1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
6 * Copyright (C) 2015-2018 Ondrej Ille <ondrej.ille@gmail.com> FEE CTU
7 * Copyright (C) 2018-2021 Ondrej Ille <ondrej.ille@gmail.com> self-funded
8 * Copyright (C) 2018-2019 Martin Jerabek <martin.jerabek01@gmail.com> FEE CTU
9 * Copyright (C) 2018-2022 Pavel Pisa <pisa@cmp.felk.cvut.cz> FEE CTU/self-funded
12 * Jiri Novak <jnovak@fel.cvut.cz>
13 * Pavel Pisa <pisa@cmp.felk.cvut.cz>
15 * Department of Measurement (http://meas.fel.cvut.cz/)
16 * Faculty of Electrical Engineering (http://www.fel.cvut.cz)
17 * Czech Technical University (http://www.cvut.cz/)
18 ******************************************************************************/
20 #include <linux/clk.h>
21 #include <linux/errno.h>
22 #include <linux/ethtool.h>
23 #include <linux/init.h>
24 #include <linux/bitfield.h>
25 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/skbuff.h>
30 #include <linux/string.h>
31 #include <linux/types.h>
32 #include <linux/can/error.h>
33 #include <linux/pm_runtime.h>
36 #include "ctucanfd_kregs.h"
37 #include "ctucanfd_kframe.h"
40 #define ctucan_netdev_dbg(ndev, args...) \
41 netdev_dbg(ndev, args)
43 #define ctucan_netdev_dbg(...) do { } while (0)
46 #define CTUCANFD_ID 0xCAFD
48 /* TX buffer rotation:
49 * - when a buffer transitions to empty state, rotate order and priorities
50 * - if more buffers seem to transition at the same time, rotate by the number of buffers
51 * - it may be assumed that buffers transition to empty state in FIFO order (because we manage
52 * priorities that way)
53 * - at frame filling, do not rotate anything, just increment buffer modulo counter
56 #define CTUCANFD_FLAG_RX_FFW_BUFFERED 1
58 #define CTUCAN_STATE_TO_TEXT_ENTRY(st) \
61 enum ctucan_txtb_status
{
72 enum ctucan_txtb_command
{
73 TXT_CMD_SET_EMPTY
= 0x01,
74 TXT_CMD_SET_READY
= 0x02,
75 TXT_CMD_SET_ABORT
= 0x04
78 static const struct can_bittiming_const ctu_can_fd_bit_timing_max
= {
90 static const struct can_bittiming_const ctu_can_fd_bit_timing_data_max
= {
102 static const char * const ctucan_state_strings
[CAN_STATE_MAX
] = {
103 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_ACTIVE
),
104 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_WARNING
),
105 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_PASSIVE
),
106 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_BUS_OFF
),
107 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_STOPPED
),
108 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_SLEEPING
)
111 static void ctucan_write32_le(struct ctucan_priv
*priv
,
112 enum ctu_can_fd_can_registers reg
, u32 val
)
114 iowrite32(val
, priv
->mem_base
+ reg
);
117 static void ctucan_write32_be(struct ctucan_priv
*priv
,
118 enum ctu_can_fd_can_registers reg
, u32 val
)
120 iowrite32be(val
, priv
->mem_base
+ reg
);
123 static u32
ctucan_read32_le(struct ctucan_priv
*priv
,
124 enum ctu_can_fd_can_registers reg
)
126 return ioread32(priv
->mem_base
+ reg
);
129 static u32
ctucan_read32_be(struct ctucan_priv
*priv
,
130 enum ctu_can_fd_can_registers reg
)
132 return ioread32be(priv
->mem_base
+ reg
);
135 static void ctucan_write32(struct ctucan_priv
*priv
, enum ctu_can_fd_can_registers reg
, u32 val
)
137 priv
->write_reg(priv
, reg
, val
);
140 static u32
ctucan_read32(struct ctucan_priv
*priv
, enum ctu_can_fd_can_registers reg
)
142 return priv
->read_reg(priv
, reg
);
145 static void ctucan_write_txt_buf(struct ctucan_priv
*priv
, enum ctu_can_fd_can_registers buf_base
,
148 priv
->write_reg(priv
, buf_base
+ offset
, val
);
151 #define CTU_CAN_FD_TXTNF(priv) (!!FIELD_GET(REG_STATUS_TXNF, ctucan_read32(priv, CTUCANFD_STATUS)))
152 #define CTU_CAN_FD_ENABLED(priv) (!!FIELD_GET(REG_MODE_ENA, ctucan_read32(priv, CTUCANFD_MODE)))
155 * ctucan_state_to_str() - Converts CAN controller state code to corresponding text
156 * @state: CAN controller state code
158 * Return: Pointer to string representation of the error state
160 static const char *ctucan_state_to_str(enum can_state state
)
162 const char *txt
= NULL
;
164 if (state
>= 0 && state
< CAN_STATE_MAX
)
165 txt
= ctucan_state_strings
[state
];
166 return txt
? txt
: "UNKNOWN";
170 * ctucan_reset() - Issues software reset request to CTU CAN FD
171 * @ndev: Pointer to net_device structure
173 * Return: 0 for success, -%ETIMEDOUT if CAN controller does not leave reset
175 static int ctucan_reset(struct net_device
*ndev
)
177 struct ctucan_priv
*priv
= netdev_priv(ndev
);
180 ctucan_write32(priv
, CTUCANFD_MODE
, REG_MODE_RST
);
181 clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED
, &priv
->drv_flags
);
184 u16 device_id
= FIELD_GET(REG_DEVICE_ID_DEVICE_ID
,
185 ctucan_read32(priv
, CTUCANFD_DEVICE_ID
));
187 if (device_id
== 0xCAFD)
190 netdev_warn(ndev
, "device did not leave reset\n");
193 usleep_range(100, 200);
198 * ctucan_set_btr() - Sets CAN bus bit timing in CTU CAN FD
199 * @ndev: Pointer to net_device structure
200 * @bt: Pointer to Bit timing structure
201 * @nominal: True - Nominal bit timing, False - Data bit timing
203 * Return: 0 - OK, -%EPERM if controller is enabled
205 static int ctucan_set_btr(struct net_device
*ndev
, struct can_bittiming
*bt
, bool nominal
)
207 struct ctucan_priv
*priv
= netdev_priv(ndev
);
208 int max_ph1_len
= 31;
210 u32 prop_seg
= bt
->prop_seg
;
211 u32 phase_seg1
= bt
->phase_seg1
;
213 if (CTU_CAN_FD_ENABLED(priv
)) {
214 netdev_err(ndev
, "BUG! Cannot set bittiming - CAN is enabled\n");
221 /* The timing calculation functions have only constraints on tseg1, which is prop_seg +
222 * phase1_seg combined. tseg1 is then split in half and stored into prog_seg and phase_seg1.
223 * In CTU CAN FD, PROP is 6/7 bits wide but PH1 only 6/5, so we must re-distribute the
226 if (phase_seg1
> max_ph1_len
) {
227 prop_seg
+= phase_seg1
- max_ph1_len
;
228 phase_seg1
= max_ph1_len
;
229 bt
->prop_seg
= prop_seg
;
230 bt
->phase_seg1
= phase_seg1
;
234 btr
= FIELD_PREP(REG_BTR_PROP
, prop_seg
);
235 btr
|= FIELD_PREP(REG_BTR_PH1
, phase_seg1
);
236 btr
|= FIELD_PREP(REG_BTR_PH2
, bt
->phase_seg2
);
237 btr
|= FIELD_PREP(REG_BTR_BRP
, bt
->brp
);
238 btr
|= FIELD_PREP(REG_BTR_SJW
, bt
->sjw
);
240 ctucan_write32(priv
, CTUCANFD_BTR
, btr
);
242 btr
= FIELD_PREP(REG_BTR_FD_PROP_FD
, prop_seg
);
243 btr
|= FIELD_PREP(REG_BTR_FD_PH1_FD
, phase_seg1
);
244 btr
|= FIELD_PREP(REG_BTR_FD_PH2_FD
, bt
->phase_seg2
);
245 btr
|= FIELD_PREP(REG_BTR_FD_BRP_FD
, bt
->brp
);
246 btr
|= FIELD_PREP(REG_BTR_FD_SJW_FD
, bt
->sjw
);
248 ctucan_write32(priv
, CTUCANFD_BTR_FD
, btr
);
255 * ctucan_set_bittiming() - CAN set nominal bit timing routine
256 * @ndev: Pointer to net_device structure
258 * Return: 0 on success, -%EPERM on error
260 static int ctucan_set_bittiming(struct net_device
*ndev
)
262 struct ctucan_priv
*priv
= netdev_priv(ndev
);
263 struct can_bittiming
*bt
= &priv
->can
.bittiming
;
265 /* Note that bt may be modified here */
266 return ctucan_set_btr(ndev
, bt
, true);
270 * ctucan_set_data_bittiming() - CAN set data bit timing routine
271 * @ndev: Pointer to net_device structure
273 * Return: 0 on success, -%EPERM on error
275 static int ctucan_set_data_bittiming(struct net_device
*ndev
)
277 struct ctucan_priv
*priv
= netdev_priv(ndev
);
278 struct can_bittiming
*dbt
= &priv
->can
.data_bittiming
;
280 /* Note that dbt may be modified here */
281 return ctucan_set_btr(ndev
, dbt
, false);
285 * ctucan_set_secondary_sample_point() - Sets secondary sample point in CTU CAN FD
286 * @ndev: Pointer to net_device structure
288 * Return: 0 on success, -%EPERM if controller is enabled
290 static int ctucan_set_secondary_sample_point(struct net_device
*ndev
)
292 struct ctucan_priv
*priv
= netdev_priv(ndev
);
293 struct can_bittiming
*dbt
= &priv
->can
.data_bittiming
;
295 u32 ssp_cfg
= 0; /* No SSP by default */
297 if (CTU_CAN_FD_ENABLED(priv
)) {
298 netdev_err(ndev
, "BUG! Cannot set SSP - CAN is enabled\n");
302 /* Use SSP for bit-rates above 1 Mbits/s */
303 if (dbt
->bitrate
> 1000000) {
304 /* Calculate SSP in minimal time quanta */
305 ssp_offset
= (priv
->can
.clock
.freq
/ 1000) * dbt
->sample_point
/ dbt
->bitrate
;
307 if (ssp_offset
> 127) {
308 netdev_warn(ndev
, "SSP offset saturated to 127\n");
312 ssp_cfg
= FIELD_PREP(REG_TRV_DELAY_SSP_OFFSET
, ssp_offset
);
313 ssp_cfg
|= FIELD_PREP(REG_TRV_DELAY_SSP_SRC
, 0x1);
316 ctucan_write32(priv
, CTUCANFD_TRV_DELAY
, ssp_cfg
);
322 * ctucan_set_mode() - Sets CTU CAN FDs mode
323 * @priv: Pointer to private data
324 * @mode: Pointer to controller modes to be set
326 static void ctucan_set_mode(struct ctucan_priv
*priv
, const struct can_ctrlmode
*mode
)
328 u32 mode_reg
= ctucan_read32(priv
, CTUCANFD_MODE
);
330 mode_reg
= (mode
->flags
& CAN_CTRLMODE_LOOPBACK
) ?
331 (mode_reg
| REG_MODE_ILBP
) :
332 (mode_reg
& ~REG_MODE_ILBP
);
334 mode_reg
= (mode
->flags
& CAN_CTRLMODE_LISTENONLY
) ?
335 (mode_reg
| REG_MODE_BMM
) :
336 (mode_reg
& ~REG_MODE_BMM
);
338 mode_reg
= (mode
->flags
& CAN_CTRLMODE_FD
) ?
339 (mode_reg
| REG_MODE_FDE
) :
340 (mode_reg
& ~REG_MODE_FDE
);
342 mode_reg
= (mode
->flags
& CAN_CTRLMODE_PRESUME_ACK
) ?
343 (mode_reg
| REG_MODE_ACF
) :
344 (mode_reg
& ~REG_MODE_ACF
);
346 mode_reg
= (mode
->flags
& CAN_CTRLMODE_FD_NON_ISO
) ?
347 (mode_reg
| REG_MODE_NISOFD
) :
348 (mode_reg
& ~REG_MODE_NISOFD
);
350 /* One shot mode supported indirectly via Retransmit limit */
351 mode_reg
&= ~FIELD_PREP(REG_MODE_RTRTH
, 0xF);
352 mode_reg
= (mode
->flags
& CAN_CTRLMODE_ONE_SHOT
) ?
353 (mode_reg
| REG_MODE_RTRLE
) :
354 (mode_reg
& ~REG_MODE_RTRLE
);
357 * TSTM - Off, User shall not be able to change REC/TEC by hand during operation
359 mode_reg
&= ~REG_MODE_TSTM
;
361 ctucan_write32(priv
, CTUCANFD_MODE
, mode_reg
);
365 * ctucan_chip_start() - This routine starts the driver
366 * @ndev: Pointer to net_device structure
368 * Routine expects that chip is in reset state. It setups initial
369 * Tx buffers for FIFO priorities, sets bittiming, enables interrupts,
370 * switches core to operational mode and changes controller
371 * state to %CAN_STATE_STOPPED.
373 * Return: 0 on success and failure value on error
375 static int ctucan_chip_start(struct net_device
*ndev
)
377 struct ctucan_priv
*priv
= netdev_priv(ndev
);
378 u32 int_ena
, int_msk
;
381 struct can_ctrlmode mode
;
383 priv
->txb_prio
= 0x01234567;
386 ctucan_write32(priv
, CTUCANFD_TX_PRIORITY
, priv
->txb_prio
);
388 /* Configure bit-rates and ssp */
389 err
= ctucan_set_bittiming(ndev
);
393 err
= ctucan_set_data_bittiming(ndev
);
397 err
= ctucan_set_secondary_sample_point(ndev
);
401 /* Configure modes */
402 mode
.flags
= priv
->can
.ctrlmode
;
403 mode
.mask
= 0xFFFFFFFF;
404 ctucan_set_mode(priv
, &mode
);
406 /* Configure interrupts */
407 int_ena
= REG_INT_STAT_RBNEI
|
408 REG_INT_STAT_TXBHCI
|
412 /* Bus error reporting -> Allow Error/Arb.lost interrupts */
413 if (priv
->can
.ctrlmode
& CAN_CTRLMODE_BERR_REPORTING
) {
414 int_ena
|= REG_INT_STAT_ALI
|
418 int_msk
= ~int_ena
; /* Mask all disabled interrupts */
420 /* It's after reset, so there is no need to clear anything */
421 ctucan_write32(priv
, CTUCANFD_INT_MASK_SET
, int_msk
);
422 ctucan_write32(priv
, CTUCANFD_INT_ENA_SET
, int_ena
);
424 /* Controller enters ERROR_ACTIVE on initial FCSI */
425 priv
->can
.state
= CAN_STATE_STOPPED
;
427 /* Enable the controller */
428 mode_reg
= ctucan_read32(priv
, CTUCANFD_MODE
);
429 mode_reg
|= REG_MODE_ENA
;
430 ctucan_write32(priv
, CTUCANFD_MODE
, mode_reg
);
436 * ctucan_do_set_mode() - Sets mode of the driver
437 * @ndev: Pointer to net_device structure
438 * @mode: Tells the mode of the driver
440 * This check the drivers state and calls the corresponding modes to set.
442 * Return: 0 on success and failure value on error
444 static int ctucan_do_set_mode(struct net_device
*ndev
, enum can_mode mode
)
450 ret
= ctucan_reset(ndev
);
453 ret
= ctucan_chip_start(ndev
);
455 netdev_err(ndev
, "ctucan_chip_start failed!\n");
458 netif_wake_queue(ndev
);
469 * ctucan_get_tx_status() - Gets status of TXT buffer
470 * @priv: Pointer to private data
471 * @buf: Buffer index (0-based)
473 * Return: Status of TXT buffer
475 static enum ctucan_txtb_status
ctucan_get_tx_status(struct ctucan_priv
*priv
, u8 buf
)
477 u32 tx_status
= ctucan_read32(priv
, CTUCANFD_TX_STATUS
);
478 enum ctucan_txtb_status status
= (tx_status
>> (buf
* 4)) & 0x7;
484 * ctucan_is_txt_buf_writable() - Checks if frame can be inserted to TXT Buffer
485 * @priv: Pointer to private data
486 * @buf: Buffer index (0-based)
488 * Return: True - Frame can be inserted to TXT Buffer, False - If attempted, frame will not be
489 * inserted to TXT Buffer
491 static bool ctucan_is_txt_buf_writable(struct ctucan_priv
*priv
, u8 buf
)
493 enum ctucan_txtb_status buf_status
;
495 buf_status
= ctucan_get_tx_status(priv
, buf
);
496 if (buf_status
== TXT_RDY
|| buf_status
== TXT_TRAN
|| buf_status
== TXT_ABTP
)
503 * ctucan_insert_frame() - Inserts frame to TXT buffer
504 * @priv: Pointer to private data
505 * @cf: Pointer to CAN frame to be inserted
506 * @buf: TXT Buffer index to which frame is inserted (0-based)
507 * @isfdf: True - CAN FD Frame, False - CAN 2.0 Frame
509 * Return: True - Frame inserted successfully
510 * False - Frame was not inserted due to one of:
511 * 1. TXT Buffer is not writable (it is in wrong state)
512 * 2. Invalid TXT buffer index
513 * 3. Invalid frame length
515 static bool ctucan_insert_frame(struct ctucan_priv
*priv
, const struct canfd_frame
*cf
, u8 buf
,
523 if (buf
>= priv
->ntxbufs
)
526 if (!ctucan_is_txt_buf_writable(priv
, buf
))
529 if (cf
->len
> CANFD_MAX_DLEN
)
532 /* Prepare Frame format */
533 if (cf
->can_id
& CAN_RTR_FLAG
)
534 ffw
|= REG_FRAME_FORMAT_W_RTR
;
536 if (cf
->can_id
& CAN_EFF_FLAG
)
537 ffw
|= REG_FRAME_FORMAT_W_IDE
;
540 ffw
|= REG_FRAME_FORMAT_W_FDF
;
541 if (cf
->flags
& CANFD_BRS
)
542 ffw
|= REG_FRAME_FORMAT_W_BRS
;
545 ffw
|= FIELD_PREP(REG_FRAME_FORMAT_W_DLC
, can_fd_len2dlc(cf
->len
));
547 /* Prepare identifier */
548 if (cf
->can_id
& CAN_EFF_FLAG
)
549 idw
= cf
->can_id
& CAN_EFF_MASK
;
551 idw
= FIELD_PREP(REG_IDENTIFIER_W_IDENTIFIER_BASE
, cf
->can_id
& CAN_SFF_MASK
);
553 /* Write ID, Frame format, Don't write timestamp -> Time triggered transmission disabled */
554 buf_base
= (buf
+ 1) * 0x100;
555 ctucan_write_txt_buf(priv
, buf_base
, CTUCANFD_FRAME_FORMAT_W
, ffw
);
556 ctucan_write_txt_buf(priv
, buf_base
, CTUCANFD_IDENTIFIER_W
, idw
);
558 /* Write Data payload */
559 if (!(cf
->can_id
& CAN_RTR_FLAG
)) {
560 for (i
= 0; i
< cf
->len
; i
+= 4) {
561 u32 data
= le32_to_cpu(*(__le32
*)(cf
->data
+ i
));
563 ctucan_write_txt_buf(priv
, buf_base
, CTUCANFD_DATA_1_4_W
+ i
, data
);
571 * ctucan_give_txtb_cmd() - Applies command on TXT buffer
572 * @priv: Pointer to private data
573 * @cmd: Command to give
574 * @buf: Buffer index (0-based)
576 static void ctucan_give_txtb_cmd(struct ctucan_priv
*priv
, enum ctucan_txtb_command cmd
, u8 buf
)
580 tx_cmd
|= 1 << (buf
+ 8);
581 ctucan_write32(priv
, CTUCANFD_TX_COMMAND
, tx_cmd
);
585 * ctucan_start_xmit() - Starts the transmission
586 * @skb: sk_buff pointer that contains data to be Txed
587 * @ndev: Pointer to net_device structure
589 * Invoked from upper layers to initiate transmission. Uses the next available free TXT Buffer and
590 * populates its fields to start the transmission.
592 * Return: %NETDEV_TX_OK on success, %NETDEV_TX_BUSY when no free TXT buffer is available,
593 * negative return values reserved for error cases
595 static netdev_tx_t
ctucan_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
597 struct ctucan_priv
*priv
= netdev_priv(ndev
);
598 struct canfd_frame
*cf
= (struct canfd_frame
*)skb
->data
;
603 if (can_dev_dropped_skb(ndev
, skb
))
606 if (unlikely(!CTU_CAN_FD_TXTNF(priv
))) {
607 netif_stop_queue(ndev
);
608 netdev_err(ndev
, "BUG!, no TXB free when queue awake!\n");
609 return NETDEV_TX_BUSY
;
612 txtb_id
= priv
->txb_head
% priv
->ntxbufs
;
613 ctucan_netdev_dbg(ndev
, "%s: using TXB#%u\n", __func__
, txtb_id
);
614 ok
= ctucan_insert_frame(priv
, cf
, txtb_id
, can_is_canfd_skb(skb
));
617 netdev_err(ndev
, "BUG! TXNF set but cannot insert frame into TXTB! HW Bug?");
619 ndev
->stats
.tx_dropped
++;
623 can_put_echo_skb(skb
, ndev
, txtb_id
, 0);
625 spin_lock_irqsave(&priv
->tx_lock
, flags
);
626 ctucan_give_txtb_cmd(priv
, TXT_CMD_SET_READY
, txtb_id
);
629 /* Check if all TX buffers are full */
630 if (!CTU_CAN_FD_TXTNF(priv
))
631 netif_stop_queue(ndev
);
633 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
639 * ctucan_read_rx_frame() - Reads frame from RX FIFO
640 * @priv: Pointer to CTU CAN FD's private data
641 * @cf: Pointer to CAN frame struct
642 * @ffw: Previously read frame format word
644 * Note: Frame format word must be read separately and provided in 'ffw'.
646 static void ctucan_read_rx_frame(struct ctucan_priv
*priv
, struct canfd_frame
*cf
, u32 ffw
)
653 idw
= ctucan_read32(priv
, CTUCANFD_RX_DATA
);
654 if (FIELD_GET(REG_FRAME_FORMAT_W_IDE
, ffw
))
655 cf
->can_id
= (idw
& CAN_EFF_MASK
) | CAN_EFF_FLAG
;
657 cf
->can_id
= (idw
>> 18) & CAN_SFF_MASK
;
659 /* BRS, ESI, RTR Flags */
660 if (FIELD_GET(REG_FRAME_FORMAT_W_FDF
, ffw
)) {
661 if (FIELD_GET(REG_FRAME_FORMAT_W_BRS
, ffw
))
662 cf
->flags
|= CANFD_BRS
;
663 if (FIELD_GET(REG_FRAME_FORMAT_W_ESI_RSV
, ffw
))
664 cf
->flags
|= CANFD_ESI
;
665 } else if (FIELD_GET(REG_FRAME_FORMAT_W_RTR
, ffw
)) {
666 cf
->can_id
|= CAN_RTR_FLAG
;
669 wc
= FIELD_GET(REG_FRAME_FORMAT_W_RWCNT
, ffw
) - 3;
672 if (FIELD_GET(REG_FRAME_FORMAT_W_DLC
, ffw
) <= 8) {
673 len
= FIELD_GET(REG_FRAME_FORMAT_W_DLC
, ffw
);
675 if (FIELD_GET(REG_FRAME_FORMAT_W_FDF
, ffw
))
681 if (unlikely(len
> wc
* 4))
684 /* Timestamp - Read and throw away */
685 ctucan_read32(priv
, CTUCANFD_RX_DATA
);
686 ctucan_read32(priv
, CTUCANFD_RX_DATA
);
689 for (i
= 0; i
< len
; i
+= 4) {
690 u32 data
= ctucan_read32(priv
, CTUCANFD_RX_DATA
);
691 *(__le32
*)(cf
->data
+ i
) = cpu_to_le32(data
);
693 while (unlikely(i
< wc
* 4)) {
694 ctucan_read32(priv
, CTUCANFD_RX_DATA
);
700 * ctucan_rx() - Called from CAN ISR to complete the received frame processing
701 * @ndev: Pointer to net_device structure
703 * This function is invoked from the CAN isr(poll) to process the Rx frames. It does minimal
704 * processing and invokes "netif_receive_skb" to complete further processing.
705 * Return: 1 when frame is passed to the network layer, 0 when the first frame word is read but
706 * system is out of free SKBs temporally and left code to resolve SKB allocation later,
707 * -%EAGAIN in a case of empty Rx FIFO.
709 static int ctucan_rx(struct net_device
*ndev
)
711 struct ctucan_priv
*priv
= netdev_priv(ndev
);
712 struct net_device_stats
*stats
= &ndev
->stats
;
713 struct canfd_frame
*cf
;
717 if (test_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED
, &priv
->drv_flags
)) {
718 ffw
= priv
->rxfrm_first_word
;
719 clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED
, &priv
->drv_flags
);
721 ffw
= ctucan_read32(priv
, CTUCANFD_RX_DATA
);
724 if (!FIELD_GET(REG_FRAME_FORMAT_W_RWCNT
, ffw
))
727 if (FIELD_GET(REG_FRAME_FORMAT_W_FDF
, ffw
))
728 skb
= alloc_canfd_skb(ndev
, &cf
);
730 skb
= alloc_can_skb(ndev
, (struct can_frame
**)&cf
);
732 if (unlikely(!skb
)) {
733 priv
->rxfrm_first_word
= ffw
;
734 set_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED
, &priv
->drv_flags
);
738 ctucan_read_rx_frame(priv
, cf
, ffw
);
740 stats
->rx_bytes
+= cf
->len
;
742 netif_receive_skb(skb
);
748 * ctucan_read_fault_state() - Reads CTU CAN FDs fault confinement state.
749 * @priv: Pointer to private data
751 * Returns: Fault confinement state of controller
753 static enum can_state
ctucan_read_fault_state(struct ctucan_priv
*priv
)
759 fs
= ctucan_read32(priv
, CTUCANFD_EWL
);
760 rec_tec
= ctucan_read32(priv
, CTUCANFD_REC
);
761 ewl
= FIELD_GET(REG_EWL_EW_LIMIT
, fs
);
763 if (FIELD_GET(REG_EWL_ERA
, fs
)) {
764 if (ewl
> FIELD_GET(REG_REC_REC_VAL
, rec_tec
) &&
765 ewl
> FIELD_GET(REG_REC_TEC_VAL
, rec_tec
))
766 return CAN_STATE_ERROR_ACTIVE
;
768 return CAN_STATE_ERROR_WARNING
;
769 } else if (FIELD_GET(REG_EWL_ERP
, fs
)) {
770 return CAN_STATE_ERROR_PASSIVE
;
771 } else if (FIELD_GET(REG_EWL_BOF
, fs
)) {
772 return CAN_STATE_BUS_OFF
;
775 WARN(true, "Invalid error state");
776 return CAN_STATE_ERROR_PASSIVE
;
780 * ctucan_get_rec_tec() - Reads REC/TEC counter values from controller
781 * @priv: Pointer to private data
782 * @bec: Pointer to Error counter structure
784 static void ctucan_get_rec_tec(struct ctucan_priv
*priv
, struct can_berr_counter
*bec
)
786 u32 err_ctrs
= ctucan_read32(priv
, CTUCANFD_REC
);
788 bec
->rxerr
= FIELD_GET(REG_REC_REC_VAL
, err_ctrs
);
789 bec
->txerr
= FIELD_GET(REG_REC_TEC_VAL
, err_ctrs
);
793 * ctucan_err_interrupt() - Error frame ISR
794 * @ndev: net_device pointer
795 * @isr: interrupt status register value
797 * This is the CAN error interrupt and it will check the type of error and forward the error
798 * frame to upper layers.
800 static void ctucan_err_interrupt(struct net_device
*ndev
, u32 isr
)
802 struct ctucan_priv
*priv
= netdev_priv(ndev
);
803 struct net_device_stats
*stats
= &ndev
->stats
;
804 struct can_frame
*cf
;
806 enum can_state state
;
807 struct can_berr_counter bec
;
809 int dologerr
= net_ratelimit();
811 ctucan_get_rec_tec(priv
, &bec
);
812 state
= ctucan_read_fault_state(priv
);
813 err_capt_alc
= ctucan_read32(priv
, CTUCANFD_ERR_CAPT
);
816 netdev_info(ndev
, "%s: ISR = 0x%08x, rxerr %d, txerr %d, error type %lu, pos %lu, ALC id_field %lu, bit %lu\n",
817 __func__
, isr
, bec
.rxerr
, bec
.txerr
,
818 FIELD_GET(REG_ERR_CAPT_ERR_TYPE
, err_capt_alc
),
819 FIELD_GET(REG_ERR_CAPT_ERR_POS
, err_capt_alc
),
820 FIELD_GET(REG_ERR_CAPT_ALC_ID_FIELD
, err_capt_alc
),
821 FIELD_GET(REG_ERR_CAPT_ALC_BIT
, err_capt_alc
));
823 skb
= alloc_can_err_skb(ndev
, &cf
);
825 /* EWLI: error warning limit condition met
826 * FCSI: fault confinement state changed
827 * ALI: arbitration lost (just informative)
828 * BEI: bus error interrupt
830 if (FIELD_GET(REG_INT_STAT_FCSI
, isr
) || FIELD_GET(REG_INT_STAT_EWLI
, isr
)) {
831 netdev_info(ndev
, "state changes from %s to %s\n",
832 ctucan_state_to_str(priv
->can
.state
),
833 ctucan_state_to_str(state
));
835 if (priv
->can
.state
== state
)
837 "current and previous state is the same! (missed interrupt?)\n");
839 priv
->can
.state
= state
;
841 case CAN_STATE_BUS_OFF
:
842 priv
->can
.can_stats
.bus_off
++;
845 cf
->can_id
|= CAN_ERR_BUSOFF
;
847 case CAN_STATE_ERROR_PASSIVE
:
848 priv
->can
.can_stats
.error_passive
++;
850 cf
->can_id
|= CAN_ERR_CRTL
| CAN_ERR_CNT
;
851 cf
->data
[1] = (bec
.rxerr
> 127) ?
852 CAN_ERR_CRTL_RX_PASSIVE
:
853 CAN_ERR_CRTL_TX_PASSIVE
;
854 cf
->data
[6] = bec
.txerr
;
855 cf
->data
[7] = bec
.rxerr
;
858 case CAN_STATE_ERROR_WARNING
:
859 priv
->can
.can_stats
.error_warning
++;
861 cf
->can_id
|= CAN_ERR_CRTL
| CAN_ERR_CNT
;
862 cf
->data
[1] |= (bec
.txerr
> bec
.rxerr
) ?
863 CAN_ERR_CRTL_TX_WARNING
:
864 CAN_ERR_CRTL_RX_WARNING
;
865 cf
->data
[6] = bec
.txerr
;
866 cf
->data
[7] = bec
.rxerr
;
869 case CAN_STATE_ERROR_ACTIVE
:
870 cf
->can_id
|= CAN_ERR_CNT
;
871 cf
->data
[1] = CAN_ERR_CRTL_ACTIVE
;
872 cf
->data
[6] = bec
.txerr
;
873 cf
->data
[7] = bec
.rxerr
;
876 netdev_warn(ndev
, "unhandled error state (%d:%s)!\n",
877 state
, ctucan_state_to_str(state
));
882 /* Check for Arbitration Lost interrupt */
883 if (FIELD_GET(REG_INT_STAT_ALI
, isr
)) {
885 netdev_info(ndev
, "arbitration lost\n");
886 priv
->can
.can_stats
.arbitration_lost
++;
888 cf
->can_id
|= CAN_ERR_LOSTARB
;
889 cf
->data
[0] = CAN_ERR_LOSTARB_UNSPEC
;
893 /* Check for Bus Error interrupt */
894 if (FIELD_GET(REG_INT_STAT_BEI
, isr
)) {
895 netdev_info(ndev
, "bus error\n");
896 priv
->can
.can_stats
.bus_error
++;
899 cf
->can_id
|= CAN_ERR_PROT
| CAN_ERR_BUSERROR
;
900 cf
->data
[2] = CAN_ERR_PROT_UNSPEC
;
901 cf
->data
[3] = CAN_ERR_PROT_LOC_UNSPEC
;
907 stats
->rx_bytes
+= cf
->can_dlc
;
913 * ctucan_rx_poll() - Poll routine for rx packets (NAPI)
914 * @napi: NAPI structure pointer
915 * @quota: Max number of rx packets to be processed.
917 * This is the poll routine for rx part. It will process the packets maximux quota value.
919 * Return: Number of packets received
921 static int ctucan_rx_poll(struct napi_struct
*napi
, int quota
)
923 struct net_device
*ndev
= napi
->dev
;
924 struct ctucan_priv
*priv
= netdev_priv(ndev
);
930 framecnt
= FIELD_GET(REG_RX_STATUS_RXFRC
, ctucan_read32(priv
, CTUCANFD_RX_STATUS
));
931 while (framecnt
&& work_done
< quota
&& res
> 0) {
932 res
= ctucan_rx(ndev
);
934 framecnt
= FIELD_GET(REG_RX_STATUS_RXFRC
, ctucan_read32(priv
, CTUCANFD_RX_STATUS
));
937 /* Check for RX FIFO Overflow */
938 status
= ctucan_read32(priv
, CTUCANFD_STATUS
);
939 if (FIELD_GET(REG_STATUS_DOR
, status
)) {
940 struct net_device_stats
*stats
= &ndev
->stats
;
941 struct can_frame
*cf
;
944 netdev_info(ndev
, "rx_poll: rx fifo overflow\n");
945 stats
->rx_over_errors
++;
947 skb
= alloc_can_err_skb(ndev
, &cf
);
949 cf
->can_id
|= CAN_ERR_CRTL
;
950 cf
->data
[1] |= CAN_ERR_CRTL_RX_OVERFLOW
;
952 stats
->rx_bytes
+= cf
->can_dlc
;
956 /* Clear Data Overrun */
957 ctucan_write32(priv
, CTUCANFD_COMMAND
, REG_COMMAND_CDO
);
960 if (!framecnt
&& res
!= 0) {
961 if (napi_complete_done(napi
, work_done
)) {
962 /* Clear and enable RBNEI. It is level-triggered, so
963 * there is no race condition.
965 ctucan_write32(priv
, CTUCANFD_INT_STAT
, REG_INT_STAT_RBNEI
);
966 ctucan_write32(priv
, CTUCANFD_INT_MASK_CLR
, REG_INT_STAT_RBNEI
);
974 * ctucan_rotate_txb_prio() - Rotates priorities of TXT Buffers
975 * @ndev: net_device pointer
977 static void ctucan_rotate_txb_prio(struct net_device
*ndev
)
979 struct ctucan_priv
*priv
= netdev_priv(ndev
);
980 u32 prio
= priv
->txb_prio
;
982 prio
= (prio
<< 4) | ((prio
>> ((priv
->ntxbufs
- 1) * 4)) & 0xF);
983 ctucan_netdev_dbg(ndev
, "%s: from 0x%08x to 0x%08x\n", __func__
, priv
->txb_prio
, prio
);
984 priv
->txb_prio
= prio
;
985 ctucan_write32(priv
, CTUCANFD_TX_PRIORITY
, prio
);
989 * ctucan_tx_interrupt() - Tx done Isr
990 * @ndev: net_device pointer
992 static void ctucan_tx_interrupt(struct net_device
*ndev
)
994 struct ctucan_priv
*priv
= netdev_priv(ndev
);
995 struct net_device_stats
*stats
= &ndev
->stats
;
997 bool some_buffers_processed
;
999 enum ctucan_txtb_status txtb_status
;
1003 * if txb[n].finished (bit 2)
1005 * if error / aborted -> ?? (find how to handle oneshot mode)
1009 spin_lock_irqsave(&priv
->tx_lock
, flags
);
1011 some_buffers_processed
= false;
1012 while ((int)(priv
->txb_head
- priv
->txb_tail
) > 0) {
1013 txtb_id
= priv
->txb_tail
% priv
->ntxbufs
;
1014 txtb_status
= ctucan_get_tx_status(priv
, txtb_id
);
1016 ctucan_netdev_dbg(ndev
, "TXI: TXB#%u: status 0x%x\n", txtb_id
, txtb_status
);
1018 switch (txtb_status
) {
1020 ctucan_netdev_dbg(ndev
, "TXT_OK\n");
1021 stats
->tx_bytes
+= can_get_echo_skb(ndev
, txtb_id
, NULL
);
1022 stats
->tx_packets
++;
1025 /* This indicated that retransmit limit has been reached. Obviously
1026 * we should not echo the frame, but also not indicate any kind of
1027 * error. If desired, it was already reported (possible multiple
1028 * times) on each arbitration lost.
1030 netdev_warn(ndev
, "TXB in Error state\n");
1031 can_free_echo_skb(ndev
, txtb_id
, NULL
);
1032 stats
->tx_dropped
++;
1035 /* Same as for TXT_ERR, only with different cause. We *could*
1036 * re-queue the frame, but multiqueue/abort is not supported yet
1039 netdev_warn(ndev
, "TXB in Aborted state\n");
1040 can_free_echo_skb(ndev
, txtb_id
, NULL
);
1041 stats
->tx_dropped
++;
1044 /* Bug only if the first buffer is not finished, otherwise it is
1045 * pretty much expected.
1049 "BUG: TXB#%u not in a finished state (0x%x)!\n",
1050 txtb_id
, txtb_status
);
1051 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1052 /* do not clear nor wake */
1059 some_buffers_processed
= true;
1060 /* Adjust priorities *before* marking the buffer as empty. */
1061 ctucan_rotate_txb_prio(ndev
);
1062 ctucan_give_txtb_cmd(priv
, TXT_CMD_SET_EMPTY
, txtb_id
);
1065 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1067 /* If no buffers were processed this time, we cannot clear - that would introduce
1070 if (some_buffers_processed
) {
1071 /* Clear the interrupt again. We do not want to receive again interrupt for
1072 * the buffer already handled. If it is the last finished one then it would
1073 * cause log of spurious interrupt.
1075 ctucan_write32(priv
, CTUCANFD_INT_STAT
, REG_INT_STAT_TXBHCI
);
1077 } while (some_buffers_processed
);
1079 spin_lock_irqsave(&priv
->tx_lock
, flags
);
1081 /* Check if at least one TX buffer is free */
1082 if (CTU_CAN_FD_TXTNF(priv
))
1083 netif_wake_queue(ndev
);
1085 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1089 * ctucan_interrupt() - CAN Isr
1091 * @dev_id: device id pointer
1093 * This is the CTU CAN FD ISR. It checks for the type of interrupt
1094 * and invokes the corresponding ISR.
1097 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1099 static irqreturn_t
ctucan_interrupt(int irq
, void *dev_id
)
1101 struct net_device
*ndev
= (struct net_device
*)dev_id
;
1102 struct ctucan_priv
*priv
= netdev_priv(ndev
);
1107 for (irq_loops
= 0; irq_loops
< 10000; irq_loops
++) {
1108 /* Get the interrupt status */
1109 isr
= ctucan_read32(priv
, CTUCANFD_INT_STAT
);
1112 return irq_loops
? IRQ_HANDLED
: IRQ_NONE
;
1114 /* Receive Buffer Not Empty Interrupt */
1115 if (FIELD_GET(REG_INT_STAT_RBNEI
, isr
)) {
1116 ctucan_netdev_dbg(ndev
, "RXBNEI\n");
1117 /* Mask RXBNEI the first, then clear interrupt and schedule NAPI. Even if
1118 * another IRQ fires, RBNEI will always be 0 (masked).
1120 icr
= REG_INT_STAT_RBNEI
;
1121 ctucan_write32(priv
, CTUCANFD_INT_MASK_SET
, icr
);
1122 ctucan_write32(priv
, CTUCANFD_INT_STAT
, icr
);
1123 napi_schedule(&priv
->napi
);
1126 /* TXT Buffer HW Command Interrupt */
1127 if (FIELD_GET(REG_INT_STAT_TXBHCI
, isr
)) {
1128 ctucan_netdev_dbg(ndev
, "TXBHCI\n");
1129 /* Cleared inside */
1130 ctucan_tx_interrupt(ndev
);
1133 /* Error interrupts */
1134 if (FIELD_GET(REG_INT_STAT_EWLI
, isr
) ||
1135 FIELD_GET(REG_INT_STAT_FCSI
, isr
) ||
1136 FIELD_GET(REG_INT_STAT_ALI
, isr
)) {
1137 icr
= isr
& (REG_INT_STAT_EWLI
| REG_INT_STAT_FCSI
| REG_INT_STAT_ALI
);
1139 ctucan_netdev_dbg(ndev
, "some ERR interrupt: clearing 0x%08x\n", icr
);
1140 ctucan_write32(priv
, CTUCANFD_INT_STAT
, icr
);
1141 ctucan_err_interrupt(ndev
, isr
);
1143 /* Ignore RI, TI, LFI, RFI, BSI */
1146 netdev_err(ndev
, "%s: stuck interrupt (isr=0x%08x), stopping\n", __func__
, isr
);
1148 if (FIELD_GET(REG_INT_STAT_TXBHCI
, isr
)) {
1151 netdev_err(ndev
, "txb_head=0x%08x txb_tail=0x%08x\n",
1152 priv
->txb_head
, priv
->txb_tail
);
1153 for (i
= 0; i
< priv
->ntxbufs
; i
++) {
1154 u32 status
= ctucan_get_tx_status(priv
, i
);
1156 netdev_err(ndev
, "txb[%d] txb status=0x%08x\n", i
, status
);
1161 ctucan_write32(priv
, CTUCANFD_INT_ENA_CLR
, imask
);
1162 ctucan_write32(priv
, CTUCANFD_INT_MASK_SET
, imask
);
1168 * ctucan_chip_stop() - Driver stop routine
1169 * @ndev: Pointer to net_device structure
1171 * This is the drivers stop routine. It will disable the
1172 * interrupts and disable the controller.
1174 static void ctucan_chip_stop(struct net_device
*ndev
)
1176 struct ctucan_priv
*priv
= netdev_priv(ndev
);
1177 u32 mask
= 0xffffffff;
1180 /* Disable interrupts and disable CAN */
1181 ctucan_write32(priv
, CTUCANFD_INT_ENA_CLR
, mask
);
1182 ctucan_write32(priv
, CTUCANFD_INT_MASK_SET
, mask
);
1183 mode
= ctucan_read32(priv
, CTUCANFD_MODE
);
1184 mode
&= ~REG_MODE_ENA
;
1185 ctucan_write32(priv
, CTUCANFD_MODE
, mode
);
1187 priv
->can
.state
= CAN_STATE_STOPPED
;
1191 * ctucan_open() - Driver open routine
1192 * @ndev: Pointer to net_device structure
1194 * This is the driver open routine.
1195 * Return: 0 on success and failure value on error
1197 static int ctucan_open(struct net_device
*ndev
)
1199 struct ctucan_priv
*priv
= netdev_priv(ndev
);
1202 ret
= pm_runtime_get_sync(priv
->dev
);
1204 netdev_err(ndev
, "%s: pm_runtime_get failed(%d)\n",
1206 pm_runtime_put_noidle(priv
->dev
);
1210 ret
= ctucan_reset(ndev
);
1215 ret
= open_candev(ndev
);
1217 netdev_warn(ndev
, "open_candev failed!\n");
1221 ret
= request_irq(ndev
->irq
, ctucan_interrupt
, priv
->irq_flags
, ndev
->name
, ndev
);
1223 netdev_err(ndev
, "irq allocation for CAN failed\n");
1227 ret
= ctucan_chip_start(ndev
);
1229 netdev_err(ndev
, "ctucan_chip_start failed!\n");
1230 goto err_chip_start
;
1233 netdev_info(ndev
, "ctu_can_fd device registered\n");
1234 napi_enable(&priv
->napi
);
1235 netif_start_queue(ndev
);
1240 free_irq(ndev
->irq
, ndev
);
1245 pm_runtime_put(priv
->dev
);
1251 * ctucan_close() - Driver close routine
1252 * @ndev: Pointer to net_device structure
1256 static int ctucan_close(struct net_device
*ndev
)
1258 struct ctucan_priv
*priv
= netdev_priv(ndev
);
1260 netif_stop_queue(ndev
);
1261 napi_disable(&priv
->napi
);
1262 ctucan_chip_stop(ndev
);
1263 free_irq(ndev
->irq
, ndev
);
1266 pm_runtime_put(priv
->dev
);
1272 * ctucan_get_berr_counter() - error counter routine
1273 * @ndev: Pointer to net_device structure
1274 * @bec: Pointer to can_berr_counter structure
1276 * This is the driver error counter routine.
1277 * Return: 0 on success and failure value on error
1279 static int ctucan_get_berr_counter(const struct net_device
*ndev
, struct can_berr_counter
*bec
)
1281 struct ctucan_priv
*priv
= netdev_priv(ndev
);
1284 ret
= pm_runtime_get_sync(priv
->dev
);
1286 netdev_err(ndev
, "%s: pm_runtime_get failed(%d)\n", __func__
, ret
);
1287 pm_runtime_put_noidle(priv
->dev
);
1291 ctucan_get_rec_tec(priv
, bec
);
1292 pm_runtime_put(priv
->dev
);
1297 static const struct net_device_ops ctucan_netdev_ops
= {
1298 .ndo_open
= ctucan_open
,
1299 .ndo_stop
= ctucan_close
,
1300 .ndo_start_xmit
= ctucan_start_xmit
,
1301 .ndo_change_mtu
= can_change_mtu
,
1304 static const struct ethtool_ops ctucan_ethtool_ops
= {
1305 .get_ts_info
= ethtool_op_get_ts_info
,
1308 int ctucan_suspend(struct device
*dev
)
1310 struct net_device
*ndev
= dev_get_drvdata(dev
);
1311 struct ctucan_priv
*priv
= netdev_priv(ndev
);
1313 if (netif_running(ndev
)) {
1314 netif_stop_queue(ndev
);
1315 netif_device_detach(ndev
);
1318 priv
->can
.state
= CAN_STATE_SLEEPING
;
1322 EXPORT_SYMBOL(ctucan_suspend
);
1324 int ctucan_resume(struct device
*dev
)
1326 struct net_device
*ndev
= dev_get_drvdata(dev
);
1327 struct ctucan_priv
*priv
= netdev_priv(ndev
);
1329 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
1331 if (netif_running(ndev
)) {
1332 netif_device_attach(ndev
);
1333 netif_start_queue(ndev
);
1338 EXPORT_SYMBOL(ctucan_resume
);
1340 int ctucan_probe_common(struct device
*dev
, void __iomem
*addr
, int irq
, unsigned int ntxbufs
,
1341 unsigned long can_clk_rate
, int pm_enable_call
,
1342 void (*set_drvdata_fnc
)(struct device
*dev
, struct net_device
*ndev
))
1344 struct ctucan_priv
*priv
;
1345 struct net_device
*ndev
;
1348 /* Create a CAN device instance */
1349 ndev
= alloc_candev(sizeof(struct ctucan_priv
), ntxbufs
);
1353 priv
= netdev_priv(ndev
);
1354 spin_lock_init(&priv
->tx_lock
);
1355 INIT_LIST_HEAD(&priv
->peers_on_pdev
);
1356 priv
->ntxbufs
= ntxbufs
;
1358 priv
->can
.bittiming_const
= &ctu_can_fd_bit_timing_max
;
1359 priv
->can
.data_bittiming_const
= &ctu_can_fd_bit_timing_data_max
;
1360 priv
->can
.do_set_mode
= ctucan_do_set_mode
;
1362 /* Needed for timing adjustment to be performed as soon as possible */
1363 priv
->can
.do_set_bittiming
= ctucan_set_bittiming
;
1364 priv
->can
.do_set_data_bittiming
= ctucan_set_data_bittiming
;
1366 priv
->can
.do_get_berr_counter
= ctucan_get_berr_counter
;
1367 priv
->can
.ctrlmode_supported
= CAN_CTRLMODE_LOOPBACK
1368 | CAN_CTRLMODE_LISTENONLY
1370 | CAN_CTRLMODE_PRESUME_ACK
1371 | CAN_CTRLMODE_BERR_REPORTING
1372 | CAN_CTRLMODE_FD_NON_ISO
1373 | CAN_CTRLMODE_ONE_SHOT
;
1374 priv
->mem_base
= addr
;
1376 /* Get IRQ for the device */
1378 ndev
->flags
|= IFF_ECHO
; /* We support local echo */
1380 if (set_drvdata_fnc
)
1381 set_drvdata_fnc(dev
, ndev
);
1382 SET_NETDEV_DEV(ndev
, dev
);
1383 ndev
->netdev_ops
= &ctucan_netdev_ops
;
1384 ndev
->ethtool_ops
= &ctucan_ethtool_ops
;
1386 /* Getting the can_clk info */
1387 if (!can_clk_rate
) {
1388 priv
->can_clk
= devm_clk_get(dev
, NULL
);
1389 if (IS_ERR(priv
->can_clk
)) {
1390 dev_err(dev
, "Device clock not found.\n");
1391 ret
= PTR_ERR(priv
->can_clk
);
1394 can_clk_rate
= clk_get_rate(priv
->can_clk
);
1397 priv
->write_reg
= ctucan_write32_le
;
1398 priv
->read_reg
= ctucan_read32_le
;
1401 pm_runtime_enable(dev
);
1402 ret
= pm_runtime_get_sync(dev
);
1404 netdev_err(ndev
, "%s: pm_runtime_get failed(%d)\n",
1406 pm_runtime_put_noidle(priv
->dev
);
1410 /* Check for big-endianity and set according IO-accessors */
1411 if ((ctucan_read32(priv
, CTUCANFD_DEVICE_ID
) & 0xFFFF) != CTUCANFD_ID
) {
1412 priv
->write_reg
= ctucan_write32_be
;
1413 priv
->read_reg
= ctucan_read32_be
;
1414 if ((ctucan_read32(priv
, CTUCANFD_DEVICE_ID
) & 0xFFFF) != CTUCANFD_ID
) {
1415 netdev_err(ndev
, "CTU_CAN_FD signature not found\n");
1421 ret
= ctucan_reset(ndev
);
1425 priv
->can
.clock
.freq
= can_clk_rate
;
1427 netif_napi_add(ndev
, &priv
->napi
, ctucan_rx_poll
);
1429 ret
= register_candev(ndev
);
1431 dev_err(dev
, "fail to register failed (err=%d)\n", ret
);
1435 pm_runtime_put(dev
);
1437 netdev_dbg(ndev
, "mem_base=0x%p irq=%d clock=%d, no. of txt buffers:%d\n",
1438 priv
->mem_base
, ndev
->irq
, priv
->can
.clock
.freq
, priv
->ntxbufs
);
1443 pm_runtime_put(priv
->dev
);
1446 pm_runtime_disable(dev
);
1448 list_del_init(&priv
->peers_on_pdev
);
1452 EXPORT_SYMBOL(ctucan_probe_common
);
1454 MODULE_LICENSE("GPL");
1455 MODULE_AUTHOR("Martin Jerabek <martin.jerabek01@gmail.com>");
1456 MODULE_AUTHOR("Pavel Pisa <pisa@cmp.felk.cvut.cz>");
1457 MODULE_AUTHOR("Ondrej Ille <ondrej.ille@gmail.com>");
1458 MODULE_DESCRIPTION("CTU CAN FD interface");