1 // SPDX-License-Identifier: GPL-2.0
3 * Common Flash Interface support:
4 * Intel Extended Vendor Command Set (ID 0x0001)
9 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
10 * - completely revamped method functions so they are aware and
11 * independent of the flash geometry (buswidth, interleave, etc.)
12 * - scalability vs code size is completely set at compile-time
13 * (see include/linux/mtd/cfi.h for selection)
14 * - optimized write buffer method
15 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
16 * - reworked lock/unlock/erase support for var size flash
17 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
18 * - auto unlock sectors on resume for auto locking flash on power up
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
26 #include <asm/byteorder.h>
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/reboot.h>
33 #include <linux/bitmap.h>
34 #include <linux/mtd/xip.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/cfi.h>
39 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
40 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
42 // debugging, turns off buffer write mode if set to 1
43 #define FORCE_WORD_WRITE 0
46 #define I82802AB 0x00ad
47 #define I82802AC 0x00ac
48 #define PF38F4476 0x881c
49 #define M28F00AP30 0x8963
50 /* STMicroelectronics chips */
51 #define M50LPW080 0x002F
52 #define M50FLW080A 0x0080
53 #define M50FLW080B 0x0081
55 #define AT49BV640D 0x02de
56 #define AT49BV640DT 0x02db
58 #define LH28F640BFHE_PTTL90 0x00b0
59 #define LH28F640BFHE_PBTL90 0x00b1
60 #define LH28F640BFHE_PTTL70A 0x00b2
61 #define LH28F640BFHE_PBTL70A 0x00b3
63 static int cfi_intelext_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
64 static int cfi_intelext_write_words(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
65 static int cfi_intelext_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
66 static int cfi_intelext_writev(struct mtd_info
*, const struct kvec
*, unsigned long, loff_t
, size_t *);
67 static int cfi_intelext_erase_varsize(struct mtd_info
*, struct erase_info
*);
68 static void cfi_intelext_sync (struct mtd_info
*);
69 static int cfi_intelext_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
70 static int cfi_intelext_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
71 static int cfi_intelext_is_locked(struct mtd_info
*mtd
, loff_t ofs
,
74 static int cfi_intelext_read_fact_prot_reg (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
75 static int cfi_intelext_read_user_prot_reg (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
76 static int cfi_intelext_write_user_prot_reg(struct mtd_info
*, loff_t
, size_t,
77 size_t *, const u_char
*);
78 static int cfi_intelext_lock_user_prot_reg (struct mtd_info
*, loff_t
, size_t);
79 static int cfi_intelext_get_fact_prot_info(struct mtd_info
*, size_t,
80 size_t *, struct otp_info
*);
81 static int cfi_intelext_get_user_prot_info(struct mtd_info
*, size_t,
82 size_t *, struct otp_info
*);
84 static int cfi_intelext_suspend (struct mtd_info
*);
85 static void cfi_intelext_resume (struct mtd_info
*);
86 static int cfi_intelext_reboot (struct notifier_block
*, unsigned long, void *);
88 static void cfi_intelext_destroy(struct mtd_info
*);
90 struct mtd_info
*cfi_cmdset_0001(struct map_info
*, int);
92 static struct mtd_info
*cfi_intelext_setup (struct mtd_info
*);
93 static int cfi_intelext_partition_fixup(struct mtd_info
*, struct cfi_private
**);
95 static int cfi_intelext_point (struct mtd_info
*mtd
, loff_t from
, size_t len
,
96 size_t *retlen
, void **virt
, resource_size_t
*phys
);
97 static int cfi_intelext_unpoint(struct mtd_info
*mtd
, loff_t from
, size_t len
);
99 static int chip_ready (struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
);
100 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
);
101 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
);
102 #include "fwh_lock.h"
107 * *********** SETUP AND PROBE BITS ***********
110 static struct mtd_chip_driver cfi_intelext_chipdrv
= {
111 .probe
= NULL
, /* Not usable directly */
112 .destroy
= cfi_intelext_destroy
,
113 .name
= "cfi_cmdset_0001",
114 .module
= THIS_MODULE
117 /* #define DEBUG_LOCK_BITS */
118 /* #define DEBUG_CFI_FEATURES */
120 #ifdef DEBUG_CFI_FEATURES
121 static void cfi_tell_features(struct cfi_pri_intelext
*extp
)
124 printk(" Extended Query version %c.%c\n", extp
->MajorVersion
, extp
->MinorVersion
);
125 printk(" Feature/Command Support: %4.4X\n", extp
->FeatureSupport
);
126 printk(" - Chip Erase: %s\n", extp
->FeatureSupport
&1?"supported":"unsupported");
127 printk(" - Suspend Erase: %s\n", extp
->FeatureSupport
&2?"supported":"unsupported");
128 printk(" - Suspend Program: %s\n", extp
->FeatureSupport
&4?"supported":"unsupported");
129 printk(" - Legacy Lock/Unlock: %s\n", extp
->FeatureSupport
&8?"supported":"unsupported");
130 printk(" - Queued Erase: %s\n", extp
->FeatureSupport
&16?"supported":"unsupported");
131 printk(" - Instant block lock: %s\n", extp
->FeatureSupport
&32?"supported":"unsupported");
132 printk(" - Protection Bits: %s\n", extp
->FeatureSupport
&64?"supported":"unsupported");
133 printk(" - Page-mode read: %s\n", extp
->FeatureSupport
&128?"supported":"unsupported");
134 printk(" - Synchronous read: %s\n", extp
->FeatureSupport
&256?"supported":"unsupported");
135 printk(" - Simultaneous operations: %s\n", extp
->FeatureSupport
&512?"supported":"unsupported");
136 printk(" - Extended Flash Array: %s\n", extp
->FeatureSupport
&1024?"supported":"unsupported");
137 for (i
=11; i
<32; i
++) {
138 if (extp
->FeatureSupport
& (1<<i
))
139 printk(" - Unknown Bit %X: supported\n", i
);
142 printk(" Supported functions after Suspend: %2.2X\n", extp
->SuspendCmdSupport
);
143 printk(" - Program after Erase Suspend: %s\n", extp
->SuspendCmdSupport
&1?"supported":"unsupported");
144 for (i
=1; i
<8; i
++) {
145 if (extp
->SuspendCmdSupport
& (1<<i
))
146 printk(" - Unknown Bit %X: supported\n", i
);
149 printk(" Block Status Register Mask: %4.4X\n", extp
->BlkStatusRegMask
);
150 printk(" - Lock Bit Active: %s\n", extp
->BlkStatusRegMask
&1?"yes":"no");
151 printk(" - Lock-Down Bit Active: %s\n", extp
->BlkStatusRegMask
&2?"yes":"no");
152 for (i
=2; i
<3; i
++) {
153 if (extp
->BlkStatusRegMask
& (1<<i
))
154 printk(" - Unknown Bit %X Active: yes\n",i
);
156 printk(" - EFA Lock Bit: %s\n", extp
->BlkStatusRegMask
&16?"yes":"no");
157 printk(" - EFA Lock-Down Bit: %s\n", extp
->BlkStatusRegMask
&32?"yes":"no");
158 for (i
=6; i
<16; i
++) {
159 if (extp
->BlkStatusRegMask
& (1<<i
))
160 printk(" - Unknown Bit %X Active: yes\n",i
);
163 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
164 extp
->VccOptimal
>> 4, extp
->VccOptimal
& 0xf);
165 if (extp
->VppOptimal
)
166 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
167 extp
->VppOptimal
>> 4, extp
->VppOptimal
& 0xf);
171 /* Atmel chips don't use the same PRI format as Intel chips */
172 static void fixup_convert_atmel_pri(struct mtd_info
*mtd
)
174 struct map_info
*map
= mtd
->priv
;
175 struct cfi_private
*cfi
= map
->fldrv_priv
;
176 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
177 struct cfi_pri_atmel atmel_pri
;
178 uint32_t features
= 0;
180 /* Reverse byteswapping */
181 extp
->FeatureSupport
= cpu_to_le32(extp
->FeatureSupport
);
182 extp
->BlkStatusRegMask
= cpu_to_le16(extp
->BlkStatusRegMask
);
183 extp
->ProtRegAddr
= cpu_to_le16(extp
->ProtRegAddr
);
185 memcpy(&atmel_pri
, extp
, sizeof(atmel_pri
));
186 memset((char *)extp
+ 5, 0, sizeof(*extp
) - 5);
188 printk(KERN_ERR
"atmel Features: %02x\n", atmel_pri
.Features
);
190 if (atmel_pri
.Features
& 0x01) /* chip erase supported */
192 if (atmel_pri
.Features
& 0x02) /* erase suspend supported */
194 if (atmel_pri
.Features
& 0x04) /* program suspend supported */
196 if (atmel_pri
.Features
& 0x08) /* simultaneous operations supported */
198 if (atmel_pri
.Features
& 0x20) /* page mode read supported */
200 if (atmel_pri
.Features
& 0x40) /* queued erase supported */
202 if (atmel_pri
.Features
& 0x80) /* Protection bits supported */
205 extp
->FeatureSupport
= features
;
207 /* burst write mode not supported */
208 cfi
->cfiq
->BufWriteTimeoutTyp
= 0;
209 cfi
->cfiq
->BufWriteTimeoutMax
= 0;
212 static void fixup_at49bv640dx_lock(struct mtd_info
*mtd
)
214 struct map_info
*map
= mtd
->priv
;
215 struct cfi_private
*cfi
= map
->fldrv_priv
;
216 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
218 cfip
->FeatureSupport
|= (1 << 5);
219 mtd
->flags
|= MTD_POWERUP_LOCK
;
222 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
223 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
224 static void fixup_intel_strataflash(struct mtd_info
*mtd
)
226 struct map_info
*map
= mtd
->priv
;
227 struct cfi_private
*cfi
= map
->fldrv_priv
;
228 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
230 printk(KERN_WARNING
"cfi_cmdset_0001: Suspend "
231 "erase on write disabled.\n");
232 extp
->SuspendCmdSupport
&= ~1;
236 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
237 static void fixup_no_write_suspend(struct mtd_info
*mtd
)
239 struct map_info
*map
= mtd
->priv
;
240 struct cfi_private
*cfi
= map
->fldrv_priv
;
241 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
243 if (cfip
&& (cfip
->FeatureSupport
&4)) {
244 cfip
->FeatureSupport
&= ~4;
245 printk(KERN_WARNING
"cfi_cmdset_0001: write suspend disabled\n");
250 static void fixup_st_m28w320ct(struct mtd_info
*mtd
)
252 struct map_info
*map
= mtd
->priv
;
253 struct cfi_private
*cfi
= map
->fldrv_priv
;
255 cfi
->cfiq
->BufWriteTimeoutTyp
= 0; /* Not supported */
256 cfi
->cfiq
->BufWriteTimeoutMax
= 0; /* Not supported */
259 static void fixup_st_m28w320cb(struct mtd_info
*mtd
)
261 struct map_info
*map
= mtd
->priv
;
262 struct cfi_private
*cfi
= map
->fldrv_priv
;
264 /* Note this is done after the region info is endian swapped */
265 cfi
->cfiq
->EraseRegionInfo
[1] =
266 (cfi
->cfiq
->EraseRegionInfo
[1] & 0xffff0000) | 0x3e;
269 static int is_LH28F640BF(struct cfi_private
*cfi
)
271 /* Sharp LH28F640BF Family */
272 if (cfi
->mfr
== CFI_MFR_SHARP
&& (
273 cfi
->id
== LH28F640BFHE_PTTL90
|| cfi
->id
== LH28F640BFHE_PBTL90
||
274 cfi
->id
== LH28F640BFHE_PTTL70A
|| cfi
->id
== LH28F640BFHE_PBTL70A
))
279 static void fixup_LH28F640BF(struct mtd_info
*mtd
)
281 struct map_info
*map
= mtd
->priv
;
282 struct cfi_private
*cfi
= map
->fldrv_priv
;
283 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
285 /* Reset the Partition Configuration Register on LH28F640BF
286 * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */
287 if (is_LH28F640BF(cfi
)) {
288 printk(KERN_INFO
"Reset Partition Config. Register: 1 Partition of 4 planes\n");
289 map_write(map
, CMD(0x60), 0);
290 map_write(map
, CMD(0x04), 0);
292 /* We have set one single partition thus
293 * Simultaneous Operations are not allowed */
294 printk(KERN_INFO
"cfi_cmdset_0001: Simultaneous Operations disabled\n");
295 extp
->FeatureSupport
&= ~512;
299 static void fixup_use_point(struct mtd_info
*mtd
)
301 struct map_info
*map
= mtd
->priv
;
302 if (!mtd
->_point
&& map_is_linear(map
)) {
303 mtd
->_point
= cfi_intelext_point
;
304 mtd
->_unpoint
= cfi_intelext_unpoint
;
308 static void fixup_use_write_buffers(struct mtd_info
*mtd
)
310 struct map_info
*map
= mtd
->priv
;
311 struct cfi_private
*cfi
= map
->fldrv_priv
;
312 if (cfi
->cfiq
->BufWriteTimeoutTyp
) {
313 printk(KERN_INFO
"Using buffer write method\n" );
314 mtd
->_write
= cfi_intelext_write_buffers
;
315 mtd
->_writev
= cfi_intelext_writev
;
320 * Some chips power-up with all sectors locked by default.
322 static void fixup_unlock_powerup_lock(struct mtd_info
*mtd
)
324 struct map_info
*map
= mtd
->priv
;
325 struct cfi_private
*cfi
= map
->fldrv_priv
;
326 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
328 if (cfip
->FeatureSupport
&32) {
329 printk(KERN_INFO
"Using auto-unlock on power-up/resume\n" );
330 mtd
->flags
|= MTD_POWERUP_LOCK
;
334 static struct cfi_fixup cfi_fixup_table
[] = {
335 { CFI_MFR_ATMEL
, CFI_ID_ANY
, fixup_convert_atmel_pri
},
336 { CFI_MFR_ATMEL
, AT49BV640D
, fixup_at49bv640dx_lock
},
337 { CFI_MFR_ATMEL
, AT49BV640DT
, fixup_at49bv640dx_lock
},
338 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
339 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_intel_strataflash
},
341 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
342 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_no_write_suspend
},
344 #if !FORCE_WORD_WRITE
345 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_write_buffers
},
347 { CFI_MFR_ST
, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct
},
348 { CFI_MFR_ST
, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb
},
349 { CFI_MFR_INTEL
, CFI_ID_ANY
, fixup_unlock_powerup_lock
},
350 { CFI_MFR_SHARP
, CFI_ID_ANY
, fixup_unlock_powerup_lock
},
351 { CFI_MFR_SHARP
, CFI_ID_ANY
, fixup_LH28F640BF
},
355 static struct cfi_fixup jedec_fixup_table
[] = {
356 { CFI_MFR_INTEL
, I82802AB
, fixup_use_fwh_lock
},
357 { CFI_MFR_INTEL
, I82802AC
, fixup_use_fwh_lock
},
358 { CFI_MFR_ST
, M50LPW080
, fixup_use_fwh_lock
},
359 { CFI_MFR_ST
, M50FLW080A
, fixup_use_fwh_lock
},
360 { CFI_MFR_ST
, M50FLW080B
, fixup_use_fwh_lock
},
363 static struct cfi_fixup fixup_table
[] = {
364 /* The CFI vendor ids and the JEDEC vendor IDs appear
365 * to be common. It is like the devices id's are as
366 * well. This table is to pick all cases where
367 * we know that is the case.
369 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_point
},
373 static void cfi_fixup_major_minor(struct cfi_private
*cfi
,
374 struct cfi_pri_intelext
*extp
)
376 if (cfi
->mfr
== CFI_MFR_INTEL
&&
377 cfi
->id
== PF38F4476
&& extp
->MinorVersion
== '3')
378 extp
->MinorVersion
= '1';
381 static int cfi_is_micron_28F00AP30(struct cfi_private
*cfi
, struct flchip
*chip
)
384 * Micron(was Numonyx) 1Gbit bottom boot are buggy w.r.t
385 * Erase Supend for their small Erase Blocks(0x8000)
387 if (cfi
->mfr
== CFI_MFR_INTEL
&& cfi
->id
== M28F00AP30
)
392 static inline struct cfi_pri_intelext
*
393 read_pri_intelext(struct map_info
*map
, __u16 adr
)
395 struct cfi_private
*cfi
= map
->fldrv_priv
;
396 struct cfi_pri_intelext
*extp
;
397 unsigned int extra_size
= 0;
398 unsigned int extp_size
= sizeof(*extp
);
401 extp
= (struct cfi_pri_intelext
*)cfi_read_pri(map
, adr
, extp_size
, "Intel/Sharp");
405 cfi_fixup_major_minor(cfi
, extp
);
407 if (extp
->MajorVersion
!= '1' ||
408 (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '5')) {
409 printk(KERN_ERR
" Unknown Intel/Sharp Extended Query "
410 "version %c.%c.\n", extp
->MajorVersion
,
416 /* Do some byteswapping if necessary */
417 extp
->FeatureSupport
= le32_to_cpu(extp
->FeatureSupport
);
418 extp
->BlkStatusRegMask
= le16_to_cpu(extp
->BlkStatusRegMask
);
419 extp
->ProtRegAddr
= le16_to_cpu(extp
->ProtRegAddr
);
421 if (extp
->MinorVersion
>= '0') {
424 /* Protection Register info */
425 if (extp
->NumProtectionFields
) {
426 struct cfi_intelext_otpinfo
*otp
=
427 (struct cfi_intelext_otpinfo
*)&extp
->extra
[0];
429 extra_size
+= (extp
->NumProtectionFields
- 1) *
430 sizeof(struct cfi_intelext_otpinfo
);
432 if (extp_size
>= sizeof(*extp
) + extra_size
) {
435 /* Do some byteswapping if necessary */
436 for (i
= 0; i
< extp
->NumProtectionFields
- 1; i
++) {
437 otp
->ProtRegAddr
= le32_to_cpu(otp
->ProtRegAddr
);
438 otp
->FactGroups
= le16_to_cpu(otp
->FactGroups
);
439 otp
->UserGroups
= le16_to_cpu(otp
->UserGroups
);
446 if (extp
->MinorVersion
>= '1') {
447 /* Burst Read info */
449 if (extp_size
< sizeof(*extp
) + extra_size
)
451 extra_size
+= extp
->extra
[extra_size
- 1];
454 if (extp
->MinorVersion
>= '3') {
457 /* Number of hardware-partitions */
459 if (extp_size
< sizeof(*extp
) + extra_size
)
461 nb_parts
= extp
->extra
[extra_size
- 1];
463 /* skip the sizeof(partregion) field in CFI 1.4 */
464 if (extp
->MinorVersion
>= '4')
467 for (i
= 0; i
< nb_parts
; i
++) {
468 struct cfi_intelext_regioninfo
*rinfo
;
469 rinfo
= (struct cfi_intelext_regioninfo
*)&extp
->extra
[extra_size
];
470 extra_size
+= sizeof(*rinfo
);
471 if (extp_size
< sizeof(*extp
) + extra_size
)
473 rinfo
->NumIdentPartitions
=le16_to_cpu(rinfo
->NumIdentPartitions
);
474 extra_size
+= (rinfo
->NumBlockTypes
- 1)
475 * sizeof(struct cfi_intelext_blockinfo
);
478 if (extp
->MinorVersion
>= '4')
479 extra_size
+= sizeof(struct cfi_intelext_programming_regioninfo
);
481 if (extp_size
< sizeof(*extp
) + extra_size
) {
483 extp_size
= sizeof(*extp
) + extra_size
;
485 if (extp_size
> 4096) {
487 "%s: cfi_pri_intelext is too fat\n",
498 struct mtd_info
*cfi_cmdset_0001(struct map_info
*map
, int primary
)
500 struct cfi_private
*cfi
= map
->fldrv_priv
;
501 struct mtd_info
*mtd
;
504 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
508 mtd
->type
= MTD_NORFLASH
;
510 /* Fill in the default mtd operations */
511 mtd
->_erase
= cfi_intelext_erase_varsize
;
512 mtd
->_read
= cfi_intelext_read
;
513 mtd
->_write
= cfi_intelext_write_words
;
514 mtd
->_sync
= cfi_intelext_sync
;
515 mtd
->_lock
= cfi_intelext_lock
;
516 mtd
->_unlock
= cfi_intelext_unlock
;
517 mtd
->_is_locked
= cfi_intelext_is_locked
;
518 mtd
->_suspend
= cfi_intelext_suspend
;
519 mtd
->_resume
= cfi_intelext_resume
;
520 mtd
->flags
= MTD_CAP_NORFLASH
;
521 mtd
->name
= map
->name
;
523 mtd
->writebufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
525 mtd
->reboot_notifier
.notifier_call
= cfi_intelext_reboot
;
527 if (cfi
->cfi_mode
== CFI_MODE_CFI
) {
529 * It's a real CFI chip, not one for which the probe
530 * routine faked a CFI structure. So we read the feature
533 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
534 struct cfi_pri_intelext
*extp
;
536 extp
= read_pri_intelext(map
, adr
);
542 /* Install our own private info structure */
543 cfi
->cmdset_priv
= extp
;
545 cfi_fixup(mtd
, cfi_fixup_table
);
547 #ifdef DEBUG_CFI_FEATURES
548 /* Tell the user about it in lots of lovely detail */
549 cfi_tell_features(extp
);
552 if(extp
->SuspendCmdSupport
& 1) {
553 printk(KERN_NOTICE
"cfi_cmdset_0001: Erase suspend on write enabled\n");
556 else if (cfi
->cfi_mode
== CFI_MODE_JEDEC
) {
557 /* Apply jedec specific fixups */
558 cfi_fixup(mtd
, jedec_fixup_table
);
560 /* Apply generic fixups */
561 cfi_fixup(mtd
, fixup_table
);
563 for (i
=0; i
< cfi
->numchips
; i
++) {
564 if (cfi
->cfiq
->WordWriteTimeoutTyp
)
565 cfi
->chips
[i
].word_write_time
=
566 1<<cfi
->cfiq
->WordWriteTimeoutTyp
;
568 cfi
->chips
[i
].word_write_time
= 50000;
570 if (cfi
->cfiq
->BufWriteTimeoutTyp
)
571 cfi
->chips
[i
].buffer_write_time
=
572 1<<cfi
->cfiq
->BufWriteTimeoutTyp
;
573 /* No default; if it isn't specified, we won't use it */
575 if (cfi
->cfiq
->BlockEraseTimeoutTyp
)
576 cfi
->chips
[i
].erase_time
=
577 1000<<cfi
->cfiq
->BlockEraseTimeoutTyp
;
579 cfi
->chips
[i
].erase_time
= 2000000;
581 if (cfi
->cfiq
->WordWriteTimeoutTyp
&&
582 cfi
->cfiq
->WordWriteTimeoutMax
)
583 cfi
->chips
[i
].word_write_time_max
=
584 1<<(cfi
->cfiq
->WordWriteTimeoutTyp
+
585 cfi
->cfiq
->WordWriteTimeoutMax
);
587 cfi
->chips
[i
].word_write_time_max
= 50000 * 8;
589 if (cfi
->cfiq
->BufWriteTimeoutTyp
&&
590 cfi
->cfiq
->BufWriteTimeoutMax
)
591 cfi
->chips
[i
].buffer_write_time_max
=
592 1<<(cfi
->cfiq
->BufWriteTimeoutTyp
+
593 cfi
->cfiq
->BufWriteTimeoutMax
);
595 if (cfi
->cfiq
->BlockEraseTimeoutTyp
&&
596 cfi
->cfiq
->BlockEraseTimeoutMax
)
597 cfi
->chips
[i
].erase_time_max
=
598 1000<<(cfi
->cfiq
->BlockEraseTimeoutTyp
+
599 cfi
->cfiq
->BlockEraseTimeoutMax
);
601 cfi
->chips
[i
].erase_time_max
= 2000000 * 8;
603 cfi
->chips
[i
].ref_point_counter
= 0;
604 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
607 map
->fldrv
= &cfi_intelext_chipdrv
;
609 return cfi_intelext_setup(mtd
);
611 struct mtd_info
*cfi_cmdset_0003(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0001")));
612 struct mtd_info
*cfi_cmdset_0200(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0001")));
613 EXPORT_SYMBOL_GPL(cfi_cmdset_0001
);
614 EXPORT_SYMBOL_GPL(cfi_cmdset_0003
);
615 EXPORT_SYMBOL_GPL(cfi_cmdset_0200
);
617 static struct mtd_info
*cfi_intelext_setup(struct mtd_info
*mtd
)
619 struct map_info
*map
= mtd
->priv
;
620 struct cfi_private
*cfi
= map
->fldrv_priv
;
621 unsigned long offset
= 0;
623 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
625 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
627 mtd
->size
= devsize
* cfi
->numchips
;
629 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
630 mtd
->eraseregions
= kcalloc(mtd
->numeraseregions
,
631 sizeof(struct mtd_erase_region_info
),
633 if (!mtd
->eraseregions
)
636 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
637 unsigned long ernum
, ersize
;
638 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
639 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
641 if (mtd
->erasesize
< ersize
) {
642 mtd
->erasesize
= ersize
;
644 for (j
=0; j
<cfi
->numchips
; j
++) {
645 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
646 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
647 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
648 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].lockmap
= kmalloc(ernum
/ 8 + 1, GFP_KERNEL
);
649 if (!mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].lockmap
)
652 offset
+= (ersize
* ernum
);
655 if (offset
!= devsize
) {
657 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
661 for (i
=0; i
<mtd
->numeraseregions
;i
++){
662 printk(KERN_DEBUG
"erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
663 i
,(unsigned long long)mtd
->eraseregions
[i
].offset
,
664 mtd
->eraseregions
[i
].erasesize
,
665 mtd
->eraseregions
[i
].numblocks
);
668 #ifdef CONFIG_MTD_OTP
669 mtd
->_read_fact_prot_reg
= cfi_intelext_read_fact_prot_reg
;
670 mtd
->_read_user_prot_reg
= cfi_intelext_read_user_prot_reg
;
671 mtd
->_write_user_prot_reg
= cfi_intelext_write_user_prot_reg
;
672 mtd
->_lock_user_prot_reg
= cfi_intelext_lock_user_prot_reg
;
673 mtd
->_get_fact_prot_info
= cfi_intelext_get_fact_prot_info
;
674 mtd
->_get_user_prot_info
= cfi_intelext_get_user_prot_info
;
677 /* This function has the potential to distort the reality
678 a bit and therefore should be called last. */
679 if (cfi_intelext_partition_fixup(mtd
, &cfi
) != 0)
682 __module_get(THIS_MODULE
);
683 register_reboot_notifier(&mtd
->reboot_notifier
);
687 if (mtd
->eraseregions
)
688 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++)
689 for (j
=0; j
<cfi
->numchips
; j
++)
690 kfree(mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].lockmap
);
691 kfree(mtd
->eraseregions
);
693 kfree(cfi
->cmdset_priv
);
697 static int cfi_intelext_partition_fixup(struct mtd_info
*mtd
,
698 struct cfi_private
**pcfi
)
700 struct map_info
*map
= mtd
->priv
;
701 struct cfi_private
*cfi
= *pcfi
;
702 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
705 * Probing of multi-partition flash chips.
707 * To support multiple partitions when available, we simply arrange
708 * for each of them to have their own flchip structure even if they
709 * are on the same physical chip. This means completely recreating
710 * a new cfi_private structure right here which is a blatent code
711 * layering violation, but this is still the least intrusive
712 * arrangement at this point. This can be rearranged in the future
713 * if someone feels motivated enough. --nico
715 if (extp
&& extp
->MajorVersion
== '1' && extp
->MinorVersion
>= '3'
716 && extp
->FeatureSupport
& (1 << 9)) {
718 struct cfi_private
*newcfi
;
720 struct flchip_shared
*shared
;
721 int numregions
, numparts
, partshift
, numvirtchips
, i
, j
;
723 /* Protection Register info */
724 if (extp
->NumProtectionFields
)
725 offs
= (extp
->NumProtectionFields
- 1) *
726 sizeof(struct cfi_intelext_otpinfo
);
728 /* Burst Read info */
729 offs
+= extp
->extra
[offs
+1]+2;
731 /* Number of partition regions */
732 numregions
= extp
->extra
[offs
];
735 /* skip the sizeof(partregion) field in CFI 1.4 */
736 if (extp
->MinorVersion
>= '4')
739 /* Number of hardware partitions */
741 for (i
= 0; i
< numregions
; i
++) {
742 struct cfi_intelext_regioninfo
*rinfo
;
743 rinfo
= (struct cfi_intelext_regioninfo
*)&extp
->extra
[offs
];
744 numparts
+= rinfo
->NumIdentPartitions
;
745 offs
+= sizeof(*rinfo
)
746 + (rinfo
->NumBlockTypes
- 1) *
747 sizeof(struct cfi_intelext_blockinfo
);
753 /* Programming Region info */
754 if (extp
->MinorVersion
>= '4') {
755 struct cfi_intelext_programming_regioninfo
*prinfo
;
756 prinfo
= (struct cfi_intelext_programming_regioninfo
*)&extp
->extra
[offs
];
757 mtd
->writesize
= cfi
->interleave
<< prinfo
->ProgRegShift
;
758 mtd
->flags
&= ~MTD_BIT_WRITEABLE
;
759 printk(KERN_DEBUG
"%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
760 map
->name
, mtd
->writesize
,
761 cfi
->interleave
* prinfo
->ControlValid
,
762 cfi
->interleave
* prinfo
->ControlInvalid
);
766 * All functions below currently rely on all chips having
767 * the same geometry so we'll just assume that all hardware
768 * partitions are of the same size too.
770 partshift
= cfi
->chipshift
- __ffs(numparts
);
772 if ((1 << partshift
) < mtd
->erasesize
) {
774 "%s: bad number of hw partitions (%d)\n",
779 numvirtchips
= cfi
->numchips
* numparts
;
780 newcfi
= kmalloc(struct_size(newcfi
, chips
, numvirtchips
),
784 shared
= kmalloc_array(cfi
->numchips
,
785 sizeof(struct flchip_shared
),
791 memcpy(newcfi
, cfi
, sizeof(struct cfi_private
));
792 newcfi
->numchips
= numvirtchips
;
793 newcfi
->chipshift
= partshift
;
795 chip
= &newcfi
->chips
[0];
796 for (i
= 0; i
< cfi
->numchips
; i
++) {
797 shared
[i
].writing
= shared
[i
].erasing
= NULL
;
798 mutex_init(&shared
[i
].lock
);
799 for (j
= 0; j
< numparts
; j
++) {
800 *chip
= cfi
->chips
[i
];
801 chip
->start
+= j
<< partshift
;
802 chip
->priv
= &shared
[i
];
803 /* those should be reset too since
804 they create memory references. */
805 init_waitqueue_head(&chip
->wq
);
806 mutex_init(&chip
->mutex
);
811 printk(KERN_DEBUG
"%s: %d set(s) of %d interleaved chips "
812 "--> %d partitions of %d KiB\n",
813 map
->name
, cfi
->numchips
, cfi
->interleave
,
814 newcfi
->numchips
, 1<<(newcfi
->chipshift
-10));
816 map
->fldrv_priv
= newcfi
;
825 * *********** CHIP ACCESS FUNCTIONS ***********
827 static int chip_ready (struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
)
829 DECLARE_WAITQUEUE(wait
, current
);
830 struct cfi_private
*cfi
= map
->fldrv_priv
;
831 map_word status
, status_OK
= CMD(0x80), status_PWS
= CMD(0x01);
832 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
833 unsigned long timeo
= jiffies
+ HZ
;
835 /* Prevent setting state FL_SYNCING for chip in suspended state. */
836 if (mode
== FL_SYNCING
&& chip
->oldstate
!= FL_READY
)
839 switch (chip
->state
) {
843 status
= map_read(map
, adr
);
844 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
847 /* At this point we're fine with write operations
848 in other partitions as they don't conflict. */
849 if (chip
->priv
&& map_word_andequal(map
, status
, status_PWS
, status_PWS
))
852 mutex_unlock(&chip
->mutex
);
854 mutex_lock(&chip
->mutex
);
855 /* Someone else might have been playing with it. */
866 !(cfip
->FeatureSupport
& 2) ||
867 !(mode
== FL_READY
|| mode
== FL_POINT
||
868 (mode
== FL_WRITING
&& (cfip
->SuspendCmdSupport
& 1))))
871 /* Do not allow suspend iff read/write to EB address */
872 if ((adr
& chip
->in_progress_block_mask
) ==
873 chip
->in_progress_block_addr
)
876 /* do not suspend small EBs, buggy Micron Chips */
877 if (cfi_is_micron_28F00AP30(cfi
, chip
) &&
878 (chip
->in_progress_block_mask
== ~(0x8000-1)))
882 map_write(map
, CMD(0xB0), chip
->in_progress_block_addr
);
884 /* If the flash has finished erasing, then 'erase suspend'
885 * appears to make some (28F320) flash devices switch to
886 * 'read' mode. Make sure that we switch to 'read status'
887 * mode so we get the right data. --rmk
889 map_write(map
, CMD(0x70), chip
->in_progress_block_addr
);
890 chip
->oldstate
= FL_ERASING
;
891 chip
->state
= FL_ERASE_SUSPENDING
;
892 chip
->erase_suspended
= 1;
894 status
= map_read(map
, chip
->in_progress_block_addr
);
895 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
898 if (time_after(jiffies
, timeo
)) {
899 /* Urgh. Resume and pretend we weren't here.
900 * Make sure we're in 'read status' mode if it had finished */
901 put_chip(map
, chip
, adr
);
902 printk(KERN_ERR
"%s: Chip not ready after erase "
903 "suspended: status = 0x%lx\n", map
->name
, status
.x
[0]);
907 mutex_unlock(&chip
->mutex
);
909 mutex_lock(&chip
->mutex
);
910 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
911 So we can just loop here. */
913 chip
->state
= FL_STATUS
;
916 case FL_XIP_WHILE_ERASING
:
917 if (mode
!= FL_READY
&& mode
!= FL_POINT
&&
918 (mode
!= FL_WRITING
|| !cfip
|| !(cfip
->SuspendCmdSupport
&1)))
920 chip
->oldstate
= chip
->state
;
921 chip
->state
= FL_READY
;
925 /* The machine is rebooting now,so no one can get chip anymore */
928 /* Only if there's no operation suspended... */
929 if (mode
== FL_READY
&& chip
->oldstate
== FL_READY
)
934 set_current_state(TASK_UNINTERRUPTIBLE
);
935 add_wait_queue(&chip
->wq
, &wait
);
936 mutex_unlock(&chip
->mutex
);
938 remove_wait_queue(&chip
->wq
, &wait
);
939 mutex_lock(&chip
->mutex
);
944 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
)
947 DECLARE_WAITQUEUE(wait
, current
);
951 (mode
== FL_WRITING
|| mode
== FL_ERASING
|| mode
== FL_OTP_WRITE
952 || mode
== FL_SHUTDOWN
) && chip
->state
!= FL_SYNCING
) {
954 * OK. We have possibility for contention on the write/erase
955 * operations which are global to the real chip and not per
956 * partition. So let's fight it over in the partition which
957 * currently has authority on the operation.
959 * The rules are as follows:
961 * - any write operation must own shared->writing.
963 * - any erase operation must own _both_ shared->writing and
966 * - contention arbitration is handled in the owner's context.
968 * The 'shared' struct can be read and/or written only when
971 struct flchip_shared
*shared
= chip
->priv
;
972 struct flchip
*contender
;
973 mutex_lock(&shared
->lock
);
974 contender
= shared
->writing
;
975 if (contender
&& contender
!= chip
) {
977 * The engine to perform desired operation on this
978 * partition is already in use by someone else.
979 * Let's fight over it in the context of the chip
980 * currently using it. If it is possible to suspend,
981 * that other partition will do just that, otherwise
982 * it'll happily send us to sleep. In any case, when
983 * get_chip returns success we're clear to go ahead.
985 ret
= mutex_trylock(&contender
->mutex
);
986 mutex_unlock(&shared
->lock
);
989 mutex_unlock(&chip
->mutex
);
990 ret
= chip_ready(map
, contender
, contender
->start
, mode
);
991 mutex_lock(&chip
->mutex
);
993 if (ret
== -EAGAIN
) {
994 mutex_unlock(&contender
->mutex
);
998 mutex_unlock(&contender
->mutex
);
1001 mutex_lock(&shared
->lock
);
1003 /* We should not own chip if it is already
1004 * in FL_SYNCING state. Put contender and retry. */
1005 if (chip
->state
== FL_SYNCING
) {
1006 put_chip(map
, contender
, contender
->start
);
1007 mutex_unlock(&contender
->mutex
);
1010 mutex_unlock(&contender
->mutex
);
1013 /* Check if we already have suspended erase
1014 * on this chip. Sleep. */
1015 if (mode
== FL_ERASING
&& shared
->erasing
1016 && shared
->erasing
->oldstate
== FL_ERASING
) {
1017 mutex_unlock(&shared
->lock
);
1018 set_current_state(TASK_UNINTERRUPTIBLE
);
1019 add_wait_queue(&chip
->wq
, &wait
);
1020 mutex_unlock(&chip
->mutex
);
1022 remove_wait_queue(&chip
->wq
, &wait
);
1023 mutex_lock(&chip
->mutex
);
1028 shared
->writing
= chip
;
1029 if (mode
== FL_ERASING
)
1030 shared
->erasing
= chip
;
1031 mutex_unlock(&shared
->lock
);
1033 ret
= chip_ready(map
, chip
, adr
, mode
);
1040 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1042 struct cfi_private
*cfi
= map
->fldrv_priv
;
1045 struct flchip_shared
*shared
= chip
->priv
;
1046 mutex_lock(&shared
->lock
);
1047 if (shared
->writing
== chip
&& chip
->oldstate
== FL_READY
) {
1048 /* We own the ability to write, but we're done */
1049 shared
->writing
= shared
->erasing
;
1050 if (shared
->writing
&& shared
->writing
!= chip
) {
1051 /* give back ownership to who we loaned it from */
1052 struct flchip
*loaner
= shared
->writing
;
1053 mutex_lock(&loaner
->mutex
);
1054 mutex_unlock(&shared
->lock
);
1055 mutex_unlock(&chip
->mutex
);
1056 put_chip(map
, loaner
, loaner
->start
);
1057 mutex_lock(&chip
->mutex
);
1058 mutex_unlock(&loaner
->mutex
);
1062 shared
->erasing
= NULL
;
1063 shared
->writing
= NULL
;
1064 } else if (shared
->erasing
== chip
&& shared
->writing
!= chip
) {
1066 * We own the ability to erase without the ability
1067 * to write, which means the erase was suspended
1068 * and some other partition is currently writing.
1069 * Don't let the switch below mess things up since
1070 * we don't have ownership to resume anything.
1072 mutex_unlock(&shared
->lock
);
1076 mutex_unlock(&shared
->lock
);
1079 switch(chip
->oldstate
) {
1081 /* What if one interleaved chip has finished and the
1082 other hasn't? The old code would leave the finished
1083 one in READY mode. That's bad, and caused -EROFS
1084 errors to be returned from do_erase_oneblock because
1085 that's the only bit it checked for at the time.
1086 As the state machine appears to explicitly allow
1087 sending the 0x70 (Read Status) command to an erasing
1088 chip and expecting it to be ignored, that's what we
1090 map_write(map
, CMD(0xd0), chip
->in_progress_block_addr
);
1091 map_write(map
, CMD(0x70), chip
->in_progress_block_addr
);
1092 chip
->oldstate
= FL_READY
;
1093 chip
->state
= FL_ERASING
;
1096 case FL_XIP_WHILE_ERASING
:
1097 chip
->state
= chip
->oldstate
;
1098 chip
->oldstate
= FL_READY
;
1103 case FL_JEDEC_QUERY
:
1106 printk(KERN_ERR
"%s: put_chip() called with oldstate %d!!\n", map
->name
, chip
->oldstate
);
1111 #ifdef CONFIG_MTD_XIP
1114 * No interrupt what so ever can be serviced while the flash isn't in array
1115 * mode. This is ensured by the xip_disable() and xip_enable() functions
1116 * enclosing any code path where the flash is known not to be in array mode.
1117 * And within a XIP disabled code path, only functions marked with __xipram
1118 * may be called and nothing else (it's a good thing to inspect generated
1119 * assembly to make sure inline functions were actually inlined and that gcc
1120 * didn't emit calls to its own support functions). Also configuring MTD CFI
1121 * support to a single buswidth and a single interleave is also recommended.
1124 static void xip_disable(struct map_info
*map
, struct flchip
*chip
,
1127 /* TODO: chips with no XIP use should ignore and return */
1128 (void) map_read(map
, adr
); /* ensure mmu mapping is up to date */
1129 local_irq_disable();
1132 static void __xipram
xip_enable(struct map_info
*map
, struct flchip
*chip
,
1135 struct cfi_private
*cfi
= map
->fldrv_priv
;
1136 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
1137 map_write(map
, CMD(0xff), adr
);
1138 chip
->state
= FL_READY
;
1140 (void) map_read(map
, adr
);
1146 * When a delay is required for the flash operation to complete, the
1147 * xip_wait_for_operation() function is polling for both the given timeout
1148 * and pending (but still masked) hardware interrupts. Whenever there is an
1149 * interrupt pending then the flash erase or write operation is suspended,
1150 * array mode restored and interrupts unmasked. Task scheduling might also
1151 * happen at that point. The CPU eventually returns from the interrupt or
1152 * the call to schedule() and the suspended flash operation is resumed for
1153 * the remaining of the delay period.
1155 * Warning: this function _will_ fool interrupt latency tracing tools.
1158 static int __xipram
xip_wait_for_operation(
1159 struct map_info
*map
, struct flchip
*chip
,
1160 unsigned long adr
, unsigned int chip_op_time_max
)
1162 struct cfi_private
*cfi
= map
->fldrv_priv
;
1163 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
1164 map_word status
, OK
= CMD(0x80);
1165 unsigned long usec
, suspended
, start
, done
;
1166 flstate_t oldstate
, newstate
;
1168 start
= xip_currtime();
1169 usec
= chip_op_time_max
;
1176 if (xip_irqpending() && cfip
&&
1177 ((chip
->state
== FL_ERASING
&& (cfip
->FeatureSupport
&2)) ||
1178 (chip
->state
== FL_WRITING
&& (cfip
->FeatureSupport
&4))) &&
1179 (cfi_interleave_is_1(cfi
) || chip
->oldstate
== FL_READY
)) {
1181 * Let's suspend the erase or write operation when
1182 * supported. Note that we currently don't try to
1183 * suspend interleaved chips if there is already
1184 * another operation suspended (imagine what happens
1185 * when one chip was already done with the current
1186 * operation while another chip suspended it, then
1187 * we resume the whole thing at once). Yes, it
1191 map_write(map
, CMD(0xb0), adr
);
1192 map_write(map
, CMD(0x70), adr
);
1193 suspended
= xip_currtime();
1195 if (xip_elapsed_since(suspended
) > 100000) {
1197 * The chip doesn't want to suspend
1198 * after waiting for 100 msecs.
1199 * This is a critical error but there
1200 * is not much we can do here.
1204 status
= map_read(map
, adr
);
1205 } while (!map_word_andequal(map
, status
, OK
, OK
));
1207 /* Suspend succeeded */
1208 oldstate
= chip
->state
;
1209 if (oldstate
== FL_ERASING
) {
1210 if (!map_word_bitsset(map
, status
, CMD(0x40)))
1212 newstate
= FL_XIP_WHILE_ERASING
;
1213 chip
->erase_suspended
= 1;
1215 if (!map_word_bitsset(map
, status
, CMD(0x04)))
1217 newstate
= FL_XIP_WHILE_WRITING
;
1218 chip
->write_suspended
= 1;
1220 chip
->state
= newstate
;
1221 map_write(map
, CMD(0xff), adr
);
1222 (void) map_read(map
, adr
);
1225 mutex_unlock(&chip
->mutex
);
1230 * We're back. However someone else might have
1231 * decided to go write to the chip if we are in
1232 * a suspended erase state. If so let's wait
1235 mutex_lock(&chip
->mutex
);
1236 while (chip
->state
!= newstate
) {
1237 DECLARE_WAITQUEUE(wait
, current
);
1238 set_current_state(TASK_UNINTERRUPTIBLE
);
1239 add_wait_queue(&chip
->wq
, &wait
);
1240 mutex_unlock(&chip
->mutex
);
1242 remove_wait_queue(&chip
->wq
, &wait
);
1243 mutex_lock(&chip
->mutex
);
1245 /* Disallow XIP again */
1246 local_irq_disable();
1248 /* Resume the write or erase operation */
1249 map_write(map
, CMD(0xd0), adr
);
1250 map_write(map
, CMD(0x70), adr
);
1251 chip
->state
= oldstate
;
1252 start
= xip_currtime();
1253 } else if (usec
>= 1000000/HZ
) {
1255 * Try to save on CPU power when waiting delay
1256 * is at least a system timer tick period.
1257 * No need to be extremely accurate here.
1261 status
= map_read(map
, adr
);
1262 done
= xip_elapsed_since(start
);
1263 } while (!map_word_andequal(map
, status
, OK
, OK
)
1266 return (done
>= usec
) ? -ETIME
: 0;
1270 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1271 * the flash is actively programming or erasing since we have to poll for
1272 * the operation to complete anyway. We can't do that in a generic way with
1273 * a XIP setup so do it before the actual flash operation in this case
1274 * and stub it out from INVAL_CACHE_AND_WAIT.
1276 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1277 INVALIDATE_CACHED_RANGE(map, from, size)
1279 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1280 xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1284 #define xip_disable(map, chip, adr)
1285 #define xip_enable(map, chip, adr)
1286 #define XIP_INVAL_CACHED_RANGE(x...)
1287 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1289 static int inval_cache_and_wait_for_operation(
1290 struct map_info
*map
, struct flchip
*chip
,
1291 unsigned long cmd_adr
, unsigned long inval_adr
, int inval_len
,
1292 unsigned int chip_op_time
, unsigned int chip_op_time_max
)
1294 struct cfi_private
*cfi
= map
->fldrv_priv
;
1295 map_word status
, status_OK
= CMD(0x80);
1296 int chip_state
= chip
->state
;
1297 unsigned int timeo
, sleep_time
, reset_timeo
;
1299 mutex_unlock(&chip
->mutex
);
1301 INVALIDATE_CACHED_RANGE(map
, inval_adr
, inval_len
);
1302 mutex_lock(&chip
->mutex
);
1304 timeo
= chip_op_time_max
;
1307 reset_timeo
= timeo
;
1308 sleep_time
= chip_op_time
/ 2;
1311 if (chip
->state
!= chip_state
) {
1312 /* Someone's suspended the operation: sleep */
1313 DECLARE_WAITQUEUE(wait
, current
);
1314 set_current_state(TASK_UNINTERRUPTIBLE
);
1315 add_wait_queue(&chip
->wq
, &wait
);
1316 mutex_unlock(&chip
->mutex
);
1318 remove_wait_queue(&chip
->wq
, &wait
);
1319 mutex_lock(&chip
->mutex
);
1323 status
= map_read(map
, cmd_adr
);
1324 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1327 if (chip
->erase_suspended
&& chip_state
== FL_ERASING
) {
1328 /* Erase suspend occurred while sleep: reset timeout */
1329 timeo
= reset_timeo
;
1330 chip
->erase_suspended
= 0;
1332 if (chip
->write_suspended
&& chip_state
== FL_WRITING
) {
1333 /* Write suspend occurred while sleep: reset timeout */
1334 timeo
= reset_timeo
;
1335 chip
->write_suspended
= 0;
1338 map_write(map
, CMD(0x70), cmd_adr
);
1339 chip
->state
= FL_STATUS
;
1343 /* OK Still waiting. Drop the lock, wait a while and retry. */
1344 mutex_unlock(&chip
->mutex
);
1345 if (sleep_time
>= 1000000/HZ
) {
1347 * Half of the normal delay still remaining
1348 * can be performed with a sleeping delay instead
1351 msleep(sleep_time
/1000);
1352 timeo
-= sleep_time
;
1353 sleep_time
= 1000000/HZ
;
1359 mutex_lock(&chip
->mutex
);
1362 /* Done and happy. */
1363 chip
->state
= FL_STATUS
;
1369 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1370 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1373 static int do_point_onechip (struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
)
1375 unsigned long cmd_addr
;
1376 struct cfi_private
*cfi
= map
->fldrv_priv
;
1381 /* Ensure cmd read/writes are aligned. */
1382 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
1384 mutex_lock(&chip
->mutex
);
1386 ret
= get_chip(map
, chip
, cmd_addr
, FL_POINT
);
1389 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
)
1390 map_write(map
, CMD(0xff), cmd_addr
);
1392 chip
->state
= FL_POINT
;
1393 chip
->ref_point_counter
++;
1395 mutex_unlock(&chip
->mutex
);
1400 static int cfi_intelext_point(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1401 size_t *retlen
, void **virt
, resource_size_t
*phys
)
1403 struct map_info
*map
= mtd
->priv
;
1404 struct cfi_private
*cfi
= map
->fldrv_priv
;
1405 unsigned long ofs
, last_end
= 0;
1412 /* Now lock the chip(s) to POINT state */
1414 /* ofs: offset within the first chip that the first read should start */
1415 chipnum
= (from
>> cfi
->chipshift
);
1416 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1418 *virt
= map
->virt
+ cfi
->chips
[chipnum
].start
+ ofs
;
1420 *phys
= map
->phys
+ cfi
->chips
[chipnum
].start
+ ofs
;
1423 unsigned long thislen
;
1425 if (chipnum
>= cfi
->numchips
)
1428 /* We cannot point across chips that are virtually disjoint */
1430 last_end
= cfi
->chips
[chipnum
].start
;
1431 else if (cfi
->chips
[chipnum
].start
!= last_end
)
1434 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1435 thislen
= (1<<cfi
->chipshift
) - ofs
;
1439 ret
= do_point_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
);
1447 last_end
+= 1 << cfi
->chipshift
;
1453 static int cfi_intelext_unpoint(struct mtd_info
*mtd
, loff_t from
, size_t len
)
1455 struct map_info
*map
= mtd
->priv
;
1456 struct cfi_private
*cfi
= map
->fldrv_priv
;
1458 int chipnum
, err
= 0;
1460 /* Now unlock the chip(s) POINT state */
1462 /* ofs: offset within the first chip that the first read should start */
1463 chipnum
= (from
>> cfi
->chipshift
);
1464 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1466 while (len
&& !err
) {
1467 unsigned long thislen
;
1468 struct flchip
*chip
;
1470 chip
= &cfi
->chips
[chipnum
];
1471 if (chipnum
>= cfi
->numchips
)
1474 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1475 thislen
= (1<<cfi
->chipshift
) - ofs
;
1479 mutex_lock(&chip
->mutex
);
1480 if (chip
->state
== FL_POINT
) {
1481 chip
->ref_point_counter
--;
1482 if(chip
->ref_point_counter
== 0)
1483 chip
->state
= FL_READY
;
1485 printk(KERN_ERR
"%s: Error: unpoint called on non pointed region\n", map
->name
);
1489 put_chip(map
, chip
, chip
->start
);
1490 mutex_unlock(&chip
->mutex
);
1500 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
1502 unsigned long cmd_addr
;
1503 struct cfi_private
*cfi
= map
->fldrv_priv
;
1508 /* Ensure cmd read/writes are aligned. */
1509 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
1511 mutex_lock(&chip
->mutex
);
1512 ret
= get_chip(map
, chip
, cmd_addr
, FL_READY
);
1514 mutex_unlock(&chip
->mutex
);
1518 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
1519 map_write(map
, CMD(0xff), cmd_addr
);
1521 chip
->state
= FL_READY
;
1524 map_copy_from(map
, buf
, adr
, len
);
1526 put_chip(map
, chip
, cmd_addr
);
1528 mutex_unlock(&chip
->mutex
);
1532 static int cfi_intelext_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1534 struct map_info
*map
= mtd
->priv
;
1535 struct cfi_private
*cfi
= map
->fldrv_priv
;
1540 /* ofs: offset within the first chip that the first read should start */
1541 chipnum
= (from
>> cfi
->chipshift
);
1542 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1545 unsigned long thislen
;
1547 if (chipnum
>= cfi
->numchips
)
1550 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1551 thislen
= (1<<cfi
->chipshift
) - ofs
;
1555 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
1569 static int __xipram
do_write_oneword(struct map_info
*map
, struct flchip
*chip
,
1570 unsigned long adr
, map_word datum
, int mode
)
1572 struct cfi_private
*cfi
= map
->fldrv_priv
;
1573 map_word status
, write_cmd
;
1580 write_cmd
= (cfi
->cfiq
->P_ID
!= P_ID_INTEL_PERFORMANCE
) ? CMD(0x40) : CMD(0x41);
1583 write_cmd
= CMD(0xc0);
1589 mutex_lock(&chip
->mutex
);
1590 ret
= get_chip(map
, chip
, adr
, mode
);
1592 mutex_unlock(&chip
->mutex
);
1596 XIP_INVAL_CACHED_RANGE(map
, adr
, map_bankwidth(map
));
1598 xip_disable(map
, chip
, adr
);
1599 map_write(map
, write_cmd
, adr
);
1600 map_write(map
, datum
, adr
);
1603 ret
= INVAL_CACHE_AND_WAIT(map
, chip
, adr
,
1604 adr
, map_bankwidth(map
),
1605 chip
->word_write_time
,
1606 chip
->word_write_time_max
);
1608 xip_enable(map
, chip
, adr
);
1609 printk(KERN_ERR
"%s: word write error (status timeout)\n", map
->name
);
1613 /* check for errors */
1614 status
= map_read(map
, adr
);
1615 if (map_word_bitsset(map
, status
, CMD(0x1a))) {
1616 unsigned long chipstatus
= MERGESTATUS(status
);
1619 map_write(map
, CMD(0x50), adr
);
1620 map_write(map
, CMD(0x70), adr
);
1621 xip_enable(map
, chip
, adr
);
1623 if (chipstatus
& 0x02) {
1625 } else if (chipstatus
& 0x08) {
1626 printk(KERN_ERR
"%s: word write error (bad VPP)\n", map
->name
);
1629 printk(KERN_ERR
"%s: word write error (status 0x%lx)\n", map
->name
, chipstatus
);
1636 xip_enable(map
, chip
, adr
);
1637 out
: DISABLE_VPP(map
);
1638 put_chip(map
, chip
, adr
);
1639 mutex_unlock(&chip
->mutex
);
1644 static int cfi_intelext_write_words (struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
, const u_char
*buf
)
1646 struct map_info
*map
= mtd
->priv
;
1647 struct cfi_private
*cfi
= map
->fldrv_priv
;
1652 chipnum
= to
>> cfi
->chipshift
;
1653 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1655 /* If it's not bus-aligned, do the first byte write */
1656 if (ofs
& (map_bankwidth(map
)-1)) {
1657 unsigned long bus_ofs
= ofs
& ~(map_bankwidth(map
)-1);
1658 int gap
= ofs
- bus_ofs
;
1662 n
= min_t(int, len
, map_bankwidth(map
)-gap
);
1663 datum
= map_word_ff(map
);
1664 datum
= map_word_load_partial(map
, datum
, buf
, gap
, n
);
1666 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1667 bus_ofs
, datum
, FL_WRITING
);
1676 if (ofs
>> cfi
->chipshift
) {
1679 if (chipnum
== cfi
->numchips
)
1684 while(len
>= map_bankwidth(map
)) {
1685 map_word datum
= map_word_load(map
, buf
);
1687 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1688 ofs
, datum
, FL_WRITING
);
1692 ofs
+= map_bankwidth(map
);
1693 buf
+= map_bankwidth(map
);
1694 (*retlen
) += map_bankwidth(map
);
1695 len
-= map_bankwidth(map
);
1697 if (ofs
>> cfi
->chipshift
) {
1700 if (chipnum
== cfi
->numchips
)
1705 if (len
& (map_bankwidth(map
)-1)) {
1708 datum
= map_word_ff(map
);
1709 datum
= map_word_load_partial(map
, datum
, buf
, 0, len
);
1711 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1712 ofs
, datum
, FL_WRITING
);
1723 static int __xipram
do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
1724 unsigned long adr
, const struct kvec
**pvec
,
1725 unsigned long *pvec_seek
, int len
)
1727 struct cfi_private
*cfi
= map
->fldrv_priv
;
1728 map_word status
, write_cmd
, datum
;
1729 unsigned long cmd_adr
;
1730 int ret
, wbufsize
, word_gap
, words
;
1731 const struct kvec
*vec
;
1732 unsigned long vec_seek
;
1733 unsigned long initial_adr
;
1734 int initial_len
= len
;
1736 wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
1739 cmd_adr
= adr
& ~(wbufsize
-1);
1741 /* Sharp LH28F640BF chips need the first address for the
1742 * Page Buffer Program command. See Table 5 of
1743 * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */
1744 if (is_LH28F640BF(cfi
))
1747 /* Let's determine this according to the interleave only once */
1748 write_cmd
= (cfi
->cfiq
->P_ID
!= P_ID_INTEL_PERFORMANCE
) ? CMD(0xe8) : CMD(0xe9);
1750 mutex_lock(&chip
->mutex
);
1751 ret
= get_chip(map
, chip
, cmd_adr
, FL_WRITING
);
1753 mutex_unlock(&chip
->mutex
);
1757 XIP_INVAL_CACHED_RANGE(map
, initial_adr
, initial_len
);
1759 xip_disable(map
, chip
, cmd_adr
);
1761 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1762 [...], the device will not accept any more Write to Buffer commands".
1763 So we must check here and reset those bits if they're set. Otherwise
1764 we're just pissing in the wind */
1765 if (chip
->state
!= FL_STATUS
) {
1766 map_write(map
, CMD(0x70), cmd_adr
);
1767 chip
->state
= FL_STATUS
;
1769 status
= map_read(map
, cmd_adr
);
1770 if (map_word_bitsset(map
, status
, CMD(0x30))) {
1771 xip_enable(map
, chip
, cmd_adr
);
1772 printk(KERN_WARNING
"SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status
.x
[0]);
1773 xip_disable(map
, chip
, cmd_adr
);
1774 map_write(map
, CMD(0x50), cmd_adr
);
1775 map_write(map
, CMD(0x70), cmd_adr
);
1778 chip
->state
= FL_WRITING_TO_BUFFER
;
1779 map_write(map
, write_cmd
, cmd_adr
);
1780 ret
= WAIT_TIMEOUT(map
, chip
, cmd_adr
, 0, 0);
1782 /* Argh. Not ready for write to buffer */
1783 map_word Xstatus
= map_read(map
, cmd_adr
);
1784 map_write(map
, CMD(0x70), cmd_adr
);
1785 chip
->state
= FL_STATUS
;
1786 status
= map_read(map
, cmd_adr
);
1787 map_write(map
, CMD(0x50), cmd_adr
);
1788 map_write(map
, CMD(0x70), cmd_adr
);
1789 xip_enable(map
, chip
, cmd_adr
);
1790 printk(KERN_ERR
"%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1791 map
->name
, Xstatus
.x
[0], status
.x
[0]);
1795 /* Figure out the number of words to write */
1796 word_gap
= (-adr
& (map_bankwidth(map
)-1));
1797 words
= DIV_ROUND_UP(len
- word_gap
, map_bankwidth(map
));
1801 word_gap
= map_bankwidth(map
) - word_gap
;
1803 datum
= map_word_ff(map
);
1806 /* Write length of data to come */
1807 map_write(map
, CMD(words
), cmd_adr
);
1811 vec_seek
= *pvec_seek
;
1813 int n
= map_bankwidth(map
) - word_gap
;
1814 if (n
> vec
->iov_len
- vec_seek
)
1815 n
= vec
->iov_len
- vec_seek
;
1819 if (!word_gap
&& len
< map_bankwidth(map
))
1820 datum
= map_word_ff(map
);
1822 datum
= map_word_load_partial(map
, datum
,
1823 vec
->iov_base
+ vec_seek
,
1828 if (!len
|| word_gap
== map_bankwidth(map
)) {
1829 map_write(map
, datum
, adr
);
1830 adr
+= map_bankwidth(map
);
1835 if (vec_seek
== vec
->iov_len
) {
1841 *pvec_seek
= vec_seek
;
1844 map_write(map
, CMD(0xd0), cmd_adr
);
1845 chip
->state
= FL_WRITING
;
1847 ret
= INVAL_CACHE_AND_WAIT(map
, chip
, cmd_adr
,
1848 initial_adr
, initial_len
,
1849 chip
->buffer_write_time
,
1850 chip
->buffer_write_time_max
);
1852 map_write(map
, CMD(0x70), cmd_adr
);
1853 chip
->state
= FL_STATUS
;
1854 xip_enable(map
, chip
, cmd_adr
);
1855 printk(KERN_ERR
"%s: buffer write error (status timeout)\n", map
->name
);
1859 /* check for errors */
1860 status
= map_read(map
, cmd_adr
);
1861 if (map_word_bitsset(map
, status
, CMD(0x1a))) {
1862 unsigned long chipstatus
= MERGESTATUS(status
);
1865 map_write(map
, CMD(0x50), cmd_adr
);
1866 map_write(map
, CMD(0x70), cmd_adr
);
1867 xip_enable(map
, chip
, cmd_adr
);
1869 if (chipstatus
& 0x02) {
1871 } else if (chipstatus
& 0x08) {
1872 printk(KERN_ERR
"%s: buffer write error (bad VPP)\n", map
->name
);
1875 printk(KERN_ERR
"%s: buffer write error (status 0x%lx)\n", map
->name
, chipstatus
);
1882 xip_enable(map
, chip
, cmd_adr
);
1883 out
: DISABLE_VPP(map
);
1884 put_chip(map
, chip
, cmd_adr
);
1885 mutex_unlock(&chip
->mutex
);
1889 static int cfi_intelext_writev (struct mtd_info
*mtd
, const struct kvec
*vecs
,
1890 unsigned long count
, loff_t to
, size_t *retlen
)
1892 struct map_info
*map
= mtd
->priv
;
1893 struct cfi_private
*cfi
= map
->fldrv_priv
;
1894 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
1897 unsigned long ofs
, vec_seek
, i
;
1900 for (i
= 0; i
< count
; i
++)
1901 len
+= vecs
[i
].iov_len
;
1906 chipnum
= to
>> cfi
->chipshift
;
1907 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1911 /* We must not cross write block boundaries */
1912 int size
= wbufsize
- (ofs
& (wbufsize
-1));
1916 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
1917 ofs
, &vecs
, &vec_seek
, size
);
1925 if (ofs
>> cfi
->chipshift
) {
1928 if (chipnum
== cfi
->numchips
)
1932 /* Be nice and reschedule with the chip in a usable state for other
1941 static int cfi_intelext_write_buffers (struct mtd_info
*mtd
, loff_t to
,
1942 size_t len
, size_t *retlen
, const u_char
*buf
)
1946 vec
.iov_base
= (void *) buf
;
1949 return cfi_intelext_writev(mtd
, &vec
, 1, to
, retlen
);
1952 static int __xipram
do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
,
1953 unsigned long adr
, int len
, void *thunk
)
1955 struct cfi_private
*cfi
= map
->fldrv_priv
;
1963 mutex_lock(&chip
->mutex
);
1964 ret
= get_chip(map
, chip
, adr
, FL_ERASING
);
1966 mutex_unlock(&chip
->mutex
);
1970 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
1972 xip_disable(map
, chip
, adr
);
1974 /* Clear the status register first */
1975 map_write(map
, CMD(0x50), adr
);
1978 map_write(map
, CMD(0x20), adr
);
1979 map_write(map
, CMD(0xD0), adr
);
1980 chip
->state
= FL_ERASING
;
1981 chip
->erase_suspended
= 0;
1982 chip
->in_progress_block_addr
= adr
;
1983 chip
->in_progress_block_mask
= ~(len
- 1);
1985 ret
= INVAL_CACHE_AND_WAIT(map
, chip
, adr
,
1988 chip
->erase_time_max
);
1990 map_write(map
, CMD(0x70), adr
);
1991 chip
->state
= FL_STATUS
;
1992 xip_enable(map
, chip
, adr
);
1993 printk(KERN_ERR
"%s: block erase error: (status timeout)\n", map
->name
);
1997 /* We've broken this before. It doesn't hurt to be safe */
1998 map_write(map
, CMD(0x70), adr
);
1999 chip
->state
= FL_STATUS
;
2000 status
= map_read(map
, adr
);
2002 /* check for errors */
2003 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
2004 unsigned long chipstatus
= MERGESTATUS(status
);
2006 /* Reset the error bits */
2007 map_write(map
, CMD(0x50), adr
);
2008 map_write(map
, CMD(0x70), adr
);
2009 xip_enable(map
, chip
, adr
);
2011 if ((chipstatus
& 0x30) == 0x30) {
2012 printk(KERN_ERR
"%s: block erase error: (bad command sequence, status 0x%lx)\n", map
->name
, chipstatus
);
2014 } else if (chipstatus
& 0x02) {
2015 /* Protection bit set */
2017 } else if (chipstatus
& 0x8) {
2019 printk(KERN_ERR
"%s: block erase error: (bad VPP)\n", map
->name
);
2021 } else if (chipstatus
& 0x20 && retries
--) {
2022 printk(KERN_DEBUG
"block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr
, chipstatus
);
2024 put_chip(map
, chip
, adr
);
2025 mutex_unlock(&chip
->mutex
);
2028 printk(KERN_ERR
"%s: block erase failed at 0x%08lx (status 0x%lx)\n", map
->name
, adr
, chipstatus
);
2035 xip_enable(map
, chip
, adr
);
2036 out
: DISABLE_VPP(map
);
2037 put_chip(map
, chip
, adr
);
2038 mutex_unlock(&chip
->mutex
);
2042 static int cfi_intelext_erase_varsize(struct mtd_info
*mtd
, struct erase_info
*instr
)
2044 return cfi_varsize_frob(mtd
, do_erase_oneblock
, instr
->addr
,
2048 static void cfi_intelext_sync (struct mtd_info
*mtd
)
2050 struct map_info
*map
= mtd
->priv
;
2051 struct cfi_private
*cfi
= map
->fldrv_priv
;
2053 struct flchip
*chip
;
2056 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
2057 chip
= &cfi
->chips
[i
];
2059 mutex_lock(&chip
->mutex
);
2060 ret
= get_chip(map
, chip
, chip
->start
, FL_SYNCING
);
2063 chip
->oldstate
= chip
->state
;
2064 chip
->state
= FL_SYNCING
;
2065 /* No need to wake_up() on this state change -
2066 * as the whole point is that nobody can do anything
2067 * with the chip now anyway.
2070 mutex_unlock(&chip
->mutex
);
2073 /* Unlock the chips again */
2075 for (i
--; i
>=0; i
--) {
2076 chip
= &cfi
->chips
[i
];
2078 mutex_lock(&chip
->mutex
);
2080 if (chip
->state
== FL_SYNCING
) {
2081 chip
->state
= chip
->oldstate
;
2082 chip
->oldstate
= FL_READY
;
2085 mutex_unlock(&chip
->mutex
);
2089 static int __xipram
do_getlockstatus_oneblock(struct map_info
*map
,
2090 struct flchip
*chip
,
2092 int len
, void *thunk
)
2094 struct cfi_private
*cfi
= map
->fldrv_priv
;
2095 int status
, ofs_factor
= cfi
->interleave
* cfi
->device_type
;
2098 xip_disable(map
, chip
, adr
+(2*ofs_factor
));
2099 map_write(map
, CMD(0x90), adr
+(2*ofs_factor
));
2100 chip
->state
= FL_JEDEC_QUERY
;
2101 status
= cfi_read_query(map
, adr
+(2*ofs_factor
));
2102 xip_enable(map
, chip
, 0);
2106 #ifdef DEBUG_LOCK_BITS
2107 static int __xipram
do_printlockstatus_oneblock(struct map_info
*map
,
2108 struct flchip
*chip
,
2110 int len
, void *thunk
)
2112 printk(KERN_DEBUG
"block status register for 0x%08lx is %x\n",
2113 adr
, do_getlockstatus_oneblock(map
, chip
, adr
, len
, thunk
));
2118 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
2119 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
2121 static int __xipram
do_xxlock_oneblock(struct map_info
*map
, struct flchip
*chip
,
2122 unsigned long adr
, int len
, void *thunk
)
2124 struct cfi_private
*cfi
= map
->fldrv_priv
;
2125 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
2131 mutex_lock(&chip
->mutex
);
2132 ret
= get_chip(map
, chip
, adr
, FL_LOCKING
);
2134 mutex_unlock(&chip
->mutex
);
2139 xip_disable(map
, chip
, adr
);
2141 map_write(map
, CMD(0x60), adr
);
2142 if (thunk
== DO_XXLOCK_ONEBLOCK_LOCK
) {
2143 map_write(map
, CMD(0x01), adr
);
2144 chip
->state
= FL_LOCKING
;
2145 } else if (thunk
== DO_XXLOCK_ONEBLOCK_UNLOCK
) {
2146 map_write(map
, CMD(0xD0), adr
);
2147 chip
->state
= FL_UNLOCKING
;
2152 * If Instant Individual Block Locking supported then no need
2156 * Unlocking may take up to 1.4 seconds on some Intel flashes. So
2157 * lets use a max of 1.5 seconds (1500ms) as timeout.
2159 * See "Clear Block Lock-Bits Time" on page 40 in
2160 * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual
2161 * from February 2003
2163 mdelay
= (!extp
|| !(extp
->FeatureSupport
& (1 << 5))) ? 1500 : 0;
2165 ret
= WAIT_TIMEOUT(map
, chip
, adr
, mdelay
, mdelay
* 1000);
2167 map_write(map
, CMD(0x70), adr
);
2168 chip
->state
= FL_STATUS
;
2169 xip_enable(map
, chip
, adr
);
2170 printk(KERN_ERR
"%s: block unlock error: (status timeout)\n", map
->name
);
2174 xip_enable(map
, chip
, adr
);
2175 out
: DISABLE_VPP(map
);
2176 put_chip(map
, chip
, adr
);
2177 mutex_unlock(&chip
->mutex
);
2181 static int cfi_intelext_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2185 #ifdef DEBUG_LOCK_BITS
2186 printk(KERN_DEBUG
"%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2187 __func__
, ofs
, len
);
2188 cfi_varsize_frob(mtd
, do_printlockstatus_oneblock
,
2192 ret
= cfi_varsize_frob(mtd
, do_xxlock_oneblock
,
2193 ofs
, len
, DO_XXLOCK_ONEBLOCK_LOCK
);
2195 #ifdef DEBUG_LOCK_BITS
2196 printk(KERN_DEBUG
"%s: lock status after, ret=%d\n",
2198 cfi_varsize_frob(mtd
, do_printlockstatus_oneblock
,
2205 static int cfi_intelext_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2209 #ifdef DEBUG_LOCK_BITS
2210 printk(KERN_DEBUG
"%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2211 __func__
, ofs
, len
);
2212 cfi_varsize_frob(mtd
, do_printlockstatus_oneblock
,
2216 ret
= cfi_varsize_frob(mtd
, do_xxlock_oneblock
,
2217 ofs
, len
, DO_XXLOCK_ONEBLOCK_UNLOCK
);
2219 #ifdef DEBUG_LOCK_BITS
2220 printk(KERN_DEBUG
"%s: lock status after, ret=%d\n",
2222 cfi_varsize_frob(mtd
, do_printlockstatus_oneblock
,
2229 static int cfi_intelext_is_locked(struct mtd_info
*mtd
, loff_t ofs
,
2232 return cfi_varsize_frob(mtd
, do_getlockstatus_oneblock
,
2233 ofs
, len
, NULL
) ? 1 : 0;
2236 #ifdef CONFIG_MTD_OTP
2238 typedef int (*otp_op_t
)(struct map_info
*map
, struct flchip
*chip
,
2239 u_long data_offset
, u_char
*buf
, u_int size
,
2240 u_long prot_offset
, u_int groupno
, u_int groupsize
);
2243 do_otp_read(struct map_info
*map
, struct flchip
*chip
, u_long offset
,
2244 u_char
*buf
, u_int size
, u_long prot
, u_int grpno
, u_int grpsz
)
2246 struct cfi_private
*cfi
= map
->fldrv_priv
;
2249 mutex_lock(&chip
->mutex
);
2250 ret
= get_chip(map
, chip
, chip
->start
, FL_JEDEC_QUERY
);
2252 mutex_unlock(&chip
->mutex
);
2256 /* let's ensure we're not reading back cached data from array mode */
2257 INVALIDATE_CACHED_RANGE(map
, chip
->start
+ offset
, size
);
2259 xip_disable(map
, chip
, chip
->start
);
2260 if (chip
->state
!= FL_JEDEC_QUERY
) {
2261 map_write(map
, CMD(0x90), chip
->start
);
2262 chip
->state
= FL_JEDEC_QUERY
;
2264 map_copy_from(map
, buf
, chip
->start
+ offset
, size
);
2265 xip_enable(map
, chip
, chip
->start
);
2267 /* then ensure we don't keep OTP data in the cache */
2268 INVALIDATE_CACHED_RANGE(map
, chip
->start
+ offset
, size
);
2270 put_chip(map
, chip
, chip
->start
);
2271 mutex_unlock(&chip
->mutex
);
2276 do_otp_write(struct map_info
*map
, struct flchip
*chip
, u_long offset
,
2277 u_char
*buf
, u_int size
, u_long prot
, u_int grpno
, u_int grpsz
)
2282 unsigned long bus_ofs
= offset
& ~(map_bankwidth(map
)-1);
2283 int gap
= offset
- bus_ofs
;
2284 int n
= min_t(int, size
, map_bankwidth(map
)-gap
);
2285 map_word datum
= map_word_ff(map
);
2287 datum
= map_word_load_partial(map
, datum
, buf
, gap
, n
);
2288 ret
= do_write_oneword(map
, chip
, bus_ofs
, datum
, FL_OTP_WRITE
);
2301 do_otp_lock(struct map_info
*map
, struct flchip
*chip
, u_long offset
,
2302 u_char
*buf
, u_int size
, u_long prot
, u_int grpno
, u_int grpsz
)
2304 struct cfi_private
*cfi
= map
->fldrv_priv
;
2307 /* make sure area matches group boundaries */
2311 datum
= map_word_ff(map
);
2312 datum
= map_word_clr(map
, datum
, CMD(1 << grpno
));
2313 return do_write_oneword(map
, chip
, prot
, datum
, FL_OTP_WRITE
);
2316 static int cfi_intelext_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
2317 size_t *retlen
, u_char
*buf
,
2318 otp_op_t action
, int user_regs
)
2320 struct map_info
*map
= mtd
->priv
;
2321 struct cfi_private
*cfi
= map
->fldrv_priv
;
2322 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
2323 struct flchip
*chip
;
2324 struct cfi_intelext_otpinfo
*otp
;
2325 u_long devsize
, reg_prot_offset
, data_offset
;
2326 u_int chip_num
, chip_step
, field
, reg_fact_size
, reg_user_size
;
2327 u_int groups
, groupno
, groupsize
, reg_fact_groups
, reg_user_groups
;
2332 /* Check that we actually have some OTP registers */
2333 if (!extp
|| !(extp
->FeatureSupport
& 64) || !extp
->NumProtectionFields
)
2336 /* we need real chips here not virtual ones */
2337 devsize
= (1 << cfi
->cfiq
->DevSize
) * cfi
->interleave
;
2338 chip_step
= devsize
>> cfi
->chipshift
;
2341 /* Some chips have OTP located in the _top_ partition only.
2342 For example: Intel 28F256L18T (T means top-parameter device) */
2343 if (cfi
->mfr
== CFI_MFR_INTEL
) {
2348 chip_num
= chip_step
- 1;
2352 for ( ; chip_num
< cfi
->numchips
; chip_num
+= chip_step
) {
2353 chip
= &cfi
->chips
[chip_num
];
2354 otp
= (struct cfi_intelext_otpinfo
*)&extp
->extra
[0];
2356 /* first OTP region */
2358 reg_prot_offset
= extp
->ProtRegAddr
;
2359 reg_fact_groups
= 1;
2360 reg_fact_size
= 1 << extp
->FactProtRegSize
;
2361 reg_user_groups
= 1;
2362 reg_user_size
= 1 << extp
->UserProtRegSize
;
2365 /* flash geometry fixup */
2366 data_offset
= reg_prot_offset
+ 1;
2367 data_offset
*= cfi
->interleave
* cfi
->device_type
;
2368 reg_prot_offset
*= cfi
->interleave
* cfi
->device_type
;
2369 reg_fact_size
*= cfi
->interleave
;
2370 reg_user_size
*= cfi
->interleave
;
2373 groups
= reg_user_groups
;
2374 groupsize
= reg_user_size
;
2375 /* skip over factory reg area */
2376 groupno
= reg_fact_groups
;
2377 data_offset
+= reg_fact_groups
* reg_fact_size
;
2379 groups
= reg_fact_groups
;
2380 groupsize
= reg_fact_size
;
2384 while (len
> 0 && groups
> 0) {
2387 * Special case: if action is NULL
2388 * we fill buf with otp_info records.
2390 struct otp_info
*otpinfo
;
2392 len
-= sizeof(struct otp_info
);
2395 ret
= do_otp_read(map
, chip
,
2397 (u_char
*)&lockword
,
2402 otpinfo
= (struct otp_info
*)buf
;
2403 otpinfo
->start
= from
;
2404 otpinfo
->length
= groupsize
;
2406 !map_word_bitsset(map
, lockword
,
2409 buf
+= sizeof(*otpinfo
);
2410 *retlen
+= sizeof(*otpinfo
);
2411 } else if (from
>= groupsize
) {
2413 data_offset
+= groupsize
;
2415 int size
= groupsize
;
2416 data_offset
+= from
;
2421 ret
= action(map
, chip
, data_offset
,
2422 buf
, size
, reg_prot_offset
,
2423 groupno
, groupsize
);
2429 data_offset
+= size
;
2435 /* next OTP region */
2436 if (++field
== extp
->NumProtectionFields
)
2438 reg_prot_offset
= otp
->ProtRegAddr
;
2439 reg_fact_groups
= otp
->FactGroups
;
2440 reg_fact_size
= 1 << otp
->FactProtRegSize
;
2441 reg_user_groups
= otp
->UserGroups
;
2442 reg_user_size
= 1 << otp
->UserProtRegSize
;
2450 static int cfi_intelext_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
2451 size_t len
, size_t *retlen
,
2454 return cfi_intelext_otp_walk(mtd
, from
, len
, retlen
,
2455 buf
, do_otp_read
, 0);
2458 static int cfi_intelext_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
2459 size_t len
, size_t *retlen
,
2462 return cfi_intelext_otp_walk(mtd
, from
, len
, retlen
,
2463 buf
, do_otp_read
, 1);
2466 static int cfi_intelext_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
2467 size_t len
, size_t *retlen
,
2470 return cfi_intelext_otp_walk(mtd
, from
, len
, retlen
,
2471 (u_char
*)buf
, do_otp_write
, 1);
2474 static int cfi_intelext_lock_user_prot_reg(struct mtd_info
*mtd
,
2475 loff_t from
, size_t len
)
2478 return cfi_intelext_otp_walk(mtd
, from
, len
, &retlen
,
2479 NULL
, do_otp_lock
, 1);
2482 static int cfi_intelext_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
,
2483 size_t *retlen
, struct otp_info
*buf
)
2486 return cfi_intelext_otp_walk(mtd
, 0, len
, retlen
, (u_char
*)buf
,
2490 static int cfi_intelext_get_user_prot_info(struct mtd_info
*mtd
, size_t len
,
2491 size_t *retlen
, struct otp_info
*buf
)
2493 return cfi_intelext_otp_walk(mtd
, 0, len
, retlen
, (u_char
*)buf
,
2499 static void cfi_intelext_save_locks(struct mtd_info
*mtd
)
2501 struct mtd_erase_region_info
*region
;
2502 int block
, status
, i
;
2506 for (i
= 0; i
< mtd
->numeraseregions
; i
++) {
2507 region
= &mtd
->eraseregions
[i
];
2508 if (!region
->lockmap
)
2511 for (block
= 0; block
< region
->numblocks
; block
++){
2512 len
= region
->erasesize
;
2513 adr
= region
->offset
+ block
* len
;
2515 status
= cfi_varsize_frob(mtd
,
2516 do_getlockstatus_oneblock
, adr
, len
, NULL
);
2518 set_bit(block
, region
->lockmap
);
2520 clear_bit(block
, region
->lockmap
);
2525 static int cfi_intelext_suspend(struct mtd_info
*mtd
)
2527 struct map_info
*map
= mtd
->priv
;
2528 struct cfi_private
*cfi
= map
->fldrv_priv
;
2529 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
2531 struct flchip
*chip
;
2534 if ((mtd
->flags
& MTD_POWERUP_LOCK
)
2535 && extp
&& (extp
->FeatureSupport
& (1 << 5)))
2536 cfi_intelext_save_locks(mtd
);
2538 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
2539 chip
= &cfi
->chips
[i
];
2541 mutex_lock(&chip
->mutex
);
2543 switch (chip
->state
) {
2547 case FL_JEDEC_QUERY
:
2548 if (chip
->oldstate
== FL_READY
) {
2549 /* place the chip in a known state before suspend */
2550 map_write(map
, CMD(0xFF), cfi
->chips
[i
].start
);
2551 chip
->oldstate
= chip
->state
;
2552 chip
->state
= FL_PM_SUSPENDED
;
2553 /* No need to wake_up() on this state change -
2554 * as the whole point is that nobody can do anything
2555 * with the chip now anyway.
2558 /* There seems to be an operation pending. We must wait for it. */
2559 printk(KERN_NOTICE
"Flash device refused suspend due to pending operation (oldstate %d)\n", chip
->oldstate
);
2564 /* Should we actually wait? Once upon a time these routines weren't
2565 allowed to. Or should we return -EAGAIN, because the upper layers
2566 ought to have already shut down anything which was using the device
2567 anyway? The latter for now. */
2568 printk(KERN_NOTICE
"Flash device refused suspend due to active operation (state %d)\n", chip
->state
);
2571 case FL_PM_SUSPENDED
:
2574 mutex_unlock(&chip
->mutex
);
2577 /* Unlock the chips again */
2580 for (i
--; i
>=0; i
--) {
2581 chip
= &cfi
->chips
[i
];
2583 mutex_lock(&chip
->mutex
);
2585 if (chip
->state
== FL_PM_SUSPENDED
) {
2586 /* No need to force it into a known state here,
2587 because we're returning failure, and it didn't
2589 chip
->state
= chip
->oldstate
;
2590 chip
->oldstate
= FL_READY
;
2593 mutex_unlock(&chip
->mutex
);
2600 static void cfi_intelext_restore_locks(struct mtd_info
*mtd
)
2602 struct mtd_erase_region_info
*region
;
2607 for (i
= 0; i
< mtd
->numeraseregions
; i
++) {
2608 region
= &mtd
->eraseregions
[i
];
2609 if (!region
->lockmap
)
2612 for_each_clear_bit(block
, region
->lockmap
, region
->numblocks
) {
2613 len
= region
->erasesize
;
2614 adr
= region
->offset
+ block
* len
;
2615 cfi_intelext_unlock(mtd
, adr
, len
);
2620 static void cfi_intelext_resume(struct mtd_info
*mtd
)
2622 struct map_info
*map
= mtd
->priv
;
2623 struct cfi_private
*cfi
= map
->fldrv_priv
;
2624 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
2626 struct flchip
*chip
;
2628 for (i
=0; i
<cfi
->numchips
; i
++) {
2630 chip
= &cfi
->chips
[i
];
2632 mutex_lock(&chip
->mutex
);
2634 /* Go to known state. Chip may have been power cycled */
2635 if (chip
->state
== FL_PM_SUSPENDED
) {
2636 /* Refresh LH28F640BF Partition Config. Register */
2637 fixup_LH28F640BF(mtd
);
2638 map_write(map
, CMD(0xFF), cfi
->chips
[i
].start
);
2639 chip
->oldstate
= chip
->state
= FL_READY
;
2643 mutex_unlock(&chip
->mutex
);
2646 if ((mtd
->flags
& MTD_POWERUP_LOCK
)
2647 && extp
&& (extp
->FeatureSupport
& (1 << 5)))
2648 cfi_intelext_restore_locks(mtd
);
2651 static int cfi_intelext_reset(struct mtd_info
*mtd
)
2653 struct map_info
*map
= mtd
->priv
;
2654 struct cfi_private
*cfi
= map
->fldrv_priv
;
2657 for (i
=0; i
< cfi
->numchips
; i
++) {
2658 struct flchip
*chip
= &cfi
->chips
[i
];
2660 /* force the completion of any ongoing operation
2661 and switch to array mode so any bootloader in
2662 flash is accessible for soft reboot. */
2663 mutex_lock(&chip
->mutex
);
2664 ret
= get_chip(map
, chip
, chip
->start
, FL_SHUTDOWN
);
2666 map_write(map
, CMD(0xff), chip
->start
);
2667 chip
->state
= FL_SHUTDOWN
;
2668 put_chip(map
, chip
, chip
->start
);
2670 mutex_unlock(&chip
->mutex
);
2676 static int cfi_intelext_reboot(struct notifier_block
*nb
, unsigned long val
,
2679 struct mtd_info
*mtd
;
2681 mtd
= container_of(nb
, struct mtd_info
, reboot_notifier
);
2682 cfi_intelext_reset(mtd
);
2686 static void cfi_intelext_destroy(struct mtd_info
*mtd
)
2688 struct map_info
*map
= mtd
->priv
;
2689 struct cfi_private
*cfi
= map
->fldrv_priv
;
2690 struct mtd_erase_region_info
*region
;
2692 cfi_intelext_reset(mtd
);
2693 unregister_reboot_notifier(&mtd
->reboot_notifier
);
2694 kfree(cfi
->cmdset_priv
);
2696 kfree(cfi
->chips
[0].priv
);
2698 for (i
= 0; i
< mtd
->numeraseregions
; i
++) {
2699 region
= &mtd
->eraseregions
[i
];
2700 kfree(region
->lockmap
);
2702 kfree(mtd
->eraseregions
);
2705 MODULE_LICENSE("GPL");
2706 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2707 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2708 MODULE_ALIAS("cfi_cmdset_0003");
2709 MODULE_ALIAS("cfi_cmdset_0200");