;
1223 bio
->bi_iter
.bi_size
= size
;
1224 bio_set_flag(bio
, BIO_CLONED
);
1227 static int bio_iov_add_folio(struct bio
*bio
, struct folio
*folio
, size_t len
,
1230 bool same_page
= false;
1232 if (WARN_ON_ONCE(bio
->bi_iter
.bi_size
> UINT_MAX
- len
))
1235 if (bio
->bi_vcnt
> 0 &&
1236 bvec_try_merge_page(&bio
->bi_io_vec
[bio
->bi_vcnt
- 1],
1237 folio_page(folio
, 0), len
, offset
,
1239 bio
->bi_iter
.bi_size
+= len
;
1240 if (same_page
&& bio_flagged(bio
, BIO_PAGE_PINNED
))
1241 unpin_user_folio(folio
, 1);
1244 bio_add_folio_nofail(bio
, folio
, len
, offset
);
1248 static int bio_iov_add_zone_append_folio(struct bio
*bio
, struct folio
*folio
,
1249 size_t len
, size_t offset
)
1251 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1252 bool same_page
= false;
1254 if (bio_add_hw_folio(q
, bio
, folio
, len
, offset
,
1255 queue_max_zone_append_sectors(q
), &same_page
) != len
)
1257 if (same_page
&& bio_flagged(bio
, BIO_PAGE_PINNED
))
1258 unpin_user_folio(folio
, 1);
1262 static unsigned int get_contig_folio_len(unsigned int *num_pages
,
1263 struct page
**pages
, unsigned int i
,
1264 struct folio
*folio
, size_t left
,
1267 size_t bytes
= left
;
1268 size_t contig_sz
= min_t(size_t, PAGE_SIZE
- offset
, bytes
);
1272 * We might COW a single page in the middle of
1273 * a large folio, so we have to check that all
1274 * pages belong to the same folio.
1277 for (j
= i
+ 1; j
< i
+ *num_pages
; j
++) {
1278 size_t next
= min_t(size_t, PAGE_SIZE
, bytes
);
1280 if (page_folio(pages
[j
]) != folio
||
1281 pages
[j
] != pages
[j
- 1] + 1) {
1292 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1295 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1296 * @bio: bio to add pages to
1297 * @iter: iov iterator describing the region to be mapped
1299 * Extracts pages from *iter and appends them to @bio's bvec array. The pages
1300 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1301 * For a multi-segment *iter, this function only adds pages from the next
1302 * non-empty segment of the iov iterator.
1304 static int __bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
1306 iov_iter_extraction_t extraction_flags
= 0;
1307 unsigned short nr_pages
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
1308 unsigned short entries_left
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
1309 struct bio_vec
*bv
= bio
->bi_io_vec
+ bio
->bi_vcnt
;
1310 struct page
**pages
= (struct page
**)bv
;
1312 unsigned int num_pages
, i
= 0;
1313 size_t offset
, folio_offset
, left
, len
;
1317 * Move page array up in the allocated memory for the bio vecs as far as
1318 * possible so that we can start filling biovecs from the beginning
1319 * without overwriting the temporary page array.
1321 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC
< 2);
1322 pages
+= entries_left
* (PAGE_PTRS_PER_BVEC
- 1);
1324 if (bio
->bi_bdev
&& blk_queue_pci_p2pdma(bio
->bi_bdev
->bd_disk
->queue
))
1325 extraction_flags
|= ITER_ALLOW_P2PDMA
;
1328 * Each segment in the iov is required to be a block size multiple.
1329 * However, we may not be able to get the entire segment if it spans
1330 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1331 * result to ensure the bio's total size is correct. The remainder of
1332 * the iov data will be picked up in the next bio iteration.
1334 size
= iov_iter_extract_pages(iter
, &pages
,
1335 UINT_MAX
- bio
->bi_iter
.bi_size
,
1336 nr_pages
, extraction_flags
, &offset
);
1337 if (unlikely(size
<= 0))
1338 return size
? size
: -EFAULT
;
1340 nr_pages
= DIV_ROUND_UP(offset
+ size
, PAGE_SIZE
);
1343 size_t trim
= size
& (bdev_logical_block_size(bio
->bi_bdev
) - 1);
1344 iov_iter_revert(iter
, trim
);
1348 if (unlikely(!size
)) {
1353 for (left
= size
, i
= 0; left
> 0; left
-= len
, i
+= num_pages
) {
1354 struct page
*page
= pages
[i
];
1355 struct folio
*folio
= page_folio(page
);
1357 folio_offset
= ((size_t)folio_page_idx(folio
, page
) <<
1358 PAGE_SHIFT
) + offset
;
1360 len
= min(folio_size(folio
) - folio_offset
, left
);
1362 num_pages
= DIV_ROUND_UP(offset
+ len
, PAGE_SIZE
);
1365 len
= get_contig_folio_len(&num_pages
, pages
, i
,
1366 folio
, left
, offset
);
1368 if (bio_op(bio
) == REQ_OP_ZONE_APPEND
) {
1369 ret
= bio_iov_add_zone_append_folio(bio
, folio
, len
,
1374 bio_iov_add_folio(bio
, folio
, len
, folio_offset
);
1379 iov_iter_revert(iter
, left
);
1381 while (i
< nr_pages
)
1382 bio_release_page(bio
, pages
[i
++]);
1388 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1389 * @bio: bio to add pages to
1390 * @iter: iov iterator describing the region to be added
1392 * This takes either an iterator pointing to user memory, or one pointing to
1393 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1394 * map them into the kernel. On IO completion, the caller should put those
1395 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1396 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1397 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1398 * completed by a call to ->ki_complete() or returns with an error other than
1399 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1400 * on IO completion. If it isn't, then pages should be released.
1402 * The function tries, but does not guarantee, to pin as many pages as
1403 * fit into the bio, or are requested in @iter, whatever is smaller. If
1404 * MM encounters an error pinning the requested pages, it stops. Error
1405 * is returned only if 0 pages could be pinned.
1407 int bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
1411 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
1414 if (iov_iter_is_bvec(iter
)) {
1415 bio_iov_bvec_set(bio
, iter
);
1416 iov_iter_advance(iter
, bio
->bi_iter
.bi_size
);
1420 if (iov_iter_extract_will_pin(iter
))
1421 bio_set_flag(bio
, BIO_PAGE_PINNED
);
1423 ret
= __bio_iov_iter_get_pages(bio
, iter
);
1424 } while (!ret
&& iov_iter_count(iter
) && !bio_full(bio
, 0));
1426 return bio
->bi_vcnt
? 0 : ret
;
1428 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages
);
1430 static void submit_bio_wait_endio(struct bio
*bio
)
1432 complete(bio
->bi_private
);
1436 * submit_bio_wait - submit a bio, and wait until it completes
1437 * @bio: The &struct bio which describes the I/O
1439 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1440 * bio_endio() on failure.
1442 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1443 * result in bio reference to be consumed. The caller must drop the reference
1446 int submit_bio_wait(struct bio
*bio
)
1448 DECLARE_COMPLETION_ONSTACK_MAP(done
,
1449 bio
->bi_bdev
->bd_disk
->lockdep_map
);
1451 bio
->bi_private
= &done
;
1452 bio
->bi_end_io
= submit_bio_wait_endio
;
1453 bio
->bi_opf
|= REQ_SYNC
;
1457 return blk_status_to_errno(bio
->bi_status
);
1459 EXPORT_SYMBOL(submit_bio_wait
);
1461 static void bio_wait_end_io(struct bio
*bio
)
1463 complete(bio
->bi_private
);
1468 * bio_await_chain - ends @bio and waits for every chained bio to complete
1470 void bio_await_chain(struct bio
*bio
)
1472 DECLARE_COMPLETION_ONSTACK_MAP(done
,
1473 bio
->bi_bdev
->bd_disk
->lockdep_map
);
1475 bio
->bi_private
= &done
;
1476 bio
->bi_end_io
= bio_wait_end_io
;
1481 void __bio_advance(struct bio
*bio
, unsigned bytes
)
1483 if (bio_integrity(bio
))
1484 bio_integrity_advance(bio
, bytes
);
1486 bio_crypt_advance(bio
, bytes
);
1487 bio_advance_iter(bio
, &bio
->bi_iter
, bytes
);
1489 EXPORT_SYMBOL(__bio_advance
);
1491 void bio_copy_data_iter(struct bio
*dst
, struct bvec_iter
*dst_iter
,
1492 struct bio
*src
, struct bvec_iter
*src_iter
)
1494 while (src_iter
->bi_size
&& dst_iter
->bi_size
) {
1495 struct bio_vec src_bv
= bio_iter_iovec(src
, *src_iter
);
1496 struct bio_vec dst_bv
= bio_iter_iovec(dst
, *dst_iter
);
1497 unsigned int bytes
= min(src_bv
.bv_len
, dst_bv
.bv_len
);
1498 void *src_buf
= bvec_kmap_local(&src_bv
);
1499 void *dst_buf
= bvec_kmap_local(&dst_bv
);
1501 memcpy(dst_buf
, src_buf
, bytes
);
1503 kunmap_local(dst_buf
);
1504 kunmap_local(src_buf
);
1506 bio_advance_iter_single(src
, src_iter
, bytes
);
1507 bio_advance_iter_single(dst
, dst_iter
, bytes
);
1510 EXPORT_SYMBOL(bio_copy_data_iter
);
1513 * bio_copy_data - copy contents of data buffers from one bio to another
1515 * @dst: destination bio
1517 * Stops when it reaches the end of either @src or @dst - that is, copies
1518 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1520 void bio_copy_data(struct bio
*dst
, struct bio
*src
)
1522 struct bvec_iter src_iter
= src
->bi_iter
;
1523 struct bvec_iter dst_iter
= dst
->bi_iter
;
1525 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1527 EXPORT_SYMBOL(bio_copy_data
);
1529 void bio_free_pages(struct bio
*bio
)
1531 struct bio_vec
*bvec
;
1532 struct bvec_iter_all iter_all
;
1534 bio_for_each_segment_all(bvec
, bio
, iter_all
)
1535 __free_page(bvec
->bv_page
);
1537 EXPORT_SYMBOL(bio_free_pages
);
1540 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1541 * for performing direct-IO in BIOs.
1543 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1544 * because the required locks are not interrupt-safe. So what we can do is to
1545 * mark the pages dirty _before_ performing IO. And in interrupt context,
1546 * check that the pages are still dirty. If so, fine. If not, redirty them
1547 * in process context.
1549 * Note that this code is very hard to test under normal circumstances because
1550 * direct-io pins the pages with get_user_pages(). This makes
1551 * is_page_cache_freeable return false, and the VM will not clean the pages.
1552 * But other code (eg, flusher threads) could clean the pages if they are mapped
1555 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1556 * deferred bio dirtying paths.
1560 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1562 void bio_set_pages_dirty(struct bio
*bio
)
1564 struct folio_iter fi
;
1566 bio_for_each_folio_all(fi
, bio
) {
1567 folio_lock(fi
.folio
);
1568 folio_mark_dirty(fi
.folio
);
1569 folio_unlock(fi
.folio
);
1572 EXPORT_SYMBOL_GPL(bio_set_pages_dirty
);
1575 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1576 * If they are, then fine. If, however, some pages are clean then they must
1577 * have been written out during the direct-IO read. So we take another ref on
1578 * the BIO and re-dirty the pages in process context.
1580 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1581 * here on. It will unpin each page and will run one bio_put() against the
1585 static void bio_dirty_fn(struct work_struct
*work
);
1587 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1588 static DEFINE_SPINLOCK(bio_dirty_lock
);
1589 static struct bio
*bio_dirty_list
;
1592 * This runs in process context
1594 static void bio_dirty_fn(struct work_struct
*work
)
1596 struct bio
*bio
, *next
;
1598 spin_lock_irq(&bio_dirty_lock
);
1599 next
= bio_dirty_list
;
1600 bio_dirty_list
= NULL
;
1601 spin_unlock_irq(&bio_dirty_lock
);
1603 while ((bio
= next
) != NULL
) {
1604 next
= bio
->bi_private
;
1606 bio_release_pages(bio
, true);
1611 void bio_check_pages_dirty(struct bio
*bio
)
1613 struct folio_iter fi
;
1614 unsigned long flags
;
1616 bio_for_each_folio_all(fi
, bio
) {
1617 if (!folio_test_dirty(fi
.folio
))
1621 bio_release_pages(bio
, false);
1625 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1626 bio
->bi_private
= bio_dirty_list
;
1627 bio_dirty_list
= bio
;
1628 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1629 schedule_work(&bio_dirty_work
);
1631 EXPORT_SYMBOL_GPL(bio_check_pages_dirty
);
1633 static inline bool bio_remaining_done(struct bio
*bio
)
1636 * If we're not chaining, then ->__bi_remaining is always 1 and
1637 * we always end io on the first invocation.
1639 if (!bio_flagged(bio
, BIO_CHAIN
))
1642 BUG_ON(atomic_read(&bio
->__bi_remaining
) <= 0);
1644 if (atomic_dec_and_test(&bio
->__bi_remaining
)) {
1645 bio_clear_flag(bio
, BIO_CHAIN
);
1653 * bio_endio - end I/O on a bio
1657 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1658 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1659 * bio unless they own it and thus know that it has an end_io function.
1661 * bio_endio() can be called several times on a bio that has been chained
1662 * using bio_chain(). The ->bi_end_io() function will only be called the
1665 void bio_endio(struct bio
*bio
)
1668 if (!bio_remaining_done(bio
))
1670 if (!bio_integrity_endio(bio
))
1673 blk_zone_bio_endio(bio
);
1675 rq_qos_done_bio(bio
);
1677 if (bio
->bi_bdev
&& bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
1678 trace_block_bio_complete(bdev_get_queue(bio
->bi_bdev
), bio
);
1679 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
1683 * Need to have a real endio function for chained bios, otherwise
1684 * various corner cases will break (like stacking block devices that
1685 * save/restore bi_end_io) - however, we want to avoid unbounded
1686 * recursion and blowing the stack. Tail call optimization would
1687 * handle this, but compiling with frame pointers also disables
1688 * gcc's sibling call optimization.
1690 if (bio
->bi_end_io
== bio_chain_endio
) {
1691 bio
= __bio_chain_endio(bio
);
1695 #ifdef CONFIG_BLK_CGROUP
1697 * Release cgroup info. We shouldn't have to do this here, but quite
1698 * a few callers of bio_init fail to call bio_uninit, so we cover up
1699 * for that here at least for now.
1702 blkg_put(bio
->bi_blkg
);
1703 bio
->bi_blkg
= NULL
;
1708 bio
->bi_end_io(bio
);
1710 EXPORT_SYMBOL(bio_endio
);
1713 * bio_split - split a bio
1714 * @bio: bio to split
1715 * @sectors: number of sectors to split from the front of @bio
1717 * @bs: bio set to allocate from
1719 * Allocates and returns a new bio which represents @sectors from the start of
1720 * @bio, and updates @bio to represent the remaining sectors.
1722 * Unless this is a discard request the newly allocated bio will point
1723 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1724 * neither @bio nor @bs are freed before the split bio.
1726 struct bio
*bio_split(struct bio
*bio
, int sectors
,
1727 gfp_t gfp
, struct bio_set
*bs
)
1731 BUG_ON(sectors
<= 0);
1732 BUG_ON(sectors
>= bio_sectors(bio
));
1734 /* Zone append commands cannot be split */
1735 if (WARN_ON_ONCE(bio_op(bio
) == REQ_OP_ZONE_APPEND
))
1738 split
= bio_alloc_clone(bio
->bi_bdev
, bio
, gfp
, bs
);
1742 split
->bi_iter
.bi_size
= sectors
<< 9;
1744 if (bio_integrity(split
))
1745 bio_integrity_trim(split
);
1747 bio_advance(bio
, split
->bi_iter
.bi_size
);
1749 if (bio_flagged(bio
, BIO_TRACE_COMPLETION
))
1750 bio_set_flag(split
, BIO_TRACE_COMPLETION
);
1754 EXPORT_SYMBOL(bio_split
);
1757 * bio_trim - trim a bio
1759 * @offset: number of sectors to trim from the front of @bio
1760 * @size: size we want to trim @bio to, in sectors
1762 * This function is typically used for bios that are cloned and submitted
1763 * to the underlying device in parts.
1765 void bio_trim(struct bio
*bio
, sector_t offset
, sector_t size
)
1767 if (WARN_ON_ONCE(offset
> BIO_MAX_SECTORS
|| size
> BIO_MAX_SECTORS
||
1768 offset
+ size
> bio_sectors(bio
)))
1772 if (offset
== 0 && size
== bio
->bi_iter
.bi_size
)
1775 bio_advance(bio
, offset
<< 9);
1776 bio
->bi_iter
.bi_size
= size
;
1778 if (bio_integrity(bio
))
1779 bio_integrity_trim(bio
);
1781 EXPORT_SYMBOL_GPL(bio_trim
);
1784 * create memory pools for biovec's in a bio_set.
1785 * use the global biovec slabs created for general use.
1787 int biovec_init_pool(mempool_t
*pool
, int pool_entries
)
1789 struct biovec_slab
*bp
= bvec_slabs
+ ARRAY_SIZE(bvec_slabs
) - 1;
1791 return mempool_init_slab_pool(pool
, pool_entries
, bp
->slab
);
1795 * bioset_exit - exit a bioset initialized with bioset_init()
1797 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1800 void bioset_exit(struct bio_set
*bs
)
1802 bio_alloc_cache_destroy(bs
);
1803 if (bs
->rescue_workqueue
)
1804 destroy_workqueue(bs
->rescue_workqueue
);
1805 bs
->rescue_workqueue
= NULL
;
1807 mempool_exit(&bs
->bio_pool
);
1808 mempool_exit(&bs
->bvec_pool
);
1810 bioset_integrity_free(bs
);
1813 bs
->bio_slab
= NULL
;
1815 EXPORT_SYMBOL(bioset_exit
);
1818 * bioset_init - Initialize a bio_set
1819 * @bs: pool to initialize
1820 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1821 * @front_pad: Number of bytes to allocate in front of the returned bio
1822 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1823 * and %BIOSET_NEED_RESCUER
1826 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1827 * to ask for a number of bytes to be allocated in front of the bio.
1828 * Front pad allocation is useful for embedding the bio inside
1829 * another structure, to avoid allocating extra data to go with the bio.
1830 * Note that the bio must be embedded at the END of that structure always,
1831 * or things will break badly.
1832 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1833 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1834 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1835 * to dispatch queued requests when the mempool runs out of space.
1838 int bioset_init(struct bio_set
*bs
,
1839 unsigned int pool_size
,
1840 unsigned int front_pad
,
1843 bs
->front_pad
= front_pad
;
1844 if (flags
& BIOSET_NEED_BVECS
)
1845 bs
->back_pad
= BIO_INLINE_VECS
* sizeof(struct bio_vec
);
1849 spin_lock_init(&bs
->rescue_lock
);
1850 bio_list_init(&bs
->rescue_list
);
1851 INIT_WORK(&bs
->rescue_work
, bio_alloc_rescue
);
1853 bs
->bio_slab
= bio_find_or_create_slab(bs
);
1857 if (mempool_init_slab_pool(&bs
->bio_pool
, pool_size
, bs
->bio_slab
))
1860 if ((flags
& BIOSET_NEED_BVECS
) &&
1861 biovec_init_pool(&bs
->bvec_pool
, pool_size
))
1864 if (flags
& BIOSET_NEED_RESCUER
) {
1865 bs
->rescue_workqueue
= alloc_workqueue("bioset",
1867 if (!bs
->rescue_workqueue
)
1870 if (flags
& BIOSET_PERCPU_CACHE
) {
1871 bs
->cache
= alloc_percpu(struct bio_alloc_cache
);
1874 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD
, &bs
->cpuhp_dead
);
1882 EXPORT_SYMBOL(bioset_init
);
1884 static int __init
init_bio(void)
1888 BUILD_BUG_ON(BIO_FLAG_LAST
> 8 * sizeof_field(struct bio
, bi_flags
));
1890 bio_integrity_init();
1892 for (i
= 0; i
< ARRAY_SIZE(bvec_slabs
); i
++) {
1893 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
1895 bvs
->slab
= kmem_cache_create(bvs
->name
,
1896 bvs
->nr_vecs
* sizeof(struct bio_vec
), 0,
1897 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
1900 cpuhp_setup_state_multi(CPUHP_BIO_DEAD
, "block/bio:dead", NULL
,
1903 if (bioset_init(&fs_bio_set
, BIO_POOL_SIZE
, 0,
1904 BIOSET_NEED_BVECS
| BIOSET_PERCPU_CACHE
))
1905 panic("bio: can't allocate bios\n");
1907 if (bioset_integrity_create(&fs_bio_set
, BIO_POOL_SIZE
))
1908 panic("bio: can't create integrity pool\n");
1912 subsys_initcall(init_bio
);