1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
4 * Copyright (C) 2015 Renesas Electronics Corp.
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
9 * - Classical CAN (CAN 2.0) only mode
11 * This driver puts the controller in CAN FD only mode by default. In this
12 * mode, the controller acts as a CAN FD node that can also interoperate with
15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17 * also required to switch modes.
19 * Note: The h/w manual register naming convention is clumsy and not acceptable
20 * to use as it is in the driver. However, those names are added as comments
21 * wherever it is modified to a readable name.
24 #include <linux/bitmap.h>
25 #include <linux/bitops.h>
26 #include <linux/can/dev.h>
27 #include <linux/clk.h>
28 #include <linux/errno.h>
29 #include <linux/ethtool.h>
30 #include <linux/interrupt.h>
31 #include <linux/iopoll.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/netdevice.h>
37 #include <linux/phy/phy.h>
38 #include <linux/platform_device.h>
39 #include <linux/reset.h>
40 #include <linux/types.h>
42 #define RCANFD_DRV_NAME "rcar_canfd"
44 /* Global register bits */
47 #define RCANFD_GRMCFG_RCMC BIT(0)
49 /* RSCFDnCFDGCFG / RSCFDnGCFG */
50 #define RCANFD_GCFG_EEFE BIT(6)
51 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */
52 #define RCANFD_GCFG_DCS BIT(4)
53 #define RCANFD_GCFG_DCE BIT(1)
54 #define RCANFD_GCFG_TPRI BIT(0)
56 /* RSCFDnCFDGCTR / RSCFDnGCTR */
57 #define RCANFD_GCTR_TSRST BIT(16)
58 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */
59 #define RCANFD_GCTR_THLEIE BIT(10)
60 #define RCANFD_GCTR_MEIE BIT(9)
61 #define RCANFD_GCTR_DEIE BIT(8)
62 #define RCANFD_GCTR_GSLPR BIT(2)
63 #define RCANFD_GCTR_GMDC_MASK (0x3)
64 #define RCANFD_GCTR_GMDC_GOPM (0x0)
65 #define RCANFD_GCTR_GMDC_GRESET (0x1)
66 #define RCANFD_GCTR_GMDC_GTEST (0x2)
68 /* RSCFDnCFDGSTS / RSCFDnGSTS */
69 #define RCANFD_GSTS_GRAMINIT BIT(3)
70 #define RCANFD_GSTS_GSLPSTS BIT(2)
71 #define RCANFD_GSTS_GHLTSTS BIT(1)
72 #define RCANFD_GSTS_GRSTSTS BIT(0)
73 /* Non-operational status */
74 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3))
76 /* RSCFDnCFDGERFL / RSCFDnGERFL */
77 #define RCANFD_GERFL_EEF0_7 GENMASK(23, 16)
78 #define RCANFD_GERFL_EEF(ch) BIT(16 + (ch))
79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */
80 #define RCANFD_GERFL_THLES BIT(2)
81 #define RCANFD_GERFL_MES BIT(1)
82 #define RCANFD_GERFL_DEF BIT(0)
84 #define RCANFD_GERFL_ERR(gpriv, x) \
85 ((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \
86 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
88 ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
90 /* AFL Rx rules registers */
92 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
93 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
94 (((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \
95 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8)))
97 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
98 (((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \
99 reg_gen4(gpriv, 0x1ff, 0xff))
101 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
102 #define RCANFD_GAFLECTR_AFLDAE BIT(8)
103 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_gen4(gpriv, 0x7f, 0x1f))
105 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
106 #define RCANFD_GAFLID_GAFLLB BIT(29)
108 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
109 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x))
111 /* Channel register bits */
113 /* RSCFDnCmCFG - Classical CAN only */
114 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24)
115 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20)
116 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16)
117 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0)
119 /* RSCFDnCFDCmNCFG - CAN FD only */
120 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
121 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24))
123 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
124 (((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16))
126 #define RCANFD_NCFG_NSJW(gpriv, x) \
127 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11))
129 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0)
131 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
132 #define RCANFD_CCTR_CTME BIT(24)
133 #define RCANFD_CCTR_ERRD BIT(23)
134 #define RCANFD_CCTR_BOM_MASK (0x3 << 21)
135 #define RCANFD_CCTR_BOM_ISO (0x0 << 21)
136 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21)
137 #define RCANFD_CCTR_BOM_BEND (0x2 << 21)
138 #define RCANFD_CCTR_TDCVFIE BIT(19)
139 #define RCANFD_CCTR_SOCOIE BIT(18)
140 #define RCANFD_CCTR_EOCOIE BIT(17)
141 #define RCANFD_CCTR_TAIE BIT(16)
142 #define RCANFD_CCTR_ALIE BIT(15)
143 #define RCANFD_CCTR_BLIE BIT(14)
144 #define RCANFD_CCTR_OLIE BIT(13)
145 #define RCANFD_CCTR_BORIE BIT(12)
146 #define RCANFD_CCTR_BOEIE BIT(11)
147 #define RCANFD_CCTR_EPIE BIT(10)
148 #define RCANFD_CCTR_EWIE BIT(9)
149 #define RCANFD_CCTR_BEIE BIT(8)
150 #define RCANFD_CCTR_CSLPR BIT(2)
151 #define RCANFD_CCTR_CHMDC_MASK (0x3)
152 #define RCANFD_CCTR_CHDMC_COPM (0x0)
153 #define RCANFD_CCTR_CHDMC_CRESET (0x1)
154 #define RCANFD_CCTR_CHDMC_CHLT (0x2)
156 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
157 #define RCANFD_CSTS_COMSTS BIT(7)
158 #define RCANFD_CSTS_RECSTS BIT(6)
159 #define RCANFD_CSTS_TRMSTS BIT(5)
160 #define RCANFD_CSTS_BOSTS BIT(4)
161 #define RCANFD_CSTS_EPSTS BIT(3)
162 #define RCANFD_CSTS_SLPSTS BIT(2)
163 #define RCANFD_CSTS_HLTSTS BIT(1)
164 #define RCANFD_CSTS_CRSTSTS BIT(0)
166 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff)
167 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff)
169 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
170 #define RCANFD_CERFL_ADERR BIT(14)
171 #define RCANFD_CERFL_B0ERR BIT(13)
172 #define RCANFD_CERFL_B1ERR BIT(12)
173 #define RCANFD_CERFL_CERR BIT(11)
174 #define RCANFD_CERFL_AERR BIT(10)
175 #define RCANFD_CERFL_FERR BIT(9)
176 #define RCANFD_CERFL_SERR BIT(8)
177 #define RCANFD_CERFL_ALF BIT(7)
178 #define RCANFD_CERFL_BLF BIT(6)
179 #define RCANFD_CERFL_OVLF BIT(5)
180 #define RCANFD_CERFL_BORF BIT(4)
181 #define RCANFD_CERFL_BOEF BIT(3)
182 #define RCANFD_CERFL_EPF BIT(2)
183 #define RCANFD_CERFL_EWF BIT(1)
184 #define RCANFD_CERFL_BEF BIT(0)
186 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */
188 /* RSCFDnCFDCmDCFG */
189 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24)
191 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
192 (((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20))
194 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
195 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16))
197 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0)
199 /* RSCFDnCFDCmFDCFG */
200 #define RCANFD_GEN4_FDCFG_CLOE BIT(30)
201 #define RCANFD_GEN4_FDCFG_FDOE BIT(28)
202 #define RCANFD_FDCFG_TDCE BIT(9)
203 #define RCANFD_FDCFG_TDCOC BIT(8)
204 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16)
207 #define RCANFD_RFCC_RFIM BIT(12)
208 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8)
209 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4)
210 #define RCANFD_RFCC_RFIE BIT(1)
211 #define RCANFD_RFCC_RFE BIT(0)
213 /* RSCFDnCFDRFSTSx */
214 #define RCANFD_RFSTS_RFIF BIT(3)
215 #define RCANFD_RFSTS_RFMLT BIT(2)
216 #define RCANFD_RFSTS_RFFLL BIT(1)
217 #define RCANFD_RFSTS_RFEMP BIT(0)
220 #define RCANFD_RFID_RFIDE BIT(31)
221 #define RCANFD_RFID_RFRTR BIT(30)
223 /* RSCFDnCFDRFPTRx */
224 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf)
225 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff)
226 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff)
228 /* RSCFDnCFDRFFDSTSx */
229 #define RCANFD_RFFDSTS_RFFDF BIT(2)
230 #define RCANFD_RFFDSTS_RFBRS BIT(1)
231 #define RCANFD_RFFDSTS_RFESI BIT(0)
233 /* Common FIFO bits */
236 #define RCANFD_CFCC_CFTML(gpriv, x) \
237 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20))
238 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << reg_gen4(gpriv, 8, 16))
239 #define RCANFD_CFCC_CFIM BIT(12)
240 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << reg_gen4(gpriv, 21, 8))
241 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4)
242 #define RCANFD_CFCC_CFTXIE BIT(2)
243 #define RCANFD_CFCC_CFE BIT(0)
245 /* RSCFDnCFDCFSTSk */
246 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff)
247 #define RCANFD_CFSTS_CFTXIF BIT(4)
248 #define RCANFD_CFSTS_CFMLT BIT(2)
249 #define RCANFD_CFSTS_CFFLL BIT(1)
250 #define RCANFD_CFSTS_CFEMP BIT(0)
253 #define RCANFD_CFID_CFIDE BIT(31)
254 #define RCANFD_CFID_CFRTR BIT(30)
255 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff)
257 /* RSCFDnCFDCFPTRk */
258 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28)
259 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16)
260 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0)
262 /* RSCFDnCFDCFFDCSTSk */
263 #define RCANFD_CFFDCSTS_CFFDF BIT(2)
264 #define RCANFD_CFFDCSTS_CFBRS BIT(1)
265 #define RCANFD_CFFDCSTS_CFESI BIT(0)
267 /* This controller supports either Classical CAN only mode or CAN FD only mode.
268 * These modes are supported in two separate set of register maps & names.
269 * However, some of the register offsets are common for both modes. Those
270 * offsets are listed below as Common registers.
272 * The CAN FD only mode specific registers & Classical CAN only mode specific
273 * registers are listed separately. Their register names starts with
274 * RCANFD_F_xxx & RCANFD_C_xxx respectively.
277 /* Common registers */
279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
280 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m)))
281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
282 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m)))
283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
284 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m)))
285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
286 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m)))
288 /* RSCFDnCFDGCFG / RSCFDnGCFG */
289 #define RCANFD_GCFG (0x0084)
290 /* RSCFDnCFDGCTR / RSCFDnGCTR */
291 #define RCANFD_GCTR (0x0088)
292 /* RSCFDnCFDGCTS / RSCFDnGCTS */
293 #define RCANFD_GSTS (0x008c)
294 /* RSCFDnCFDGERFL / RSCFDnGERFL */
295 #define RCANFD_GERFL (0x0090)
296 /* RSCFDnCFDGTSC / RSCFDnGTSC */
297 #define RCANFD_GTSC (0x0094)
298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
299 #define RCANFD_GAFLECTR (0x0098)
300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
301 #define RCANFD_GAFLCFG(ch) (0x009c + (0x04 * ((ch) / 2)))
302 /* RSCFDnCFDRMNB / RSCFDnRMNB */
303 #define RCANFD_RMNB (0x00a4)
304 /* RSCFDnCFDRMND / RSCFDnRMND */
305 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y)))
307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
308 #define RCANFD_RFCC(gpriv, x) (reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
310 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20)
311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
312 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40)
314 /* Common FIFO Control registers */
316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
317 #define RCANFD_CFCC(gpriv, ch, idx) \
318 (reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
320 #define RCANFD_CFSTS(gpriv, ch, idx) \
321 (reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
323 #define RCANFD_CFPCTR(gpriv, ch, idx) \
324 (reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
326 /* RSCFDnCFDFESTS / RSCFDnFESTS */
327 #define RCANFD_FESTS (0x0238)
328 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
329 #define RCANFD_FFSTS (0x023c)
330 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
331 #define RCANFD_FMSTS (0x0240)
332 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
333 #define RCANFD_RFISTS (0x0244)
334 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
335 #define RCANFD_CFRISTS (0x0248)
336 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
337 #define RCANFD_CFTISTS (0x024c)
339 /* RSCFDnCFDTMCp / RSCFDnTMCp */
340 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p)))
341 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
342 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p)))
344 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
345 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y)))
346 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
347 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y)))
348 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
349 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y)))
350 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
351 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y)))
352 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
353 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y)))
355 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
356 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m)))
357 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
358 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m)))
359 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
360 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m)))
362 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
363 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m)))
364 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
365 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m)))
366 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
367 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m)))
369 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
370 #define RCANFD_GTINTSTS0 (0x0460)
371 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
372 #define RCANFD_GTINTSTS1 (0x0464)
373 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
374 #define RCANFD_GTSTCFG (0x0468)
375 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
376 #define RCANFD_GTSTCTR (0x046c)
377 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
378 #define RCANFD_GLOCKK (0x047c)
379 /* RSCFDnCFDGRMCFG */
380 #define RCANFD_GRMCFG (0x04fc)
382 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
383 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j)))
384 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
385 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j)))
386 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
387 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j)))
388 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
389 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j)))
391 /* Classical CAN only mode register map */
393 /* RSCFDnGAFLXXXj offset */
394 #define RCANFD_C_GAFL_OFFSET (0x0500)
396 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
397 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q)))
398 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q)))
399 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q)))
400 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q)))
402 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
403 #define RCANFD_C_RFOFFSET (0x0e00)
404 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x)))
405 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
406 #define RCANFD_C_RFDF(x, df) \
407 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
409 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
410 #define RCANFD_C_CFOFFSET (0x0e80)
412 #define RCANFD_C_CFID(ch, idx) \
413 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
415 #define RCANFD_C_CFPTR(ch, idx) \
416 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
418 #define RCANFD_C_CFDF(ch, idx, df) \
419 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
421 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
422 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p)))
423 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p)))
424 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p)))
425 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p)))
428 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m)))
430 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r)))
432 /* R-Car Gen4 Classical and CAN FD mode specific register map */
433 #define RCANFD_GEN4_FDCFG(m) (0x1404 + (0x20 * (m)))
435 #define RCANFD_GEN4_GAFL_OFFSET (0x1800)
437 /* CAN FD mode specific register map */
439 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
440 #define RCANFD_F_DCFG(gpriv, m) (reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m)))
441 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m)))
442 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m)))
443 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m)))
444 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m)))
446 /* RSCFDnCFDGAFLXXXj offset */
447 #define RCANFD_F_GAFL_OFFSET (0x1000)
449 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
450 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q)))
451 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q)))
452 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q)))
453 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q)))
455 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
456 #define RCANFD_F_RFOFFSET(gpriv) reg_gen4(gpriv, 0x6000, 0x3000)
457 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
458 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
459 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
460 #define RCANFD_F_RFDF(gpriv, x, df) \
461 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
463 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
464 #define RCANFD_F_CFOFFSET(gpriv) reg_gen4(gpriv, 0x6400, 0x3400)
466 #define RCANFD_F_CFID(gpriv, ch, idx) \
467 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
469 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
470 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
472 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
473 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
475 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
476 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
479 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
480 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p)))
481 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p)))
482 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p)))
483 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b)))
485 /* RSCFDnCFDTHLACCm */
486 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m)))
487 /* RSCFDnCFDRPGACCr */
488 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r)))
491 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */
492 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */
494 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */
495 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1)
497 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16)
498 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */
500 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
501 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
502 * number is added to RFFIFO index.
504 #define RCANFD_RFFIFO_IDX 0
506 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
507 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
509 #define RCANFD_CFFIFO_IDX 0
511 struct rcar_canfd_global
;
513 struct rcar_canfd_hw_info
{
516 /* hardware features */
517 unsigned shared_global_irqs
:1; /* Has shared global irqs */
518 unsigned multi_channel_irqs
:1; /* Has multiple channel irqs */
521 /* Channel priv data */
522 struct rcar_canfd_channel
{
523 struct can_priv can
; /* Must be the first member */
524 struct net_device
*ndev
;
525 struct rcar_canfd_global
*gpriv
; /* Controller reference */
526 void __iomem
*base
; /* Register base address */
527 struct phy
*transceiver
; /* Optional transceiver */
528 struct napi_struct napi
;
529 u32 tx_head
; /* Incremented on xmit */
530 u32 tx_tail
; /* Incremented on xmit done */
531 u32 channel
; /* Channel number */
532 spinlock_t tx_lock
; /* To protect tx path */
535 /* Global priv data */
536 struct rcar_canfd_global
{
537 struct rcar_canfd_channel
*ch
[RCANFD_NUM_CHANNELS
];
538 void __iomem
*base
; /* Register base address */
539 struct platform_device
*pdev
; /* Respective platform device */
540 struct clk
*clkp
; /* Peripheral clock */
541 struct clk
*can_clk
; /* fCAN clock */
542 unsigned long channels_mask
; /* Enabled channels mask */
543 bool extclk
; /* CANFD or Ext clock */
544 bool fdmode
; /* CAN FD or Classical CAN only mode */
545 struct reset_control
*rstc1
;
546 struct reset_control
*rstc2
;
547 const struct rcar_canfd_hw_info
*info
;
550 /* CAN FD mode nominal rate constants */
551 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const
= {
552 .name
= RCANFD_DRV_NAME
,
563 /* CAN FD mode data rate constants */
564 static const struct can_bittiming_const rcar_canfd_data_bittiming_const
= {
565 .name
= RCANFD_DRV_NAME
,
576 /* Classical CAN mode bitrate constants */
577 static const struct can_bittiming_const rcar_canfd_bittiming_const
= {
578 .name
= RCANFD_DRV_NAME
,
589 static const struct rcar_canfd_hw_info rcar_gen3_hw_info
= {
592 .shared_global_irqs
= 1,
595 static const struct rcar_canfd_hw_info rcar_gen4_hw_info
= {
598 .shared_global_irqs
= 1,
601 static const struct rcar_canfd_hw_info rzg2l_hw_info
= {
604 .multi_channel_irqs
= 1,
607 /* Helper functions */
608 static inline bool is_gen4(struct rcar_canfd_global
*gpriv
)
610 return gpriv
->info
== &rcar_gen4_hw_info
;
613 static inline u32
reg_gen4(struct rcar_canfd_global
*gpriv
,
614 u32 gen4
, u32 not_gen4
)
616 return is_gen4(gpriv
) ? gen4
: not_gen4
;
619 static inline void rcar_canfd_update(u32 mask
, u32 val
, u32 __iomem
*reg
)
621 u32 data
= readl(reg
);
624 data
|= (val
& mask
);
628 static inline u32
rcar_canfd_read(void __iomem
*base
, u32 offset
)
630 return readl(base
+ offset
);
633 static inline void rcar_canfd_write(void __iomem
*base
, u32 offset
, u32 val
)
635 writel(val
, base
+ offset
);
638 static void rcar_canfd_set_bit(void __iomem
*base
, u32 reg
, u32 val
)
640 rcar_canfd_update(val
, val
, base
+ reg
);
643 static void rcar_canfd_clear_bit(void __iomem
*base
, u32 reg
, u32 val
)
645 rcar_canfd_update(val
, 0, base
+ reg
);
648 static void rcar_canfd_update_bit(void __iomem
*base
, u32 reg
,
651 rcar_canfd_update(mask
, val
, base
+ reg
);
654 static void rcar_canfd_get_data(struct rcar_canfd_channel
*priv
,
655 struct canfd_frame
*cf
, u32 off
)
659 lwords
= DIV_ROUND_UP(cf
->len
, sizeof(u32
));
660 for (i
= 0; i
< lwords
; i
++)
661 *((u32
*)cf
->data
+ i
) =
662 rcar_canfd_read(priv
->base
, off
+ i
* sizeof(u32
));
665 static void rcar_canfd_put_data(struct rcar_canfd_channel
*priv
,
666 struct canfd_frame
*cf
, u32 off
)
670 lwords
= DIV_ROUND_UP(cf
->len
, sizeof(u32
));
671 for (i
= 0; i
< lwords
; i
++)
672 rcar_canfd_write(priv
->base
, off
+ i
* sizeof(u32
),
673 *((u32
*)cf
->data
+ i
));
676 static void rcar_canfd_tx_failure_cleanup(struct net_device
*ndev
)
680 for (i
= 0; i
< RCANFD_FIFO_DEPTH
; i
++)
681 can_free_echo_skb(ndev
, i
, NULL
);
684 static void rcar_canfd_set_mode(struct rcar_canfd_global
*gpriv
)
686 if (is_gen4(gpriv
)) {
687 u32 ch
, val
= gpriv
->fdmode
? RCANFD_GEN4_FDCFG_FDOE
688 : RCANFD_GEN4_FDCFG_CLOE
;
690 for_each_set_bit(ch
, &gpriv
->channels_mask
,
691 gpriv
->info
->max_channels
)
692 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GEN4_FDCFG(ch
),
696 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GRMCFG
,
699 rcar_canfd_clear_bit(gpriv
->base
, RCANFD_GRMCFG
,
704 static int rcar_canfd_reset_controller(struct rcar_canfd_global
*gpriv
)
709 /* Check RAMINIT flag as CAN RAM initialization takes place
710 * after the MCU reset
712 err
= readl_poll_timeout((gpriv
->base
+ RCANFD_GSTS
), sts
,
713 !(sts
& RCANFD_GSTS_GRAMINIT
), 2, 500000);
715 dev_dbg(&gpriv
->pdev
->dev
, "global raminit failed\n");
719 /* Transition to Global Reset mode */
720 rcar_canfd_clear_bit(gpriv
->base
, RCANFD_GCTR
, RCANFD_GCTR_GSLPR
);
721 rcar_canfd_update_bit(gpriv
->base
, RCANFD_GCTR
,
722 RCANFD_GCTR_GMDC_MASK
, RCANFD_GCTR_GMDC_GRESET
);
724 /* Ensure Global reset mode */
725 err
= readl_poll_timeout((gpriv
->base
+ RCANFD_GSTS
), sts
,
726 (sts
& RCANFD_GSTS_GRSTSTS
), 2, 500000);
728 dev_dbg(&gpriv
->pdev
->dev
, "global reset failed\n");
732 /* Reset Global error flags */
733 rcar_canfd_write(gpriv
->base
, RCANFD_GERFL
, 0x0);
735 /* Set the controller into appropriate mode */
736 rcar_canfd_set_mode(gpriv
);
738 /* Transition all Channels to reset mode */
739 for_each_set_bit(ch
, &gpriv
->channels_mask
, gpriv
->info
->max_channels
) {
740 rcar_canfd_clear_bit(gpriv
->base
,
741 RCANFD_CCTR(ch
), RCANFD_CCTR_CSLPR
);
743 rcar_canfd_update_bit(gpriv
->base
, RCANFD_CCTR(ch
),
744 RCANFD_CCTR_CHMDC_MASK
,
745 RCANFD_CCTR_CHDMC_CRESET
);
747 /* Ensure Channel reset mode */
748 err
= readl_poll_timeout((gpriv
->base
+ RCANFD_CSTS(ch
)), sts
,
749 (sts
& RCANFD_CSTS_CRSTSTS
),
752 dev_dbg(&gpriv
->pdev
->dev
,
753 "channel %u reset failed\n", ch
);
760 static void rcar_canfd_configure_controller(struct rcar_canfd_global
*gpriv
)
764 /* Global configuration settings */
766 /* ECC Error flag Enable */
767 cfg
= RCANFD_GCFG_EEFE
;
770 /* Truncate payload to configured message size RFPLS */
771 cfg
|= RCANFD_GCFG_CMPOC
;
773 /* Set External Clock if selected */
775 cfg
|= RCANFD_GCFG_DCS
;
777 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GCFG
, cfg
);
779 /* Channel configuration settings */
780 for_each_set_bit(ch
, &gpriv
->channels_mask
, gpriv
->info
->max_channels
) {
781 rcar_canfd_set_bit(gpriv
->base
, RCANFD_CCTR(ch
),
783 rcar_canfd_update_bit(gpriv
->base
, RCANFD_CCTR(ch
),
784 RCANFD_CCTR_BOM_MASK
,
785 RCANFD_CCTR_BOM_BENTRY
);
789 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global
*gpriv
,
793 int offset
, start
, page
, num_rules
= RCANFD_CHANNEL_NUMRULES
;
794 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
797 start
= 0; /* Channel 0 always starts from 0th rule */
799 /* Get number of Channel 0 rules and adjust */
800 cfg
= rcar_canfd_read(gpriv
->base
, RCANFD_GAFLCFG(ch
));
801 start
= RCANFD_GAFLCFG_GETRNC(gpriv
, 0, cfg
);
804 /* Enable write access to entry */
805 page
= RCANFD_GAFL_PAGENUM(start
);
806 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GAFLECTR
,
807 (RCANFD_GAFLECTR_AFLPN(gpriv
, page
) |
808 RCANFD_GAFLECTR_AFLDAE
));
810 /* Write number of rules for channel */
811 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GAFLCFG(ch
),
812 RCANFD_GAFLCFG_SETRNC(gpriv
, ch
, num_rules
));
814 offset
= RCANFD_GEN4_GAFL_OFFSET
;
815 else if (gpriv
->fdmode
)
816 offset
= RCANFD_F_GAFL_OFFSET
;
818 offset
= RCANFD_C_GAFL_OFFSET
;
821 rcar_canfd_write(gpriv
->base
, RCANFD_GAFLID(offset
, start
), 0);
822 /* IDE or RTR is not considered for matching */
823 rcar_canfd_write(gpriv
->base
, RCANFD_GAFLM(offset
, start
), 0);
824 /* Any data length accepted */
825 rcar_canfd_write(gpriv
->base
, RCANFD_GAFLP0(offset
, start
), 0);
826 /* Place the msg in corresponding Rx FIFO entry */
827 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GAFLP1(offset
, start
),
828 RCANFD_GAFLP1_GAFLFDP(ridx
));
830 /* Disable write access to page */
831 rcar_canfd_clear_bit(gpriv
->base
,
832 RCANFD_GAFLECTR
, RCANFD_GAFLECTR_AFLDAE
);
835 static void rcar_canfd_configure_rx(struct rcar_canfd_global
*gpriv
, u32 ch
)
837 /* Rx FIFO is used for reception */
841 /* Select Rx FIFO based on channel */
842 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
844 rfdc
= 2; /* b010 - 8 messages Rx FIFO depth */
846 rfpls
= 7; /* b111 - Max 64 bytes payload */
848 rfpls
= 0; /* b000 - Max 8 bytes payload */
850 cfg
= (RCANFD_RFCC_RFIM
| RCANFD_RFCC_RFDC(rfdc
) |
851 RCANFD_RFCC_RFPLS(rfpls
) | RCANFD_RFCC_RFIE
);
852 rcar_canfd_write(gpriv
->base
, RCANFD_RFCC(gpriv
, ridx
), cfg
);
855 static void rcar_canfd_configure_tx(struct rcar_canfd_global
*gpriv
, u32 ch
)
857 /* Tx/Rx(Common) FIFO configured in Tx mode is
858 * used for transmission
860 * Each channel has 3 Common FIFO dedicated to them.
861 * Use the 1st (index 0) out of 3
864 u16 cftml
, cfm
, cfdc
, cfpls
;
866 cftml
= 0; /* 0th buffer */
867 cfm
= 1; /* b01 - Transmit mode */
868 cfdc
= 2; /* b010 - 8 messages Tx FIFO depth */
870 cfpls
= 7; /* b111 - Max 64 bytes payload */
872 cfpls
= 0; /* b000 - Max 8 bytes payload */
874 cfg
= (RCANFD_CFCC_CFTML(gpriv
, cftml
) | RCANFD_CFCC_CFM(gpriv
, cfm
) |
875 RCANFD_CFCC_CFIM
| RCANFD_CFCC_CFDC(gpriv
, cfdc
) |
876 RCANFD_CFCC_CFPLS(cfpls
) | RCANFD_CFCC_CFTXIE
);
877 rcar_canfd_write(gpriv
->base
, RCANFD_CFCC(gpriv
, ch
, RCANFD_CFFIFO_IDX
), cfg
);
880 /* Clear FD mode specific control/status register */
881 rcar_canfd_write(gpriv
->base
,
882 RCANFD_F_CFFDCSTS(gpriv
, ch
, RCANFD_CFFIFO_IDX
), 0);
885 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global
*gpriv
)
889 /* Clear any stray error interrupt flags */
890 rcar_canfd_write(gpriv
->base
, RCANFD_GERFL
, 0);
892 /* Global interrupts setup */
893 ctr
= RCANFD_GCTR_MEIE
;
895 ctr
|= RCANFD_GCTR_CFMPOFIE
;
897 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GCTR
, ctr
);
900 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
903 /* Disable all interrupts */
904 rcar_canfd_write(gpriv
->base
, RCANFD_GCTR
, 0);
906 /* Clear any stray error interrupt flags */
907 rcar_canfd_write(gpriv
->base
, RCANFD_GERFL
, 0);
910 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
913 u32 ctr
, ch
= priv
->channel
;
915 /* Clear any stray error flags */
916 rcar_canfd_write(priv
->base
, RCANFD_CERFL(ch
), 0);
918 /* Channel interrupts setup */
919 ctr
= (RCANFD_CCTR_TAIE
|
920 RCANFD_CCTR_ALIE
| RCANFD_CCTR_BLIE
|
921 RCANFD_CCTR_OLIE
| RCANFD_CCTR_BORIE
|
922 RCANFD_CCTR_BOEIE
| RCANFD_CCTR_EPIE
|
923 RCANFD_CCTR_EWIE
| RCANFD_CCTR_BEIE
);
924 rcar_canfd_set_bit(priv
->base
, RCANFD_CCTR(ch
), ctr
);
927 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
930 u32 ctr
, ch
= priv
->channel
;
932 ctr
= (RCANFD_CCTR_TAIE
|
933 RCANFD_CCTR_ALIE
| RCANFD_CCTR_BLIE
|
934 RCANFD_CCTR_OLIE
| RCANFD_CCTR_BORIE
|
935 RCANFD_CCTR_BOEIE
| RCANFD_CCTR_EPIE
|
936 RCANFD_CCTR_EWIE
| RCANFD_CCTR_BEIE
);
937 rcar_canfd_clear_bit(priv
->base
, RCANFD_CCTR(ch
), ctr
);
939 /* Clear any stray error flags */
940 rcar_canfd_write(priv
->base
, RCANFD_CERFL(ch
), 0);
943 static void rcar_canfd_global_error(struct net_device
*ndev
)
945 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
946 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
947 struct net_device_stats
*stats
= &ndev
->stats
;
948 u32 ch
= priv
->channel
;
950 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
952 gerfl
= rcar_canfd_read(priv
->base
, RCANFD_GERFL
);
953 if (gerfl
& RCANFD_GERFL_EEF(ch
)) {
954 netdev_dbg(ndev
, "Ch%u: ECC Error flag\n", ch
);
957 if (gerfl
& RCANFD_GERFL_MES
) {
958 sts
= rcar_canfd_read(priv
->base
,
959 RCANFD_CFSTS(gpriv
, ch
, RCANFD_CFFIFO_IDX
));
960 if (sts
& RCANFD_CFSTS_CFMLT
) {
961 netdev_dbg(ndev
, "Tx Message Lost flag\n");
963 rcar_canfd_write(priv
->base
,
964 RCANFD_CFSTS(gpriv
, ch
, RCANFD_CFFIFO_IDX
),
965 sts
& ~RCANFD_CFSTS_CFMLT
);
968 sts
= rcar_canfd_read(priv
->base
, RCANFD_RFSTS(gpriv
, ridx
));
969 if (sts
& RCANFD_RFSTS_RFMLT
) {
970 netdev_dbg(ndev
, "Rx Message Lost flag\n");
972 rcar_canfd_write(priv
->base
, RCANFD_RFSTS(gpriv
, ridx
),
973 sts
& ~RCANFD_RFSTS_RFMLT
);
976 if (gpriv
->fdmode
&& gerfl
& RCANFD_GERFL_CMPOF
) {
977 /* Message Lost flag will be set for respective channel
978 * when this condition happens with counters and flags
981 netdev_dbg(ndev
, "global payload overflow interrupt\n");
984 /* Clear all global error interrupts. Only affected channels bits
987 rcar_canfd_write(priv
->base
, RCANFD_GERFL
, 0);
990 static void rcar_canfd_error(struct net_device
*ndev
, u32 cerfl
,
991 u16 txerr
, u16 rxerr
)
993 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
994 struct net_device_stats
*stats
= &ndev
->stats
;
995 struct can_frame
*cf
;
997 u32 ch
= priv
->channel
;
999 netdev_dbg(ndev
, "ch erfl %x txerr %u rxerr %u\n", cerfl
, txerr
, rxerr
);
1001 /* Propagate the error condition to the CAN stack */
1002 skb
= alloc_can_err_skb(ndev
, &cf
);
1004 stats
->rx_dropped
++;
1008 /* Channel error interrupts */
1009 if (cerfl
& RCANFD_CERFL_BEF
) {
1010 netdev_dbg(ndev
, "Bus error\n");
1011 cf
->can_id
|= CAN_ERR_BUSERROR
| CAN_ERR_PROT
;
1012 cf
->data
[2] = CAN_ERR_PROT_UNSPEC
;
1013 priv
->can
.can_stats
.bus_error
++;
1015 if (cerfl
& RCANFD_CERFL_ADERR
) {
1016 netdev_dbg(ndev
, "ACK Delimiter Error\n");
1018 cf
->data
[3] |= CAN_ERR_PROT_LOC_ACK_DEL
;
1020 if (cerfl
& RCANFD_CERFL_B0ERR
) {
1021 netdev_dbg(ndev
, "Bit Error (dominant)\n");
1023 cf
->data
[2] |= CAN_ERR_PROT_BIT0
;
1025 if (cerfl
& RCANFD_CERFL_B1ERR
) {
1026 netdev_dbg(ndev
, "Bit Error (recessive)\n");
1028 cf
->data
[2] |= CAN_ERR_PROT_BIT1
;
1030 if (cerfl
& RCANFD_CERFL_CERR
) {
1031 netdev_dbg(ndev
, "CRC Error\n");
1033 cf
->data
[3] |= CAN_ERR_PROT_LOC_CRC_SEQ
;
1035 if (cerfl
& RCANFD_CERFL_AERR
) {
1036 netdev_dbg(ndev
, "ACK Error\n");
1038 cf
->can_id
|= CAN_ERR_ACK
;
1039 cf
->data
[3] |= CAN_ERR_PROT_LOC_ACK
;
1041 if (cerfl
& RCANFD_CERFL_FERR
) {
1042 netdev_dbg(ndev
, "Form Error\n");
1044 cf
->data
[2] |= CAN_ERR_PROT_FORM
;
1046 if (cerfl
& RCANFD_CERFL_SERR
) {
1047 netdev_dbg(ndev
, "Stuff Error\n");
1049 cf
->data
[2] |= CAN_ERR_PROT_STUFF
;
1051 if (cerfl
& RCANFD_CERFL_ALF
) {
1052 netdev_dbg(ndev
, "Arbitration lost Error\n");
1053 priv
->can
.can_stats
.arbitration_lost
++;
1054 cf
->can_id
|= CAN_ERR_LOSTARB
;
1055 cf
->data
[0] |= CAN_ERR_LOSTARB_UNSPEC
;
1057 if (cerfl
& RCANFD_CERFL_BLF
) {
1058 netdev_dbg(ndev
, "Bus Lock Error\n");
1060 cf
->can_id
|= CAN_ERR_BUSERROR
;
1062 if (cerfl
& RCANFD_CERFL_EWF
) {
1063 netdev_dbg(ndev
, "Error warning interrupt\n");
1064 priv
->can
.state
= CAN_STATE_ERROR_WARNING
;
1065 priv
->can
.can_stats
.error_warning
++;
1066 cf
->can_id
|= CAN_ERR_CRTL
| CAN_ERR_CNT
;
1067 cf
->data
[1] = txerr
> rxerr
? CAN_ERR_CRTL_TX_WARNING
:
1068 CAN_ERR_CRTL_RX_WARNING
;
1069 cf
->data
[6] = txerr
;
1070 cf
->data
[7] = rxerr
;
1072 if (cerfl
& RCANFD_CERFL_EPF
) {
1073 netdev_dbg(ndev
, "Error passive interrupt\n");
1074 priv
->can
.state
= CAN_STATE_ERROR_PASSIVE
;
1075 priv
->can
.can_stats
.error_passive
++;
1076 cf
->can_id
|= CAN_ERR_CRTL
| CAN_ERR_CNT
;
1077 cf
->data
[1] = txerr
> rxerr
? CAN_ERR_CRTL_TX_PASSIVE
:
1078 CAN_ERR_CRTL_RX_PASSIVE
;
1079 cf
->data
[6] = txerr
;
1080 cf
->data
[7] = rxerr
;
1082 if (cerfl
& RCANFD_CERFL_BOEF
) {
1083 netdev_dbg(ndev
, "Bus-off entry interrupt\n");
1084 rcar_canfd_tx_failure_cleanup(ndev
);
1085 priv
->can
.state
= CAN_STATE_BUS_OFF
;
1086 priv
->can
.can_stats
.bus_off
++;
1088 cf
->can_id
|= CAN_ERR_BUSOFF
;
1090 if (cerfl
& RCANFD_CERFL_OVLF
) {
1092 "Overload Frame Transmission error interrupt\n");
1094 cf
->can_id
|= CAN_ERR_PROT
;
1095 cf
->data
[2] |= CAN_ERR_PROT_OVERLOAD
;
1098 /* Clear channel error interrupts that are handled */
1099 rcar_canfd_write(priv
->base
, RCANFD_CERFL(ch
),
1100 RCANFD_CERFL_ERR(~cerfl
));
1104 static void rcar_canfd_tx_done(struct net_device
*ndev
)
1106 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1107 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
1108 struct net_device_stats
*stats
= &ndev
->stats
;
1110 unsigned long flags
;
1111 u32 ch
= priv
->channel
;
1116 sent
= priv
->tx_tail
% RCANFD_FIFO_DEPTH
;
1117 stats
->tx_packets
++;
1118 stats
->tx_bytes
+= can_get_echo_skb(ndev
, sent
, NULL
);
1120 spin_lock_irqsave(&priv
->tx_lock
, flags
);
1122 sts
= rcar_canfd_read(priv
->base
,
1123 RCANFD_CFSTS(gpriv
, ch
, RCANFD_CFFIFO_IDX
));
1124 unsent
= RCANFD_CFSTS_CFMC(sts
);
1126 /* Wake producer only when there is room */
1127 if (unsent
!= RCANFD_FIFO_DEPTH
)
1128 netif_wake_queue(ndev
);
1130 if (priv
->tx_head
- priv
->tx_tail
<= unsent
) {
1131 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1134 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1138 /* Clear interrupt */
1139 rcar_canfd_write(priv
->base
, RCANFD_CFSTS(gpriv
, ch
, RCANFD_CFFIFO_IDX
),
1140 sts
& ~RCANFD_CFSTS_CFTXIF
);
1143 static void rcar_canfd_handle_global_err(struct rcar_canfd_global
*gpriv
, u32 ch
)
1145 struct rcar_canfd_channel
*priv
= gpriv
->ch
[ch
];
1146 struct net_device
*ndev
= priv
->ndev
;
1149 /* Handle global error interrupts */
1150 gerfl
= rcar_canfd_read(priv
->base
, RCANFD_GERFL
);
1151 if (unlikely(RCANFD_GERFL_ERR(gpriv
, gerfl
)))
1152 rcar_canfd_global_error(ndev
);
1155 static irqreturn_t
rcar_canfd_global_err_interrupt(int irq
, void *dev_id
)
1157 struct rcar_canfd_global
*gpriv
= dev_id
;
1160 for_each_set_bit(ch
, &gpriv
->channels_mask
, gpriv
->info
->max_channels
)
1161 rcar_canfd_handle_global_err(gpriv
, ch
);
1166 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global
*gpriv
, u32 ch
)
1168 struct rcar_canfd_channel
*priv
= gpriv
->ch
[ch
];
1169 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
1172 /* Handle Rx interrupts */
1173 sts
= rcar_canfd_read(priv
->base
, RCANFD_RFSTS(gpriv
, ridx
));
1174 cc
= rcar_canfd_read(priv
->base
, RCANFD_RFCC(gpriv
, ridx
));
1175 if (likely(sts
& RCANFD_RFSTS_RFIF
&&
1176 cc
& RCANFD_RFCC_RFIE
)) {
1177 if (napi_schedule_prep(&priv
->napi
)) {
1178 /* Disable Rx FIFO interrupts */
1179 rcar_canfd_clear_bit(priv
->base
,
1180 RCANFD_RFCC(gpriv
, ridx
),
1182 __napi_schedule(&priv
->napi
);
1187 static irqreturn_t
rcar_canfd_global_receive_fifo_interrupt(int irq
, void *dev_id
)
1189 struct rcar_canfd_global
*gpriv
= dev_id
;
1192 for_each_set_bit(ch
, &gpriv
->channels_mask
, gpriv
->info
->max_channels
)
1193 rcar_canfd_handle_global_receive(gpriv
, ch
);
1198 static irqreturn_t
rcar_canfd_global_interrupt(int irq
, void *dev_id
)
1200 struct rcar_canfd_global
*gpriv
= dev_id
;
1203 /* Global error interrupts still indicate a condition specific
1204 * to a channel. RxFIFO interrupt is a global interrupt.
1206 for_each_set_bit(ch
, &gpriv
->channels_mask
, gpriv
->info
->max_channels
) {
1207 rcar_canfd_handle_global_err(gpriv
, ch
);
1208 rcar_canfd_handle_global_receive(gpriv
, ch
);
1213 static void rcar_canfd_state_change(struct net_device
*ndev
,
1214 u16 txerr
, u16 rxerr
)
1216 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1217 struct net_device_stats
*stats
= &ndev
->stats
;
1218 enum can_state rx_state
, tx_state
, state
= priv
->can
.state
;
1219 struct can_frame
*cf
;
1220 struct sk_buff
*skb
;
1222 /* Handle transition from error to normal states */
1223 if (txerr
< 96 && rxerr
< 96)
1224 state
= CAN_STATE_ERROR_ACTIVE
;
1225 else if (txerr
< 128 && rxerr
< 128)
1226 state
= CAN_STATE_ERROR_WARNING
;
1228 if (state
!= priv
->can
.state
) {
1229 netdev_dbg(ndev
, "state: new %d, old %d: txerr %u, rxerr %u\n",
1230 state
, priv
->can
.state
, txerr
, rxerr
);
1231 skb
= alloc_can_err_skb(ndev
, &cf
);
1233 stats
->rx_dropped
++;
1236 tx_state
= txerr
>= rxerr
? state
: 0;
1237 rx_state
= txerr
<= rxerr
? state
: 0;
1239 can_change_state(ndev
, cf
, tx_state
, rx_state
);
1244 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global
*gpriv
, u32 ch
)
1246 struct rcar_canfd_channel
*priv
= gpriv
->ch
[ch
];
1247 struct net_device
*ndev
= priv
->ndev
;
1250 /* Handle Tx interrupts */
1251 sts
= rcar_canfd_read(priv
->base
,
1252 RCANFD_CFSTS(gpriv
, ch
, RCANFD_CFFIFO_IDX
));
1253 if (likely(sts
& RCANFD_CFSTS_CFTXIF
))
1254 rcar_canfd_tx_done(ndev
);
1257 static irqreturn_t
rcar_canfd_channel_tx_interrupt(int irq
, void *dev_id
)
1259 struct rcar_canfd_channel
*priv
= dev_id
;
1261 rcar_canfd_handle_channel_tx(priv
->gpriv
, priv
->channel
);
1266 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global
*gpriv
, u32 ch
)
1268 struct rcar_canfd_channel
*priv
= gpriv
->ch
[ch
];
1269 struct net_device
*ndev
= priv
->ndev
;
1273 /* Handle channel error interrupts */
1274 cerfl
= rcar_canfd_read(priv
->base
, RCANFD_CERFL(ch
));
1275 sts
= rcar_canfd_read(priv
->base
, RCANFD_CSTS(ch
));
1276 txerr
= RCANFD_CSTS_TECCNT(sts
);
1277 rxerr
= RCANFD_CSTS_RECCNT(sts
);
1278 if (unlikely(RCANFD_CERFL_ERR(cerfl
)))
1279 rcar_canfd_error(ndev
, cerfl
, txerr
, rxerr
);
1281 /* Handle state change to lower states */
1282 if (unlikely(priv
->can
.state
!= CAN_STATE_ERROR_ACTIVE
&&
1283 priv
->can
.state
!= CAN_STATE_BUS_OFF
))
1284 rcar_canfd_state_change(ndev
, txerr
, rxerr
);
1287 static irqreturn_t
rcar_canfd_channel_err_interrupt(int irq
, void *dev_id
)
1289 struct rcar_canfd_channel
*priv
= dev_id
;
1291 rcar_canfd_handle_channel_err(priv
->gpriv
, priv
->channel
);
1296 static irqreturn_t
rcar_canfd_channel_interrupt(int irq
, void *dev_id
)
1298 struct rcar_canfd_global
*gpriv
= dev_id
;
1301 /* Common FIFO is a per channel resource */
1302 for_each_set_bit(ch
, &gpriv
->channels_mask
, gpriv
->info
->max_channels
) {
1303 rcar_canfd_handle_channel_err(gpriv
, ch
);
1304 rcar_canfd_handle_channel_tx(gpriv
, ch
);
1310 static void rcar_canfd_set_bittiming(struct net_device
*dev
)
1312 struct rcar_canfd_channel
*priv
= netdev_priv(dev
);
1313 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
1314 const struct can_bittiming
*bt
= &priv
->can
.bittiming
;
1315 const struct can_bittiming
*dbt
= &priv
->can
.data_bittiming
;
1316 u16 brp
, sjw
, tseg1
, tseg2
;
1318 u32 ch
= priv
->channel
;
1320 /* Nominal bit timing settings */
1323 tseg1
= bt
->prop_seg
+ bt
->phase_seg1
- 1;
1324 tseg2
= bt
->phase_seg2
- 1;
1326 if (priv
->can
.ctrlmode
& CAN_CTRLMODE_FD
) {
1327 /* CAN FD only mode */
1328 cfg
= (RCANFD_NCFG_NTSEG1(gpriv
, tseg1
) | RCANFD_NCFG_NBRP(brp
) |
1329 RCANFD_NCFG_NSJW(gpriv
, sjw
) | RCANFD_NCFG_NTSEG2(gpriv
, tseg2
));
1331 rcar_canfd_write(priv
->base
, RCANFD_CCFG(ch
), cfg
);
1332 netdev_dbg(priv
->ndev
, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1333 brp
, sjw
, tseg1
, tseg2
);
1335 /* Data bit timing settings */
1338 tseg1
= dbt
->prop_seg
+ dbt
->phase_seg1
- 1;
1339 tseg2
= dbt
->phase_seg2
- 1;
1341 cfg
= (RCANFD_DCFG_DTSEG1(gpriv
, tseg1
) | RCANFD_DCFG_DBRP(brp
) |
1342 RCANFD_DCFG_DSJW(gpriv
, sjw
) | RCANFD_DCFG_DTSEG2(gpriv
, tseg2
));
1344 rcar_canfd_write(priv
->base
, RCANFD_F_DCFG(gpriv
, ch
), cfg
);
1345 netdev_dbg(priv
->ndev
, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1346 brp
, sjw
, tseg1
, tseg2
);
1348 /* Classical CAN only mode */
1349 if (is_gen4(gpriv
)) {
1350 cfg
= (RCANFD_NCFG_NTSEG1(gpriv
, tseg1
) |
1351 RCANFD_NCFG_NBRP(brp
) |
1352 RCANFD_NCFG_NSJW(gpriv
, sjw
) |
1353 RCANFD_NCFG_NTSEG2(gpriv
, tseg2
));
1355 cfg
= (RCANFD_CFG_TSEG1(tseg1
) |
1356 RCANFD_CFG_BRP(brp
) |
1357 RCANFD_CFG_SJW(sjw
) |
1358 RCANFD_CFG_TSEG2(tseg2
));
1361 rcar_canfd_write(priv
->base
, RCANFD_CCFG(ch
), cfg
);
1362 netdev_dbg(priv
->ndev
,
1363 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1364 brp
, sjw
, tseg1
, tseg2
);
1368 static int rcar_canfd_start(struct net_device
*ndev
)
1370 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1371 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
1372 int err
= -EOPNOTSUPP
;
1373 u32 sts
, ch
= priv
->channel
;
1374 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
1376 rcar_canfd_set_bittiming(ndev
);
1378 rcar_canfd_enable_channel_interrupts(priv
);
1380 /* Set channel to Operational mode */
1381 rcar_canfd_update_bit(priv
->base
, RCANFD_CCTR(ch
),
1382 RCANFD_CCTR_CHMDC_MASK
, RCANFD_CCTR_CHDMC_COPM
);
1384 /* Verify channel mode change */
1385 err
= readl_poll_timeout((priv
->base
+ RCANFD_CSTS(ch
)), sts
,
1386 (sts
& RCANFD_CSTS_COMSTS
), 2, 500000);
1388 netdev_err(ndev
, "channel %u communication state failed\n", ch
);
1389 goto fail_mode_change
;
1392 /* Enable Common & Rx FIFO */
1393 rcar_canfd_set_bit(priv
->base
, RCANFD_CFCC(gpriv
, ch
, RCANFD_CFFIFO_IDX
),
1395 rcar_canfd_set_bit(priv
->base
, RCANFD_RFCC(gpriv
, ridx
), RCANFD_RFCC_RFE
);
1397 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
1401 rcar_canfd_disable_channel_interrupts(priv
);
1405 static int rcar_canfd_open(struct net_device
*ndev
)
1407 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1408 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
1411 err
= phy_power_on(priv
->transceiver
);
1413 netdev_err(ndev
, "failed to power on PHY: %pe\n", ERR_PTR(err
));
1417 /* Peripheral clock is already enabled in probe */
1418 err
= clk_prepare_enable(gpriv
->can_clk
);
1420 netdev_err(ndev
, "failed to enable CAN clock: %pe\n", ERR_PTR(err
));
1424 err
= open_candev(ndev
);
1426 netdev_err(ndev
, "open_candev() failed: %pe\n", ERR_PTR(err
));
1430 napi_enable(&priv
->napi
);
1431 err
= rcar_canfd_start(ndev
);
1434 netif_start_queue(ndev
);
1437 napi_disable(&priv
->napi
);
1440 clk_disable_unprepare(gpriv
->can_clk
);
1442 phy_power_off(priv
->transceiver
);
1446 static void rcar_canfd_stop(struct net_device
*ndev
)
1448 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1449 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
1451 u32 sts
, ch
= priv
->channel
;
1452 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
1454 /* Transition to channel reset mode */
1455 rcar_canfd_update_bit(priv
->base
, RCANFD_CCTR(ch
),
1456 RCANFD_CCTR_CHMDC_MASK
, RCANFD_CCTR_CHDMC_CRESET
);
1458 /* Check Channel reset mode */
1459 err
= readl_poll_timeout((priv
->base
+ RCANFD_CSTS(ch
)), sts
,
1460 (sts
& RCANFD_CSTS_CRSTSTS
), 2, 500000);
1462 netdev_err(ndev
, "channel %u reset failed\n", ch
);
1464 rcar_canfd_disable_channel_interrupts(priv
);
1466 /* Disable Common & Rx FIFO */
1467 rcar_canfd_clear_bit(priv
->base
, RCANFD_CFCC(gpriv
, ch
, RCANFD_CFFIFO_IDX
),
1469 rcar_canfd_clear_bit(priv
->base
, RCANFD_RFCC(gpriv
, ridx
), RCANFD_RFCC_RFE
);
1471 /* Set the state as STOPPED */
1472 priv
->can
.state
= CAN_STATE_STOPPED
;
1475 static int rcar_canfd_close(struct net_device
*ndev
)
1477 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1478 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
1480 netif_stop_queue(ndev
);
1481 rcar_canfd_stop(ndev
);
1482 napi_disable(&priv
->napi
);
1483 clk_disable_unprepare(gpriv
->can_clk
);
1485 phy_power_off(priv
->transceiver
);
1489 static netdev_tx_t
rcar_canfd_start_xmit(struct sk_buff
*skb
,
1490 struct net_device
*ndev
)
1492 struct rcar_canfd_channel
*priv
= netdev_priv(ndev
);
1493 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
1494 struct canfd_frame
*cf
= (struct canfd_frame
*)skb
->data
;
1495 u32 sts
= 0, id
, dlc
;
1496 unsigned long flags
;
1497 u32 ch
= priv
->channel
;
1499 if (can_dev_dropped_skb(ndev
, skb
))
1500 return NETDEV_TX_OK
;
1502 if (cf
->can_id
& CAN_EFF_FLAG
) {
1503 id
= cf
->can_id
& CAN_EFF_MASK
;
1504 id
|= RCANFD_CFID_CFIDE
;
1506 id
= cf
->can_id
& CAN_SFF_MASK
;
1509 if (cf
->can_id
& CAN_RTR_FLAG
)
1510 id
|= RCANFD_CFID_CFRTR
;
1512 dlc
= RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf
->len
));
1514 if ((priv
->can
.ctrlmode
& CAN_CTRLMODE_FD
) || is_gen4(gpriv
)) {
1515 rcar_canfd_write(priv
->base
,
1516 RCANFD_F_CFID(gpriv
, ch
, RCANFD_CFFIFO_IDX
), id
);
1517 rcar_canfd_write(priv
->base
,
1518 RCANFD_F_CFPTR(gpriv
, ch
, RCANFD_CFFIFO_IDX
), dlc
);
1520 if (can_is_canfd_skb(skb
)) {
1521 /* CAN FD frame format */
1522 sts
|= RCANFD_CFFDCSTS_CFFDF
;
1523 if (cf
->flags
& CANFD_BRS
)
1524 sts
|= RCANFD_CFFDCSTS_CFBRS
;
1526 if (priv
->can
.state
== CAN_STATE_ERROR_PASSIVE
)
1527 sts
|= RCANFD_CFFDCSTS_CFESI
;
1530 rcar_canfd_write(priv
->base
,
1531 RCANFD_F_CFFDCSTS(gpriv
, ch
, RCANFD_CFFIFO_IDX
), sts
);
1533 rcar_canfd_put_data(priv
, cf
,
1534 RCANFD_F_CFDF(gpriv
, ch
, RCANFD_CFFIFO_IDX
, 0));
1536 rcar_canfd_write(priv
->base
,
1537 RCANFD_C_CFID(ch
, RCANFD_CFFIFO_IDX
), id
);
1538 rcar_canfd_write(priv
->base
,
1539 RCANFD_C_CFPTR(ch
, RCANFD_CFFIFO_IDX
), dlc
);
1540 rcar_canfd_put_data(priv
, cf
,
1541 RCANFD_C_CFDF(ch
, RCANFD_CFFIFO_IDX
, 0));
1544 can_put_echo_skb(skb
, ndev
, priv
->tx_head
% RCANFD_FIFO_DEPTH
, 0);
1546 spin_lock_irqsave(&priv
->tx_lock
, flags
);
1549 /* Stop the queue if we've filled all FIFO entries */
1550 if (priv
->tx_head
- priv
->tx_tail
>= RCANFD_FIFO_DEPTH
)
1551 netif_stop_queue(ndev
);
1553 /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1554 * pointer for the Common FIFO
1556 rcar_canfd_write(priv
->base
,
1557 RCANFD_CFPCTR(gpriv
, ch
, RCANFD_CFFIFO_IDX
), 0xff);
1559 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1560 return NETDEV_TX_OK
;
1563 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel
*priv
)
1565 struct net_device_stats
*stats
= &priv
->ndev
->stats
;
1566 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
1567 struct canfd_frame
*cf
;
1568 struct sk_buff
*skb
;
1569 u32 sts
= 0, id
, dlc
;
1570 u32 ch
= priv
->channel
;
1571 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
1573 if ((priv
->can
.ctrlmode
& CAN_CTRLMODE_FD
) || is_gen4(gpriv
)) {
1574 id
= rcar_canfd_read(priv
->base
, RCANFD_F_RFID(gpriv
, ridx
));
1575 dlc
= rcar_canfd_read(priv
->base
, RCANFD_F_RFPTR(gpriv
, ridx
));
1577 sts
= rcar_canfd_read(priv
->base
, RCANFD_F_RFFDSTS(gpriv
, ridx
));
1579 if ((priv
->can
.ctrlmode
& CAN_CTRLMODE_FD
) &&
1580 sts
& RCANFD_RFFDSTS_RFFDF
)
1581 skb
= alloc_canfd_skb(priv
->ndev
, &cf
);
1583 skb
= alloc_can_skb(priv
->ndev
,
1584 (struct can_frame
**)&cf
);
1586 id
= rcar_canfd_read(priv
->base
, RCANFD_C_RFID(ridx
));
1587 dlc
= rcar_canfd_read(priv
->base
, RCANFD_C_RFPTR(ridx
));
1588 skb
= alloc_can_skb(priv
->ndev
, (struct can_frame
**)&cf
);
1592 stats
->rx_dropped
++;
1596 if (id
& RCANFD_RFID_RFIDE
)
1597 cf
->can_id
= (id
& CAN_EFF_MASK
) | CAN_EFF_FLAG
;
1599 cf
->can_id
= id
& CAN_SFF_MASK
;
1601 if (priv
->can
.ctrlmode
& CAN_CTRLMODE_FD
) {
1602 if (sts
& RCANFD_RFFDSTS_RFFDF
)
1603 cf
->len
= can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc
));
1605 cf
->len
= can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc
));
1607 if (sts
& RCANFD_RFFDSTS_RFESI
) {
1608 cf
->flags
|= CANFD_ESI
;
1609 netdev_dbg(priv
->ndev
, "ESI Error\n");
1612 if (!(sts
& RCANFD_RFFDSTS_RFFDF
) && (id
& RCANFD_RFID_RFRTR
)) {
1613 cf
->can_id
|= CAN_RTR_FLAG
;
1615 if (sts
& RCANFD_RFFDSTS_RFBRS
)
1616 cf
->flags
|= CANFD_BRS
;
1618 rcar_canfd_get_data(priv
, cf
, RCANFD_F_RFDF(gpriv
, ridx
, 0));
1621 cf
->len
= can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc
));
1622 if (id
& RCANFD_RFID_RFRTR
)
1623 cf
->can_id
|= CAN_RTR_FLAG
;
1624 else if (is_gen4(gpriv
))
1625 rcar_canfd_get_data(priv
, cf
, RCANFD_F_RFDF(gpriv
, ridx
, 0));
1627 rcar_canfd_get_data(priv
, cf
, RCANFD_C_RFDF(ridx
, 0));
1630 /* Write 0xff to RFPC to increment the CPU-side
1631 * pointer of the Rx FIFO
1633 rcar_canfd_write(priv
->base
, RCANFD_RFPCTR(gpriv
, ridx
), 0xff);
1635 if (!(cf
->can_id
& CAN_RTR_FLAG
))
1636 stats
->rx_bytes
+= cf
->len
;
1637 stats
->rx_packets
++;
1638 netif_receive_skb(skb
);
1641 static int rcar_canfd_rx_poll(struct napi_struct
*napi
, int quota
)
1643 struct rcar_canfd_channel
*priv
=
1644 container_of(napi
, struct rcar_canfd_channel
, napi
);
1645 struct rcar_canfd_global
*gpriv
= priv
->gpriv
;
1648 u32 ch
= priv
->channel
;
1649 u32 ridx
= ch
+ RCANFD_RFFIFO_IDX
;
1651 for (num_pkts
= 0; num_pkts
< quota
; num_pkts
++) {
1652 sts
= rcar_canfd_read(priv
->base
, RCANFD_RFSTS(gpriv
, ridx
));
1653 /* Check FIFO empty condition */
1654 if (sts
& RCANFD_RFSTS_RFEMP
)
1657 rcar_canfd_rx_pkt(priv
);
1659 /* Clear interrupt bit */
1660 if (sts
& RCANFD_RFSTS_RFIF
)
1661 rcar_canfd_write(priv
->base
, RCANFD_RFSTS(gpriv
, ridx
),
1662 sts
& ~RCANFD_RFSTS_RFIF
);
1665 /* All packets processed */
1666 if (num_pkts
< quota
) {
1667 if (napi_complete_done(napi
, num_pkts
)) {
1668 /* Enable Rx FIFO interrupts */
1669 rcar_canfd_set_bit(priv
->base
, RCANFD_RFCC(gpriv
, ridx
),
1676 static int rcar_canfd_do_set_mode(struct net_device
*ndev
, enum can_mode mode
)
1681 case CAN_MODE_START
:
1682 err
= rcar_canfd_start(ndev
);
1685 netif_wake_queue(ndev
);
1692 static int rcar_canfd_get_berr_counter(const struct net_device
*dev
,
1693 struct can_berr_counter
*bec
)
1695 struct rcar_canfd_channel
*priv
= netdev_priv(dev
);
1696 u32 val
, ch
= priv
->channel
;
1698 /* Peripheral clock is already enabled in probe */
1699 val
= rcar_canfd_read(priv
->base
, RCANFD_CSTS(ch
));
1700 bec
->txerr
= RCANFD_CSTS_TECCNT(val
);
1701 bec
->rxerr
= RCANFD_CSTS_RECCNT(val
);
1705 static const struct net_device_ops rcar_canfd_netdev_ops
= {
1706 .ndo_open
= rcar_canfd_open
,
1707 .ndo_stop
= rcar_canfd_close
,
1708 .ndo_start_xmit
= rcar_canfd_start_xmit
,
1709 .ndo_change_mtu
= can_change_mtu
,
1712 static const struct ethtool_ops rcar_canfd_ethtool_ops
= {
1713 .get_ts_info
= ethtool_op_get_ts_info
,
1716 static int rcar_canfd_channel_probe(struct rcar_canfd_global
*gpriv
, u32 ch
,
1717 u32 fcan_freq
, struct phy
*transceiver
)
1719 const struct rcar_canfd_hw_info
*info
= gpriv
->info
;
1720 struct platform_device
*pdev
= gpriv
->pdev
;
1721 struct device
*dev
= &pdev
->dev
;
1722 struct rcar_canfd_channel
*priv
;
1723 struct net_device
*ndev
;
1726 ndev
= alloc_candev(sizeof(*priv
), RCANFD_FIFO_DEPTH
);
1730 priv
= netdev_priv(ndev
);
1732 ndev
->netdev_ops
= &rcar_canfd_netdev_ops
;
1733 ndev
->ethtool_ops
= &rcar_canfd_ethtool_ops
;
1734 ndev
->flags
|= IFF_ECHO
;
1736 priv
->base
= gpriv
->base
;
1737 priv
->transceiver
= transceiver
;
1739 priv
->gpriv
= gpriv
;
1741 priv
->can
.bitrate_max
= transceiver
->attrs
.max_link_rate
;
1742 priv
->can
.clock
.freq
= fcan_freq
;
1743 dev_info(dev
, "can_clk rate is %u\n", priv
->can
.clock
.freq
);
1745 if (info
->multi_channel_irqs
) {
1750 err_irq
= platform_get_irq_byname(pdev
, ch
== 0 ? "ch0_err" : "ch1_err");
1756 tx_irq
= platform_get_irq_byname(pdev
, ch
== 0 ? "ch0_trx" : "ch1_trx");
1762 irq_name
= devm_kasprintf(dev
, GFP_KERNEL
, "canfd.ch%d_err",
1768 err
= devm_request_irq(dev
, err_irq
,
1769 rcar_canfd_channel_err_interrupt
, 0,
1772 dev_err(dev
, "devm_request_irq CH Err %d failed: %pe\n",
1773 err_irq
, ERR_PTR(err
));
1776 irq_name
= devm_kasprintf(dev
, GFP_KERNEL
, "canfd.ch%d_trx",
1782 err
= devm_request_irq(dev
, tx_irq
,
1783 rcar_canfd_channel_tx_interrupt
, 0,
1786 dev_err(dev
, "devm_request_irq Tx %d failed: %pe\n",
1787 tx_irq
, ERR_PTR(err
));
1792 if (gpriv
->fdmode
) {
1793 priv
->can
.bittiming_const
= &rcar_canfd_nom_bittiming_const
;
1794 priv
->can
.data_bittiming_const
=
1795 &rcar_canfd_data_bittiming_const
;
1797 /* Controller starts in CAN FD only mode */
1798 err
= can_set_static_ctrlmode(ndev
, CAN_CTRLMODE_FD
);
1801 priv
->can
.ctrlmode_supported
= CAN_CTRLMODE_BERR_REPORTING
;
1803 /* Controller starts in Classical CAN only mode */
1804 priv
->can
.bittiming_const
= &rcar_canfd_bittiming_const
;
1805 priv
->can
.ctrlmode_supported
= CAN_CTRLMODE_BERR_REPORTING
;
1808 priv
->can
.do_set_mode
= rcar_canfd_do_set_mode
;
1809 priv
->can
.do_get_berr_counter
= rcar_canfd_get_berr_counter
;
1810 SET_NETDEV_DEV(ndev
, dev
);
1812 netif_napi_add_weight(ndev
, &priv
->napi
, rcar_canfd_rx_poll
,
1813 RCANFD_NAPI_WEIGHT
);
1814 spin_lock_init(&priv
->tx_lock
);
1815 gpriv
->ch
[priv
->channel
] = priv
;
1816 err
= register_candev(ndev
);
1818 dev_err(dev
, "register_candev() failed: %pe\n", ERR_PTR(err
));
1821 dev_info(dev
, "device registered (channel %u)\n", priv
->channel
);
1825 netif_napi_del(&priv
->napi
);
1831 static void rcar_canfd_channel_remove(struct rcar_canfd_global
*gpriv
, u32 ch
)
1833 struct rcar_canfd_channel
*priv
= gpriv
->ch
[ch
];
1836 unregister_candev(priv
->ndev
);
1837 netif_napi_del(&priv
->napi
);
1838 free_candev(priv
->ndev
);
1842 static int rcar_canfd_probe(struct platform_device
*pdev
)
1844 struct phy
*transceivers
[RCANFD_NUM_CHANNELS
] = { NULL
, };
1845 const struct rcar_canfd_hw_info
*info
;
1846 struct device
*dev
= &pdev
->dev
;
1848 u32 sts
, ch
, fcan_freq
;
1849 struct rcar_canfd_global
*gpriv
;
1850 struct device_node
*of_child
;
1851 unsigned long channels_mask
= 0;
1852 int err
, ch_irq
, g_irq
;
1853 int g_err_irq
, g_recc_irq
;
1854 bool fdmode
= true; /* CAN FD only mode - default */
1855 char name
[9] = "channelX";
1858 info
= of_device_get_match_data(dev
);
1860 if (of_property_read_bool(dev
->of_node
, "renesas,no-can-fd"))
1861 fdmode
= false; /* Classical CAN only mode */
1863 for (i
= 0; i
< info
->max_channels
; ++i
) {
1865 of_child
= of_get_child_by_name(dev
->of_node
, name
);
1866 if (of_child
&& of_device_is_available(of_child
)) {
1867 channels_mask
|= BIT(i
);
1868 transceivers
[i
] = devm_of_phy_optional_get(dev
,
1871 of_node_put(of_child
);
1872 if (IS_ERR(transceivers
[i
]))
1873 return PTR_ERR(transceivers
[i
]);
1876 if (info
->shared_global_irqs
) {
1877 ch_irq
= platform_get_irq_byname_optional(pdev
, "ch_int");
1879 /* For backward compatibility get irq by index */
1880 ch_irq
= platform_get_irq(pdev
, 0);
1885 g_irq
= platform_get_irq_byname_optional(pdev
, "g_int");
1887 /* For backward compatibility get irq by index */
1888 g_irq
= platform_get_irq(pdev
, 1);
1893 g_err_irq
= platform_get_irq_byname(pdev
, "g_err");
1897 g_recc_irq
= platform_get_irq_byname(pdev
, "g_recc");
1902 /* Global controller context */
1903 gpriv
= devm_kzalloc(dev
, sizeof(*gpriv
), GFP_KERNEL
);
1908 gpriv
->channels_mask
= channels_mask
;
1909 gpriv
->fdmode
= fdmode
;
1912 gpriv
->rstc1
= devm_reset_control_get_optional_exclusive(dev
, "rstp_n");
1913 if (IS_ERR(gpriv
->rstc1
))
1914 return dev_err_probe(dev
, PTR_ERR(gpriv
->rstc1
),
1915 "failed to get rstp_n\n");
1917 gpriv
->rstc2
= devm_reset_control_get_optional_exclusive(dev
, "rstc_n");
1918 if (IS_ERR(gpriv
->rstc2
))
1919 return dev_err_probe(dev
, PTR_ERR(gpriv
->rstc2
),
1920 "failed to get rstc_n\n");
1922 /* Peripheral clock */
1923 gpriv
->clkp
= devm_clk_get(dev
, "fck");
1924 if (IS_ERR(gpriv
->clkp
))
1925 return dev_err_probe(dev
, PTR_ERR(gpriv
->clkp
),
1926 "cannot get peripheral clock\n");
1928 /* fCAN clock: Pick External clock. If not available fallback to
1931 gpriv
->can_clk
= devm_clk_get(dev
, "can_clk");
1932 if (IS_ERR(gpriv
->can_clk
) || (clk_get_rate(gpriv
->can_clk
) == 0)) {
1933 gpriv
->can_clk
= devm_clk_get(dev
, "canfd");
1934 if (IS_ERR(gpriv
->can_clk
))
1935 return dev_err_probe(dev
, PTR_ERR(gpriv
->can_clk
),
1936 "cannot get canfd clock\n");
1938 /* CANFD clock may be further divided within the IP */
1939 fcan_freq
= clk_get_rate(gpriv
->can_clk
) / info
->postdiv
;
1941 fcan_freq
= clk_get_rate(gpriv
->can_clk
);
1942 gpriv
->extclk
= true;
1945 addr
= devm_platform_ioremap_resource(pdev
, 0);
1947 err
= PTR_ERR(addr
);
1952 /* Request IRQ that's common for both channels */
1953 if (info
->shared_global_irqs
) {
1954 err
= devm_request_irq(dev
, ch_irq
,
1955 rcar_canfd_channel_interrupt
, 0,
1956 "canfd.ch_int", gpriv
);
1958 dev_err(dev
, "devm_request_irq %d failed: %pe\n",
1959 ch_irq
, ERR_PTR(err
));
1963 err
= devm_request_irq(dev
, g_irq
, rcar_canfd_global_interrupt
,
1964 0, "canfd.g_int", gpriv
);
1966 dev_err(dev
, "devm_request_irq %d failed: %pe\n",
1967 g_irq
, ERR_PTR(err
));
1971 err
= devm_request_irq(dev
, g_recc_irq
,
1972 rcar_canfd_global_receive_fifo_interrupt
, 0,
1973 "canfd.g_recc", gpriv
);
1976 dev_err(dev
, "devm_request_irq %d failed: %pe\n",
1977 g_recc_irq
, ERR_PTR(err
));
1981 err
= devm_request_irq(dev
, g_err_irq
,
1982 rcar_canfd_global_err_interrupt
, 0,
1983 "canfd.g_err", gpriv
);
1985 dev_err(dev
, "devm_request_irq %d failed: %pe\n",
1986 g_err_irq
, ERR_PTR(err
));
1991 err
= reset_control_reset(gpriv
->rstc1
);
1994 err
= reset_control_reset(gpriv
->rstc2
);
1996 reset_control_assert(gpriv
->rstc1
);
2000 /* Enable peripheral clock for register access */
2001 err
= clk_prepare_enable(gpriv
->clkp
);
2003 dev_err(dev
, "failed to enable peripheral clock: %pe\n",
2008 err
= rcar_canfd_reset_controller(gpriv
);
2010 dev_err(dev
, "reset controller failed: %pe\n", ERR_PTR(err
));
2014 /* Controller in Global reset & Channel reset mode */
2015 rcar_canfd_configure_controller(gpriv
);
2017 /* Configure per channel attributes */
2018 for_each_set_bit(ch
, &gpriv
->channels_mask
, info
->max_channels
) {
2019 /* Configure Channel's Rx fifo */
2020 rcar_canfd_configure_rx(gpriv
, ch
);
2022 /* Configure Channel's Tx (Common) fifo */
2023 rcar_canfd_configure_tx(gpriv
, ch
);
2025 /* Configure receive rules */
2026 rcar_canfd_configure_afl_rules(gpriv
, ch
);
2029 /* Configure common interrupts */
2030 rcar_canfd_enable_global_interrupts(gpriv
);
2032 /* Start Global operation mode */
2033 rcar_canfd_update_bit(gpriv
->base
, RCANFD_GCTR
, RCANFD_GCTR_GMDC_MASK
,
2034 RCANFD_GCTR_GMDC_GOPM
);
2036 /* Verify mode change */
2037 err
= readl_poll_timeout((gpriv
->base
+ RCANFD_GSTS
), sts
,
2038 !(sts
& RCANFD_GSTS_GNOPM
), 2, 500000);
2040 dev_err(dev
, "global operational mode failed\n");
2044 for_each_set_bit(ch
, &gpriv
->channels_mask
, info
->max_channels
) {
2045 err
= rcar_canfd_channel_probe(gpriv
, ch
, fcan_freq
,
2051 platform_set_drvdata(pdev
, gpriv
);
2052 dev_info(dev
, "global operational state (%s clk, %s mode)\n",
2053 gpriv
->extclk
? "ext" : "canfd",
2054 gpriv
->fdmode
? "fd" : "classical");
2058 for_each_set_bit(ch
, &gpriv
->channels_mask
, info
->max_channels
)
2059 rcar_canfd_channel_remove(gpriv
, ch
);
2061 rcar_canfd_disable_global_interrupts(gpriv
);
2063 clk_disable_unprepare(gpriv
->clkp
);
2065 reset_control_assert(gpriv
->rstc1
);
2066 reset_control_assert(gpriv
->rstc2
);
2071 static void rcar_canfd_remove(struct platform_device
*pdev
)
2073 struct rcar_canfd_global
*gpriv
= platform_get_drvdata(pdev
);
2076 rcar_canfd_reset_controller(gpriv
);
2077 rcar_canfd_disable_global_interrupts(gpriv
);
2079 for_each_set_bit(ch
, &gpriv
->channels_mask
, gpriv
->info
->max_channels
) {
2080 rcar_canfd_disable_channel_interrupts(gpriv
->ch
[ch
]);
2081 rcar_canfd_channel_remove(gpriv
, ch
);
2084 /* Enter global sleep mode */
2085 rcar_canfd_set_bit(gpriv
->base
, RCANFD_GCTR
, RCANFD_GCTR_GSLPR
);
2086 clk_disable_unprepare(gpriv
->clkp
);
2087 reset_control_assert(gpriv
->rstc1
);
2088 reset_control_assert(gpriv
->rstc2
);
2091 static int __maybe_unused
rcar_canfd_suspend(struct device
*dev
)
2096 static int __maybe_unused
rcar_canfd_resume(struct device
*dev
)
2101 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops
, rcar_canfd_suspend
,
2104 static const __maybe_unused
struct of_device_id rcar_canfd_of_table
[] = {
2105 { .compatible
= "renesas,r8a779a0-canfd", .data
= &rcar_gen4_hw_info
},
2106 { .compatible
= "renesas,rcar-gen3-canfd", .data
= &rcar_gen3_hw_info
},
2107 { .compatible
= "renesas,rcar-gen4-canfd", .data
= &rcar_gen4_hw_info
},
2108 { .compatible
= "renesas,rzg2l-canfd", .data
= &rzg2l_hw_info
},
2112 MODULE_DEVICE_TABLE(of
, rcar_canfd_of_table
);
2114 static struct platform_driver rcar_canfd_driver
= {
2116 .name
= RCANFD_DRV_NAME
,
2117 .of_match_table
= of_match_ptr(rcar_canfd_of_table
),
2118 .pm
= &rcar_canfd_pm_ops
,
2120 .probe
= rcar_canfd_probe
,
2121 .remove
= rcar_canfd_remove
,
2124 module_platform_driver(rcar_canfd_driver
);
2126 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2127 MODULE_LICENSE("GPL");
2128 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2129 MODULE_ALIAS("platform:" RCANFD_DRV_NAME
);