2 * CAN bus driver for Bosch C_CAN controller
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
7 * Borrowed heavily from the C_CAN driver originally written by:
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
46 /* Number of interface registers */
47 #define IF_ENUM_REG_LEN 11
48 #define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50 /* control extension register D_CAN specific */
51 #define CONTROL_EX_PDR BIT(8)
53 /* control register */
54 #define CONTROL_SWR BIT(15)
55 #define CONTROL_TEST BIT(7)
56 #define CONTROL_CCE BIT(6)
57 #define CONTROL_DISABLE_AR BIT(5)
58 #define CONTROL_ENABLE_AR (0 << 5)
59 #define CONTROL_EIE BIT(3)
60 #define CONTROL_SIE BIT(2)
61 #define CONTROL_IE BIT(1)
62 #define CONTROL_INIT BIT(0)
64 #define CONTROL_IRQMSK (CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
67 #define TEST_RX BIT(7)
68 #define TEST_TX1 BIT(6)
69 #define TEST_TX2 BIT(5)
70 #define TEST_LBACK BIT(4)
71 #define TEST_SILENT BIT(3)
72 #define TEST_BASIC BIT(2)
75 #define STATUS_PDA BIT(10)
76 #define STATUS_BOFF BIT(7)
77 #define STATUS_EWARN BIT(6)
78 #define STATUS_EPASS BIT(5)
79 #define STATUS_RXOK BIT(4)
80 #define STATUS_TXOK BIT(3)
82 /* error counter register */
83 #define ERR_CNT_TEC_MASK 0xff
84 #define ERR_CNT_TEC_SHIFT 0
85 #define ERR_CNT_REC_SHIFT 8
86 #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
87 #define ERR_CNT_RP_SHIFT 15
88 #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
90 /* bit-timing register */
91 #define BTR_BRP_MASK 0x3f
92 #define BTR_BRP_SHIFT 0
93 #define BTR_SJW_SHIFT 6
94 #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
95 #define BTR_TSEG1_SHIFT 8
96 #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
97 #define BTR_TSEG2_SHIFT 12
98 #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
100 /* interrupt register */
101 #define INT_STS_PENDING 0x8000
103 /* brp extension register */
104 #define BRP_EXT_BRPE_MASK 0x0f
105 #define BRP_EXT_BRPE_SHIFT 0
107 /* IFx command request */
108 #define IF_COMR_BUSY BIT(15)
110 /* IFx command mask */
111 #define IF_COMM_WR BIT(7)
112 #define IF_COMM_MASK BIT(6)
113 #define IF_COMM_ARB BIT(5)
114 #define IF_COMM_CONTROL BIT(4)
115 #define IF_COMM_CLR_INT_PND BIT(3)
116 #define IF_COMM_TXRQST BIT(2)
117 #define IF_COMM_CLR_NEWDAT IF_COMM_TXRQST
118 #define IF_COMM_DATAA BIT(1)
119 #define IF_COMM_DATAB BIT(0)
121 /* TX buffer setup */
122 #define IF_COMM_TX (IF_COMM_ARB | IF_COMM_CONTROL | \
124 IF_COMM_DATAA | IF_COMM_DATAB)
126 /* For the low buffers we clear the interrupt bit, but keep newdat */
127 #define IF_COMM_RCV_LOW (IF_COMM_MASK | IF_COMM_ARB | \
128 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
129 IF_COMM_DATAA | IF_COMM_DATAB)
131 /* For the high buffers we clear the interrupt bit and newdat */
132 #define IF_COMM_RCV_HIGH (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
134 /* Receive setup of message objects */
135 #define IF_COMM_RCV_SETUP (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
137 /* Invalidation of message objects */
138 #define IF_COMM_INVAL (IF_COMM_ARB | IF_COMM_CONTROL)
140 /* IFx arbitration */
141 #define IF_ARB_MSGVAL BIT(31)
142 #define IF_ARB_MSGXTD BIT(30)
143 #define IF_ARB_TRANSMIT BIT(29)
145 /* IFx message control */
146 #define IF_MCONT_NEWDAT BIT(15)
147 #define IF_MCONT_MSGLST BIT(14)
148 #define IF_MCONT_INTPND BIT(13)
149 #define IF_MCONT_UMASK BIT(12)
150 #define IF_MCONT_TXIE BIT(11)
151 #define IF_MCONT_RXIE BIT(10)
152 #define IF_MCONT_RMTEN BIT(9)
153 #define IF_MCONT_TXRQST BIT(8)
154 #define IF_MCONT_EOB BIT(7)
155 #define IF_MCONT_DLC_MASK 0xf
157 #define IF_MCONT_RCV (IF_MCONT_RXIE | IF_MCONT_UMASK)
158 #define IF_MCONT_RCV_EOB (IF_MCONT_RCV | IF_MCONT_EOB)
160 #define IF_MCONT_TX (IF_MCONT_TXIE | IF_MCONT_EOB)
162 /* Use IF1 in NAPI path and IF2 in TX path */
166 /* minimum timeout for checking BUSY status */
167 #define MIN_TIMEOUT_VALUE 6
169 /* Wait for ~1 sec for INIT bit */
170 #define INIT_WAIT_MS 1000
172 /* c_can lec values */
173 enum c_can_lec_type
{
182 LEC_MASK
= LEC_UNUSED
,
185 /* c_can error types:
186 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
188 enum c_can_bus_error_types
{
195 static const struct can_bittiming_const c_can_bittiming_const
= {
196 .name
= KBUILD_MODNAME
,
197 .tseg1_min
= 2, /* Time segment 1 = prop_seg + phase_seg1 */
199 .tseg2_min
= 1, /* Time segment 2 = phase_seg2 */
203 .brp_max
= 1024, /* 6-bit BRP field + 4-bit BRPE field*/
207 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv
*priv
)
210 pm_runtime_get_sync(priv
->device
);
213 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv
*priv
)
216 pm_runtime_put_sync(priv
->device
);
219 static inline void c_can_reset_ram(const struct c_can_priv
*priv
, bool enable
)
222 priv
->raminit(priv
, enable
);
225 static void c_can_irq_control(struct c_can_priv
*priv
, bool enable
)
227 u32 ctrl
= priv
->read_reg(priv
, C_CAN_CTRL_REG
) & ~CONTROL_IRQMSK
;
230 ctrl
|= CONTROL_IRQMSK
;
232 priv
->write_reg(priv
, C_CAN_CTRL_REG
, ctrl
);
235 static void c_can_obj_update(struct net_device
*dev
, int iface
, u32 cmd
, u32 obj
)
237 struct c_can_priv
*priv
= netdev_priv(dev
);
238 int cnt
, reg
= C_CAN_IFACE(COMREQ_REG
, iface
);
240 priv
->write_reg32(priv
, reg
, (cmd
<< 16) | obj
);
242 for (cnt
= MIN_TIMEOUT_VALUE
; cnt
; cnt
--) {
243 if (!(priv
->read_reg(priv
, reg
) & IF_COMR_BUSY
))
247 netdev_err(dev
, "Updating object timed out\n");
250 static inline void c_can_object_get(struct net_device
*dev
, int iface
,
253 c_can_obj_update(dev
, iface
, cmd
, obj
);
256 static inline void c_can_object_put(struct net_device
*dev
, int iface
,
259 c_can_obj_update(dev
, iface
, cmd
| IF_COMM_WR
, obj
);
262 /* Note: According to documentation clearing TXIE while MSGVAL is set
263 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
264 * load significantly.
266 static void c_can_inval_tx_object(struct net_device
*dev
, int iface
, int obj
)
268 struct c_can_priv
*priv
= netdev_priv(dev
);
270 priv
->write_reg(priv
, C_CAN_IFACE(MSGCTRL_REG
, iface
), 0);
271 c_can_object_put(dev
, iface
, obj
, IF_COMM_INVAL
);
274 static void c_can_inval_msg_object(struct net_device
*dev
, int iface
, int obj
)
276 struct c_can_priv
*priv
= netdev_priv(dev
);
278 priv
->write_reg32(priv
, C_CAN_IFACE(ARB1_REG
, iface
), 0);
279 c_can_inval_tx_object(dev
, iface
, obj
);
282 static void c_can_setup_tx_object(struct net_device
*dev
, int iface
,
283 struct can_frame
*frame
, int idx
)
285 struct c_can_priv
*priv
= netdev_priv(dev
);
286 u16 ctrl
= IF_MCONT_TX
| frame
->len
;
287 bool rtr
= frame
->can_id
& CAN_RTR_FLAG
;
288 u32 arb
= IF_ARB_MSGVAL
;
291 if (frame
->can_id
& CAN_EFF_FLAG
) {
292 arb
|= frame
->can_id
& CAN_EFF_MASK
;
293 arb
|= IF_ARB_MSGXTD
;
295 arb
|= (frame
->can_id
& CAN_SFF_MASK
) << 18;
299 arb
|= IF_ARB_TRANSMIT
;
301 /* If we change the DIR bit, we need to invalidate the buffer
302 * first, i.e. clear the MSGVAL flag in the arbiter.
304 if (rtr
!= (bool)test_bit(idx
, &priv
->tx_dir
)) {
305 u32 obj
= idx
+ priv
->msg_obj_tx_first
;
307 c_can_inval_msg_object(dev
, iface
, obj
);
308 change_bit(idx
, &priv
->tx_dir
);
311 priv
->write_reg32(priv
, C_CAN_IFACE(ARB1_REG
, iface
), arb
);
313 priv
->write_reg(priv
, C_CAN_IFACE(MSGCTRL_REG
, iface
), ctrl
);
315 if (priv
->type
== BOSCH_D_CAN
) {
316 u32 data
= 0, dreg
= C_CAN_IFACE(DATA1_REG
, iface
);
318 for (i
= 0; i
< frame
->len
; i
+= 4, dreg
+= 2) {
319 data
= (u32
)frame
->data
[i
];
320 data
|= (u32
)frame
->data
[i
+ 1] << 8;
321 data
|= (u32
)frame
->data
[i
+ 2] << 16;
322 data
|= (u32
)frame
->data
[i
+ 3] << 24;
323 priv
->write_reg32(priv
, dreg
, data
);
326 for (i
= 0; i
< frame
->len
; i
+= 2) {
327 priv
->write_reg(priv
,
328 C_CAN_IFACE(DATA1_REG
, iface
) + i
/ 2,
330 (frame
->data
[i
+ 1] << 8));
335 static int c_can_handle_lost_msg_obj(struct net_device
*dev
,
336 int iface
, int objno
, u32 ctrl
)
338 struct net_device_stats
*stats
= &dev
->stats
;
339 struct c_can_priv
*priv
= netdev_priv(dev
);
340 struct can_frame
*frame
;
343 ctrl
&= ~(IF_MCONT_MSGLST
| IF_MCONT_INTPND
| IF_MCONT_NEWDAT
);
344 priv
->write_reg(priv
, C_CAN_IFACE(MSGCTRL_REG
, iface
), ctrl
);
345 c_can_object_put(dev
, iface
, objno
, IF_COMM_CONTROL
);
348 stats
->rx_over_errors
++;
350 /* create an error msg */
351 skb
= alloc_can_err_skb(dev
, &frame
);
355 frame
->can_id
|= CAN_ERR_CRTL
;
356 frame
->data
[1] = CAN_ERR_CRTL_RX_OVERFLOW
;
358 netif_receive_skb(skb
);
362 static int c_can_read_msg_object(struct net_device
*dev
, int iface
, u32 ctrl
)
364 struct net_device_stats
*stats
= &dev
->stats
;
365 struct c_can_priv
*priv
= netdev_priv(dev
);
366 struct can_frame
*frame
;
370 skb
= alloc_can_skb(dev
, &frame
);
376 frame
->len
= can_cc_dlc2len(ctrl
& 0x0F);
378 arb
= priv
->read_reg32(priv
, C_CAN_IFACE(ARB1_REG
, iface
));
380 if (arb
& IF_ARB_MSGXTD
)
381 frame
->can_id
= (arb
& CAN_EFF_MASK
) | CAN_EFF_FLAG
;
383 frame
->can_id
= (arb
>> 18) & CAN_SFF_MASK
;
385 if (arb
& IF_ARB_TRANSMIT
) {
386 frame
->can_id
|= CAN_RTR_FLAG
;
388 int i
, dreg
= C_CAN_IFACE(DATA1_REG
, iface
);
390 if (priv
->type
== BOSCH_D_CAN
) {
391 for (i
= 0; i
< frame
->len
; i
+= 4, dreg
+= 2) {
392 data
= priv
->read_reg32(priv
, dreg
);
393 frame
->data
[i
] = data
;
394 frame
->data
[i
+ 1] = data
>> 8;
395 frame
->data
[i
+ 2] = data
>> 16;
396 frame
->data
[i
+ 3] = data
>> 24;
399 for (i
= 0; i
< frame
->len
; i
+= 2, dreg
++) {
400 data
= priv
->read_reg(priv
, dreg
);
401 frame
->data
[i
] = data
;
402 frame
->data
[i
+ 1] = data
>> 8;
406 stats
->rx_bytes
+= frame
->len
;
410 netif_receive_skb(skb
);
414 static void c_can_setup_receive_object(struct net_device
*dev
, int iface
,
415 u32 obj
, u32 mask
, u32 id
, u32 mcont
)
417 struct c_can_priv
*priv
= netdev_priv(dev
);
420 priv
->write_reg32(priv
, C_CAN_IFACE(MASK1_REG
, iface
), mask
);
423 priv
->write_reg32(priv
, C_CAN_IFACE(ARB1_REG
, iface
), id
);
425 priv
->write_reg(priv
, C_CAN_IFACE(MSGCTRL_REG
, iface
), mcont
);
426 c_can_object_put(dev
, iface
, obj
, IF_COMM_RCV_SETUP
);
429 static bool c_can_tx_busy(const struct c_can_priv
*priv
,
430 const struct c_can_tx_ring
*tx_ring
)
432 if (c_can_get_tx_free(priv
, tx_ring
) > 0)
435 netif_stop_queue(priv
->dev
);
437 /* Memory barrier before checking tx_free (head and tail) */
440 if (c_can_get_tx_free(priv
, tx_ring
) == 0) {
441 netdev_dbg(priv
->dev
,
442 "Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
443 tx_ring
->head
, tx_ring
->tail
,
444 tx_ring
->head
- tx_ring
->tail
);
448 netif_start_queue(priv
->dev
);
452 static netdev_tx_t
c_can_start_xmit(struct sk_buff
*skb
,
453 struct net_device
*dev
)
455 struct can_frame
*frame
= (struct can_frame
*)skb
->data
;
456 struct c_can_priv
*priv
= netdev_priv(dev
);
457 struct c_can_tx_ring
*tx_ring
= &priv
->tx
;
458 u32 idx
, obj
, cmd
= IF_COMM_TX
;
460 if (can_dev_dropped_skb(dev
, skb
))
463 if (c_can_tx_busy(priv
, tx_ring
))
464 return NETDEV_TX_BUSY
;
466 idx
= c_can_get_tx_head(tx_ring
);
468 if (c_can_get_tx_free(priv
, tx_ring
) == 0)
469 netif_stop_queue(dev
);
471 if (idx
< c_can_get_tx_tail(tx_ring
))
472 cmd
&= ~IF_COMM_TXRQST
; /* Cache the message */
474 /* Store the message in the interface so we can call
475 * can_put_echo_skb(). We must do this before we enable
476 * transmit as we might race against do_tx().
478 c_can_setup_tx_object(dev
, IF_TX
, frame
, idx
);
479 can_put_echo_skb(skb
, dev
, idx
, 0);
480 obj
= idx
+ priv
->msg_obj_tx_first
;
481 c_can_object_put(dev
, IF_TX
, obj
, cmd
);
486 static int c_can_wait_for_ctrl_init(struct net_device
*dev
,
487 struct c_can_priv
*priv
, u32 init
)
491 while (init
!= (priv
->read_reg(priv
, C_CAN_CTRL_REG
) & CONTROL_INIT
)) {
493 if (retry
++ > 1000) {
494 netdev_err(dev
, "CCTRL: set CONTROL_INIT failed\n");
501 static int c_can_set_bittiming(struct net_device
*dev
)
503 unsigned int reg_btr
, reg_brpe
, ctrl_save
;
504 u8 brp
, brpe
, sjw
, tseg1
, tseg2
;
506 struct c_can_priv
*priv
= netdev_priv(dev
);
507 const struct can_bittiming
*bt
= &priv
->can
.bittiming
;
510 /* c_can provides a 6-bit brp and 4-bit brpe fields */
511 ten_bit_brp
= bt
->brp
- 1;
512 brp
= ten_bit_brp
& BTR_BRP_MASK
;
513 brpe
= ten_bit_brp
>> 6;
516 tseg1
= bt
->prop_seg
+ bt
->phase_seg1
- 1;
517 tseg2
= bt
->phase_seg2
- 1;
518 reg_btr
= brp
| (sjw
<< BTR_SJW_SHIFT
) | (tseg1
<< BTR_TSEG1_SHIFT
) |
519 (tseg2
<< BTR_TSEG2_SHIFT
);
520 reg_brpe
= brpe
& BRP_EXT_BRPE_MASK
;
523 "setting BTR=%04x BRPE=%04x\n", reg_btr
, reg_brpe
);
525 ctrl_save
= priv
->read_reg(priv
, C_CAN_CTRL_REG
);
526 ctrl_save
&= ~CONTROL_INIT
;
527 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_CCE
| CONTROL_INIT
);
528 res
= c_can_wait_for_ctrl_init(dev
, priv
, CONTROL_INIT
);
532 priv
->write_reg(priv
, C_CAN_BTR_REG
, reg_btr
);
533 priv
->write_reg(priv
, C_CAN_BRPEXT_REG
, reg_brpe
);
534 priv
->write_reg(priv
, C_CAN_CTRL_REG
, ctrl_save
);
536 return c_can_wait_for_ctrl_init(dev
, priv
, 0);
539 /* Configure C_CAN message objects for Tx and Rx purposes:
540 * C_CAN provides a total of 32 message objects that can be configured
541 * either for Tx or Rx purposes. Here the first 16 message objects are used as
542 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
543 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
544 * See user guide document for further details on configuring message
547 static void c_can_configure_msg_objects(struct net_device
*dev
)
549 struct c_can_priv
*priv
= netdev_priv(dev
);
552 /* first invalidate all message objects */
553 for (i
= priv
->msg_obj_rx_first
; i
<= priv
->msg_obj_num
; i
++)
554 c_can_inval_msg_object(dev
, IF_NAPI
, i
);
556 /* setup receive message objects */
557 for (i
= priv
->msg_obj_rx_first
; i
< priv
->msg_obj_rx_last
; i
++)
558 c_can_setup_receive_object(dev
, IF_NAPI
, i
, 0, 0, IF_MCONT_RCV
);
560 c_can_setup_receive_object(dev
, IF_NAPI
, priv
->msg_obj_rx_last
, 0, 0,
564 static int c_can_software_reset(struct net_device
*dev
)
566 struct c_can_priv
*priv
= netdev_priv(dev
);
569 if (priv
->type
!= BOSCH_D_CAN
)
572 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_SWR
| CONTROL_INIT
);
573 while (priv
->read_reg(priv
, C_CAN_CTRL_REG
) & CONTROL_SWR
) {
576 netdev_err(dev
, "CCTRL: software reset failed\n");
584 /* Configure C_CAN chip:
585 * - enable/disable auto-retransmission
586 * - set operating mode
587 * - configure message objects
589 static int c_can_chip_config(struct net_device
*dev
)
591 struct c_can_priv
*priv
= netdev_priv(dev
);
592 struct c_can_tx_ring
*tx_ring
= &priv
->tx
;
595 err
= c_can_software_reset(dev
);
599 /* enable automatic retransmission */
600 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_ENABLE_AR
);
602 if ((priv
->can
.ctrlmode
& CAN_CTRLMODE_LISTENONLY
) &&
603 (priv
->can
.ctrlmode
& CAN_CTRLMODE_LOOPBACK
)) {
604 /* loopback + silent mode : useful for hot self-test */
605 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_TEST
);
606 priv
->write_reg(priv
, C_CAN_TEST_REG
, TEST_LBACK
| TEST_SILENT
);
607 } else if (priv
->can
.ctrlmode
& CAN_CTRLMODE_LOOPBACK
) {
608 /* loopback mode : useful for self-test function */
609 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_TEST
);
610 priv
->write_reg(priv
, C_CAN_TEST_REG
, TEST_LBACK
);
611 } else if (priv
->can
.ctrlmode
& CAN_CTRLMODE_LISTENONLY
) {
612 /* silent mode : bus-monitoring mode */
613 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_TEST
);
614 priv
->write_reg(priv
, C_CAN_TEST_REG
, TEST_SILENT
);
617 /* configure message objects */
618 c_can_configure_msg_objects(dev
);
620 /* set a `lec` value so that we can check for updates later */
621 priv
->write_reg(priv
, C_CAN_STS_REG
, LEC_UNUSED
);
623 /* Clear all internal status */
628 /* set bittiming params */
629 return c_can_set_bittiming(dev
);
632 static int c_can_start(struct net_device
*dev
)
634 struct c_can_priv
*priv
= netdev_priv(dev
);
638 /* basic c_can configuration */
639 err
= c_can_chip_config(dev
);
643 /* Setup the command for new messages */
644 priv
->comm_rcv_high
= priv
->type
!= BOSCH_D_CAN
?
645 IF_COMM_RCV_LOW
: IF_COMM_RCV_HIGH
;
647 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
649 /* Attempt to use "active" if available else use "default" */
650 p
= pinctrl_get_select(priv
->device
, "active");
654 pinctrl_pm_select_default_state(priv
->device
);
659 static void c_can_stop(struct net_device
*dev
)
661 struct c_can_priv
*priv
= netdev_priv(dev
);
663 c_can_irq_control(priv
, false);
665 /* put ctrl to init on stop to end ongoing transmission */
666 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_INIT
);
668 /* deactivate pins */
669 pinctrl_pm_select_sleep_state(dev
->dev
.parent
);
670 priv
->can
.state
= CAN_STATE_STOPPED
;
673 static int c_can_set_mode(struct net_device
*dev
, enum can_mode mode
)
675 struct c_can_priv
*priv
= netdev_priv(dev
);
680 err
= c_can_start(dev
);
683 netif_wake_queue(dev
);
684 c_can_irq_control(priv
, true);
693 static int __c_can_get_berr_counter(const struct net_device
*dev
,
694 struct can_berr_counter
*bec
)
696 unsigned int reg_err_counter
;
697 struct c_can_priv
*priv
= netdev_priv(dev
);
699 reg_err_counter
= priv
->read_reg(priv
, C_CAN_ERR_CNT_REG
);
700 bec
->rxerr
= (reg_err_counter
& ERR_CNT_REC_MASK
) >>
702 bec
->txerr
= reg_err_counter
& ERR_CNT_TEC_MASK
;
707 static int c_can_get_berr_counter(const struct net_device
*dev
,
708 struct can_berr_counter
*bec
)
710 struct c_can_priv
*priv
= netdev_priv(dev
);
713 c_can_pm_runtime_get_sync(priv
);
714 err
= __c_can_get_berr_counter(dev
, bec
);
715 c_can_pm_runtime_put_sync(priv
);
720 static void c_can_do_tx(struct net_device
*dev
)
722 struct c_can_priv
*priv
= netdev_priv(dev
);
723 struct c_can_tx_ring
*tx_ring
= &priv
->tx
;
724 struct net_device_stats
*stats
= &dev
->stats
;
725 u32 idx
, obj
, pkts
= 0, bytes
= 0, pend
;
728 if (priv
->msg_obj_tx_last
> 32)
729 pend
= priv
->read_reg32(priv
, C_CAN_INTPND3_REG
);
731 pend
= priv
->read_reg(priv
, C_CAN_INTPND2_REG
);
733 while ((idx
= ffs(pend
))) {
736 obj
= idx
+ priv
->msg_obj_tx_first
;
738 /* We use IF_NAPI interface instead of IF_TX because we
739 * are called from c_can_poll(), which runs inside
740 * NAPI. We are not transmitting.
742 c_can_inval_tx_object(dev
, IF_NAPI
, obj
);
743 bytes
+= can_get_echo_skb(dev
, idx
, NULL
);
750 tx_ring
->tail
+= pkts
;
751 if (c_can_get_tx_free(priv
, tx_ring
)) {
752 /* Make sure that anybody stopping the queue after
753 * this sees the new tx_ring->tail.
756 netif_wake_queue(priv
->dev
);
759 stats
->tx_bytes
+= bytes
;
760 stats
->tx_packets
+= pkts
;
762 tail
= c_can_get_tx_tail(tx_ring
);
763 if (priv
->type
== BOSCH_D_CAN
&& tail
== 0) {
764 u8 head
= c_can_get_tx_head(tx_ring
);
766 /* Start transmission for all cached messages */
767 for (idx
= tail
; idx
< head
; idx
++) {
768 obj
= idx
+ priv
->msg_obj_tx_first
;
769 c_can_object_put(dev
, IF_NAPI
, obj
, IF_COMM_TXRQST
);
774 /* If we have a gap in the pending bits, that means we either
775 * raced with the hardware or failed to readout all upper
776 * objects in the last run due to quota limit.
778 static u32
c_can_adjust_pending(u32 pend
, u32 rx_mask
)
785 /* If the last set bit is larger than the number of pending
786 * bits we have a gap.
788 weight
= hweight32(pend
);
791 /* If the bits are linear, nothing to do */
795 /* Find the first set bit after the gap. We walk backwards
796 * from the last set bit.
798 for (lasts
--; pend
& BIT(lasts
- 1); lasts
--)
801 return pend
& ~GENMASK(lasts
- 1, 0);
804 static inline void c_can_rx_object_get(struct net_device
*dev
,
805 struct c_can_priv
*priv
, u32 obj
)
807 c_can_object_get(dev
, IF_NAPI
, obj
, priv
->comm_rcv_high
);
810 static inline void c_can_rx_finalize(struct net_device
*dev
,
811 struct c_can_priv
*priv
, u32 obj
)
813 if (priv
->type
!= BOSCH_D_CAN
)
814 c_can_object_get(dev
, IF_NAPI
, obj
, IF_COMM_CLR_NEWDAT
);
817 static int c_can_read_objects(struct net_device
*dev
, struct c_can_priv
*priv
,
820 u32 pkts
= 0, ctrl
, obj
;
822 while ((obj
= ffs(pend
)) && quota
> 0) {
823 pend
&= ~BIT(obj
- 1);
825 c_can_rx_object_get(dev
, priv
, obj
);
826 ctrl
= priv
->read_reg(priv
, C_CAN_IFACE(MSGCTRL_REG
, IF_NAPI
));
828 if (ctrl
& IF_MCONT_MSGLST
) {
831 n
= c_can_handle_lost_msg_obj(dev
, IF_NAPI
, obj
, ctrl
);
838 /* This really should not happen, but this covers some
839 * odd HW behaviour. Do not remove that unless you
840 * want to brick your machine.
842 if (!(ctrl
& IF_MCONT_NEWDAT
))
845 /* read the data from the message object */
846 c_can_read_msg_object(dev
, IF_NAPI
, ctrl
);
848 c_can_rx_finalize(dev
, priv
, obj
);
857 static inline u32
c_can_get_pending(struct c_can_priv
*priv
)
861 if (priv
->msg_obj_rx_last
> 16)
862 pend
= priv
->read_reg32(priv
, C_CAN_NEWDAT1_REG
);
864 pend
= priv
->read_reg(priv
, C_CAN_NEWDAT1_REG
);
869 /* theory of operation:
871 * c_can core saves a received CAN message into the first free message
872 * object it finds free (starting with the lowest). Bits NEWDAT and
873 * INTPND are set for this message object indicating that a new message
876 * We clear the newdat bit right away.
878 * This can result in packet reordering when the readout is slow.
880 static int c_can_do_rx_poll(struct net_device
*dev
, int quota
)
882 struct c_can_priv
*priv
= netdev_priv(dev
);
883 u32 pkts
= 0, pend
= 0, toread
, n
;
887 pend
= c_can_get_pending(priv
);
890 /* If the pending field has a gap, handle the
891 * bits above the gap first.
893 toread
= c_can_adjust_pending(pend
,
894 priv
->msg_obj_rx_mask
);
898 /* Remove the bits from pend */
900 /* Read the objects */
901 n
= c_can_read_objects(dev
, priv
, toread
, quota
);
909 static int c_can_handle_state_change(struct net_device
*dev
,
910 enum c_can_bus_error_types error_type
)
912 unsigned int reg_err_counter
;
913 unsigned int rx_err_passive
;
914 struct c_can_priv
*priv
= netdev_priv(dev
);
915 struct can_frame
*cf
;
917 struct can_berr_counter bec
;
919 switch (error_type
) {
921 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
923 case C_CAN_ERROR_WARNING
:
924 /* error warning state */
925 priv
->can
.can_stats
.error_warning
++;
926 priv
->can
.state
= CAN_STATE_ERROR_WARNING
;
928 case C_CAN_ERROR_PASSIVE
:
929 /* error passive state */
930 priv
->can
.can_stats
.error_passive
++;
931 priv
->can
.state
= CAN_STATE_ERROR_PASSIVE
;
935 priv
->can
.state
= CAN_STATE_BUS_OFF
;
936 priv
->can
.can_stats
.bus_off
++;
942 /* propagate the error condition to the CAN stack */
943 skb
= alloc_can_err_skb(dev
, &cf
);
947 __c_can_get_berr_counter(dev
, &bec
);
948 reg_err_counter
= priv
->read_reg(priv
, C_CAN_ERR_CNT_REG
);
949 rx_err_passive
= (reg_err_counter
& ERR_CNT_RP_MASK
) >>
952 switch (error_type
) {
954 cf
->can_id
|= CAN_ERR_CRTL
| CAN_ERR_CNT
;
955 cf
->data
[1] = CAN_ERR_CRTL_ACTIVE
;
956 cf
->data
[6] = bec
.txerr
;
957 cf
->data
[7] = bec
.rxerr
;
959 case C_CAN_ERROR_WARNING
:
960 /* error warning state */
961 cf
->can_id
|= CAN_ERR_CRTL
| CAN_ERR_CNT
;
962 cf
->data
[1] = (bec
.txerr
> bec
.rxerr
) ?
963 CAN_ERR_CRTL_TX_WARNING
:
964 CAN_ERR_CRTL_RX_WARNING
;
965 cf
->data
[6] = bec
.txerr
;
966 cf
->data
[7] = bec
.rxerr
;
969 case C_CAN_ERROR_PASSIVE
:
970 /* error passive state */
971 cf
->can_id
|= CAN_ERR_CRTL
| CAN_ERR_CNT
;
973 cf
->data
[1] |= CAN_ERR_CRTL_RX_PASSIVE
;
975 cf
->data
[1] |= CAN_ERR_CRTL_TX_PASSIVE
;
977 cf
->data
[6] = bec
.txerr
;
978 cf
->data
[7] = bec
.rxerr
;
982 cf
->can_id
|= CAN_ERR_BUSOFF
;
989 netif_receive_skb(skb
);
994 static int c_can_handle_bus_err(struct net_device
*dev
,
995 enum c_can_lec_type lec_type
)
997 struct c_can_priv
*priv
= netdev_priv(dev
);
998 struct net_device_stats
*stats
= &dev
->stats
;
999 struct can_frame
*cf
;
1000 struct sk_buff
*skb
;
1002 /* early exit if no lec update or no error.
1003 * no lec update means that no CAN bus event has been detected
1004 * since CPU wrote 0x7 value to status reg.
1006 if (lec_type
== LEC_UNUSED
|| lec_type
== LEC_NO_ERROR
)
1009 if (!(priv
->can
.ctrlmode
& CAN_CTRLMODE_BERR_REPORTING
))
1012 /* common for all type of bus errors */
1013 priv
->can
.can_stats
.bus_error
++;
1015 /* propagate the error condition to the CAN stack */
1016 skb
= alloc_can_err_skb(dev
, &cf
);
1018 /* check for 'last error code' which tells us the
1019 * type of the last error to occur on the CAN bus
1022 cf
->can_id
|= CAN_ERR_PROT
| CAN_ERR_BUSERROR
;
1025 case LEC_STUFF_ERROR
:
1026 netdev_dbg(dev
, "stuff error\n");
1028 cf
->data
[2] |= CAN_ERR_PROT_STUFF
;
1031 case LEC_FORM_ERROR
:
1032 netdev_dbg(dev
, "form error\n");
1034 cf
->data
[2] |= CAN_ERR_PROT_FORM
;
1038 netdev_dbg(dev
, "ack error\n");
1040 cf
->data
[3] = CAN_ERR_PROT_LOC_ACK
;
1043 case LEC_BIT1_ERROR
:
1044 netdev_dbg(dev
, "bit1 error\n");
1046 cf
->data
[2] |= CAN_ERR_PROT_BIT1
;
1049 case LEC_BIT0_ERROR
:
1050 netdev_dbg(dev
, "bit0 error\n");
1052 cf
->data
[2] |= CAN_ERR_PROT_BIT0
;
1056 netdev_dbg(dev
, "CRC error\n");
1058 cf
->data
[3] = CAN_ERR_PROT_LOC_CRC_SEQ
;
1068 netif_receive_skb(skb
);
1072 static int c_can_poll(struct napi_struct
*napi
, int quota
)
1074 struct net_device
*dev
= napi
->dev
;
1075 struct c_can_priv
*priv
= netdev_priv(dev
);
1076 u16 curr
, last
= priv
->last_status
;
1079 /* Only read the status register if a status interrupt was pending */
1080 if (atomic_xchg(&priv
->sie_pending
, 0)) {
1081 priv
->last_status
= priv
->read_reg(priv
, C_CAN_STS_REG
);
1082 curr
= priv
->last_status
;
1083 /* Ack status on C_CAN. D_CAN is self clearing */
1084 if (priv
->type
!= BOSCH_D_CAN
)
1085 priv
->write_reg(priv
, C_CAN_STS_REG
, LEC_UNUSED
);
1087 /* no change detected ... */
1091 /* handle state changes */
1092 if ((curr
& STATUS_EWARN
) && (!(last
& STATUS_EWARN
))) {
1093 netdev_dbg(dev
, "entered error warning state\n");
1094 work_done
+= c_can_handle_state_change(dev
, C_CAN_ERROR_WARNING
);
1097 if ((curr
& STATUS_EPASS
) && (!(last
& STATUS_EPASS
))) {
1098 netdev_dbg(dev
, "entered error passive state\n");
1099 work_done
+= c_can_handle_state_change(dev
, C_CAN_ERROR_PASSIVE
);
1102 if ((curr
& STATUS_BOFF
) && (!(last
& STATUS_BOFF
))) {
1103 netdev_dbg(dev
, "entered bus off state\n");
1104 work_done
+= c_can_handle_state_change(dev
, C_CAN_BUS_OFF
);
1108 /* handle bus recovery events */
1109 if ((!(curr
& STATUS_BOFF
)) && (last
& STATUS_BOFF
)) {
1110 netdev_dbg(dev
, "left bus off state\n");
1111 work_done
+= c_can_handle_state_change(dev
, C_CAN_ERROR_PASSIVE
);
1114 if ((!(curr
& STATUS_EPASS
)) && (last
& STATUS_EPASS
)) {
1115 netdev_dbg(dev
, "left error passive state\n");
1116 work_done
+= c_can_handle_state_change(dev
, C_CAN_ERROR_WARNING
);
1119 if ((!(curr
& STATUS_EWARN
)) && (last
& STATUS_EWARN
)) {
1120 netdev_dbg(dev
, "left error warning state\n");
1121 work_done
+= c_can_handle_state_change(dev
, C_CAN_NO_ERROR
);
1124 /* handle lec errors on the bus */
1125 work_done
+= c_can_handle_bus_err(dev
, curr
& LEC_MASK
);
1127 /* Handle Tx/Rx events. We do this unconditionally */
1128 work_done
+= c_can_do_rx_poll(dev
, (quota
- work_done
));
1132 if (work_done
< quota
) {
1133 napi_complete_done(napi
, work_done
);
1134 /* enable all IRQs if we are not in bus off state */
1135 if (priv
->can
.state
!= CAN_STATE_BUS_OFF
)
1136 c_can_irq_control(priv
, true);
1142 static irqreturn_t
c_can_isr(int irq
, void *dev_id
)
1144 struct net_device
*dev
= (struct net_device
*)dev_id
;
1145 struct c_can_priv
*priv
= netdev_priv(dev
);
1148 reg_int
= priv
->read_reg(priv
, C_CAN_INT_REG
);
1152 /* save for later use */
1153 if (reg_int
& INT_STS_PENDING
)
1154 atomic_set(&priv
->sie_pending
, 1);
1156 /* disable all interrupts and schedule the NAPI */
1157 c_can_irq_control(priv
, false);
1158 napi_schedule(&priv
->napi
);
1163 static int c_can_open(struct net_device
*dev
)
1166 struct c_can_priv
*priv
= netdev_priv(dev
);
1168 c_can_pm_runtime_get_sync(priv
);
1169 c_can_reset_ram(priv
, true);
1171 /* open the can device */
1172 err
= open_candev(dev
);
1174 netdev_err(dev
, "failed to open can device\n");
1175 goto exit_open_fail
;
1178 /* register interrupt handler */
1179 err
= request_irq(dev
->irq
, &c_can_isr
, IRQF_SHARED
, dev
->name
,
1182 netdev_err(dev
, "failed to request interrupt\n");
1186 /* start the c_can controller */
1187 err
= c_can_start(dev
);
1189 goto exit_start_fail
;
1191 napi_enable(&priv
->napi
);
1192 /* enable status change, error and module interrupts */
1193 c_can_irq_control(priv
, true);
1194 netif_start_queue(dev
);
1199 free_irq(dev
->irq
, dev
);
1203 c_can_reset_ram(priv
, false);
1204 c_can_pm_runtime_put_sync(priv
);
1208 static int c_can_close(struct net_device
*dev
)
1210 struct c_can_priv
*priv
= netdev_priv(dev
);
1212 netif_stop_queue(dev
);
1213 napi_disable(&priv
->napi
);
1215 free_irq(dev
->irq
, dev
);
1218 c_can_reset_ram(priv
, false);
1219 c_can_pm_runtime_put_sync(priv
);
1224 struct net_device
*alloc_c_can_dev(int msg_obj_num
)
1226 struct net_device
*dev
;
1227 struct c_can_priv
*priv
;
1228 int msg_obj_tx_num
= msg_obj_num
/ 2;
1230 dev
= alloc_candev(sizeof(*priv
), msg_obj_tx_num
);
1234 priv
= netdev_priv(dev
);
1235 priv
->msg_obj_num
= msg_obj_num
;
1236 priv
->msg_obj_rx_num
= msg_obj_num
- msg_obj_tx_num
;
1237 priv
->msg_obj_rx_first
= 1;
1238 priv
->msg_obj_rx_last
=
1239 priv
->msg_obj_rx_first
+ priv
->msg_obj_rx_num
- 1;
1240 priv
->msg_obj_rx_mask
= GENMASK(priv
->msg_obj_rx_num
- 1, 0);
1242 priv
->msg_obj_tx_num
= msg_obj_tx_num
;
1243 priv
->msg_obj_tx_first
= priv
->msg_obj_rx_last
+ 1;
1244 priv
->msg_obj_tx_last
=
1245 priv
->msg_obj_tx_first
+ priv
->msg_obj_tx_num
- 1;
1249 priv
->tx
.obj_num
= msg_obj_tx_num
;
1251 netif_napi_add_weight(dev
, &priv
->napi
, c_can_poll
,
1252 priv
->msg_obj_rx_num
);
1255 priv
->can
.bittiming_const
= &c_can_bittiming_const
;
1256 priv
->can
.do_set_mode
= c_can_set_mode
;
1257 priv
->can
.do_get_berr_counter
= c_can_get_berr_counter
;
1258 priv
->can
.ctrlmode_supported
= CAN_CTRLMODE_LOOPBACK
|
1259 CAN_CTRLMODE_LISTENONLY
|
1260 CAN_CTRLMODE_BERR_REPORTING
;
1264 EXPORT_SYMBOL_GPL(alloc_c_can_dev
);
1267 int c_can_power_down(struct net_device
*dev
)
1270 unsigned long time_out
;
1271 struct c_can_priv
*priv
= netdev_priv(dev
);
1273 if (!(dev
->flags
& IFF_UP
))
1276 WARN_ON(priv
->type
!= BOSCH_D_CAN
);
1278 /* set PDR value so the device goes to power down mode */
1279 val
= priv
->read_reg(priv
, C_CAN_CTRL_EX_REG
);
1280 val
|= CONTROL_EX_PDR
;
1281 priv
->write_reg(priv
, C_CAN_CTRL_EX_REG
, val
);
1283 /* Wait for the PDA bit to get set */
1284 time_out
= jiffies
+ msecs_to_jiffies(INIT_WAIT_MS
);
1285 while (!(priv
->read_reg(priv
, C_CAN_STS_REG
) & STATUS_PDA
) &&
1286 time_after(time_out
, jiffies
))
1289 if (time_after(jiffies
, time_out
))
1294 c_can_reset_ram(priv
, false);
1295 c_can_pm_runtime_put_sync(priv
);
1299 EXPORT_SYMBOL_GPL(c_can_power_down
);
1301 int c_can_power_up(struct net_device
*dev
)
1304 unsigned long time_out
;
1305 struct c_can_priv
*priv
= netdev_priv(dev
);
1308 if (!(dev
->flags
& IFF_UP
))
1311 WARN_ON(priv
->type
!= BOSCH_D_CAN
);
1313 c_can_pm_runtime_get_sync(priv
);
1314 c_can_reset_ram(priv
, true);
1316 /* Clear PDR and INIT bits */
1317 val
= priv
->read_reg(priv
, C_CAN_CTRL_EX_REG
);
1318 val
&= ~CONTROL_EX_PDR
;
1319 priv
->write_reg(priv
, C_CAN_CTRL_EX_REG
, val
);
1320 val
= priv
->read_reg(priv
, C_CAN_CTRL_REG
);
1321 val
&= ~CONTROL_INIT
;
1322 priv
->write_reg(priv
, C_CAN_CTRL_REG
, val
);
1324 /* Wait for the PDA bit to get clear */
1325 time_out
= jiffies
+ msecs_to_jiffies(INIT_WAIT_MS
);
1326 while ((priv
->read_reg(priv
, C_CAN_STS_REG
) & STATUS_PDA
) &&
1327 time_after(time_out
, jiffies
))
1330 if (time_after(jiffies
, time_out
)) {
1335 ret
= c_can_start(dev
);
1339 c_can_irq_control(priv
, true);
1344 c_can_reset_ram(priv
, false);
1345 c_can_pm_runtime_put_sync(priv
);
1349 EXPORT_SYMBOL_GPL(c_can_power_up
);
1352 void free_c_can_dev(struct net_device
*dev
)
1354 struct c_can_priv
*priv
= netdev_priv(dev
);
1356 netif_napi_del(&priv
->napi
);
1359 EXPORT_SYMBOL_GPL(free_c_can_dev
);
1361 static const struct net_device_ops c_can_netdev_ops
= {
1362 .ndo_open
= c_can_open
,
1363 .ndo_stop
= c_can_close
,
1364 .ndo_start_xmit
= c_can_start_xmit
,
1365 .ndo_change_mtu
= can_change_mtu
,
1368 int register_c_can_dev(struct net_device
*dev
)
1370 /* Deactivate pins to prevent DRA7 DCAN IP from being
1371 * stuck in transition when module is disabled.
1372 * Pins are activated in c_can_start() and deactivated
1375 pinctrl_pm_select_sleep_state(dev
->dev
.parent
);
1377 dev
->flags
|= IFF_ECHO
; /* we support local echo */
1378 dev
->netdev_ops
= &c_can_netdev_ops
;
1379 dev
->ethtool_ops
= &c_can_ethtool_ops
;
1381 return register_candev(dev
);
1383 EXPORT_SYMBOL_GPL(register_c_can_dev
);
1385 void unregister_c_can_dev(struct net_device
*dev
)
1387 unregister_candev(dev
);
1389 EXPORT_SYMBOL_GPL(unregister_c_can_dev
);
1391 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1392 MODULE_LICENSE("GPL v2");
1393 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");