1 // SPDX-License-Identifier: GPL-2.0
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2019-2024 Linaro Ltd.
7 #include <linux/bitfield.h>
8 #include <linux/bits.h>
9 #include <linux/dma-direction.h>
10 #include <linux/refcount.h>
11 #include <linux/scatterlist.h>
12 #include <linux/types.h>
15 #include "gsi_private.h"
16 #include "gsi_trans.h"
22 * DOC: GSI Transactions
24 * A GSI transaction abstracts the behavior of a GSI channel by representing
25 * everything about a related group of IPA operations in a single structure.
26 * (A "operation" in this sense is either a data transfer or an IPA immediate
27 * command.) Most details of interaction with the GSI hardware are managed
28 * by the GSI transaction core, allowing users to simply describe operations
29 * to be performed. When a transaction has completed a callback function
30 * (dependent on the type of endpoint associated with the channel) allows
31 * cleanup of resources associated with the transaction.
33 * To perform an operation (or set of them), a user of the GSI transaction
34 * interface allocates a transaction, indicating the number of TREs required
35 * (one per operation). If sufficient TREs are available, they are reserved
36 * for use in the transaction and the allocation succeeds. This way
37 * exhaustion of the available TREs in a channel ring is detected as early
38 * as possible. Any other resources that might be needed to complete a
39 * transaction are also allocated when the transaction is allocated.
41 * Operations performed as part of a transaction are represented in an array
42 * of Linux scatterlist structures, allocated with the transaction. These
43 * scatterlist structures are initialized by "adding" operations to the
44 * transaction. If a buffer in an operation must be mapped for DMA, this is
45 * done at the time it is added to the transaction. It is possible for a
46 * mapping error to occur when an operation is added. In this case the
47 * transaction should simply be freed; this correctly releases resources
48 * associated with the transaction.
50 * Once all operations have been successfully added to a transaction, the
51 * transaction is committed. Committing transfers ownership of the entire
52 * transaction to the GSI transaction core. The GSI transaction code
53 * formats the content of the scatterlist array into the channel ring
54 * buffer and informs the hardware that new TREs are available to process.
56 * The last TRE in each transaction is marked to interrupt the AP when the
57 * GSI hardware has completed it. Because transfers described by TREs are
58 * performed strictly in order, signaling the completion of just the last
59 * TRE in the transaction is sufficient to indicate the full transaction
62 * When a transaction is complete, ipa_gsi_trans_complete() is called by the
63 * GSI code into the IPA layer, allowing it to perform any final cleanup
64 * required before the transaction is freed.
67 /* Hardware values representing a transfer element type */
70 GSI_RE_IMMD_CMD
= 0x3,
73 /* An entry in a channel ring */
75 __le64 addr
; /* DMA address */
76 __le16 len_opcode
; /* length in bytes or enum IPA_CMD_* */
78 __le32 flags
; /* TRE_FLAGS_* */
81 /* gsi_tre->flags mask values (in CPU byte order) */
82 #define TRE_FLAGS_CHAIN_FMASK GENMASK(0, 0)
83 #define TRE_FLAGS_IEOT_FMASK GENMASK(9, 9)
84 #define TRE_FLAGS_BEI_FMASK GENMASK(10, 10)
85 #define TRE_FLAGS_TYPE_FMASK GENMASK(23, 16)
87 int gsi_trans_pool_init(struct gsi_trans_pool
*pool
, size_t size
, u32 count
,
95 if (count
< max_alloc
)
100 /* By allocating a few extra entries in our pool (one less
101 * than the maximum number that will be requested in a
102 * single allocation), we can always satisfy requests without
103 * ever worrying about straddling the end of the pool array.
104 * If there aren't enough entries starting at the free index,
105 * we just allocate free entries from the beginning of the pool.
107 alloc_size
= size_mul(count
+ max_alloc
- 1, size
);
108 alloc_size
= kmalloc_size_roundup(alloc_size
);
109 virt
= kzalloc(alloc_size
, GFP_KERNEL
);
114 /* If the allocator gave us any extra memory, use it */
115 pool
->count
= alloc_size
/ size
;
117 pool
->max_alloc
= max_alloc
;
119 pool
->addr
= 0; /* Only used for DMA pools */
124 void gsi_trans_pool_exit(struct gsi_trans_pool
*pool
)
127 memset(pool
, 0, sizeof(*pool
));
130 /* Home-grown DMA pool. This way we can preallocate the pool, and guarantee
131 * allocations will succeed. The immediate commands in a transaction can
132 * require up to max_alloc elements from the pool. But we only allow
133 * allocation of a single element from a DMA pool at a time.
135 int gsi_trans_pool_init_dma(struct device
*dev
, struct gsi_trans_pool
*pool
,
136 size_t size
, u32 count
, u32 max_alloc
)
144 if (count
< max_alloc
)
149 /* Don't let allocations cross a power-of-two boundary */
150 size
= __roundup_pow_of_two(size
);
151 total_size
= (count
+ max_alloc
- 1) * size
;
153 /* The allocator will give us a power-of-2 number of pages
154 * sufficient to satisfy our request. Round up our requested
155 * size to avoid any unused space in the allocation. This way
156 * gsi_trans_pool_exit_dma() can assume the total allocated
157 * size is exactly (count * size).
159 total_size
= PAGE_SIZE
<< get_order(total_size
);
161 virt
= dma_alloc_coherent(dev
, total_size
, &addr
, GFP_KERNEL
);
166 pool
->count
= total_size
/ size
;
169 pool
->max_alloc
= max_alloc
;
175 void gsi_trans_pool_exit_dma(struct device
*dev
, struct gsi_trans_pool
*pool
)
177 size_t total_size
= pool
->count
* pool
->size
;
179 dma_free_coherent(dev
, total_size
, pool
->base
, pool
->addr
);
180 memset(pool
, 0, sizeof(*pool
));
183 /* Return the byte offset of the next free entry in the pool */
184 static u32
gsi_trans_pool_alloc_common(struct gsi_trans_pool
*pool
, u32 count
)
189 WARN_ON(count
> pool
->max_alloc
);
191 /* Allocate from beginning if wrap would occur */
192 if (count
> pool
->count
- pool
->free
)
195 offset
= pool
->free
* pool
->size
;
197 memset(pool
->base
+ offset
, 0, count
* pool
->size
);
202 /* Allocate a contiguous block of zeroed entries from a pool */
203 void *gsi_trans_pool_alloc(struct gsi_trans_pool
*pool
, u32 count
)
205 return pool
->base
+ gsi_trans_pool_alloc_common(pool
, count
);
208 /* Allocate a single zeroed entry from a DMA pool */
209 void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool
*pool
, dma_addr_t
*addr
)
211 u32 offset
= gsi_trans_pool_alloc_common(pool
, 1);
213 *addr
= pool
->addr
+ offset
;
215 return pool
->base
+ offset
;
218 /* Map a TRE ring entry index to the transaction it is associated with */
219 static void gsi_trans_map(struct gsi_trans
*trans
, u32 index
)
221 struct gsi_channel
*channel
= &trans
->gsi
->channel
[trans
->channel_id
];
223 /* The completion event will indicate the last TRE used */
224 index
+= trans
->used_count
- 1;
226 /* Note: index *must* be used modulo the ring count here */
227 channel
->trans_info
.map
[index
% channel
->tre_ring
.count
] = trans
;
230 /* Return the transaction mapped to a given ring entry */
232 gsi_channel_trans_mapped(struct gsi_channel
*channel
, u32 index
)
234 /* Note: index *must* be used modulo the ring count here */
235 return channel
->trans_info
.map
[index
% channel
->tre_ring
.count
];
238 /* Return the oldest completed transaction for a channel (or null) */
239 struct gsi_trans
*gsi_channel_trans_complete(struct gsi_channel
*channel
)
241 struct gsi_trans_info
*trans_info
= &channel
->trans_info
;
242 u16 trans_id
= trans_info
->completed_id
;
244 if (trans_id
== trans_info
->pending_id
) {
245 gsi_channel_update(channel
);
246 if (trans_id
== trans_info
->pending_id
)
250 return &trans_info
->trans
[trans_id
%= channel
->tre_count
];
253 /* Move a transaction from allocated to committed state */
254 static void gsi_trans_move_committed(struct gsi_trans
*trans
)
256 struct gsi_channel
*channel
= &trans
->gsi
->channel
[trans
->channel_id
];
257 struct gsi_trans_info
*trans_info
= &channel
->trans_info
;
259 /* This allocated transaction is now committed */
260 trans_info
->allocated_id
++;
263 /* Move committed transactions to pending state */
264 static void gsi_trans_move_pending(struct gsi_trans
*trans
)
266 struct gsi_channel
*channel
= &trans
->gsi
->channel
[trans
->channel_id
];
267 struct gsi_trans_info
*trans_info
= &channel
->trans_info
;
268 u16 trans_index
= trans
- &trans_info
->trans
[0];
271 /* These committed transactions are now pending */
272 delta
= trans_index
- trans_info
->committed_id
+ 1;
273 trans_info
->committed_id
+= delta
% channel
->tre_count
;
276 /* Move pending transactions to completed state */
277 void gsi_trans_move_complete(struct gsi_trans
*trans
)
279 struct gsi_channel
*channel
= &trans
->gsi
->channel
[trans
->channel_id
];
280 struct gsi_trans_info
*trans_info
= &channel
->trans_info
;
281 u16 trans_index
= trans
- trans_info
->trans
;
284 /* These pending transactions are now completed */
285 delta
= trans_index
- trans_info
->pending_id
+ 1;
286 delta
%= channel
->tre_count
;
287 trans_info
->pending_id
+= delta
;
290 /* Move a transaction from completed to polled state */
291 void gsi_trans_move_polled(struct gsi_trans
*trans
)
293 struct gsi_channel
*channel
= &trans
->gsi
->channel
[trans
->channel_id
];
294 struct gsi_trans_info
*trans_info
= &channel
->trans_info
;
296 /* This completed transaction is now polled */
297 trans_info
->completed_id
++;
300 /* Reserve some number of TREs on a channel. Returns true if successful */
302 gsi_trans_tre_reserve(struct gsi_trans_info
*trans_info
, u32 tre_count
)
304 int avail
= atomic_read(&trans_info
->tre_avail
);
308 new = avail
- (int)tre_count
;
309 if (unlikely(new < 0))
311 } while (!atomic_try_cmpxchg(&trans_info
->tre_avail
, &avail
, new));
316 /* Release previously-reserved TRE entries to a channel */
318 gsi_trans_tre_release(struct gsi_trans_info
*trans_info
, u32 tre_count
)
320 atomic_add(tre_count
, &trans_info
->tre_avail
);
323 /* Return true if no transactions are allocated, false otherwise */
324 bool gsi_channel_trans_idle(struct gsi
*gsi
, u32 channel_id
)
326 u32 tre_max
= gsi_channel_tre_max(gsi
, channel_id
);
327 struct gsi_trans_info
*trans_info
;
329 trans_info
= &gsi
->channel
[channel_id
].trans_info
;
331 return atomic_read(&trans_info
->tre_avail
) == tre_max
;
334 /* Allocate a GSI transaction on a channel */
335 struct gsi_trans
*gsi_channel_trans_alloc(struct gsi
*gsi
, u32 channel_id
,
337 enum dma_data_direction direction
)
339 struct gsi_channel
*channel
= &gsi
->channel
[channel_id
];
340 struct gsi_trans_info
*trans_info
;
341 struct gsi_trans
*trans
;
344 if (WARN_ON(tre_count
> channel
->trans_tre_max
))
347 trans_info
= &channel
->trans_info
;
349 /* If we can't reserve the TREs for the transaction, we're done */
350 if (!gsi_trans_tre_reserve(trans_info
, tre_count
))
353 trans_index
= trans_info
->free_id
% channel
->tre_count
;
354 trans
= &trans_info
->trans
[trans_index
];
355 memset(trans
, 0, sizeof(*trans
));
357 /* Initialize non-zero fields in the transaction */
359 trans
->channel_id
= channel_id
;
360 trans
->rsvd_count
= tre_count
;
361 init_completion(&trans
->completion
);
363 /* Allocate the scatterlist */
364 trans
->sgl
= gsi_trans_pool_alloc(&trans_info
->sg_pool
, tre_count
);
365 sg_init_marker(trans
->sgl
, tre_count
);
367 trans
->direction
= direction
;
368 refcount_set(&trans
->refcount
, 1);
370 /* This free transaction is now allocated */
371 trans_info
->free_id
++;
376 /* Free a previously-allocated transaction */
377 void gsi_trans_free(struct gsi_trans
*trans
)
379 struct gsi_trans_info
*trans_info
;
381 if (!refcount_dec_and_test(&trans
->refcount
))
384 /* Unused transactions are allocated but never committed, pending,
385 * completed, or polled.
387 trans_info
= &trans
->gsi
->channel
[trans
->channel_id
].trans_info
;
388 if (!trans
->used_count
) {
389 trans_info
->allocated_id
++;
390 trans_info
->committed_id
++;
391 trans_info
->pending_id
++;
392 trans_info
->completed_id
++;
394 ipa_gsi_trans_release(trans
);
397 /* This transaction is now free */
398 trans_info
->polled_id
++;
400 /* Releasing the reserved TREs implicitly frees the sgl[] and
401 * (if present) info[] arrays, plus the transaction itself.
403 gsi_trans_tre_release(trans_info
, trans
->rsvd_count
);
406 /* Add an immediate command to a transaction */
407 void gsi_trans_cmd_add(struct gsi_trans
*trans
, void *buf
, u32 size
,
408 dma_addr_t addr
, enum ipa_cmd_opcode opcode
)
410 u32 which
= trans
->used_count
++;
411 struct scatterlist
*sg
;
413 WARN_ON(which
>= trans
->rsvd_count
);
415 /* Commands are quite different from data transfer requests.
416 * Their payloads come from a pool whose memory is allocated
417 * using dma_alloc_coherent(). We therefore do *not* map them
418 * for DMA (unlike what we do for pages and skbs).
420 * When a transaction completes, the SGL is normally unmapped.
421 * A command transaction has direction DMA_NONE, which tells
422 * gsi_trans_complete() to skip the unmapping step.
424 * The only things we use directly in a command scatter/gather
425 * entry are the DMA address and length. We still need the SG
426 * table flags to be maintained though, so assign a NULL page
427 * pointer for that purpose.
429 sg
= &trans
->sgl
[which
];
430 sg_assign_page(sg
, NULL
);
431 sg_dma_address(sg
) = addr
;
432 sg_dma_len(sg
) = size
;
434 trans
->cmd_opcode
[which
] = opcode
;
437 /* Add a page transfer to a transaction. It will fill the only TRE. */
438 int gsi_trans_page_add(struct gsi_trans
*trans
, struct page
*page
, u32 size
,
441 struct scatterlist
*sg
= &trans
->sgl
[0];
444 if (WARN_ON(trans
->rsvd_count
!= 1))
446 if (WARN_ON(trans
->used_count
))
449 sg_set_page(sg
, page
, size
, offset
);
450 ret
= dma_map_sg(trans
->gsi
->dev
, sg
, 1, trans
->direction
);
454 trans
->used_count
++; /* Transaction now owns the (DMA mapped) page */
459 /* Add an SKB transfer to a transaction. No other TREs will be used. */
460 int gsi_trans_skb_add(struct gsi_trans
*trans
, struct sk_buff
*skb
)
462 struct scatterlist
*sg
= &trans
->sgl
[0];
466 if (WARN_ON(trans
->rsvd_count
!= 1))
468 if (WARN_ON(trans
->used_count
))
471 /* skb->len will not be 0 (checked early) */
472 ret
= skb_to_sgvec(skb
, sg
, 0, skb
->len
);
477 ret
= dma_map_sg(trans
->gsi
->dev
, sg
, used_count
, trans
->direction
);
481 /* Transaction now owns the (DMA mapped) skb */
482 trans
->used_count
+= used_count
;
487 /* Compute the length/opcode value to use for a TRE */
488 static __le16
gsi_tre_len_opcode(enum ipa_cmd_opcode opcode
, u32 len
)
490 return opcode
== IPA_CMD_NONE
? cpu_to_le16((u16
)len
)
491 : cpu_to_le16((u16
)opcode
);
494 /* Compute the flags value to use for a given TRE */
495 static __le32
gsi_tre_flags(bool last_tre
, bool bei
, enum ipa_cmd_opcode opcode
)
497 enum gsi_tre_type tre_type
;
500 tre_type
= opcode
== IPA_CMD_NONE
? GSI_RE_XFER
: GSI_RE_IMMD_CMD
;
501 tre_flags
= u32_encode_bits(tre_type
, TRE_FLAGS_TYPE_FMASK
);
503 /* Last TRE contains interrupt flags */
505 /* All transactions end in a transfer completion interrupt */
506 tre_flags
|= TRE_FLAGS_IEOT_FMASK
;
507 /* Don't interrupt when outbound commands are acknowledged */
509 tre_flags
|= TRE_FLAGS_BEI_FMASK
;
510 } else { /* All others indicate there's more to come */
511 tre_flags
|= TRE_FLAGS_CHAIN_FMASK
;
514 return cpu_to_le32(tre_flags
);
517 static void gsi_trans_tre_fill(struct gsi_tre
*dest_tre
, dma_addr_t addr
,
518 u32 len
, bool last_tre
, bool bei
,
519 enum ipa_cmd_opcode opcode
)
523 tre
.addr
= cpu_to_le64(addr
);
524 tre
.len_opcode
= gsi_tre_len_opcode(opcode
, len
);
526 tre
.flags
= gsi_tre_flags(last_tre
, bei
, opcode
);
528 /* ARM64 can write 16 bytes as a unit with a single instruction.
529 * Doing the assignment this way is an attempt to make that happen.
535 * __gsi_trans_commit() - Common GSI transaction commit code
536 * @trans: Transaction to commit
537 * @ring_db: Whether to tell the hardware about these queued transfers
539 * Formats channel ring TRE entries based on the content of the scatterlist.
540 * Maps a transaction pointer to the last ring entry used for the transaction,
541 * so it can be recovered when it completes. Moves the transaction to
542 * pending state. Finally, updates the channel ring pointer and optionally
543 * rings the doorbell.
545 static void __gsi_trans_commit(struct gsi_trans
*trans
, bool ring_db
)
547 struct gsi_channel
*channel
= &trans
->gsi
->channel
[trans
->channel_id
];
548 struct gsi_ring
*tre_ring
= &channel
->tre_ring
;
549 enum ipa_cmd_opcode opcode
= IPA_CMD_NONE
;
550 bool bei
= channel
->toward_ipa
;
551 struct gsi_tre
*dest_tre
;
552 struct scatterlist
*sg
;
558 WARN_ON(!trans
->used_count
);
560 /* Consume the entries. If we cross the end of the ring while
561 * filling them we'll switch to the beginning to finish.
562 * If there is no info array we're doing a simple data
563 * transfer request, whose opcode is IPA_CMD_NONE.
565 cmd_opcode
= channel
->command
? &trans
->cmd_opcode
[0] : NULL
;
566 avail
= tre_ring
->count
- tre_ring
->index
% tre_ring
->count
;
567 dest_tre
= gsi_ring_virt(tre_ring
, tre_ring
->index
);
568 for_each_sg(trans
->sgl
, sg
, trans
->used_count
, i
) {
569 bool last_tre
= i
== trans
->used_count
- 1;
570 dma_addr_t addr
= sg_dma_address(sg
);
571 u32 len
= sg_dma_len(sg
);
575 dest_tre
= gsi_ring_virt(tre_ring
, 0);
577 opcode
= *cmd_opcode
++;
579 gsi_trans_tre_fill(dest_tre
, addr
, len
, last_tre
, bei
, opcode
);
582 /* Associate the TRE with the transaction */
583 gsi_trans_map(trans
, tre_ring
->index
);
585 tre_ring
->index
+= trans
->used_count
;
587 trans
->len
= byte_count
;
588 if (channel
->toward_ipa
)
589 gsi_trans_tx_committed(trans
);
591 gsi_trans_move_committed(trans
);
593 /* Ring doorbell if requested, or if all TREs are allocated */
594 if (ring_db
|| !atomic_read(&channel
->trans_info
.tre_avail
)) {
595 /* Report what we're handing off to hardware for TX channels */
596 if (channel
->toward_ipa
)
597 gsi_trans_tx_queued(trans
);
598 gsi_trans_move_pending(trans
);
599 gsi_channel_doorbell(channel
);
603 /* Commit a GSI transaction */
604 void gsi_trans_commit(struct gsi_trans
*trans
, bool ring_db
)
606 if (trans
->used_count
)
607 __gsi_trans_commit(trans
, ring_db
);
609 gsi_trans_free(trans
);
612 /* Commit a GSI transaction and wait for it to complete */
613 void gsi_trans_commit_wait(struct gsi_trans
*trans
)
615 if (!trans
->used_count
)
618 refcount_inc(&trans
->refcount
);
620 __gsi_trans_commit(trans
, true);
622 wait_for_completion(&trans
->completion
);
625 gsi_trans_free(trans
);
628 /* Process the completion of a transaction; called while polling */
629 void gsi_trans_complete(struct gsi_trans
*trans
)
631 /* If the entire SGL was mapped when added, unmap it now */
632 if (trans
->direction
!= DMA_NONE
)
633 dma_unmap_sg(trans
->gsi
->dev
, trans
->sgl
, trans
->used_count
,
636 ipa_gsi_trans_complete(trans
);
638 complete(&trans
->completion
);
640 gsi_trans_free(trans
);
643 /* Cancel a channel's pending transactions */
644 void gsi_channel_trans_cancel_pending(struct gsi_channel
*channel
)
646 struct gsi_trans_info
*trans_info
= &channel
->trans_info
;
647 u16 trans_id
= trans_info
->pending_id
;
649 /* channel->gsi->mutex is held by caller */
651 /* If there are no pending transactions, we're done */
652 if (trans_id
== trans_info
->committed_id
)
655 /* Mark all pending transactions cancelled */
657 struct gsi_trans
*trans
;
659 trans
= &trans_info
->trans
[trans_id
% channel
->tre_count
];
660 trans
->cancelled
= true;
661 } while (++trans_id
!= trans_info
->committed_id
);
663 /* All pending transactions are now completed */
664 trans_info
->pending_id
= trans_info
->committed_id
;
666 /* Schedule NAPI polling to complete the cancelled transactions */
667 napi_schedule(&channel
->napi
);
670 /* Issue a command to read a single byte from a channel */
671 int gsi_trans_read_byte(struct gsi
*gsi
, u32 channel_id
, dma_addr_t addr
)
673 struct gsi_channel
*channel
= &gsi
->channel
[channel_id
];
674 struct gsi_ring
*tre_ring
= &channel
->tre_ring
;
675 struct gsi_trans_info
*trans_info
;
676 struct gsi_tre
*dest_tre
;
678 trans_info
= &channel
->trans_info
;
680 /* First reserve the TRE, if possible */
681 if (!gsi_trans_tre_reserve(trans_info
, 1))
684 /* Now fill the reserved TRE and tell the hardware */
686 dest_tre
= gsi_ring_virt(tre_ring
, tre_ring
->index
);
687 gsi_trans_tre_fill(dest_tre
, addr
, 1, true, false, IPA_CMD_NONE
);
690 gsi_channel_doorbell(channel
);
695 /* Mark a gsi_trans_read_byte() request done */
696 void gsi_trans_read_byte_done(struct gsi
*gsi
, u32 channel_id
)
698 struct gsi_channel
*channel
= &gsi
->channel
[channel_id
];
700 gsi_trans_tre_release(&channel
->trans_info
, 1);
703 /* Initialize a channel's GSI transaction info */
704 int gsi_channel_trans_init(struct gsi
*gsi
, u32 channel_id
)
706 struct gsi_channel
*channel
= &gsi
->channel
[channel_id
];
707 u32 tre_count
= channel
->tre_count
;
708 struct gsi_trans_info
*trans_info
;
712 /* Ensure the size of a channel element is what's expected */
713 BUILD_BUG_ON(sizeof(struct gsi_tre
) != GSI_RING_ELEMENT_SIZE
);
715 trans_info
= &channel
->trans_info
;
717 /* The tre_avail field is what ultimately limits the number of
718 * outstanding transactions and their resources. A transaction
719 * allocation succeeds only if the TREs available are sufficient
720 * for what the transaction might need.
722 tre_max
= gsi_channel_tre_max(channel
->gsi
, channel_id
);
723 atomic_set(&trans_info
->tre_avail
, tre_max
);
725 /* We can't use more TREs than the number available in the ring.
726 * This limits the number of transactions that can be outstanding.
727 * Worst case is one TRE per transaction (but we actually limit
728 * it to something a little less than that). By allocating a
729 * power-of-two number of transactions we can use an index
730 * modulo that number to determine the next one that's free.
731 * Transactions are allocated one at a time.
733 trans_info
->trans
= kcalloc(tre_count
, sizeof(*trans_info
->trans
),
735 if (!trans_info
->trans
)
737 trans_info
->free_id
= 0; /* all modulo channel->tre_count */
738 trans_info
->allocated_id
= 0;
739 trans_info
->committed_id
= 0;
740 trans_info
->pending_id
= 0;
741 trans_info
->completed_id
= 0;
742 trans_info
->polled_id
= 0;
744 /* A completion event contains a pointer to the TRE that caused
745 * the event (which will be the last one used by the transaction).
746 * Each entry in this map records the transaction associated
747 * with a corresponding completed TRE.
749 trans_info
->map
= kcalloc(tre_count
, sizeof(*trans_info
->map
),
751 if (!trans_info
->map
) {
756 /* A transaction uses a scatterlist array to represent the data
757 * transfers implemented by the transaction. Each scatterlist
758 * element is used to fill a single TRE when the transaction is
759 * committed. So we need as many scatterlist elements as the
760 * maximum number of TREs that can be outstanding.
762 ret
= gsi_trans_pool_init(&trans_info
->sg_pool
,
763 sizeof(struct scatterlist
),
764 tre_max
, channel
->trans_tre_max
);
772 kfree(trans_info
->map
);
774 kfree(trans_info
->trans
);
776 dev_err(gsi
->dev
, "error %d initializing channel %u transactions\n",
782 /* Inverse of gsi_channel_trans_init() */
783 void gsi_channel_trans_exit(struct gsi_channel
*channel
)
785 struct gsi_trans_info
*trans_info
= &channel
->trans_info
;
787 gsi_trans_pool_exit(&trans_info
->sg_pool
);
788 kfree(trans_info
->trans
);
789 kfree(trans_info
->map
);