1 // SPDX-License-Identifier: GPL-2.0+
3 * Linux on zSeries Channel Measurement Facility support
5 * Copyright IBM Corp. 2000, 2006
7 * Authors: Arnd Bergmann <arndb@de.ibm.com>
8 * Cornelia Huck <cornelia.huck@de.ibm.com>
10 * original idea from Natarajan Krishnaswami <nkrishna@us.ibm.com>
13 #define KMSG_COMPONENT "cio"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 #include <linux/memblock.h>
17 #include <linux/device.h>
18 #include <linux/init.h>
19 #include <linux/list.h>
20 #include <linux/export.h>
21 #include <linux/moduleparam.h>
22 #include <linux/slab.h>
23 #include <linux/timex.h> /* get_tod_clock() */
25 #include <asm/ccwdev.h>
28 #include <asm/div64.h>
37 * parameter to enable cmf during boot, possible uses are:
38 * "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be
39 * used on any subchannel
40 * "s390cmf=<num>" -- enable cmf and allocate enough memory to measure
41 * <num> subchannel, where <num> is an integer
42 * between 1 and 65535, default is 1024
44 #define ARGSTRING "s390cmf"
46 /* indices for READCMB */
49 /* basic and extended format: */
50 cmb_ssch_rsch_count
= 0,
52 cmb_device_connect_time
,
53 cmb_function_pending_time
,
54 cmb_device_disconnect_time
,
55 cmb_control_unit_queuing_time
,
56 cmb_device_active_only_time
,
57 /* extended format only: */
59 cmb_initial_command_response_time
,
63 * enum cmb_format - types of supported measurement block formats
65 * @CMF_BASIC: traditional channel measurement blocks supported
66 * by all machines that we run on
67 * @CMF_EXTENDED: improved format that was introduced with the z990
69 * @CMF_AUTODETECT: default: use extended format when running on a machine
70 * supporting extended format, otherwise fall back to
80 * format - actual format for all measurement blocks
82 * The format module parameter can be set to a value of 0 (zero)
83 * or 1, indicating basic or extended format as described for
86 static int format
= CMF_AUTODETECT
;
87 module_param(format
, bint
, 0444);
90 * struct cmb_operations - functions to use depending on cmb_format
92 * Most of these functions operate on a struct ccw_device. There is only
93 * one instance of struct cmb_operations because the format of the measurement
94 * data is guaranteed to be the same for every ccw_device.
96 * @alloc: allocate memory for a channel measurement block,
97 * either with the help of a special pool or with kmalloc
98 * @free: free memory allocated with @alloc
99 * @set: enable or disable measurement
100 * @read: read a measurement entry at an index
101 * @readall: read a measurement block in a common format
102 * @reset: clear the data in the associated measurement block and
103 * reset its time stamp
105 struct cmb_operations
{
106 int (*alloc
) (struct ccw_device
*);
107 void (*free
) (struct ccw_device
*);
108 int (*set
) (struct ccw_device
*, u32
);
109 u64 (*read
) (struct ccw_device
*, int);
110 int (*readall
)(struct ccw_device
*, struct cmbdata
*);
111 void (*reset
) (struct ccw_device
*);
113 struct attribute_group
*attr_group
;
115 static struct cmb_operations
*cmbops
;
118 void *hw_block
; /* Pointer to block updated by hardware */
119 void *last_block
; /* Last changed block copied from hardware block */
120 int size
; /* Size of hw_block and last_block */
121 unsigned long long last_update
; /* when last_block was updated */
125 * Our user interface is designed in terms of nanoseconds,
126 * while the hardware measures total times in its own
129 static inline u64
time_to_nsec(u32 value
)
131 return ((u64
)value
) * 128000ull;
135 * Users are usually interested in average times,
136 * not accumulated time.
137 * This also helps us with atomicity problems
138 * when reading single values.
140 static inline u64
time_to_avg_nsec(u32 value
, u32 count
)
144 /* no samples yet, avoid division by 0 */
148 /* value comes in units of 128 µsec */
149 ret
= time_to_nsec(value
);
159 * Activate or deactivate the channel monitor. When area is NULL,
160 * the monitor is deactivated. The channel monitor needs to
161 * be active in order to measure subchannels, which also need
164 static inline void cmf_activate(void *area
, unsigned int onoff
)
166 /* activate channel measurement */
172 : [r1
] "d" ((unsigned long)onoff
),
173 [mbo
] "d" (virt_to_phys(area
))
177 static int set_schib(struct ccw_device
*cdev
, u32 mme
, int mbfc
,
178 unsigned long address
)
180 struct subchannel
*sch
= to_subchannel(cdev
->dev
.parent
);
183 sch
->config
.mme
= mme
;
184 sch
->config
.mbfc
= mbfc
;
185 /* address can be either a block address or a block index */
187 sch
->config
.mba
= address
;
189 sch
->config
.mbi
= address
;
191 ret
= cio_commit_config(sch
);
192 if (!mme
&& ret
== -ENODEV
) {
194 * The task was to disable measurement block updates but
195 * the subchannel is already gone. Report success.
202 struct set_schib_struct
{
205 unsigned long address
;
206 wait_queue_head_t wait
;
210 #define CMF_PENDING 1
211 #define SET_SCHIB_TIMEOUT (10 * HZ)
213 static int set_schib_wait(struct ccw_device
*cdev
, u32 mme
,
214 int mbfc
, unsigned long address
)
216 struct set_schib_struct set_data
;
219 spin_lock_irq(cdev
->ccwlock
);
220 if (!cdev
->private->cmb
)
223 ret
= set_schib(cdev
, mme
, mbfc
, address
);
227 /* if the device is not online, don't even try again */
228 if (cdev
->private->state
!= DEV_STATE_ONLINE
)
231 init_waitqueue_head(&set_data
.wait
);
233 set_data
.mbfc
= mbfc
;
234 set_data
.address
= address
;
235 set_data
.ret
= CMF_PENDING
;
237 cdev
->private->state
= DEV_STATE_CMFCHANGE
;
238 cdev
->private->cmb_wait
= &set_data
;
239 spin_unlock_irq(cdev
->ccwlock
);
241 ret
= wait_event_interruptible_timeout(set_data
.wait
,
242 set_data
.ret
!= CMF_PENDING
,
244 spin_lock_irq(cdev
->ccwlock
);
246 if (set_data
.ret
== CMF_PENDING
) {
247 set_data
.ret
= (ret
== 0) ? -ETIME
: ret
;
248 if (cdev
->private->state
== DEV_STATE_CMFCHANGE
)
249 cdev
->private->state
= DEV_STATE_ONLINE
;
252 cdev
->private->cmb_wait
= NULL
;
255 spin_unlock_irq(cdev
->ccwlock
);
259 void retry_set_schib(struct ccw_device
*cdev
)
261 struct set_schib_struct
*set_data
= cdev
->private->cmb_wait
;
266 set_data
->ret
= set_schib(cdev
, set_data
->mme
, set_data
->mbfc
,
268 wake_up(&set_data
->wait
);
271 static int cmf_copy_block(struct ccw_device
*cdev
)
273 struct subchannel
*sch
= to_subchannel(cdev
->dev
.parent
);
274 struct cmb_data
*cmb_data
;
277 if (cio_update_schib(sch
))
280 if (scsw_fctl(&sch
->schib
.scsw
) & SCSW_FCTL_START_FUNC
) {
281 /* Don't copy if a start function is in progress. */
282 if ((!(scsw_actl(&sch
->schib
.scsw
) & SCSW_ACTL_SUSPENDED
)) &&
283 (scsw_actl(&sch
->schib
.scsw
) &
284 (SCSW_ACTL_DEVACT
| SCSW_ACTL_SCHACT
)) &&
285 (!(scsw_stctl(&sch
->schib
.scsw
) & SCSW_STCTL_SEC_STATUS
)))
288 cmb_data
= cdev
->private->cmb
;
289 hw_block
= cmb_data
->hw_block
;
290 memcpy(cmb_data
->last_block
, hw_block
, cmb_data
->size
);
291 cmb_data
->last_update
= get_tod_clock();
295 struct copy_block_struct
{
296 wait_queue_head_t wait
;
300 static int cmf_cmb_copy_wait(struct ccw_device
*cdev
)
302 struct copy_block_struct copy_block
;
305 spin_lock_irq(cdev
->ccwlock
);
306 if (!cdev
->private->cmb
)
309 ret
= cmf_copy_block(cdev
);
313 if (cdev
->private->state
!= DEV_STATE_ONLINE
)
316 init_waitqueue_head(©_block
.wait
);
317 copy_block
.ret
= CMF_PENDING
;
319 cdev
->private->state
= DEV_STATE_CMFUPDATE
;
320 cdev
->private->cmb_wait
= ©_block
;
321 spin_unlock_irq(cdev
->ccwlock
);
323 ret
= wait_event_interruptible(copy_block
.wait
,
324 copy_block
.ret
!= CMF_PENDING
);
325 spin_lock_irq(cdev
->ccwlock
);
327 if (copy_block
.ret
== CMF_PENDING
) {
328 copy_block
.ret
= -ERESTARTSYS
;
329 if (cdev
->private->state
== DEV_STATE_CMFUPDATE
)
330 cdev
->private->state
= DEV_STATE_ONLINE
;
333 cdev
->private->cmb_wait
= NULL
;
334 ret
= copy_block
.ret
;
336 spin_unlock_irq(cdev
->ccwlock
);
340 void cmf_retry_copy_block(struct ccw_device
*cdev
)
342 struct copy_block_struct
*copy_block
= cdev
->private->cmb_wait
;
347 copy_block
->ret
= cmf_copy_block(cdev
);
348 wake_up(©_block
->wait
);
351 static void cmf_generic_reset(struct ccw_device
*cdev
)
353 struct cmb_data
*cmb_data
;
355 spin_lock_irq(cdev
->ccwlock
);
356 cmb_data
= cdev
->private->cmb
;
358 memset(cmb_data
->last_block
, 0, cmb_data
->size
);
360 * Need to reset hw block as well to make the hardware start
363 memset(cmb_data
->hw_block
, 0, cmb_data
->size
);
364 cmb_data
->last_update
= 0;
366 cdev
->private->cmb_start_time
= get_tod_clock();
367 spin_unlock_irq(cdev
->ccwlock
);
371 * struct cmb_area - container for global cmb data
373 * @mem: pointer to CMBs (only in basic measurement mode)
374 * @list: contains a linked list of all subchannels
375 * @num_channels: number of channels to be measured
376 * @lock: protect concurrent access to @mem and @list
380 struct list_head list
;
385 static struct cmb_area cmb_area
= {
386 .lock
= __SPIN_LOCK_UNLOCKED(cmb_area
.lock
),
387 .list
= LIST_HEAD_INIT(cmb_area
.list
),
388 .num_channels
= 1024,
391 /* ****** old style CMB handling ********/
394 * Basic channel measurement blocks are allocated in one contiguous
395 * block of memory, which can not be moved as long as any channel
396 * is active. Therefore, a maximum number of subchannels needs to
397 * be defined somewhere. This is a module parameter, defaulting to
398 * a reasonable value of 1024, or 32 kb of memory.
399 * Current kernels don't allow kmalloc with more than 128kb, so the
403 module_param_named(maxchannels
, cmb_area
.num_channels
, uint
, 0444);
406 * struct cmb - basic channel measurement block
407 * @ssch_rsch_count: number of ssch and rsch
408 * @sample_count: number of samples
409 * @device_connect_time: time of device connect
410 * @function_pending_time: time of function pending
411 * @device_disconnect_time: time of device disconnect
412 * @control_unit_queuing_time: time of control unit queuing
413 * @device_active_only_time: time of device active only
414 * @reserved: unused in basic measurement mode
416 * The measurement block as used by the hardware. The fields are described
417 * further in z/Architecture Principles of Operation, chapter 17.
419 * The cmb area made up from these blocks must be a contiguous array and may
420 * not be reallocated or freed.
421 * Only one cmb area can be present in the system.
426 u32 device_connect_time
;
427 u32 function_pending_time
;
428 u32 device_disconnect_time
;
429 u32 control_unit_queuing_time
;
430 u32 device_active_only_time
;
435 * Insert a single device into the cmb_area list.
436 * Called with cmb_area.lock held from alloc_cmb.
438 static int alloc_cmb_single(struct ccw_device
*cdev
,
439 struct cmb_data
*cmb_data
)
442 struct ccw_device_private
*node
;
445 spin_lock_irq(cdev
->ccwlock
);
446 if (!list_empty(&cdev
->private->cmb_list
)) {
452 * Find first unused cmb in cmb_area.mem.
453 * This is a little tricky: cmb_area.list
454 * remains sorted by ->cmb->hw_data pointers.
457 list_for_each_entry(node
, &cmb_area
.list
, cmb_list
) {
458 struct cmb_data
*data
;
460 if ((struct cmb
*)data
->hw_block
> cmb
)
464 if (cmb
- cmb_area
.mem
>= cmb_area
.num_channels
) {
470 list_add_tail(&cdev
->private->cmb_list
, &node
->cmb_list
);
471 cmb_data
->hw_block
= cmb
;
472 cdev
->private->cmb
= cmb_data
;
475 spin_unlock_irq(cdev
->ccwlock
);
479 static int alloc_cmb(struct ccw_device
*cdev
)
484 struct cmb_data
*cmb_data
;
486 /* Allocate private cmb_data. */
487 cmb_data
= kzalloc(sizeof(struct cmb_data
), GFP_KERNEL
);
491 cmb_data
->last_block
= kzalloc(sizeof(struct cmb
), GFP_KERNEL
);
492 if (!cmb_data
->last_block
) {
496 cmb_data
->size
= sizeof(struct cmb
);
497 spin_lock(&cmb_area
.lock
);
500 /* there is no user yet, so we need a new area */
501 size
= sizeof(struct cmb
) * cmb_area
.num_channels
;
502 WARN_ON(!list_empty(&cmb_area
.list
));
504 spin_unlock(&cmb_area
.lock
);
505 mem
= (void *)__get_free_pages(GFP_KERNEL
, get_order(size
));
506 spin_lock(&cmb_area
.lock
);
509 /* ok, another thread was faster */
510 free_pages((unsigned long)mem
, get_order(size
));
517 memset(mem
, 0, size
);
519 cmf_activate(cmb_area
.mem
, CMF_ON
);
523 /* do the actual allocation */
524 ret
= alloc_cmb_single(cdev
, cmb_data
);
526 spin_unlock(&cmb_area
.lock
);
528 kfree(cmb_data
->last_block
);
534 static void free_cmb(struct ccw_device
*cdev
)
536 struct ccw_device_private
*priv
;
537 struct cmb_data
*cmb_data
;
539 spin_lock(&cmb_area
.lock
);
540 spin_lock_irq(cdev
->ccwlock
);
542 priv
= cdev
->private;
543 cmb_data
= priv
->cmb
;
546 kfree(cmb_data
->last_block
);
548 list_del_init(&priv
->cmb_list
);
550 if (list_empty(&cmb_area
.list
)) {
552 size
= sizeof(struct cmb
) * cmb_area
.num_channels
;
553 cmf_activate(NULL
, CMF_OFF
);
554 free_pages((unsigned long)cmb_area
.mem
, get_order(size
));
557 spin_unlock_irq(cdev
->ccwlock
);
558 spin_unlock(&cmb_area
.lock
);
561 static int set_cmb(struct ccw_device
*cdev
, u32 mme
)
564 struct cmb_data
*cmb_data
;
567 spin_lock_irqsave(cdev
->ccwlock
, flags
);
568 if (!cdev
->private->cmb
) {
569 spin_unlock_irqrestore(cdev
->ccwlock
, flags
);
572 cmb_data
= cdev
->private->cmb
;
573 offset
= mme
? (struct cmb
*)cmb_data
->hw_block
- cmb_area
.mem
: 0;
574 spin_unlock_irqrestore(cdev
->ccwlock
, flags
);
576 return set_schib_wait(cdev
, mme
, 0, offset
);
579 /* calculate utilization in 0.1 percent units */
580 static u64
__cmb_utilization(u64 device_connect_time
, u64 function_pending_time
,
581 u64 device_disconnect_time
, u64 start_time
)
583 u64 utilization
, elapsed_time
;
585 utilization
= time_to_nsec(device_connect_time
+
586 function_pending_time
+
587 device_disconnect_time
);
589 elapsed_time
= get_tod_clock() - start_time
;
590 elapsed_time
= tod_to_ns(elapsed_time
);
591 elapsed_time
/= 1000;
593 return elapsed_time
? (utilization
/ elapsed_time
) : 0;
596 static u64
read_cmb(struct ccw_device
*cdev
, int index
)
598 struct cmb_data
*cmb_data
;
604 spin_lock_irqsave(cdev
->ccwlock
, flags
);
605 cmb_data
= cdev
->private->cmb
;
609 cmb
= cmb_data
->hw_block
;
611 case avg_utilization
:
612 ret
= __cmb_utilization(cmb
->device_connect_time
,
613 cmb
->function_pending_time
,
614 cmb
->device_disconnect_time
,
615 cdev
->private->cmb_start_time
);
617 case cmb_ssch_rsch_count
:
618 ret
= cmb
->ssch_rsch_count
;
620 case cmb_sample_count
:
621 ret
= cmb
->sample_count
;
623 case cmb_device_connect_time
:
624 val
= cmb
->device_connect_time
;
626 case cmb_function_pending_time
:
627 val
= cmb
->function_pending_time
;
629 case cmb_device_disconnect_time
:
630 val
= cmb
->device_disconnect_time
;
632 case cmb_control_unit_queuing_time
:
633 val
= cmb
->control_unit_queuing_time
;
635 case cmb_device_active_only_time
:
636 val
= cmb
->device_active_only_time
;
641 ret
= time_to_avg_nsec(val
, cmb
->sample_count
);
643 spin_unlock_irqrestore(cdev
->ccwlock
, flags
);
647 static int readall_cmb(struct ccw_device
*cdev
, struct cmbdata
*data
)
650 struct cmb_data
*cmb_data
;
655 ret
= cmf_cmb_copy_wait(cdev
);
658 spin_lock_irqsave(cdev
->ccwlock
, flags
);
659 cmb_data
= cdev
->private->cmb
;
664 if (cmb_data
->last_update
== 0) {
668 cmb
= cmb_data
->last_block
;
669 time
= cmb_data
->last_update
- cdev
->private->cmb_start_time
;
671 memset(data
, 0, sizeof(struct cmbdata
));
673 /* we only know values before device_busy_time */
674 data
->size
= offsetof(struct cmbdata
, device_busy_time
);
676 data
->elapsed_time
= tod_to_ns(time
);
678 /* copy data to new structure */
679 data
->ssch_rsch_count
= cmb
->ssch_rsch_count
;
680 data
->sample_count
= cmb
->sample_count
;
682 /* time fields are converted to nanoseconds while copying */
683 data
->device_connect_time
= time_to_nsec(cmb
->device_connect_time
);
684 data
->function_pending_time
= time_to_nsec(cmb
->function_pending_time
);
685 data
->device_disconnect_time
=
686 time_to_nsec(cmb
->device_disconnect_time
);
687 data
->control_unit_queuing_time
688 = time_to_nsec(cmb
->control_unit_queuing_time
);
689 data
->device_active_only_time
690 = time_to_nsec(cmb
->device_active_only_time
);
693 spin_unlock_irqrestore(cdev
->ccwlock
, flags
);
697 static void reset_cmb(struct ccw_device
*cdev
)
699 cmf_generic_reset(cdev
);
702 static int cmf_enabled(struct ccw_device
*cdev
)
706 spin_lock_irq(cdev
->ccwlock
);
707 enabled
= !!cdev
->private->cmb
;
708 spin_unlock_irq(cdev
->ccwlock
);
713 static struct attribute_group cmf_attr_group
;
715 static struct cmb_operations cmbops_basic
= {
720 .readall
= readall_cmb
,
722 .attr_group
= &cmf_attr_group
,
725 /* ******** extended cmb handling ********/
728 * struct cmbe - extended channel measurement block
729 * @ssch_rsch_count: number of ssch and rsch
730 * @sample_count: number of samples
731 * @device_connect_time: time of device connect
732 * @function_pending_time: time of function pending
733 * @device_disconnect_time: time of device disconnect
734 * @control_unit_queuing_time: time of control unit queuing
735 * @device_active_only_time: time of device active only
736 * @device_busy_time: time of device busy
737 * @initial_command_response_time: initial command response time
740 * The measurement block as used by the hardware. May be in any 64 bit physical
742 * The fields are described further in z/Architecture Principles of Operation,
743 * third edition, chapter 17.
748 u32 device_connect_time
;
749 u32 function_pending_time
;
750 u32 device_disconnect_time
;
751 u32 control_unit_queuing_time
;
752 u32 device_active_only_time
;
753 u32 device_busy_time
;
754 u32 initial_command_response_time
;
756 } __packed
__aligned(64);
758 static struct kmem_cache
*cmbe_cache
;
760 static int alloc_cmbe(struct ccw_device
*cdev
)
762 struct cmb_data
*cmb_data
;
766 cmbe
= kmem_cache_zalloc(cmbe_cache
, GFP_KERNEL
);
770 cmb_data
= kzalloc(sizeof(*cmb_data
), GFP_KERNEL
);
774 cmb_data
->last_block
= kzalloc(sizeof(struct cmbe
), GFP_KERNEL
);
775 if (!cmb_data
->last_block
)
778 cmb_data
->size
= sizeof(*cmbe
);
779 cmb_data
->hw_block
= cmbe
;
781 spin_lock(&cmb_area
.lock
);
782 spin_lock_irq(cdev
->ccwlock
);
783 if (cdev
->private->cmb
)
786 cdev
->private->cmb
= cmb_data
;
788 /* activate global measurement if this is the first channel */
789 if (list_empty(&cmb_area
.list
))
790 cmf_activate(NULL
, CMF_ON
);
791 list_add_tail(&cdev
->private->cmb_list
, &cmb_area
.list
);
793 spin_unlock_irq(cdev
->ccwlock
);
794 spin_unlock(&cmb_area
.lock
);
798 spin_unlock_irq(cdev
->ccwlock
);
799 spin_unlock(&cmb_area
.lock
);
803 kfree(cmb_data
->last_block
);
805 kmem_cache_free(cmbe_cache
, cmbe
);
810 static void free_cmbe(struct ccw_device
*cdev
)
812 struct cmb_data
*cmb_data
;
814 spin_lock(&cmb_area
.lock
);
815 spin_lock_irq(cdev
->ccwlock
);
816 cmb_data
= cdev
->private->cmb
;
817 cdev
->private->cmb
= NULL
;
819 kfree(cmb_data
->last_block
);
820 kmem_cache_free(cmbe_cache
, cmb_data
->hw_block
);
824 /* deactivate global measurement if this is the last channel */
825 list_del_init(&cdev
->private->cmb_list
);
826 if (list_empty(&cmb_area
.list
))
827 cmf_activate(NULL
, CMF_OFF
);
828 spin_unlock_irq(cdev
->ccwlock
);
829 spin_unlock(&cmb_area
.lock
);
832 static int set_cmbe(struct ccw_device
*cdev
, u32 mme
)
835 struct cmb_data
*cmb_data
;
838 spin_lock_irqsave(cdev
->ccwlock
, flags
);
839 if (!cdev
->private->cmb
) {
840 spin_unlock_irqrestore(cdev
->ccwlock
, flags
);
843 cmb_data
= cdev
->private->cmb
;
844 mba
= mme
? (unsigned long) cmb_data
->hw_block
: 0;
845 spin_unlock_irqrestore(cdev
->ccwlock
, flags
);
847 return set_schib_wait(cdev
, mme
, 1, mba
);
850 static u64
read_cmbe(struct ccw_device
*cdev
, int index
)
852 struct cmb_data
*cmb_data
;
858 spin_lock_irqsave(cdev
->ccwlock
, flags
);
859 cmb_data
= cdev
->private->cmb
;
863 cmb
= cmb_data
->hw_block
;
865 case avg_utilization
:
866 ret
= __cmb_utilization(cmb
->device_connect_time
,
867 cmb
->function_pending_time
,
868 cmb
->device_disconnect_time
,
869 cdev
->private->cmb_start_time
);
871 case cmb_ssch_rsch_count
:
872 ret
= cmb
->ssch_rsch_count
;
874 case cmb_sample_count
:
875 ret
= cmb
->sample_count
;
877 case cmb_device_connect_time
:
878 val
= cmb
->device_connect_time
;
880 case cmb_function_pending_time
:
881 val
= cmb
->function_pending_time
;
883 case cmb_device_disconnect_time
:
884 val
= cmb
->device_disconnect_time
;
886 case cmb_control_unit_queuing_time
:
887 val
= cmb
->control_unit_queuing_time
;
889 case cmb_device_active_only_time
:
890 val
= cmb
->device_active_only_time
;
892 case cmb_device_busy_time
:
893 val
= cmb
->device_busy_time
;
895 case cmb_initial_command_response_time
:
896 val
= cmb
->initial_command_response_time
;
901 ret
= time_to_avg_nsec(val
, cmb
->sample_count
);
903 spin_unlock_irqrestore(cdev
->ccwlock
, flags
);
907 static int readall_cmbe(struct ccw_device
*cdev
, struct cmbdata
*data
)
910 struct cmb_data
*cmb_data
;
915 ret
= cmf_cmb_copy_wait(cdev
);
918 spin_lock_irqsave(cdev
->ccwlock
, flags
);
919 cmb_data
= cdev
->private->cmb
;
924 if (cmb_data
->last_update
== 0) {
928 time
= cmb_data
->last_update
- cdev
->private->cmb_start_time
;
930 memset (data
, 0, sizeof(struct cmbdata
));
932 /* we only know values before device_busy_time */
933 data
->size
= offsetof(struct cmbdata
, device_busy_time
);
935 data
->elapsed_time
= tod_to_ns(time
);
937 cmb
= cmb_data
->last_block
;
938 /* copy data to new structure */
939 data
->ssch_rsch_count
= cmb
->ssch_rsch_count
;
940 data
->sample_count
= cmb
->sample_count
;
942 /* time fields are converted to nanoseconds while copying */
943 data
->device_connect_time
= time_to_nsec(cmb
->device_connect_time
);
944 data
->function_pending_time
= time_to_nsec(cmb
->function_pending_time
);
945 data
->device_disconnect_time
=
946 time_to_nsec(cmb
->device_disconnect_time
);
947 data
->control_unit_queuing_time
948 = time_to_nsec(cmb
->control_unit_queuing_time
);
949 data
->device_active_only_time
950 = time_to_nsec(cmb
->device_active_only_time
);
951 data
->device_busy_time
= time_to_nsec(cmb
->device_busy_time
);
952 data
->initial_command_response_time
953 = time_to_nsec(cmb
->initial_command_response_time
);
957 spin_unlock_irqrestore(cdev
->ccwlock
, flags
);
961 static void reset_cmbe(struct ccw_device
*cdev
)
963 cmf_generic_reset(cdev
);
966 static struct attribute_group cmf_attr_group_ext
;
968 static struct cmb_operations cmbops_extended
= {
973 .readall
= readall_cmbe
,
975 .attr_group
= &cmf_attr_group_ext
,
978 static ssize_t
cmb_show_attr(struct device
*dev
, char *buf
, enum cmb_index idx
)
980 return sysfs_emit(buf
, "%lld\n", cmf_read(to_ccwdev(dev
), idx
));
983 static ssize_t
cmb_show_avg_sample_interval(struct device
*dev
,
984 struct device_attribute
*attr
,
987 struct ccw_device
*cdev
= to_ccwdev(dev
);
991 count
= cmf_read(cdev
, cmb_sample_count
);
992 spin_lock_irq(cdev
->ccwlock
);
994 interval
= get_tod_clock() - cdev
->private->cmb_start_time
;
995 interval
= tod_to_ns(interval
);
999 spin_unlock_irq(cdev
->ccwlock
);
1000 return sysfs_emit(buf
, "%ld\n", interval
);
1003 static ssize_t
cmb_show_avg_utilization(struct device
*dev
,
1004 struct device_attribute
*attr
,
1007 unsigned long u
= cmf_read(to_ccwdev(dev
), avg_utilization
);
1009 return sysfs_emit(buf
, "%02lu.%01lu%%\n", u
/ 10, u
% 10);
1012 #define cmf_attr(name) \
1013 static ssize_t show_##name(struct device *dev, \
1014 struct device_attribute *attr, char *buf) \
1015 { return cmb_show_attr((dev), buf, cmb_##name); } \
1016 static DEVICE_ATTR(name, 0444, show_##name, NULL);
1018 #define cmf_attr_avg(name) \
1019 static ssize_t show_avg_##name(struct device *dev, \
1020 struct device_attribute *attr, char *buf) \
1021 { return cmb_show_attr((dev), buf, cmb_##name); } \
1022 static DEVICE_ATTR(avg_##name, 0444, show_avg_##name, NULL);
1024 cmf_attr(ssch_rsch_count
);
1025 cmf_attr(sample_count
);
1026 cmf_attr_avg(device_connect_time
);
1027 cmf_attr_avg(function_pending_time
);
1028 cmf_attr_avg(device_disconnect_time
);
1029 cmf_attr_avg(control_unit_queuing_time
);
1030 cmf_attr_avg(device_active_only_time
);
1031 cmf_attr_avg(device_busy_time
);
1032 cmf_attr_avg(initial_command_response_time
);
1034 static DEVICE_ATTR(avg_sample_interval
, 0444, cmb_show_avg_sample_interval
,
1036 static DEVICE_ATTR(avg_utilization
, 0444, cmb_show_avg_utilization
, NULL
);
1038 static struct attribute
*cmf_attributes
[] = {
1039 &dev_attr_avg_sample_interval
.attr
,
1040 &dev_attr_avg_utilization
.attr
,
1041 &dev_attr_ssch_rsch_count
.attr
,
1042 &dev_attr_sample_count
.attr
,
1043 &dev_attr_avg_device_connect_time
.attr
,
1044 &dev_attr_avg_function_pending_time
.attr
,
1045 &dev_attr_avg_device_disconnect_time
.attr
,
1046 &dev_attr_avg_control_unit_queuing_time
.attr
,
1047 &dev_attr_avg_device_active_only_time
.attr
,
1051 static struct attribute_group cmf_attr_group
= {
1053 .attrs
= cmf_attributes
,
1056 static struct attribute
*cmf_attributes_ext
[] = {
1057 &dev_attr_avg_sample_interval
.attr
,
1058 &dev_attr_avg_utilization
.attr
,
1059 &dev_attr_ssch_rsch_count
.attr
,
1060 &dev_attr_sample_count
.attr
,
1061 &dev_attr_avg_device_connect_time
.attr
,
1062 &dev_attr_avg_function_pending_time
.attr
,
1063 &dev_attr_avg_device_disconnect_time
.attr
,
1064 &dev_attr_avg_control_unit_queuing_time
.attr
,
1065 &dev_attr_avg_device_active_only_time
.attr
,
1066 &dev_attr_avg_device_busy_time
.attr
,
1067 &dev_attr_avg_initial_command_response_time
.attr
,
1071 static struct attribute_group cmf_attr_group_ext
= {
1073 .attrs
= cmf_attributes_ext
,
1076 static ssize_t
cmb_enable_show(struct device
*dev
,
1077 struct device_attribute
*attr
,
1080 struct ccw_device
*cdev
= to_ccwdev(dev
);
1082 return sysfs_emit(buf
, "%d\n", cmf_enabled(cdev
));
1085 static ssize_t
cmb_enable_store(struct device
*dev
,
1086 struct device_attribute
*attr
, const char *buf
,
1089 struct ccw_device
*cdev
= to_ccwdev(dev
);
1093 ret
= kstrtoul(buf
, 16, &val
);
1099 ret
= disable_cmf(cdev
);
1102 ret
= enable_cmf(cdev
);
1108 return ret
? ret
: c
;
1110 DEVICE_ATTR_RW(cmb_enable
);
1113 * enable_cmf() - switch on the channel measurement for a specific device
1114 * @cdev: The ccw device to be enabled
1116 * Enable channel measurements for @cdev. If this is called on a device
1117 * for which channel measurement is already enabled a reset of the
1118 * measurement data is triggered.
1119 * Returns: %0 for success or a negative error value.
1123 int enable_cmf(struct ccw_device
*cdev
)
1127 device_lock(&cdev
->dev
);
1128 if (cmf_enabled(cdev
)) {
1129 cmbops
->reset(cdev
);
1132 get_device(&cdev
->dev
);
1133 ret
= cmbops
->alloc(cdev
);
1136 cmbops
->reset(cdev
);
1137 ret
= sysfs_create_group(&cdev
->dev
.kobj
, cmbops
->attr_group
);
1142 ret
= cmbops
->set(cdev
, 2);
1144 sysfs_remove_group(&cdev
->dev
.kobj
, cmbops
->attr_group
);
1149 put_device(&cdev
->dev
);
1151 device_unlock(&cdev
->dev
);
1156 * __disable_cmf() - switch off the channel measurement for a specific device
1157 * @cdev: The ccw device to be disabled
1159 * Returns: %0 for success or a negative error value.
1162 * non-atomic, device_lock() held.
1164 int __disable_cmf(struct ccw_device
*cdev
)
1168 ret
= cmbops
->set(cdev
, 0);
1172 sysfs_remove_group(&cdev
->dev
.kobj
, cmbops
->attr_group
);
1174 put_device(&cdev
->dev
);
1180 * disable_cmf() - switch off the channel measurement for a specific device
1181 * @cdev: The ccw device to be disabled
1183 * Returns: %0 for success or a negative error value.
1188 int disable_cmf(struct ccw_device
*cdev
)
1192 device_lock(&cdev
->dev
);
1193 ret
= __disable_cmf(cdev
);
1194 device_unlock(&cdev
->dev
);
1200 * cmf_read() - read one value from the current channel measurement block
1201 * @cdev: the channel to be read
1202 * @index: the index of the value to be read
1204 * Returns: The value read or %0 if the value cannot be read.
1209 u64
cmf_read(struct ccw_device
*cdev
, int index
)
1211 return cmbops
->read(cdev
, index
);
1215 * cmf_readall() - read the current channel measurement block
1216 * @cdev: the channel to be read
1217 * @data: a pointer to a data block that will be filled
1219 * Returns: %0 on success, a negative error value otherwise.
1224 int cmf_readall(struct ccw_device
*cdev
, struct cmbdata
*data
)
1226 return cmbops
->readall(cdev
, data
);
1229 /* Re-enable cmf when a disconnected device becomes available again. */
1230 int cmf_reenable(struct ccw_device
*cdev
)
1232 cmbops
->reset(cdev
);
1233 return cmbops
->set(cdev
, 2);
1237 * cmf_reactivate() - reactivate measurement block updates
1239 * Use this during resume from hibernate.
1241 void cmf_reactivate(void)
1243 spin_lock(&cmb_area
.lock
);
1244 if (!list_empty(&cmb_area
.list
))
1245 cmf_activate(cmb_area
.mem
, CMF_ON
);
1246 spin_unlock(&cmb_area
.lock
);
1249 static int __init
init_cmbe(void)
1251 cmbe_cache
= kmem_cache_create("cmbe_cache", sizeof(struct cmbe
),
1252 __alignof__(struct cmbe
), 0, NULL
);
1254 return cmbe_cache
? 0 : -ENOMEM
;
1257 static int __init
init_cmf(void)
1259 char *format_string
;
1260 char *detect_string
;
1264 * If the user did not give a parameter, see if we are running on a
1265 * machine supporting extended measurement blocks, otherwise fall back
1268 if (format
== CMF_AUTODETECT
) {
1269 if (!css_general_characteristics
.ext_mb
) {
1272 format
= CMF_EXTENDED
;
1274 detect_string
= "autodetected";
1276 detect_string
= "parameter";
1281 format_string
= "basic";
1282 cmbops
= &cmbops_basic
;
1285 format_string
= "extended";
1286 cmbops
= &cmbops_extended
;
1295 pr_info("Channel measurement facility initialized using format "
1296 "%s (mode %s)\n", format_string
, detect_string
);
1299 device_initcall(init_cmf
);
1301 EXPORT_SYMBOL_GPL(enable_cmf
);
1302 EXPORT_SYMBOL_GPL(disable_cmf
);
1303 EXPORT_SYMBOL_GPL(cmf_read
);
1304 EXPORT_SYMBOL_GPL(cmf_readall
);