cpufreq/amd-pstate: Stop caching EPP
[pf-kernel.git] / drivers / mtd / chips / cfi_cmdset_0001.c
blobc10693ba265baef4be26f38e705755d333794c1c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Flash Interface support:
4 * Intel Extended Vendor Command Set (ID 0x0001)
6 * (C) 2000 Red Hat.
9 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
10 * - completely revamped method functions so they are aware and
11 * independent of the flash geometry (buswidth, interleave, etc.)
12 * - scalability vs code size is completely set at compile-time
13 * (see include/linux/mtd/cfi.h for selection)
14 * - optimized write buffer method
15 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
16 * - reworked lock/unlock/erase support for var size flash
17 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
18 * - auto unlock sectors on resume for auto locking flash on power up
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/reboot.h>
33 #include <linux/bitmap.h>
34 #include <linux/mtd/xip.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/cfi.h>
39 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
40 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
42 // debugging, turns off buffer write mode if set to 1
43 #define FORCE_WORD_WRITE 0
45 /* Intel chips */
46 #define I82802AB 0x00ad
47 #define I82802AC 0x00ac
48 #define PF38F4476 0x881c
49 #define M28F00AP30 0x8963
50 /* STMicroelectronics chips */
51 #define M50LPW080 0x002F
52 #define M50FLW080A 0x0080
53 #define M50FLW080B 0x0081
54 /* Atmel chips */
55 #define AT49BV640D 0x02de
56 #define AT49BV640DT 0x02db
57 /* Sharp chips */
58 #define LH28F640BFHE_PTTL90 0x00b0
59 #define LH28F640BFHE_PBTL90 0x00b1
60 #define LH28F640BFHE_PTTL70A 0x00b2
61 #define LH28F640BFHE_PBTL70A 0x00b3
63 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
64 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
65 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
66 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
67 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
68 static void cfi_intelext_sync (struct mtd_info *);
69 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
70 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
71 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
72 uint64_t len);
73 #ifdef CONFIG_MTD_OTP
74 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
75 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
76 static int cfi_intelext_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
77 size_t *, const u_char *);
78 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
79 static int cfi_intelext_get_fact_prot_info(struct mtd_info *, size_t,
80 size_t *, struct otp_info *);
81 static int cfi_intelext_get_user_prot_info(struct mtd_info *, size_t,
82 size_t *, struct otp_info *);
83 #endif
84 static int cfi_intelext_suspend (struct mtd_info *);
85 static void cfi_intelext_resume (struct mtd_info *);
86 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
88 static void cfi_intelext_destroy(struct mtd_info *);
90 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
92 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
93 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
95 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
96 size_t *retlen, void **virt, resource_size_t *phys);
97 static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
99 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
100 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
101 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
102 #include "fwh_lock.h"
107 * *********** SETUP AND PROBE BITS ***********
110 static struct mtd_chip_driver cfi_intelext_chipdrv = {
111 .probe = NULL, /* Not usable directly */
112 .destroy = cfi_intelext_destroy,
113 .name = "cfi_cmdset_0001",
114 .module = THIS_MODULE
117 /* #define DEBUG_LOCK_BITS */
118 /* #define DEBUG_CFI_FEATURES */
120 #ifdef DEBUG_CFI_FEATURES
121 static void cfi_tell_features(struct cfi_pri_intelext *extp)
123 int i;
124 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
125 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
126 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
127 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
128 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
129 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
130 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
131 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
132 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
133 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
134 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
135 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
136 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
137 for (i=11; i<32; i++) {
138 if (extp->FeatureSupport & (1<<i))
139 printk(" - Unknown Bit %X: supported\n", i);
142 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
143 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
144 for (i=1; i<8; i++) {
145 if (extp->SuspendCmdSupport & (1<<i))
146 printk(" - Unknown Bit %X: supported\n", i);
149 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
150 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
151 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
152 for (i=2; i<3; i++) {
153 if (extp->BlkStatusRegMask & (1<<i))
154 printk(" - Unknown Bit %X Active: yes\n",i);
156 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
157 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
158 for (i=6; i<16; i++) {
159 if (extp->BlkStatusRegMask & (1<<i))
160 printk(" - Unknown Bit %X Active: yes\n",i);
163 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
164 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
165 if (extp->VppOptimal)
166 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
167 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
169 #endif
171 /* Atmel chips don't use the same PRI format as Intel chips */
172 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
174 struct map_info *map = mtd->priv;
175 struct cfi_private *cfi = map->fldrv_priv;
176 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
177 struct cfi_pri_atmel atmel_pri;
178 uint32_t features = 0;
180 /* Reverse byteswapping */
181 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
182 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
183 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
185 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
186 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
188 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
190 if (atmel_pri.Features & 0x01) /* chip erase supported */
191 features |= (1<<0);
192 if (atmel_pri.Features & 0x02) /* erase suspend supported */
193 features |= (1<<1);
194 if (atmel_pri.Features & 0x04) /* program suspend supported */
195 features |= (1<<2);
196 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
197 features |= (1<<9);
198 if (atmel_pri.Features & 0x20) /* page mode read supported */
199 features |= (1<<7);
200 if (atmel_pri.Features & 0x40) /* queued erase supported */
201 features |= (1<<4);
202 if (atmel_pri.Features & 0x80) /* Protection bits supported */
203 features |= (1<<6);
205 extp->FeatureSupport = features;
207 /* burst write mode not supported */
208 cfi->cfiq->BufWriteTimeoutTyp = 0;
209 cfi->cfiq->BufWriteTimeoutMax = 0;
212 static void fixup_at49bv640dx_lock(struct mtd_info *mtd)
214 struct map_info *map = mtd->priv;
215 struct cfi_private *cfi = map->fldrv_priv;
216 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
218 cfip->FeatureSupport |= (1 << 5);
219 mtd->flags |= MTD_POWERUP_LOCK;
222 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
223 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
224 static void fixup_intel_strataflash(struct mtd_info *mtd)
226 struct map_info *map = mtd->priv;
227 struct cfi_private *cfi = map->fldrv_priv;
228 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
230 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
231 "erase on write disabled.\n");
232 extp->SuspendCmdSupport &= ~1;
234 #endif
236 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
237 static void fixup_no_write_suspend(struct mtd_info *mtd)
239 struct map_info *map = mtd->priv;
240 struct cfi_private *cfi = map->fldrv_priv;
241 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
243 if (cfip && (cfip->FeatureSupport&4)) {
244 cfip->FeatureSupport &= ~4;
245 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
248 #endif
250 static void fixup_st_m28w320ct(struct mtd_info *mtd)
252 struct map_info *map = mtd->priv;
253 struct cfi_private *cfi = map->fldrv_priv;
255 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
256 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
259 static void fixup_st_m28w320cb(struct mtd_info *mtd)
261 struct map_info *map = mtd->priv;
262 struct cfi_private *cfi = map->fldrv_priv;
264 /* Note this is done after the region info is endian swapped */
265 cfi->cfiq->EraseRegionInfo[1] =
266 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
269 static int is_LH28F640BF(struct cfi_private *cfi)
271 /* Sharp LH28F640BF Family */
272 if (cfi->mfr == CFI_MFR_SHARP && (
273 cfi->id == LH28F640BFHE_PTTL90 || cfi->id == LH28F640BFHE_PBTL90 ||
274 cfi->id == LH28F640BFHE_PTTL70A || cfi->id == LH28F640BFHE_PBTL70A))
275 return 1;
276 return 0;
279 static void fixup_LH28F640BF(struct mtd_info *mtd)
281 struct map_info *map = mtd->priv;
282 struct cfi_private *cfi = map->fldrv_priv;
283 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
285 /* Reset the Partition Configuration Register on LH28F640BF
286 * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */
287 if (is_LH28F640BF(cfi)) {
288 printk(KERN_INFO "Reset Partition Config. Register: 1 Partition of 4 planes\n");
289 map_write(map, CMD(0x60), 0);
290 map_write(map, CMD(0x04), 0);
292 /* We have set one single partition thus
293 * Simultaneous Operations are not allowed */
294 printk(KERN_INFO "cfi_cmdset_0001: Simultaneous Operations disabled\n");
295 extp->FeatureSupport &= ~512;
299 static void fixup_use_point(struct mtd_info *mtd)
301 struct map_info *map = mtd->priv;
302 if (!mtd->_point && map_is_linear(map)) {
303 mtd->_point = cfi_intelext_point;
304 mtd->_unpoint = cfi_intelext_unpoint;
308 static void fixup_use_write_buffers(struct mtd_info *mtd)
310 struct map_info *map = mtd->priv;
311 struct cfi_private *cfi = map->fldrv_priv;
312 if (cfi->cfiq->BufWriteTimeoutTyp) {
313 printk(KERN_INFO "Using buffer write method\n" );
314 mtd->_write = cfi_intelext_write_buffers;
315 mtd->_writev = cfi_intelext_writev;
320 * Some chips power-up with all sectors locked by default.
322 static void fixup_unlock_powerup_lock(struct mtd_info *mtd)
324 struct map_info *map = mtd->priv;
325 struct cfi_private *cfi = map->fldrv_priv;
326 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
328 if (cfip->FeatureSupport&32) {
329 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
330 mtd->flags |= MTD_POWERUP_LOCK;
334 static struct cfi_fixup cfi_fixup_table[] = {
335 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
336 { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock },
337 { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock },
338 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
339 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash },
340 #endif
341 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
342 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend },
343 #endif
344 #if !FORCE_WORD_WRITE
345 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
346 #endif
347 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct },
348 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb },
349 { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock },
350 { CFI_MFR_SHARP, CFI_ID_ANY, fixup_unlock_powerup_lock },
351 { CFI_MFR_SHARP, CFI_ID_ANY, fixup_LH28F640BF },
352 { 0, 0, NULL }
355 static struct cfi_fixup jedec_fixup_table[] = {
356 { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock },
357 { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock },
358 { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock },
359 { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock },
360 { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock },
361 { 0, 0, NULL }
363 static struct cfi_fixup fixup_table[] = {
364 /* The CFI vendor ids and the JEDEC vendor IDs appear
365 * to be common. It is like the devices id's are as
366 * well. This table is to pick all cases where
367 * we know that is the case.
369 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point },
370 { 0, 0, NULL }
373 static void cfi_fixup_major_minor(struct cfi_private *cfi,
374 struct cfi_pri_intelext *extp)
376 if (cfi->mfr == CFI_MFR_INTEL &&
377 cfi->id == PF38F4476 && extp->MinorVersion == '3')
378 extp->MinorVersion = '1';
381 static int cfi_is_micron_28F00AP30(struct cfi_private *cfi, struct flchip *chip)
384 * Micron(was Numonyx) 1Gbit bottom boot are buggy w.r.t
385 * Erase Supend for their small Erase Blocks(0x8000)
387 if (cfi->mfr == CFI_MFR_INTEL && cfi->id == M28F00AP30)
388 return 1;
389 return 0;
392 static inline struct cfi_pri_intelext *
393 read_pri_intelext(struct map_info *map, __u16 adr)
395 struct cfi_private *cfi = map->fldrv_priv;
396 struct cfi_pri_intelext *extp;
397 unsigned int extra_size = 0;
398 unsigned int extp_size = sizeof(*extp);
400 again:
401 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
402 if (!extp)
403 return NULL;
405 cfi_fixup_major_minor(cfi, extp);
407 if (extp->MajorVersion != '1' ||
408 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
409 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
410 "version %c.%c.\n", extp->MajorVersion,
411 extp->MinorVersion);
412 kfree(extp);
413 return NULL;
416 /* Do some byteswapping if necessary */
417 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
418 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
419 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
421 if (extp->MinorVersion >= '0') {
422 extra_size = 0;
424 /* Protection Register info */
425 if (extp->NumProtectionFields) {
426 struct cfi_intelext_otpinfo *otp =
427 (struct cfi_intelext_otpinfo *)&extp->extra[0];
429 extra_size += (extp->NumProtectionFields - 1) *
430 sizeof(struct cfi_intelext_otpinfo);
432 if (extp_size >= sizeof(*extp) + extra_size) {
433 int i;
435 /* Do some byteswapping if necessary */
436 for (i = 0; i < extp->NumProtectionFields - 1; i++) {
437 otp->ProtRegAddr = le32_to_cpu(otp->ProtRegAddr);
438 otp->FactGroups = le16_to_cpu(otp->FactGroups);
439 otp->UserGroups = le16_to_cpu(otp->UserGroups);
440 otp++;
446 if (extp->MinorVersion >= '1') {
447 /* Burst Read info */
448 extra_size += 2;
449 if (extp_size < sizeof(*extp) + extra_size)
450 goto need_more;
451 extra_size += extp->extra[extra_size - 1];
454 if (extp->MinorVersion >= '3') {
455 int nb_parts, i;
457 /* Number of hardware-partitions */
458 extra_size += 1;
459 if (extp_size < sizeof(*extp) + extra_size)
460 goto need_more;
461 nb_parts = extp->extra[extra_size - 1];
463 /* skip the sizeof(partregion) field in CFI 1.4 */
464 if (extp->MinorVersion >= '4')
465 extra_size += 2;
467 for (i = 0; i < nb_parts; i++) {
468 struct cfi_intelext_regioninfo *rinfo;
469 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
470 extra_size += sizeof(*rinfo);
471 if (extp_size < sizeof(*extp) + extra_size)
472 goto need_more;
473 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
474 extra_size += (rinfo->NumBlockTypes - 1)
475 * sizeof(struct cfi_intelext_blockinfo);
478 if (extp->MinorVersion >= '4')
479 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
481 if (extp_size < sizeof(*extp) + extra_size) {
482 need_more:
483 extp_size = sizeof(*extp) + extra_size;
484 kfree(extp);
485 if (extp_size > 4096) {
486 printk(KERN_ERR
487 "%s: cfi_pri_intelext is too fat\n",
488 __func__);
489 return NULL;
491 goto again;
495 return extp;
498 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
500 struct cfi_private *cfi = map->fldrv_priv;
501 struct mtd_info *mtd;
502 int i;
504 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
505 if (!mtd)
506 return NULL;
507 mtd->priv = map;
508 mtd->type = MTD_NORFLASH;
510 /* Fill in the default mtd operations */
511 mtd->_erase = cfi_intelext_erase_varsize;
512 mtd->_read = cfi_intelext_read;
513 mtd->_write = cfi_intelext_write_words;
514 mtd->_sync = cfi_intelext_sync;
515 mtd->_lock = cfi_intelext_lock;
516 mtd->_unlock = cfi_intelext_unlock;
517 mtd->_is_locked = cfi_intelext_is_locked;
518 mtd->_suspend = cfi_intelext_suspend;
519 mtd->_resume = cfi_intelext_resume;
520 mtd->flags = MTD_CAP_NORFLASH;
521 mtd->name = map->name;
522 mtd->writesize = 1;
523 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
525 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
527 if (cfi->cfi_mode == CFI_MODE_CFI) {
529 * It's a real CFI chip, not one for which the probe
530 * routine faked a CFI structure. So we read the feature
531 * table from it.
533 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
534 struct cfi_pri_intelext *extp;
536 extp = read_pri_intelext(map, adr);
537 if (!extp) {
538 kfree(mtd);
539 return NULL;
542 /* Install our own private info structure */
543 cfi->cmdset_priv = extp;
545 cfi_fixup(mtd, cfi_fixup_table);
547 #ifdef DEBUG_CFI_FEATURES
548 /* Tell the user about it in lots of lovely detail */
549 cfi_tell_features(extp);
550 #endif
552 if(extp->SuspendCmdSupport & 1) {
553 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
556 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
557 /* Apply jedec specific fixups */
558 cfi_fixup(mtd, jedec_fixup_table);
560 /* Apply generic fixups */
561 cfi_fixup(mtd, fixup_table);
563 for (i=0; i< cfi->numchips; i++) {
564 if (cfi->cfiq->WordWriteTimeoutTyp)
565 cfi->chips[i].word_write_time =
566 1<<cfi->cfiq->WordWriteTimeoutTyp;
567 else
568 cfi->chips[i].word_write_time = 50000;
570 if (cfi->cfiq->BufWriteTimeoutTyp)
571 cfi->chips[i].buffer_write_time =
572 1<<cfi->cfiq->BufWriteTimeoutTyp;
573 /* No default; if it isn't specified, we won't use it */
575 if (cfi->cfiq->BlockEraseTimeoutTyp)
576 cfi->chips[i].erase_time =
577 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
578 else
579 cfi->chips[i].erase_time = 2000000;
581 if (cfi->cfiq->WordWriteTimeoutTyp &&
582 cfi->cfiq->WordWriteTimeoutMax)
583 cfi->chips[i].word_write_time_max =
584 1<<(cfi->cfiq->WordWriteTimeoutTyp +
585 cfi->cfiq->WordWriteTimeoutMax);
586 else
587 cfi->chips[i].word_write_time_max = 50000 * 8;
589 if (cfi->cfiq->BufWriteTimeoutTyp &&
590 cfi->cfiq->BufWriteTimeoutMax)
591 cfi->chips[i].buffer_write_time_max =
592 1<<(cfi->cfiq->BufWriteTimeoutTyp +
593 cfi->cfiq->BufWriteTimeoutMax);
595 if (cfi->cfiq->BlockEraseTimeoutTyp &&
596 cfi->cfiq->BlockEraseTimeoutMax)
597 cfi->chips[i].erase_time_max =
598 1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
599 cfi->cfiq->BlockEraseTimeoutMax);
600 else
601 cfi->chips[i].erase_time_max = 2000000 * 8;
603 cfi->chips[i].ref_point_counter = 0;
604 init_waitqueue_head(&(cfi->chips[i].wq));
607 map->fldrv = &cfi_intelext_chipdrv;
609 return cfi_intelext_setup(mtd);
611 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
612 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
613 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
614 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
615 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
617 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
619 struct map_info *map = mtd->priv;
620 struct cfi_private *cfi = map->fldrv_priv;
621 unsigned long offset = 0;
622 int i,j;
623 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
625 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
627 mtd->size = devsize * cfi->numchips;
629 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
630 mtd->eraseregions = kcalloc(mtd->numeraseregions,
631 sizeof(struct mtd_erase_region_info),
632 GFP_KERNEL);
633 if (!mtd->eraseregions)
634 goto setup_err;
636 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
637 unsigned long ernum, ersize;
638 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
639 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
641 if (mtd->erasesize < ersize) {
642 mtd->erasesize = ersize;
644 for (j=0; j<cfi->numchips; j++) {
645 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
646 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
647 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
648 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
649 if (!mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap)
650 goto setup_err;
652 offset += (ersize * ernum);
655 if (offset != devsize) {
656 /* Argh */
657 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
658 goto setup_err;
661 for (i=0; i<mtd->numeraseregions;i++){
662 printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
663 i,(unsigned long long)mtd->eraseregions[i].offset,
664 mtd->eraseregions[i].erasesize,
665 mtd->eraseregions[i].numblocks);
668 #ifdef CONFIG_MTD_OTP
669 mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
670 mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg;
671 mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg;
672 mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
673 mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info;
674 mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info;
675 #endif
677 /* This function has the potential to distort the reality
678 a bit and therefore should be called last. */
679 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
680 goto setup_err;
682 __module_get(THIS_MODULE);
683 register_reboot_notifier(&mtd->reboot_notifier);
684 return mtd;
686 setup_err:
687 if (mtd->eraseregions)
688 for (i=0; i<cfi->cfiq->NumEraseRegions; i++)
689 for (j=0; j<cfi->numchips; j++)
690 kfree(mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap);
691 kfree(mtd->eraseregions);
692 kfree(mtd);
693 kfree(cfi->cmdset_priv);
694 return NULL;
697 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
698 struct cfi_private **pcfi)
700 struct map_info *map = mtd->priv;
701 struct cfi_private *cfi = *pcfi;
702 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
705 * Probing of multi-partition flash chips.
707 * To support multiple partitions when available, we simply arrange
708 * for each of them to have their own flchip structure even if they
709 * are on the same physical chip. This means completely recreating
710 * a new cfi_private structure right here which is a blatent code
711 * layering violation, but this is still the least intrusive
712 * arrangement at this point. This can be rearranged in the future
713 * if someone feels motivated enough. --nico
715 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
716 && extp->FeatureSupport & (1 << 9)) {
717 int offs = 0;
718 struct cfi_private *newcfi;
719 struct flchip *chip;
720 struct flchip_shared *shared;
721 int numregions, numparts, partshift, numvirtchips, i, j;
723 /* Protection Register info */
724 if (extp->NumProtectionFields)
725 offs = (extp->NumProtectionFields - 1) *
726 sizeof(struct cfi_intelext_otpinfo);
728 /* Burst Read info */
729 offs += extp->extra[offs+1]+2;
731 /* Number of partition regions */
732 numregions = extp->extra[offs];
733 offs += 1;
735 /* skip the sizeof(partregion) field in CFI 1.4 */
736 if (extp->MinorVersion >= '4')
737 offs += 2;
739 /* Number of hardware partitions */
740 numparts = 0;
741 for (i = 0; i < numregions; i++) {
742 struct cfi_intelext_regioninfo *rinfo;
743 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
744 numparts += rinfo->NumIdentPartitions;
745 offs += sizeof(*rinfo)
746 + (rinfo->NumBlockTypes - 1) *
747 sizeof(struct cfi_intelext_blockinfo);
750 if (!numparts)
751 numparts = 1;
753 /* Programming Region info */
754 if (extp->MinorVersion >= '4') {
755 struct cfi_intelext_programming_regioninfo *prinfo;
756 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
757 mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
758 mtd->flags &= ~MTD_BIT_WRITEABLE;
759 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
760 map->name, mtd->writesize,
761 cfi->interleave * prinfo->ControlValid,
762 cfi->interleave * prinfo->ControlInvalid);
766 * All functions below currently rely on all chips having
767 * the same geometry so we'll just assume that all hardware
768 * partitions are of the same size too.
770 partshift = cfi->chipshift - __ffs(numparts);
772 if ((1 << partshift) < mtd->erasesize) {
773 printk( KERN_ERR
774 "%s: bad number of hw partitions (%d)\n",
775 __func__, numparts);
776 return -EINVAL;
779 numvirtchips = cfi->numchips * numparts;
780 newcfi = kmalloc(struct_size(newcfi, chips, numvirtchips),
781 GFP_KERNEL);
782 if (!newcfi)
783 return -ENOMEM;
784 shared = kmalloc_array(cfi->numchips,
785 sizeof(struct flchip_shared),
786 GFP_KERNEL);
787 if (!shared) {
788 kfree(newcfi);
789 return -ENOMEM;
791 memcpy(newcfi, cfi, sizeof(struct cfi_private));
792 newcfi->numchips = numvirtchips;
793 newcfi->chipshift = partshift;
795 chip = &newcfi->chips[0];
796 for (i = 0; i < cfi->numchips; i++) {
797 shared[i].writing = shared[i].erasing = NULL;
798 mutex_init(&shared[i].lock);
799 for (j = 0; j < numparts; j++) {
800 *chip = cfi->chips[i];
801 chip->start += j << partshift;
802 chip->priv = &shared[i];
803 /* those should be reset too since
804 they create memory references. */
805 init_waitqueue_head(&chip->wq);
806 mutex_init(&chip->mutex);
807 chip++;
811 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
812 "--> %d partitions of %d KiB\n",
813 map->name, cfi->numchips, cfi->interleave,
814 newcfi->numchips, 1<<(newcfi->chipshift-10));
816 map->fldrv_priv = newcfi;
817 *pcfi = newcfi;
818 kfree(cfi);
821 return 0;
825 * *********** CHIP ACCESS FUNCTIONS ***********
827 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
829 DECLARE_WAITQUEUE(wait, current);
830 struct cfi_private *cfi = map->fldrv_priv;
831 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
832 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
833 unsigned long timeo = jiffies + HZ;
835 /* Prevent setting state FL_SYNCING for chip in suspended state. */
836 if (mode == FL_SYNCING && chip->oldstate != FL_READY)
837 goto sleep;
839 switch (chip->state) {
841 case FL_STATUS:
842 for (;;) {
843 status = map_read(map, adr);
844 if (map_word_andequal(map, status, status_OK, status_OK))
845 break;
847 /* At this point we're fine with write operations
848 in other partitions as they don't conflict. */
849 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
850 break;
852 mutex_unlock(&chip->mutex);
853 cfi_udelay(1);
854 mutex_lock(&chip->mutex);
855 /* Someone else might have been playing with it. */
856 return -EAGAIN;
858 fallthrough;
859 case FL_READY:
860 case FL_CFI_QUERY:
861 case FL_JEDEC_QUERY:
862 return 0;
864 case FL_ERASING:
865 if (!cfip ||
866 !(cfip->FeatureSupport & 2) ||
867 !(mode == FL_READY || mode == FL_POINT ||
868 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
869 goto sleep;
871 /* Do not allow suspend iff read/write to EB address */
872 if ((adr & chip->in_progress_block_mask) ==
873 chip->in_progress_block_addr)
874 goto sleep;
876 /* do not suspend small EBs, buggy Micron Chips */
877 if (cfi_is_micron_28F00AP30(cfi, chip) &&
878 (chip->in_progress_block_mask == ~(0x8000-1)))
879 goto sleep;
881 /* Erase suspend */
882 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
884 /* If the flash has finished erasing, then 'erase suspend'
885 * appears to make some (28F320) flash devices switch to
886 * 'read' mode. Make sure that we switch to 'read status'
887 * mode so we get the right data. --rmk
889 map_write(map, CMD(0x70), chip->in_progress_block_addr);
890 chip->oldstate = FL_ERASING;
891 chip->state = FL_ERASE_SUSPENDING;
892 chip->erase_suspended = 1;
893 for (;;) {
894 status = map_read(map, chip->in_progress_block_addr);
895 if (map_word_andequal(map, status, status_OK, status_OK))
896 break;
898 if (time_after(jiffies, timeo)) {
899 /* Urgh. Resume and pretend we weren't here.
900 * Make sure we're in 'read status' mode if it had finished */
901 put_chip(map, chip, adr);
902 printk(KERN_ERR "%s: Chip not ready after erase "
903 "suspended: status = 0x%lx\n", map->name, status.x[0]);
904 return -EIO;
907 mutex_unlock(&chip->mutex);
908 cfi_udelay(1);
909 mutex_lock(&chip->mutex);
910 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
911 So we can just loop here. */
913 chip->state = FL_STATUS;
914 return 0;
916 case FL_XIP_WHILE_ERASING:
917 if (mode != FL_READY && mode != FL_POINT &&
918 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
919 goto sleep;
920 chip->oldstate = chip->state;
921 chip->state = FL_READY;
922 return 0;
924 case FL_SHUTDOWN:
925 /* The machine is rebooting now,so no one can get chip anymore */
926 return -EIO;
927 case FL_POINT:
928 /* Only if there's no operation suspended... */
929 if (mode == FL_READY && chip->oldstate == FL_READY)
930 return 0;
931 fallthrough;
932 default:
933 sleep:
934 set_current_state(TASK_UNINTERRUPTIBLE);
935 add_wait_queue(&chip->wq, &wait);
936 mutex_unlock(&chip->mutex);
937 schedule();
938 remove_wait_queue(&chip->wq, &wait);
939 mutex_lock(&chip->mutex);
940 return -EAGAIN;
944 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
946 int ret;
947 DECLARE_WAITQUEUE(wait, current);
949 retry:
950 if (chip->priv &&
951 (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
952 || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
954 * OK. We have possibility for contention on the write/erase
955 * operations which are global to the real chip and not per
956 * partition. So let's fight it over in the partition which
957 * currently has authority on the operation.
959 * The rules are as follows:
961 * - any write operation must own shared->writing.
963 * - any erase operation must own _both_ shared->writing and
964 * shared->erasing.
966 * - contention arbitration is handled in the owner's context.
968 * The 'shared' struct can be read and/or written only when
969 * its lock is taken.
971 struct flchip_shared *shared = chip->priv;
972 struct flchip *contender;
973 mutex_lock(&shared->lock);
974 contender = shared->writing;
975 if (contender && contender != chip) {
977 * The engine to perform desired operation on this
978 * partition is already in use by someone else.
979 * Let's fight over it in the context of the chip
980 * currently using it. If it is possible to suspend,
981 * that other partition will do just that, otherwise
982 * it'll happily send us to sleep. In any case, when
983 * get_chip returns success we're clear to go ahead.
985 ret = mutex_trylock(&contender->mutex);
986 mutex_unlock(&shared->lock);
987 if (!ret)
988 goto retry;
989 mutex_unlock(&chip->mutex);
990 ret = chip_ready(map, contender, contender->start, mode);
991 mutex_lock(&chip->mutex);
993 if (ret == -EAGAIN) {
994 mutex_unlock(&contender->mutex);
995 goto retry;
997 if (ret) {
998 mutex_unlock(&contender->mutex);
999 return ret;
1001 mutex_lock(&shared->lock);
1003 /* We should not own chip if it is already
1004 * in FL_SYNCING state. Put contender and retry. */
1005 if (chip->state == FL_SYNCING) {
1006 put_chip(map, contender, contender->start);
1007 mutex_unlock(&contender->mutex);
1008 goto retry;
1010 mutex_unlock(&contender->mutex);
1013 /* Check if we already have suspended erase
1014 * on this chip. Sleep. */
1015 if (mode == FL_ERASING && shared->erasing
1016 && shared->erasing->oldstate == FL_ERASING) {
1017 mutex_unlock(&shared->lock);
1018 set_current_state(TASK_UNINTERRUPTIBLE);
1019 add_wait_queue(&chip->wq, &wait);
1020 mutex_unlock(&chip->mutex);
1021 schedule();
1022 remove_wait_queue(&chip->wq, &wait);
1023 mutex_lock(&chip->mutex);
1024 goto retry;
1027 /* We now own it */
1028 shared->writing = chip;
1029 if (mode == FL_ERASING)
1030 shared->erasing = chip;
1031 mutex_unlock(&shared->lock);
1033 ret = chip_ready(map, chip, adr, mode);
1034 if (ret == -EAGAIN)
1035 goto retry;
1037 return ret;
1040 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
1042 struct cfi_private *cfi = map->fldrv_priv;
1044 if (chip->priv) {
1045 struct flchip_shared *shared = chip->priv;
1046 mutex_lock(&shared->lock);
1047 if (shared->writing == chip && chip->oldstate == FL_READY) {
1048 /* We own the ability to write, but we're done */
1049 shared->writing = shared->erasing;
1050 if (shared->writing && shared->writing != chip) {
1051 /* give back ownership to who we loaned it from */
1052 struct flchip *loaner = shared->writing;
1053 mutex_lock(&loaner->mutex);
1054 mutex_unlock(&shared->lock);
1055 mutex_unlock(&chip->mutex);
1056 put_chip(map, loaner, loaner->start);
1057 mutex_lock(&chip->mutex);
1058 mutex_unlock(&loaner->mutex);
1059 wake_up(&chip->wq);
1060 return;
1062 shared->erasing = NULL;
1063 shared->writing = NULL;
1064 } else if (shared->erasing == chip && shared->writing != chip) {
1066 * We own the ability to erase without the ability
1067 * to write, which means the erase was suspended
1068 * and some other partition is currently writing.
1069 * Don't let the switch below mess things up since
1070 * we don't have ownership to resume anything.
1072 mutex_unlock(&shared->lock);
1073 wake_up(&chip->wq);
1074 return;
1076 mutex_unlock(&shared->lock);
1079 switch(chip->oldstate) {
1080 case FL_ERASING:
1081 /* What if one interleaved chip has finished and the
1082 other hasn't? The old code would leave the finished
1083 one in READY mode. That's bad, and caused -EROFS
1084 errors to be returned from do_erase_oneblock because
1085 that's the only bit it checked for at the time.
1086 As the state machine appears to explicitly allow
1087 sending the 0x70 (Read Status) command to an erasing
1088 chip and expecting it to be ignored, that's what we
1089 do. */
1090 map_write(map, CMD(0xd0), chip->in_progress_block_addr);
1091 map_write(map, CMD(0x70), chip->in_progress_block_addr);
1092 chip->oldstate = FL_READY;
1093 chip->state = FL_ERASING;
1094 break;
1096 case FL_XIP_WHILE_ERASING:
1097 chip->state = chip->oldstate;
1098 chip->oldstate = FL_READY;
1099 break;
1101 case FL_READY:
1102 case FL_STATUS:
1103 case FL_JEDEC_QUERY:
1104 break;
1105 default:
1106 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
1108 wake_up(&chip->wq);
1111 #ifdef CONFIG_MTD_XIP
1114 * No interrupt what so ever can be serviced while the flash isn't in array
1115 * mode. This is ensured by the xip_disable() and xip_enable() functions
1116 * enclosing any code path where the flash is known not to be in array mode.
1117 * And within a XIP disabled code path, only functions marked with __xipram
1118 * may be called and nothing else (it's a good thing to inspect generated
1119 * assembly to make sure inline functions were actually inlined and that gcc
1120 * didn't emit calls to its own support functions). Also configuring MTD CFI
1121 * support to a single buswidth and a single interleave is also recommended.
1124 static void xip_disable(struct map_info *map, struct flchip *chip,
1125 unsigned long adr)
1127 /* TODO: chips with no XIP use should ignore and return */
1128 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1129 local_irq_disable();
1132 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1133 unsigned long adr)
1135 struct cfi_private *cfi = map->fldrv_priv;
1136 if (chip->state != FL_POINT && chip->state != FL_READY) {
1137 map_write(map, CMD(0xff), adr);
1138 chip->state = FL_READY;
1140 (void) map_read(map, adr);
1141 xip_iprefetch();
1142 local_irq_enable();
1146 * When a delay is required for the flash operation to complete, the
1147 * xip_wait_for_operation() function is polling for both the given timeout
1148 * and pending (but still masked) hardware interrupts. Whenever there is an
1149 * interrupt pending then the flash erase or write operation is suspended,
1150 * array mode restored and interrupts unmasked. Task scheduling might also
1151 * happen at that point. The CPU eventually returns from the interrupt or
1152 * the call to schedule() and the suspended flash operation is resumed for
1153 * the remaining of the delay period.
1155 * Warning: this function _will_ fool interrupt latency tracing tools.
1158 static int __xipram xip_wait_for_operation(
1159 struct map_info *map, struct flchip *chip,
1160 unsigned long adr, unsigned int chip_op_time_max)
1162 struct cfi_private *cfi = map->fldrv_priv;
1163 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1164 map_word status, OK = CMD(0x80);
1165 unsigned long usec, suspended, start, done;
1166 flstate_t oldstate, newstate;
1168 start = xip_currtime();
1169 usec = chip_op_time_max;
1170 if (usec == 0)
1171 usec = 500000;
1172 done = 0;
1174 do {
1175 cpu_relax();
1176 if (xip_irqpending() && cfip &&
1177 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1178 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1179 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1181 * Let's suspend the erase or write operation when
1182 * supported. Note that we currently don't try to
1183 * suspend interleaved chips if there is already
1184 * another operation suspended (imagine what happens
1185 * when one chip was already done with the current
1186 * operation while another chip suspended it, then
1187 * we resume the whole thing at once). Yes, it
1188 * can happen!
1190 usec -= done;
1191 map_write(map, CMD(0xb0), adr);
1192 map_write(map, CMD(0x70), adr);
1193 suspended = xip_currtime();
1194 do {
1195 if (xip_elapsed_since(suspended) > 100000) {
1197 * The chip doesn't want to suspend
1198 * after waiting for 100 msecs.
1199 * This is a critical error but there
1200 * is not much we can do here.
1202 return -EIO;
1204 status = map_read(map, adr);
1205 } while (!map_word_andequal(map, status, OK, OK));
1207 /* Suspend succeeded */
1208 oldstate = chip->state;
1209 if (oldstate == FL_ERASING) {
1210 if (!map_word_bitsset(map, status, CMD(0x40)))
1211 break;
1212 newstate = FL_XIP_WHILE_ERASING;
1213 chip->erase_suspended = 1;
1214 } else {
1215 if (!map_word_bitsset(map, status, CMD(0x04)))
1216 break;
1217 newstate = FL_XIP_WHILE_WRITING;
1218 chip->write_suspended = 1;
1220 chip->state = newstate;
1221 map_write(map, CMD(0xff), adr);
1222 (void) map_read(map, adr);
1223 xip_iprefetch();
1224 local_irq_enable();
1225 mutex_unlock(&chip->mutex);
1226 xip_iprefetch();
1227 cond_resched();
1230 * We're back. However someone else might have
1231 * decided to go write to the chip if we are in
1232 * a suspended erase state. If so let's wait
1233 * until it's done.
1235 mutex_lock(&chip->mutex);
1236 while (chip->state != newstate) {
1237 DECLARE_WAITQUEUE(wait, current);
1238 set_current_state(TASK_UNINTERRUPTIBLE);
1239 add_wait_queue(&chip->wq, &wait);
1240 mutex_unlock(&chip->mutex);
1241 schedule();
1242 remove_wait_queue(&chip->wq, &wait);
1243 mutex_lock(&chip->mutex);
1245 /* Disallow XIP again */
1246 local_irq_disable();
1248 /* Resume the write or erase operation */
1249 map_write(map, CMD(0xd0), adr);
1250 map_write(map, CMD(0x70), adr);
1251 chip->state = oldstate;
1252 start = xip_currtime();
1253 } else if (usec >= 1000000/HZ) {
1255 * Try to save on CPU power when waiting delay
1256 * is at least a system timer tick period.
1257 * No need to be extremely accurate here.
1259 xip_cpu_idle();
1261 status = map_read(map, adr);
1262 done = xip_elapsed_since(start);
1263 } while (!map_word_andequal(map, status, OK, OK)
1264 && done < usec);
1266 return (done >= usec) ? -ETIME : 0;
1270 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1271 * the flash is actively programming or erasing since we have to poll for
1272 * the operation to complete anyway. We can't do that in a generic way with
1273 * a XIP setup so do it before the actual flash operation in this case
1274 * and stub it out from INVAL_CACHE_AND_WAIT.
1276 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1277 INVALIDATE_CACHED_RANGE(map, from, size)
1279 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1280 xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1282 #else
1284 #define xip_disable(map, chip, adr)
1285 #define xip_enable(map, chip, adr)
1286 #define XIP_INVAL_CACHED_RANGE(x...)
1287 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1289 static int inval_cache_and_wait_for_operation(
1290 struct map_info *map, struct flchip *chip,
1291 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1292 unsigned int chip_op_time, unsigned int chip_op_time_max)
1294 struct cfi_private *cfi = map->fldrv_priv;
1295 map_word status, status_OK = CMD(0x80);
1296 int chip_state = chip->state;
1297 unsigned int timeo, sleep_time, reset_timeo;
1299 mutex_unlock(&chip->mutex);
1300 if (inval_len)
1301 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1302 mutex_lock(&chip->mutex);
1304 timeo = chip_op_time_max;
1305 if (!timeo)
1306 timeo = 500000;
1307 reset_timeo = timeo;
1308 sleep_time = chip_op_time / 2;
1310 for (;;) {
1311 if (chip->state != chip_state) {
1312 /* Someone's suspended the operation: sleep */
1313 DECLARE_WAITQUEUE(wait, current);
1314 set_current_state(TASK_UNINTERRUPTIBLE);
1315 add_wait_queue(&chip->wq, &wait);
1316 mutex_unlock(&chip->mutex);
1317 schedule();
1318 remove_wait_queue(&chip->wq, &wait);
1319 mutex_lock(&chip->mutex);
1320 continue;
1323 status = map_read(map, cmd_adr);
1324 if (map_word_andequal(map, status, status_OK, status_OK))
1325 break;
1327 if (chip->erase_suspended && chip_state == FL_ERASING) {
1328 /* Erase suspend occurred while sleep: reset timeout */
1329 timeo = reset_timeo;
1330 chip->erase_suspended = 0;
1332 if (chip->write_suspended && chip_state == FL_WRITING) {
1333 /* Write suspend occurred while sleep: reset timeout */
1334 timeo = reset_timeo;
1335 chip->write_suspended = 0;
1337 if (!timeo) {
1338 map_write(map, CMD(0x70), cmd_adr);
1339 chip->state = FL_STATUS;
1340 return -ETIME;
1343 /* OK Still waiting. Drop the lock, wait a while and retry. */
1344 mutex_unlock(&chip->mutex);
1345 if (sleep_time >= 1000000/HZ) {
1347 * Half of the normal delay still remaining
1348 * can be performed with a sleeping delay instead
1349 * of busy waiting.
1351 msleep(sleep_time/1000);
1352 timeo -= sleep_time;
1353 sleep_time = 1000000/HZ;
1354 } else {
1355 udelay(1);
1356 cond_resched();
1357 timeo--;
1359 mutex_lock(&chip->mutex);
1362 /* Done and happy. */
1363 chip->state = FL_STATUS;
1364 return 0;
1367 #endif
1369 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1370 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1373 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1375 unsigned long cmd_addr;
1376 struct cfi_private *cfi = map->fldrv_priv;
1377 int ret;
1379 adr += chip->start;
1381 /* Ensure cmd read/writes are aligned. */
1382 cmd_addr = adr & ~(map_bankwidth(map)-1);
1384 mutex_lock(&chip->mutex);
1386 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1388 if (!ret) {
1389 if (chip->state != FL_POINT && chip->state != FL_READY)
1390 map_write(map, CMD(0xff), cmd_addr);
1392 chip->state = FL_POINT;
1393 chip->ref_point_counter++;
1395 mutex_unlock(&chip->mutex);
1397 return ret;
1400 static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1401 size_t *retlen, void **virt, resource_size_t *phys)
1403 struct map_info *map = mtd->priv;
1404 struct cfi_private *cfi = map->fldrv_priv;
1405 unsigned long ofs, last_end = 0;
1406 int chipnum;
1407 int ret;
1409 if (!map->virt)
1410 return -EINVAL;
1412 /* Now lock the chip(s) to POINT state */
1414 /* ofs: offset within the first chip that the first read should start */
1415 chipnum = (from >> cfi->chipshift);
1416 ofs = from - (chipnum << cfi->chipshift);
1418 *virt = map->virt + cfi->chips[chipnum].start + ofs;
1419 if (phys)
1420 *phys = map->phys + cfi->chips[chipnum].start + ofs;
1422 while (len) {
1423 unsigned long thislen;
1425 if (chipnum >= cfi->numchips)
1426 break;
1428 /* We cannot point across chips that are virtually disjoint */
1429 if (!last_end)
1430 last_end = cfi->chips[chipnum].start;
1431 else if (cfi->chips[chipnum].start != last_end)
1432 break;
1434 if ((len + ofs -1) >> cfi->chipshift)
1435 thislen = (1<<cfi->chipshift) - ofs;
1436 else
1437 thislen = len;
1439 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1440 if (ret)
1441 break;
1443 *retlen += thislen;
1444 len -= thislen;
1446 ofs = 0;
1447 last_end += 1 << cfi->chipshift;
1448 chipnum++;
1450 return 0;
1453 static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1455 struct map_info *map = mtd->priv;
1456 struct cfi_private *cfi = map->fldrv_priv;
1457 unsigned long ofs;
1458 int chipnum, err = 0;
1460 /* Now unlock the chip(s) POINT state */
1462 /* ofs: offset within the first chip that the first read should start */
1463 chipnum = (from >> cfi->chipshift);
1464 ofs = from - (chipnum << cfi->chipshift);
1466 while (len && !err) {
1467 unsigned long thislen;
1468 struct flchip *chip;
1470 chip = &cfi->chips[chipnum];
1471 if (chipnum >= cfi->numchips)
1472 break;
1474 if ((len + ofs -1) >> cfi->chipshift)
1475 thislen = (1<<cfi->chipshift) - ofs;
1476 else
1477 thislen = len;
1479 mutex_lock(&chip->mutex);
1480 if (chip->state == FL_POINT) {
1481 chip->ref_point_counter--;
1482 if(chip->ref_point_counter == 0)
1483 chip->state = FL_READY;
1484 } else {
1485 printk(KERN_ERR "%s: Error: unpoint called on non pointed region\n", map->name);
1486 err = -EINVAL;
1489 put_chip(map, chip, chip->start);
1490 mutex_unlock(&chip->mutex);
1492 len -= thislen;
1493 ofs = 0;
1494 chipnum++;
1497 return err;
1500 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1502 unsigned long cmd_addr;
1503 struct cfi_private *cfi = map->fldrv_priv;
1504 int ret;
1506 adr += chip->start;
1508 /* Ensure cmd read/writes are aligned. */
1509 cmd_addr = adr & ~(map_bankwidth(map)-1);
1511 mutex_lock(&chip->mutex);
1512 ret = get_chip(map, chip, cmd_addr, FL_READY);
1513 if (ret) {
1514 mutex_unlock(&chip->mutex);
1515 return ret;
1518 if (chip->state != FL_POINT && chip->state != FL_READY) {
1519 map_write(map, CMD(0xff), cmd_addr);
1521 chip->state = FL_READY;
1524 map_copy_from(map, buf, adr, len);
1526 put_chip(map, chip, cmd_addr);
1528 mutex_unlock(&chip->mutex);
1529 return 0;
1532 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1534 struct map_info *map = mtd->priv;
1535 struct cfi_private *cfi = map->fldrv_priv;
1536 unsigned long ofs;
1537 int chipnum;
1538 int ret = 0;
1540 /* ofs: offset within the first chip that the first read should start */
1541 chipnum = (from >> cfi->chipshift);
1542 ofs = from - (chipnum << cfi->chipshift);
1544 while (len) {
1545 unsigned long thislen;
1547 if (chipnum >= cfi->numchips)
1548 break;
1550 if ((len + ofs -1) >> cfi->chipshift)
1551 thislen = (1<<cfi->chipshift) - ofs;
1552 else
1553 thislen = len;
1555 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1556 if (ret)
1557 break;
1559 *retlen += thislen;
1560 len -= thislen;
1561 buf += thislen;
1563 ofs = 0;
1564 chipnum++;
1566 return ret;
1569 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1570 unsigned long adr, map_word datum, int mode)
1572 struct cfi_private *cfi = map->fldrv_priv;
1573 map_word status, write_cmd;
1574 int ret;
1576 adr += chip->start;
1578 switch (mode) {
1579 case FL_WRITING:
1580 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41);
1581 break;
1582 case FL_OTP_WRITE:
1583 write_cmd = CMD(0xc0);
1584 break;
1585 default:
1586 return -EINVAL;
1589 mutex_lock(&chip->mutex);
1590 ret = get_chip(map, chip, adr, mode);
1591 if (ret) {
1592 mutex_unlock(&chip->mutex);
1593 return ret;
1596 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1597 ENABLE_VPP(map);
1598 xip_disable(map, chip, adr);
1599 map_write(map, write_cmd, adr);
1600 map_write(map, datum, adr);
1601 chip->state = mode;
1603 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1604 adr, map_bankwidth(map),
1605 chip->word_write_time,
1606 chip->word_write_time_max);
1607 if (ret) {
1608 xip_enable(map, chip, adr);
1609 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1610 goto out;
1613 /* check for errors */
1614 status = map_read(map, adr);
1615 if (map_word_bitsset(map, status, CMD(0x1a))) {
1616 unsigned long chipstatus = MERGESTATUS(status);
1618 /* reset status */
1619 map_write(map, CMD(0x50), adr);
1620 map_write(map, CMD(0x70), adr);
1621 xip_enable(map, chip, adr);
1623 if (chipstatus & 0x02) {
1624 ret = -EROFS;
1625 } else if (chipstatus & 0x08) {
1626 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1627 ret = -EIO;
1628 } else {
1629 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1630 ret = -EINVAL;
1633 goto out;
1636 xip_enable(map, chip, adr);
1637 out: DISABLE_VPP(map);
1638 put_chip(map, chip, adr);
1639 mutex_unlock(&chip->mutex);
1640 return ret;
1644 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1646 struct map_info *map = mtd->priv;
1647 struct cfi_private *cfi = map->fldrv_priv;
1648 int ret;
1649 int chipnum;
1650 unsigned long ofs;
1652 chipnum = to >> cfi->chipshift;
1653 ofs = to - (chipnum << cfi->chipshift);
1655 /* If it's not bus-aligned, do the first byte write */
1656 if (ofs & (map_bankwidth(map)-1)) {
1657 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1658 int gap = ofs - bus_ofs;
1659 int n;
1660 map_word datum;
1662 n = min_t(int, len, map_bankwidth(map)-gap);
1663 datum = map_word_ff(map);
1664 datum = map_word_load_partial(map, datum, buf, gap, n);
1666 ret = do_write_oneword(map, &cfi->chips[chipnum],
1667 bus_ofs, datum, FL_WRITING);
1668 if (ret)
1669 return ret;
1671 len -= n;
1672 ofs += n;
1673 buf += n;
1674 (*retlen) += n;
1676 if (ofs >> cfi->chipshift) {
1677 chipnum ++;
1678 ofs = 0;
1679 if (chipnum == cfi->numchips)
1680 return 0;
1684 while(len >= map_bankwidth(map)) {
1685 map_word datum = map_word_load(map, buf);
1687 ret = do_write_oneword(map, &cfi->chips[chipnum],
1688 ofs, datum, FL_WRITING);
1689 if (ret)
1690 return ret;
1692 ofs += map_bankwidth(map);
1693 buf += map_bankwidth(map);
1694 (*retlen) += map_bankwidth(map);
1695 len -= map_bankwidth(map);
1697 if (ofs >> cfi->chipshift) {
1698 chipnum ++;
1699 ofs = 0;
1700 if (chipnum == cfi->numchips)
1701 return 0;
1705 if (len & (map_bankwidth(map)-1)) {
1706 map_word datum;
1708 datum = map_word_ff(map);
1709 datum = map_word_load_partial(map, datum, buf, 0, len);
1711 ret = do_write_oneword(map, &cfi->chips[chipnum],
1712 ofs, datum, FL_WRITING);
1713 if (ret)
1714 return ret;
1716 (*retlen) += len;
1719 return 0;
1723 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1724 unsigned long adr, const struct kvec **pvec,
1725 unsigned long *pvec_seek, int len)
1727 struct cfi_private *cfi = map->fldrv_priv;
1728 map_word status, write_cmd, datum;
1729 unsigned long cmd_adr;
1730 int ret, wbufsize, word_gap, words;
1731 const struct kvec *vec;
1732 unsigned long vec_seek;
1733 unsigned long initial_adr;
1734 int initial_len = len;
1736 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1737 adr += chip->start;
1738 initial_adr = adr;
1739 cmd_adr = adr & ~(wbufsize-1);
1741 /* Sharp LH28F640BF chips need the first address for the
1742 * Page Buffer Program command. See Table 5 of
1743 * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */
1744 if (is_LH28F640BF(cfi))
1745 cmd_adr = adr;
1747 /* Let's determine this according to the interleave only once */
1748 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9);
1750 mutex_lock(&chip->mutex);
1751 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1752 if (ret) {
1753 mutex_unlock(&chip->mutex);
1754 return ret;
1757 XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1758 ENABLE_VPP(map);
1759 xip_disable(map, chip, cmd_adr);
1761 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1762 [...], the device will not accept any more Write to Buffer commands".
1763 So we must check here and reset those bits if they're set. Otherwise
1764 we're just pissing in the wind */
1765 if (chip->state != FL_STATUS) {
1766 map_write(map, CMD(0x70), cmd_adr);
1767 chip->state = FL_STATUS;
1769 status = map_read(map, cmd_adr);
1770 if (map_word_bitsset(map, status, CMD(0x30))) {
1771 xip_enable(map, chip, cmd_adr);
1772 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1773 xip_disable(map, chip, cmd_adr);
1774 map_write(map, CMD(0x50), cmd_adr);
1775 map_write(map, CMD(0x70), cmd_adr);
1778 chip->state = FL_WRITING_TO_BUFFER;
1779 map_write(map, write_cmd, cmd_adr);
1780 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
1781 if (ret) {
1782 /* Argh. Not ready for write to buffer */
1783 map_word Xstatus = map_read(map, cmd_adr);
1784 map_write(map, CMD(0x70), cmd_adr);
1785 chip->state = FL_STATUS;
1786 status = map_read(map, cmd_adr);
1787 map_write(map, CMD(0x50), cmd_adr);
1788 map_write(map, CMD(0x70), cmd_adr);
1789 xip_enable(map, chip, cmd_adr);
1790 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1791 map->name, Xstatus.x[0], status.x[0]);
1792 goto out;
1795 /* Figure out the number of words to write */
1796 word_gap = (-adr & (map_bankwidth(map)-1));
1797 words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
1798 if (!word_gap) {
1799 words--;
1800 } else {
1801 word_gap = map_bankwidth(map) - word_gap;
1802 adr -= word_gap;
1803 datum = map_word_ff(map);
1806 /* Write length of data to come */
1807 map_write(map, CMD(words), cmd_adr );
1809 /* Write data */
1810 vec = *pvec;
1811 vec_seek = *pvec_seek;
1812 do {
1813 int n = map_bankwidth(map) - word_gap;
1814 if (n > vec->iov_len - vec_seek)
1815 n = vec->iov_len - vec_seek;
1816 if (n > len)
1817 n = len;
1819 if (!word_gap && len < map_bankwidth(map))
1820 datum = map_word_ff(map);
1822 datum = map_word_load_partial(map, datum,
1823 vec->iov_base + vec_seek,
1824 word_gap, n);
1826 len -= n;
1827 word_gap += n;
1828 if (!len || word_gap == map_bankwidth(map)) {
1829 map_write(map, datum, adr);
1830 adr += map_bankwidth(map);
1831 word_gap = 0;
1834 vec_seek += n;
1835 if (vec_seek == vec->iov_len) {
1836 vec++;
1837 vec_seek = 0;
1839 } while (len);
1840 *pvec = vec;
1841 *pvec_seek = vec_seek;
1843 /* GO GO GO */
1844 map_write(map, CMD(0xd0), cmd_adr);
1845 chip->state = FL_WRITING;
1847 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1848 initial_adr, initial_len,
1849 chip->buffer_write_time,
1850 chip->buffer_write_time_max);
1851 if (ret) {
1852 map_write(map, CMD(0x70), cmd_adr);
1853 chip->state = FL_STATUS;
1854 xip_enable(map, chip, cmd_adr);
1855 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1856 goto out;
1859 /* check for errors */
1860 status = map_read(map, cmd_adr);
1861 if (map_word_bitsset(map, status, CMD(0x1a))) {
1862 unsigned long chipstatus = MERGESTATUS(status);
1864 /* reset status */
1865 map_write(map, CMD(0x50), cmd_adr);
1866 map_write(map, CMD(0x70), cmd_adr);
1867 xip_enable(map, chip, cmd_adr);
1869 if (chipstatus & 0x02) {
1870 ret = -EROFS;
1871 } else if (chipstatus & 0x08) {
1872 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1873 ret = -EIO;
1874 } else {
1875 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1876 ret = -EINVAL;
1879 goto out;
1882 xip_enable(map, chip, cmd_adr);
1883 out: DISABLE_VPP(map);
1884 put_chip(map, chip, cmd_adr);
1885 mutex_unlock(&chip->mutex);
1886 return ret;
1889 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1890 unsigned long count, loff_t to, size_t *retlen)
1892 struct map_info *map = mtd->priv;
1893 struct cfi_private *cfi = map->fldrv_priv;
1894 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1895 int ret;
1896 int chipnum;
1897 unsigned long ofs, vec_seek, i;
1898 size_t len = 0;
1900 for (i = 0; i < count; i++)
1901 len += vecs[i].iov_len;
1903 if (!len)
1904 return 0;
1906 chipnum = to >> cfi->chipshift;
1907 ofs = to - (chipnum << cfi->chipshift);
1908 vec_seek = 0;
1910 do {
1911 /* We must not cross write block boundaries */
1912 int size = wbufsize - (ofs & (wbufsize-1));
1914 if (size > len)
1915 size = len;
1916 ret = do_write_buffer(map, &cfi->chips[chipnum],
1917 ofs, &vecs, &vec_seek, size);
1918 if (ret)
1919 return ret;
1921 ofs += size;
1922 (*retlen) += size;
1923 len -= size;
1925 if (ofs >> cfi->chipshift) {
1926 chipnum ++;
1927 ofs = 0;
1928 if (chipnum == cfi->numchips)
1929 return 0;
1932 /* Be nice and reschedule with the chip in a usable state for other
1933 processes. */
1934 cond_resched();
1936 } while (len);
1938 return 0;
1941 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1942 size_t len, size_t *retlen, const u_char *buf)
1944 struct kvec vec;
1946 vec.iov_base = (void *) buf;
1947 vec.iov_len = len;
1949 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1952 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1953 unsigned long adr, int len, void *thunk)
1955 struct cfi_private *cfi = map->fldrv_priv;
1956 map_word status;
1957 int retries = 3;
1958 int ret;
1960 adr += chip->start;
1962 retry:
1963 mutex_lock(&chip->mutex);
1964 ret = get_chip(map, chip, adr, FL_ERASING);
1965 if (ret) {
1966 mutex_unlock(&chip->mutex);
1967 return ret;
1970 XIP_INVAL_CACHED_RANGE(map, adr, len);
1971 ENABLE_VPP(map);
1972 xip_disable(map, chip, adr);
1974 /* Clear the status register first */
1975 map_write(map, CMD(0x50), adr);
1977 /* Now erase */
1978 map_write(map, CMD(0x20), adr);
1979 map_write(map, CMD(0xD0), adr);
1980 chip->state = FL_ERASING;
1981 chip->erase_suspended = 0;
1982 chip->in_progress_block_addr = adr;
1983 chip->in_progress_block_mask = ~(len - 1);
1985 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1986 adr, len,
1987 chip->erase_time,
1988 chip->erase_time_max);
1989 if (ret) {
1990 map_write(map, CMD(0x70), adr);
1991 chip->state = FL_STATUS;
1992 xip_enable(map, chip, adr);
1993 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1994 goto out;
1997 /* We've broken this before. It doesn't hurt to be safe */
1998 map_write(map, CMD(0x70), adr);
1999 chip->state = FL_STATUS;
2000 status = map_read(map, adr);
2002 /* check for errors */
2003 if (map_word_bitsset(map, status, CMD(0x3a))) {
2004 unsigned long chipstatus = MERGESTATUS(status);
2006 /* Reset the error bits */
2007 map_write(map, CMD(0x50), adr);
2008 map_write(map, CMD(0x70), adr);
2009 xip_enable(map, chip, adr);
2011 if ((chipstatus & 0x30) == 0x30) {
2012 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
2013 ret = -EINVAL;
2014 } else if (chipstatus & 0x02) {
2015 /* Protection bit set */
2016 ret = -EROFS;
2017 } else if (chipstatus & 0x8) {
2018 /* Voltage */
2019 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
2020 ret = -EIO;
2021 } else if (chipstatus & 0x20 && retries--) {
2022 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
2023 DISABLE_VPP(map);
2024 put_chip(map, chip, adr);
2025 mutex_unlock(&chip->mutex);
2026 goto retry;
2027 } else {
2028 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
2029 ret = -EIO;
2032 goto out;
2035 xip_enable(map, chip, adr);
2036 out: DISABLE_VPP(map);
2037 put_chip(map, chip, adr);
2038 mutex_unlock(&chip->mutex);
2039 return ret;
2042 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2044 return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2045 instr->len, NULL);
2048 static void cfi_intelext_sync (struct mtd_info *mtd)
2050 struct map_info *map = mtd->priv;
2051 struct cfi_private *cfi = map->fldrv_priv;
2052 int i;
2053 struct flchip *chip;
2054 int ret = 0;
2056 for (i=0; !ret && i<cfi->numchips; i++) {
2057 chip = &cfi->chips[i];
2059 mutex_lock(&chip->mutex);
2060 ret = get_chip(map, chip, chip->start, FL_SYNCING);
2062 if (!ret) {
2063 chip->oldstate = chip->state;
2064 chip->state = FL_SYNCING;
2065 /* No need to wake_up() on this state change -
2066 * as the whole point is that nobody can do anything
2067 * with the chip now anyway.
2070 mutex_unlock(&chip->mutex);
2073 /* Unlock the chips again */
2075 for (i--; i >=0; i--) {
2076 chip = &cfi->chips[i];
2078 mutex_lock(&chip->mutex);
2080 if (chip->state == FL_SYNCING) {
2081 chip->state = chip->oldstate;
2082 chip->oldstate = FL_READY;
2083 wake_up(&chip->wq);
2085 mutex_unlock(&chip->mutex);
2089 static int __xipram do_getlockstatus_oneblock(struct map_info *map,
2090 struct flchip *chip,
2091 unsigned long adr,
2092 int len, void *thunk)
2094 struct cfi_private *cfi = map->fldrv_priv;
2095 int status, ofs_factor = cfi->interleave * cfi->device_type;
2097 adr += chip->start;
2098 xip_disable(map, chip, adr+(2*ofs_factor));
2099 map_write(map, CMD(0x90), adr+(2*ofs_factor));
2100 chip->state = FL_JEDEC_QUERY;
2101 status = cfi_read_query(map, adr+(2*ofs_factor));
2102 xip_enable(map, chip, 0);
2103 return status;
2106 #ifdef DEBUG_LOCK_BITS
2107 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
2108 struct flchip *chip,
2109 unsigned long adr,
2110 int len, void *thunk)
2112 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
2113 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
2114 return 0;
2116 #endif
2118 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
2119 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
2121 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2122 unsigned long adr, int len, void *thunk)
2124 struct cfi_private *cfi = map->fldrv_priv;
2125 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2126 int mdelay;
2127 int ret;
2129 adr += chip->start;
2131 mutex_lock(&chip->mutex);
2132 ret = get_chip(map, chip, adr, FL_LOCKING);
2133 if (ret) {
2134 mutex_unlock(&chip->mutex);
2135 return ret;
2138 ENABLE_VPP(map);
2139 xip_disable(map, chip, adr);
2141 map_write(map, CMD(0x60), adr);
2142 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2143 map_write(map, CMD(0x01), adr);
2144 chip->state = FL_LOCKING;
2145 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2146 map_write(map, CMD(0xD0), adr);
2147 chip->state = FL_UNLOCKING;
2148 } else
2149 BUG();
2152 * If Instant Individual Block Locking supported then no need
2153 * to delay.
2156 * Unlocking may take up to 1.4 seconds on some Intel flashes. So
2157 * lets use a max of 1.5 seconds (1500ms) as timeout.
2159 * See "Clear Block Lock-Bits Time" on page 40 in
2160 * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual
2161 * from February 2003
2163 mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0;
2165 ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000);
2166 if (ret) {
2167 map_write(map, CMD(0x70), adr);
2168 chip->state = FL_STATUS;
2169 xip_enable(map, chip, adr);
2170 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2171 goto out;
2174 xip_enable(map, chip, adr);
2175 out: DISABLE_VPP(map);
2176 put_chip(map, chip, adr);
2177 mutex_unlock(&chip->mutex);
2178 return ret;
2181 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2183 int ret;
2185 #ifdef DEBUG_LOCK_BITS
2186 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2187 __func__, ofs, len);
2188 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2189 ofs, len, NULL);
2190 #endif
2192 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2193 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2195 #ifdef DEBUG_LOCK_BITS
2196 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2197 __func__, ret);
2198 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2199 ofs, len, NULL);
2200 #endif
2202 return ret;
2205 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2207 int ret;
2209 #ifdef DEBUG_LOCK_BITS
2210 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2211 __func__, ofs, len);
2212 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2213 ofs, len, NULL);
2214 #endif
2216 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2217 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2219 #ifdef DEBUG_LOCK_BITS
2220 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2221 __func__, ret);
2222 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2223 ofs, len, NULL);
2224 #endif
2226 return ret;
2229 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
2230 uint64_t len)
2232 return cfi_varsize_frob(mtd, do_getlockstatus_oneblock,
2233 ofs, len, NULL) ? 1 : 0;
2236 #ifdef CONFIG_MTD_OTP
2238 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2239 u_long data_offset, u_char *buf, u_int size,
2240 u_long prot_offset, u_int groupno, u_int groupsize);
2242 static int __xipram
2243 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2244 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2246 struct cfi_private *cfi = map->fldrv_priv;
2247 int ret;
2249 mutex_lock(&chip->mutex);
2250 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2251 if (ret) {
2252 mutex_unlock(&chip->mutex);
2253 return ret;
2256 /* let's ensure we're not reading back cached data from array mode */
2257 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2259 xip_disable(map, chip, chip->start);
2260 if (chip->state != FL_JEDEC_QUERY) {
2261 map_write(map, CMD(0x90), chip->start);
2262 chip->state = FL_JEDEC_QUERY;
2264 map_copy_from(map, buf, chip->start + offset, size);
2265 xip_enable(map, chip, chip->start);
2267 /* then ensure we don't keep OTP data in the cache */
2268 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2270 put_chip(map, chip, chip->start);
2271 mutex_unlock(&chip->mutex);
2272 return 0;
2275 static int
2276 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2277 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2279 int ret;
2281 while (size) {
2282 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2283 int gap = offset - bus_ofs;
2284 int n = min_t(int, size, map_bankwidth(map)-gap);
2285 map_word datum = map_word_ff(map);
2287 datum = map_word_load_partial(map, datum, buf, gap, n);
2288 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2289 if (ret)
2290 return ret;
2292 offset += n;
2293 buf += n;
2294 size -= n;
2297 return 0;
2300 static int
2301 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2302 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2304 struct cfi_private *cfi = map->fldrv_priv;
2305 map_word datum;
2307 /* make sure area matches group boundaries */
2308 if (size != grpsz)
2309 return -EXDEV;
2311 datum = map_word_ff(map);
2312 datum = map_word_clr(map, datum, CMD(1 << grpno));
2313 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2316 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2317 size_t *retlen, u_char *buf,
2318 otp_op_t action, int user_regs)
2320 struct map_info *map = mtd->priv;
2321 struct cfi_private *cfi = map->fldrv_priv;
2322 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2323 struct flchip *chip;
2324 struct cfi_intelext_otpinfo *otp;
2325 u_long devsize, reg_prot_offset, data_offset;
2326 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2327 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2328 int ret;
2330 *retlen = 0;
2332 /* Check that we actually have some OTP registers */
2333 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2334 return -ENODATA;
2336 /* we need real chips here not virtual ones */
2337 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2338 chip_step = devsize >> cfi->chipshift;
2339 chip_num = 0;
2341 /* Some chips have OTP located in the _top_ partition only.
2342 For example: Intel 28F256L18T (T means top-parameter device) */
2343 if (cfi->mfr == CFI_MFR_INTEL) {
2344 switch (cfi->id) {
2345 case 0x880b:
2346 case 0x880c:
2347 case 0x880d:
2348 chip_num = chip_step - 1;
2352 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2353 chip = &cfi->chips[chip_num];
2354 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2356 /* first OTP region */
2357 field = 0;
2358 reg_prot_offset = extp->ProtRegAddr;
2359 reg_fact_groups = 1;
2360 reg_fact_size = 1 << extp->FactProtRegSize;
2361 reg_user_groups = 1;
2362 reg_user_size = 1 << extp->UserProtRegSize;
2364 while (len > 0) {
2365 /* flash geometry fixup */
2366 data_offset = reg_prot_offset + 1;
2367 data_offset *= cfi->interleave * cfi->device_type;
2368 reg_prot_offset *= cfi->interleave * cfi->device_type;
2369 reg_fact_size *= cfi->interleave;
2370 reg_user_size *= cfi->interleave;
2372 if (user_regs) {
2373 groups = reg_user_groups;
2374 groupsize = reg_user_size;
2375 /* skip over factory reg area */
2376 groupno = reg_fact_groups;
2377 data_offset += reg_fact_groups * reg_fact_size;
2378 } else {
2379 groups = reg_fact_groups;
2380 groupsize = reg_fact_size;
2381 groupno = 0;
2384 while (len > 0 && groups > 0) {
2385 if (!action) {
2387 * Special case: if action is NULL
2388 * we fill buf with otp_info records.
2390 struct otp_info *otpinfo;
2391 map_word lockword;
2392 len -= sizeof(struct otp_info);
2393 if (len <= 0)
2394 return -ENOSPC;
2395 ret = do_otp_read(map, chip,
2396 reg_prot_offset,
2397 (u_char *)&lockword,
2398 map_bankwidth(map),
2399 0, 0, 0);
2400 if (ret)
2401 return ret;
2402 otpinfo = (struct otp_info *)buf;
2403 otpinfo->start = from;
2404 otpinfo->length = groupsize;
2405 otpinfo->locked =
2406 !map_word_bitsset(map, lockword,
2407 CMD(1 << groupno));
2408 from += groupsize;
2409 buf += sizeof(*otpinfo);
2410 *retlen += sizeof(*otpinfo);
2411 } else if (from >= groupsize) {
2412 from -= groupsize;
2413 data_offset += groupsize;
2414 } else {
2415 int size = groupsize;
2416 data_offset += from;
2417 size -= from;
2418 from = 0;
2419 if (size > len)
2420 size = len;
2421 ret = action(map, chip, data_offset,
2422 buf, size, reg_prot_offset,
2423 groupno, groupsize);
2424 if (ret < 0)
2425 return ret;
2426 buf += size;
2427 len -= size;
2428 *retlen += size;
2429 data_offset += size;
2431 groupno++;
2432 groups--;
2435 /* next OTP region */
2436 if (++field == extp->NumProtectionFields)
2437 break;
2438 reg_prot_offset = otp->ProtRegAddr;
2439 reg_fact_groups = otp->FactGroups;
2440 reg_fact_size = 1 << otp->FactProtRegSize;
2441 reg_user_groups = otp->UserGroups;
2442 reg_user_size = 1 << otp->UserProtRegSize;
2443 otp++;
2447 return 0;
2450 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2451 size_t len, size_t *retlen,
2452 u_char *buf)
2454 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2455 buf, do_otp_read, 0);
2458 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2459 size_t len, size_t *retlen,
2460 u_char *buf)
2462 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2463 buf, do_otp_read, 1);
2466 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2467 size_t len, size_t *retlen,
2468 const u_char *buf)
2470 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2471 (u_char *)buf, do_otp_write, 1);
2474 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2475 loff_t from, size_t len)
2477 size_t retlen;
2478 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2479 NULL, do_otp_lock, 1);
2482 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, size_t len,
2483 size_t *retlen, struct otp_info *buf)
2486 return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
2487 NULL, 0);
2490 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, size_t len,
2491 size_t *retlen, struct otp_info *buf)
2493 return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
2494 NULL, 1);
2497 #endif
2499 static void cfi_intelext_save_locks(struct mtd_info *mtd)
2501 struct mtd_erase_region_info *region;
2502 int block, status, i;
2503 unsigned long adr;
2504 size_t len;
2506 for (i = 0; i < mtd->numeraseregions; i++) {
2507 region = &mtd->eraseregions[i];
2508 if (!region->lockmap)
2509 continue;
2511 for (block = 0; block < region->numblocks; block++){
2512 len = region->erasesize;
2513 adr = region->offset + block * len;
2515 status = cfi_varsize_frob(mtd,
2516 do_getlockstatus_oneblock, adr, len, NULL);
2517 if (status)
2518 set_bit(block, region->lockmap);
2519 else
2520 clear_bit(block, region->lockmap);
2525 static int cfi_intelext_suspend(struct mtd_info *mtd)
2527 struct map_info *map = mtd->priv;
2528 struct cfi_private *cfi = map->fldrv_priv;
2529 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2530 int i;
2531 struct flchip *chip;
2532 int ret = 0;
2534 if ((mtd->flags & MTD_POWERUP_LOCK)
2535 && extp && (extp->FeatureSupport & (1 << 5)))
2536 cfi_intelext_save_locks(mtd);
2538 for (i=0; !ret && i<cfi->numchips; i++) {
2539 chip = &cfi->chips[i];
2541 mutex_lock(&chip->mutex);
2543 switch (chip->state) {
2544 case FL_READY:
2545 case FL_STATUS:
2546 case FL_CFI_QUERY:
2547 case FL_JEDEC_QUERY:
2548 if (chip->oldstate == FL_READY) {
2549 /* place the chip in a known state before suspend */
2550 map_write(map, CMD(0xFF), cfi->chips[i].start);
2551 chip->oldstate = chip->state;
2552 chip->state = FL_PM_SUSPENDED;
2553 /* No need to wake_up() on this state change -
2554 * as the whole point is that nobody can do anything
2555 * with the chip now anyway.
2557 } else {
2558 /* There seems to be an operation pending. We must wait for it. */
2559 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2560 ret = -EAGAIN;
2562 break;
2563 default:
2564 /* Should we actually wait? Once upon a time these routines weren't
2565 allowed to. Or should we return -EAGAIN, because the upper layers
2566 ought to have already shut down anything which was using the device
2567 anyway? The latter for now. */
2568 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->state);
2569 ret = -EAGAIN;
2570 break;
2571 case FL_PM_SUSPENDED:
2572 break;
2574 mutex_unlock(&chip->mutex);
2577 /* Unlock the chips again */
2579 if (ret) {
2580 for (i--; i >=0; i--) {
2581 chip = &cfi->chips[i];
2583 mutex_lock(&chip->mutex);
2585 if (chip->state == FL_PM_SUSPENDED) {
2586 /* No need to force it into a known state here,
2587 because we're returning failure, and it didn't
2588 get power cycled */
2589 chip->state = chip->oldstate;
2590 chip->oldstate = FL_READY;
2591 wake_up(&chip->wq);
2593 mutex_unlock(&chip->mutex);
2597 return ret;
2600 static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2602 struct mtd_erase_region_info *region;
2603 int block, i;
2604 unsigned long adr;
2605 size_t len;
2607 for (i = 0; i < mtd->numeraseregions; i++) {
2608 region = &mtd->eraseregions[i];
2609 if (!region->lockmap)
2610 continue;
2612 for_each_clear_bit(block, region->lockmap, region->numblocks) {
2613 len = region->erasesize;
2614 adr = region->offset + block * len;
2615 cfi_intelext_unlock(mtd, adr, len);
2620 static void cfi_intelext_resume(struct mtd_info *mtd)
2622 struct map_info *map = mtd->priv;
2623 struct cfi_private *cfi = map->fldrv_priv;
2624 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2625 int i;
2626 struct flchip *chip;
2628 for (i=0; i<cfi->numchips; i++) {
2630 chip = &cfi->chips[i];
2632 mutex_lock(&chip->mutex);
2634 /* Go to known state. Chip may have been power cycled */
2635 if (chip->state == FL_PM_SUSPENDED) {
2636 /* Refresh LH28F640BF Partition Config. Register */
2637 fixup_LH28F640BF(mtd);
2638 map_write(map, CMD(0xFF), cfi->chips[i].start);
2639 chip->oldstate = chip->state = FL_READY;
2640 wake_up(&chip->wq);
2643 mutex_unlock(&chip->mutex);
2646 if ((mtd->flags & MTD_POWERUP_LOCK)
2647 && extp && (extp->FeatureSupport & (1 << 5)))
2648 cfi_intelext_restore_locks(mtd);
2651 static int cfi_intelext_reset(struct mtd_info *mtd)
2653 struct map_info *map = mtd->priv;
2654 struct cfi_private *cfi = map->fldrv_priv;
2655 int i, ret;
2657 for (i=0; i < cfi->numchips; i++) {
2658 struct flchip *chip = &cfi->chips[i];
2660 /* force the completion of any ongoing operation
2661 and switch to array mode so any bootloader in
2662 flash is accessible for soft reboot. */
2663 mutex_lock(&chip->mutex);
2664 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2665 if (!ret) {
2666 map_write(map, CMD(0xff), chip->start);
2667 chip->state = FL_SHUTDOWN;
2668 put_chip(map, chip, chip->start);
2670 mutex_unlock(&chip->mutex);
2673 return 0;
2676 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2677 void *v)
2679 struct mtd_info *mtd;
2681 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2682 cfi_intelext_reset(mtd);
2683 return NOTIFY_DONE;
2686 static void cfi_intelext_destroy(struct mtd_info *mtd)
2688 struct map_info *map = mtd->priv;
2689 struct cfi_private *cfi = map->fldrv_priv;
2690 struct mtd_erase_region_info *region;
2691 int i;
2692 cfi_intelext_reset(mtd);
2693 unregister_reboot_notifier(&mtd->reboot_notifier);
2694 kfree(cfi->cmdset_priv);
2695 kfree(cfi->cfiq);
2696 kfree(cfi->chips[0].priv);
2697 kfree(cfi);
2698 for (i = 0; i < mtd->numeraseregions; i++) {
2699 region = &mtd->eraseregions[i];
2700 kfree(region->lockmap);
2702 kfree(mtd->eraseregions);
2705 MODULE_LICENSE("GPL");
2706 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2707 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2708 MODULE_ALIAS("cfi_cmdset_0003");
2709 MODULE_ALIAS("cfi_cmdset_0200");