cpufreq/amd-pstate: Fix per-policy boost flag incorrect when fail
[pf-kernel.git] / drivers / soc / qcom / smem.c
blob59281970180921b76312fd5020828edced739344
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, Sony Mobile Communications AB.
4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5 */
7 #include <linux/hwspinlock.h>
8 #include <linux/io.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_address.h>
12 #include <linux/of_reserved_mem.h>
13 #include <linux/platform_device.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/soc/qcom/smem.h>
17 #include <linux/soc/qcom/socinfo.h>
20 * The Qualcomm shared memory system is a allocate only heap structure that
21 * consists of one of more memory areas that can be accessed by the processors
22 * in the SoC.
24 * All systems contains a global heap, accessible by all processors in the SoC,
25 * with a table of contents data structure (@smem_header) at the beginning of
26 * the main shared memory block.
28 * The global header contains meta data for allocations as well as a fixed list
29 * of 512 entries (@smem_global_entry) that can be initialized to reference
30 * parts of the shared memory space.
33 * In addition to this global heap a set of "private" heaps can be set up at
34 * boot time with access restrictions so that only certain processor pairs can
35 * access the data.
37 * These partitions are referenced from an optional partition table
38 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
39 * partition table entries (@smem_ptable_entry) lists the involved processors
40 * (or hosts) and their location in the main shared memory region.
42 * Each partition starts with a header (@smem_partition_header) that identifies
43 * the partition and holds properties for the two internal memory regions. The
44 * two regions are cached and non-cached memory respectively. Each region
45 * contain a link list of allocation headers (@smem_private_entry) followed by
46 * their data.
48 * Items in the non-cached region are allocated from the start of the partition
49 * while items in the cached region are allocated from the end. The free area
50 * is hence the region between the cached and non-cached offsets. The header of
51 * cached items comes after the data.
53 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
54 * for the global heap. A new global partition is created from the global heap
55 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
56 * set by the bootloader.
58 * To synchronize allocations in the shared memory heaps a remote spinlock must
59 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
60 * platforms.
65 * The version member of the smem header contains an array of versions for the
66 * various software components in the SoC. We verify that the boot loader
67 * version is a valid version as a sanity check.
69 #define SMEM_MASTER_SBL_VERSION_INDEX 7
70 #define SMEM_GLOBAL_HEAP_VERSION 11
71 #define SMEM_GLOBAL_PART_VERSION 12
74 * The first 8 items are only to be allocated by the boot loader while
75 * initializing the heap.
77 #define SMEM_ITEM_LAST_FIXED 8
79 /* Highest accepted item number, for both global and private heaps */
80 #define SMEM_ITEM_COUNT 512
82 /* Processor/host identifier for the application processor */
83 #define SMEM_HOST_APPS 0
85 /* Processor/host identifier for the global partition */
86 #define SMEM_GLOBAL_HOST 0xfffe
88 /* Max number of processors/hosts in a system */
89 #define SMEM_HOST_COUNT 20
91 /**
92 * struct smem_proc_comm - proc_comm communication struct (legacy)
93 * @command: current command to be executed
94 * @status: status of the currently requested command
95 * @params: parameters to the command
97 struct smem_proc_comm {
98 __le32 command;
99 __le32 status;
100 __le32 params[2];
104 * struct smem_global_entry - entry to reference smem items on the heap
105 * @allocated: boolean to indicate if this entry is used
106 * @offset: offset to the allocated space
107 * @size: size of the allocated space, 8 byte aligned
108 * @aux_base: base address for the memory region used by this unit, or 0 for
109 * the default region. bits 0,1 are reserved
111 struct smem_global_entry {
112 __le32 allocated;
113 __le32 offset;
114 __le32 size;
115 __le32 aux_base; /* bits 1:0 reserved */
117 #define AUX_BASE_MASK 0xfffffffc
120 * struct smem_header - header found in beginning of primary smem region
121 * @proc_comm: proc_comm communication interface (legacy)
122 * @version: array of versions for the various subsystems
123 * @initialized: boolean to indicate that smem is initialized
124 * @free_offset: index of the first unallocated byte in smem
125 * @available: number of bytes available for allocation
126 * @reserved: reserved field, must be 0
127 * @toc: array of references to items
129 struct smem_header {
130 struct smem_proc_comm proc_comm[4];
131 __le32 version[32];
132 __le32 initialized;
133 __le32 free_offset;
134 __le32 available;
135 __le32 reserved;
136 struct smem_global_entry toc[SMEM_ITEM_COUNT];
140 * struct smem_ptable_entry - one entry in the @smem_ptable list
141 * @offset: offset, within the main shared memory region, of the partition
142 * @size: size of the partition
143 * @flags: flags for the partition (currently unused)
144 * @host0: first processor/host with access to this partition
145 * @host1: second processor/host with access to this partition
146 * @cacheline: alignment for "cached" entries
147 * @reserved: reserved entries for later use
149 struct smem_ptable_entry {
150 __le32 offset;
151 __le32 size;
152 __le32 flags;
153 __le16 host0;
154 __le16 host1;
155 __le32 cacheline;
156 __le32 reserved[7];
160 * struct smem_ptable - partition table for the private partitions
161 * @magic: magic number, must be SMEM_PTABLE_MAGIC
162 * @version: version of the partition table
163 * @num_entries: number of partitions in the table
164 * @reserved: for now reserved entries
165 * @entry: list of @smem_ptable_entry for the @num_entries partitions
167 struct smem_ptable {
168 u8 magic[4];
169 __le32 version;
170 __le32 num_entries;
171 __le32 reserved[5];
172 struct smem_ptable_entry entry[];
175 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
178 * struct smem_partition_header - header of the partitions
179 * @magic: magic number, must be SMEM_PART_MAGIC
180 * @host0: first processor/host with access to this partition
181 * @host1: second processor/host with access to this partition
182 * @size: size of the partition
183 * @offset_free_uncached: offset to the first free byte of uncached memory in
184 * this partition
185 * @offset_free_cached: offset to the first free byte of cached memory in this
186 * partition
187 * @reserved: for now reserved entries
189 struct smem_partition_header {
190 u8 magic[4];
191 __le16 host0;
192 __le16 host1;
193 __le32 size;
194 __le32 offset_free_uncached;
195 __le32 offset_free_cached;
196 __le32 reserved[3];
200 * struct smem_partition - describes smem partition
201 * @virt_base: starting virtual address of partition
202 * @phys_base: starting physical address of partition
203 * @cacheline: alignment for "cached" entries
204 * @size: size of partition
206 struct smem_partition {
207 void __iomem *virt_base;
208 phys_addr_t phys_base;
209 size_t cacheline;
210 size_t size;
213 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
216 * struct smem_private_entry - header of each item in the private partition
217 * @canary: magic number, must be SMEM_PRIVATE_CANARY
218 * @item: identifying number of the smem item
219 * @size: size of the data, including padding bytes
220 * @padding_data: number of bytes of padding of data
221 * @padding_hdr: number of bytes of padding between the header and the data
222 * @reserved: for now reserved entry
224 struct smem_private_entry {
225 u16 canary; /* bytes are the same so no swapping needed */
226 __le16 item;
227 __le32 size; /* includes padding bytes */
228 __le16 padding_data;
229 __le16 padding_hdr;
230 __le32 reserved;
232 #define SMEM_PRIVATE_CANARY 0xa5a5
235 * struct smem_info - smem region info located after the table of contents
236 * @magic: magic number, must be SMEM_INFO_MAGIC
237 * @size: size of the smem region
238 * @base_addr: base address of the smem region
239 * @reserved: for now reserved entry
240 * @num_items: highest accepted item number
242 struct smem_info {
243 u8 magic[4];
244 __le32 size;
245 __le32 base_addr;
246 __le32 reserved;
247 __le16 num_items;
250 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
253 * struct smem_region - representation of a chunk of memory used for smem
254 * @aux_base: identifier of aux_mem base
255 * @virt_base: virtual base address of memory with this aux_mem identifier
256 * @size: size of the memory region
258 struct smem_region {
259 phys_addr_t aux_base;
260 void __iomem *virt_base;
261 size_t size;
265 * struct qcom_smem - device data for the smem device
266 * @dev: device pointer
267 * @hwlock: reference to a hwspinlock
268 * @ptable: virtual base of partition table
269 * @global_partition: describes for global partition when in use
270 * @partitions: list of partitions of current processor/host
271 * @item_count: max accepted item number
272 * @socinfo: platform device pointer
273 * @num_regions: number of @regions
274 * @regions: list of the memory regions defining the shared memory
276 struct qcom_smem {
277 struct device *dev;
279 struct hwspinlock *hwlock;
281 u32 item_count;
282 struct platform_device *socinfo;
283 struct smem_ptable *ptable;
284 struct smem_partition global_partition;
285 struct smem_partition partitions[SMEM_HOST_COUNT];
287 unsigned num_regions;
288 struct smem_region regions[] __counted_by(num_regions);
291 static void *
292 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
294 void *p = phdr;
296 return p + le32_to_cpu(phdr->offset_free_uncached);
299 static struct smem_private_entry *
300 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
301 size_t cacheline)
303 void *p = phdr;
304 struct smem_private_entry *e;
306 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
309 static void *
310 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
312 void *p = phdr;
314 return p + le32_to_cpu(phdr->offset_free_cached);
317 static struct smem_private_entry *
318 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
320 void *p = phdr;
322 return p + sizeof(*phdr);
325 static struct smem_private_entry *
326 uncached_entry_next(struct smem_private_entry *e)
328 void *p = e;
330 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
331 le32_to_cpu(e->size);
334 static struct smem_private_entry *
335 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
337 void *p = e;
339 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
342 static void *uncached_entry_to_item(struct smem_private_entry *e)
344 void *p = e;
346 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
349 static void *cached_entry_to_item(struct smem_private_entry *e)
351 void *p = e;
353 return p - le32_to_cpu(e->size);
356 /* Pointer to the one and only smem handle */
357 static struct qcom_smem *__smem;
359 /* Timeout (ms) for the trylock of remote spinlocks */
360 #define HWSPINLOCK_TIMEOUT 1000
362 /* The qcom hwspinlock id is always plus one from the smem host id */
363 #define SMEM_HOST_ID_TO_HWSPINLOCK_ID(__x) ((__x) + 1)
366 * qcom_smem_bust_hwspin_lock_by_host() - bust the smem hwspinlock for a host
367 * @host: remote processor id
369 * Busts the hwspin_lock for the given smem host id. This helper is intended
370 * for remoteproc drivers that manage remoteprocs with an equivalent smem
371 * driver instance in the remote firmware. Drivers can force a release of the
372 * smem hwspin_lock if the rproc unexpectedly goes into a bad state.
374 * Context: Process context.
376 * Returns: 0 on success, otherwise negative errno.
378 int qcom_smem_bust_hwspin_lock_by_host(unsigned int host)
380 /* This function is for remote procs, so ignore SMEM_HOST_APPS */
381 if (host == SMEM_HOST_APPS || host >= SMEM_HOST_COUNT)
382 return -EINVAL;
384 return hwspin_lock_bust(__smem->hwlock, SMEM_HOST_ID_TO_HWSPINLOCK_ID(host));
386 EXPORT_SYMBOL_GPL(qcom_smem_bust_hwspin_lock_by_host);
389 * qcom_smem_is_available() - Check if SMEM is available
391 * Return: true if SMEM is available, false otherwise.
393 bool qcom_smem_is_available(void)
395 return !!__smem;
397 EXPORT_SYMBOL_GPL(qcom_smem_is_available);
399 static int qcom_smem_alloc_private(struct qcom_smem *smem,
400 struct smem_partition *part,
401 unsigned item,
402 size_t size)
404 struct smem_private_entry *hdr, *end;
405 struct smem_partition_header *phdr;
406 size_t alloc_size;
407 void *cached;
408 void *p_end;
410 phdr = (struct smem_partition_header __force *)part->virt_base;
411 p_end = (void *)phdr + part->size;
413 hdr = phdr_to_first_uncached_entry(phdr);
414 end = phdr_to_last_uncached_entry(phdr);
415 cached = phdr_to_last_cached_entry(phdr);
417 if (WARN_ON((void *)end > p_end || cached > p_end))
418 return -EINVAL;
420 while (hdr < end) {
421 if (hdr->canary != SMEM_PRIVATE_CANARY)
422 goto bad_canary;
423 if (le16_to_cpu(hdr->item) == item)
424 return -EEXIST;
426 hdr = uncached_entry_next(hdr);
429 if (WARN_ON((void *)hdr > p_end))
430 return -EINVAL;
432 /* Check that we don't grow into the cached region */
433 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
434 if ((void *)hdr + alloc_size > cached) {
435 dev_err(smem->dev, "Out of memory\n");
436 return -ENOSPC;
439 hdr->canary = SMEM_PRIVATE_CANARY;
440 hdr->item = cpu_to_le16(item);
441 hdr->size = cpu_to_le32(ALIGN(size, 8));
442 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
443 hdr->padding_hdr = 0;
446 * Ensure the header is written before we advance the free offset, so
447 * that remote processors that does not take the remote spinlock still
448 * gets a consistent view of the linked list.
450 wmb();
451 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
453 return 0;
454 bad_canary:
455 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
456 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
458 return -EINVAL;
461 static int qcom_smem_alloc_global(struct qcom_smem *smem,
462 unsigned item,
463 size_t size)
465 struct smem_global_entry *entry;
466 struct smem_header *header;
468 header = smem->regions[0].virt_base;
469 entry = &header->toc[item];
470 if (entry->allocated)
471 return -EEXIST;
473 size = ALIGN(size, 8);
474 if (WARN_ON(size > le32_to_cpu(header->available)))
475 return -ENOMEM;
477 entry->offset = header->free_offset;
478 entry->size = cpu_to_le32(size);
481 * Ensure the header is consistent before we mark the item allocated,
482 * so that remote processors will get a consistent view of the item
483 * even though they do not take the spinlock on read.
485 wmb();
486 entry->allocated = cpu_to_le32(1);
488 le32_add_cpu(&header->free_offset, size);
489 le32_add_cpu(&header->available, -size);
491 return 0;
495 * qcom_smem_alloc() - allocate space for a smem item
496 * @host: remote processor id, or -1
497 * @item: smem item handle
498 * @size: number of bytes to be allocated
500 * Allocate space for a given smem item of size @size, given that the item is
501 * not yet allocated.
503 * Return: 0 on success, negative errno on failure.
505 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
507 struct smem_partition *part;
508 unsigned long flags;
509 int ret;
511 if (!__smem)
512 return -EPROBE_DEFER;
514 if (item < SMEM_ITEM_LAST_FIXED) {
515 dev_err(__smem->dev,
516 "Rejecting allocation of static entry %d\n", item);
517 return -EINVAL;
520 if (WARN_ON(item >= __smem->item_count))
521 return -EINVAL;
523 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
524 HWSPINLOCK_TIMEOUT,
525 &flags);
526 if (ret)
527 return ret;
529 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
530 part = &__smem->partitions[host];
531 ret = qcom_smem_alloc_private(__smem, part, item, size);
532 } else if (__smem->global_partition.virt_base) {
533 part = &__smem->global_partition;
534 ret = qcom_smem_alloc_private(__smem, part, item, size);
535 } else {
536 ret = qcom_smem_alloc_global(__smem, item, size);
539 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
541 return ret;
543 EXPORT_SYMBOL_GPL(qcom_smem_alloc);
545 static void *qcom_smem_get_global(struct qcom_smem *smem,
546 unsigned item,
547 size_t *size)
549 struct smem_header *header;
550 struct smem_region *region;
551 struct smem_global_entry *entry;
552 u64 entry_offset;
553 u32 e_size;
554 u32 aux_base;
555 unsigned i;
557 header = smem->regions[0].virt_base;
558 entry = &header->toc[item];
559 if (!entry->allocated)
560 return ERR_PTR(-ENXIO);
562 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
564 for (i = 0; i < smem->num_regions; i++) {
565 region = &smem->regions[i];
567 if ((u32)region->aux_base == aux_base || !aux_base) {
568 e_size = le32_to_cpu(entry->size);
569 entry_offset = le32_to_cpu(entry->offset);
571 if (WARN_ON(e_size + entry_offset > region->size))
572 return ERR_PTR(-EINVAL);
574 if (size != NULL)
575 *size = e_size;
577 return region->virt_base + entry_offset;
581 return ERR_PTR(-ENOENT);
584 static void *qcom_smem_get_private(struct qcom_smem *smem,
585 struct smem_partition *part,
586 unsigned item,
587 size_t *size)
589 struct smem_private_entry *e, *end;
590 struct smem_partition_header *phdr;
591 void *item_ptr, *p_end;
592 u32 padding_data;
593 u32 e_size;
595 phdr = (struct smem_partition_header __force *)part->virt_base;
596 p_end = (void *)phdr + part->size;
598 e = phdr_to_first_uncached_entry(phdr);
599 end = phdr_to_last_uncached_entry(phdr);
601 while (e < end) {
602 if (e->canary != SMEM_PRIVATE_CANARY)
603 goto invalid_canary;
605 if (le16_to_cpu(e->item) == item) {
606 if (size != NULL) {
607 e_size = le32_to_cpu(e->size);
608 padding_data = le16_to_cpu(e->padding_data);
610 if (WARN_ON(e_size > part->size || padding_data > e_size))
611 return ERR_PTR(-EINVAL);
613 *size = e_size - padding_data;
616 item_ptr = uncached_entry_to_item(e);
617 if (WARN_ON(item_ptr > p_end))
618 return ERR_PTR(-EINVAL);
620 return item_ptr;
623 e = uncached_entry_next(e);
626 if (WARN_ON((void *)e > p_end))
627 return ERR_PTR(-EINVAL);
629 /* Item was not found in the uncached list, search the cached list */
631 e = phdr_to_first_cached_entry(phdr, part->cacheline);
632 end = phdr_to_last_cached_entry(phdr);
634 if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end))
635 return ERR_PTR(-EINVAL);
637 while (e > end) {
638 if (e->canary != SMEM_PRIVATE_CANARY)
639 goto invalid_canary;
641 if (le16_to_cpu(e->item) == item) {
642 if (size != NULL) {
643 e_size = le32_to_cpu(e->size);
644 padding_data = le16_to_cpu(e->padding_data);
646 if (WARN_ON(e_size > part->size || padding_data > e_size))
647 return ERR_PTR(-EINVAL);
649 *size = e_size - padding_data;
652 item_ptr = cached_entry_to_item(e);
653 if (WARN_ON(item_ptr < (void *)phdr))
654 return ERR_PTR(-EINVAL);
656 return item_ptr;
659 e = cached_entry_next(e, part->cacheline);
662 if (WARN_ON((void *)e < (void *)phdr))
663 return ERR_PTR(-EINVAL);
665 return ERR_PTR(-ENOENT);
667 invalid_canary:
668 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
669 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
671 return ERR_PTR(-EINVAL);
675 * qcom_smem_get() - resolve ptr of size of a smem item
676 * @host: the remote processor, or -1
677 * @item: smem item handle
678 * @size: pointer to be filled out with size of the item
680 * Looks up smem item and returns pointer to it. Size of smem
681 * item is returned in @size.
683 * Return: a pointer to an SMEM item on success, ERR_PTR() on failure.
685 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
687 struct smem_partition *part;
688 void *ptr = ERR_PTR(-EPROBE_DEFER);
690 if (!__smem)
691 return ptr;
693 if (WARN_ON(item >= __smem->item_count))
694 return ERR_PTR(-EINVAL);
696 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
697 part = &__smem->partitions[host];
698 ptr = qcom_smem_get_private(__smem, part, item, size);
699 } else if (__smem->global_partition.virt_base) {
700 part = &__smem->global_partition;
701 ptr = qcom_smem_get_private(__smem, part, item, size);
702 } else {
703 ptr = qcom_smem_get_global(__smem, item, size);
706 return ptr;
708 EXPORT_SYMBOL_GPL(qcom_smem_get);
711 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
712 * @host: the remote processor identifying a partition, or -1
714 * To be used by smem clients as a quick way to determine if any new
715 * allocations has been made.
717 * Return: number of available bytes on success, negative errno on failure.
719 int qcom_smem_get_free_space(unsigned host)
721 struct smem_partition *part;
722 struct smem_partition_header *phdr;
723 struct smem_header *header;
724 unsigned ret;
726 if (!__smem)
727 return -EPROBE_DEFER;
729 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
730 part = &__smem->partitions[host];
731 phdr = part->virt_base;
732 ret = le32_to_cpu(phdr->offset_free_cached) -
733 le32_to_cpu(phdr->offset_free_uncached);
735 if (ret > le32_to_cpu(part->size))
736 return -EINVAL;
737 } else if (__smem->global_partition.virt_base) {
738 part = &__smem->global_partition;
739 phdr = part->virt_base;
740 ret = le32_to_cpu(phdr->offset_free_cached) -
741 le32_to_cpu(phdr->offset_free_uncached);
743 if (ret > le32_to_cpu(part->size))
744 return -EINVAL;
745 } else {
746 header = __smem->regions[0].virt_base;
747 ret = le32_to_cpu(header->available);
749 if (ret > __smem->regions[0].size)
750 return -EINVAL;
753 return ret;
755 EXPORT_SYMBOL_GPL(qcom_smem_get_free_space);
757 static bool addr_in_range(void __iomem *base, size_t size, void *addr)
759 return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size);
763 * qcom_smem_virt_to_phys() - return the physical address associated
764 * with an smem item pointer (previously returned by qcom_smem_get()
765 * @p: the virtual address to convert
767 * Return: physical address of the SMEM item (if found), 0 otherwise
769 phys_addr_t qcom_smem_virt_to_phys(void *p)
771 struct smem_partition *part;
772 struct smem_region *area;
773 u64 offset;
774 u32 i;
776 for (i = 0; i < SMEM_HOST_COUNT; i++) {
777 part = &__smem->partitions[i];
779 if (addr_in_range(part->virt_base, part->size, p)) {
780 offset = p - part->virt_base;
782 return (phys_addr_t)part->phys_base + offset;
786 part = &__smem->global_partition;
788 if (addr_in_range(part->virt_base, part->size, p)) {
789 offset = p - part->virt_base;
791 return (phys_addr_t)part->phys_base + offset;
794 for (i = 0; i < __smem->num_regions; i++) {
795 area = &__smem->regions[i];
797 if (addr_in_range(area->virt_base, area->size, p)) {
798 offset = p - area->virt_base;
800 return (phys_addr_t)area->aux_base + offset;
804 return 0;
806 EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys);
809 * qcom_smem_get_soc_id() - return the SoC ID
810 * @id: On success, we return the SoC ID here.
812 * Look up SoC ID from HW/SW build ID and return it.
814 * Return: 0 on success, negative errno on failure.
816 int qcom_smem_get_soc_id(u32 *id)
818 struct socinfo *info;
820 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL);
821 if (IS_ERR(info))
822 return PTR_ERR(info);
824 *id = __le32_to_cpu(info->id);
826 return 0;
828 EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id);
831 * qcom_smem_get_feature_code() - return the feature code
832 * @code: On success, return the feature code here.
834 * Look up the feature code identifier from SMEM and return it.
836 * Return: 0 on success, negative errno on failure.
838 int qcom_smem_get_feature_code(u32 *code)
840 struct socinfo *info;
841 u32 raw_code;
843 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL);
844 if (IS_ERR(info))
845 return PTR_ERR(info);
847 /* This only makes sense for socinfo >= 16 */
848 if (__le32_to_cpu(info->fmt) < SOCINFO_VERSION(0, 16))
849 return -EOPNOTSUPP;
851 raw_code = __le32_to_cpu(info->feature_code);
853 /* Ensure the value makes sense */
854 if (raw_code > SOCINFO_FC_INT_MAX)
855 raw_code = SOCINFO_FC_UNKNOWN;
857 *code = raw_code;
859 return 0;
861 EXPORT_SYMBOL_GPL(qcom_smem_get_feature_code);
863 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
865 struct smem_header *header;
866 __le32 *versions;
868 header = smem->regions[0].virt_base;
869 versions = header->version;
871 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
874 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
876 struct smem_ptable *ptable;
877 u32 version;
879 ptable = smem->ptable;
880 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
881 return ERR_PTR(-ENOENT);
883 version = le32_to_cpu(ptable->version);
884 if (version != 1) {
885 dev_err(smem->dev,
886 "Unsupported partition header version %d\n", version);
887 return ERR_PTR(-EINVAL);
889 return ptable;
892 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
894 struct smem_ptable *ptable;
895 struct smem_info *info;
897 ptable = qcom_smem_get_ptable(smem);
898 if (IS_ERR_OR_NULL(ptable))
899 return SMEM_ITEM_COUNT;
901 info = (struct smem_info *)&ptable->entry[ptable->num_entries];
902 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
903 return SMEM_ITEM_COUNT;
905 return le16_to_cpu(info->num_items);
909 * Validate the partition header for a partition whose partition
910 * table entry is supplied. Returns a pointer to its header if
911 * valid, or a null pointer otherwise.
913 static struct smem_partition_header *
914 qcom_smem_partition_header(struct qcom_smem *smem,
915 struct smem_ptable_entry *entry, u16 host0, u16 host1)
917 struct smem_partition_header *header;
918 u32 phys_addr;
919 u32 size;
921 phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset);
922 header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size));
924 if (!header)
925 return NULL;
927 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
928 dev_err(smem->dev, "bad partition magic %4ph\n", header->magic);
929 return NULL;
932 if (host0 != le16_to_cpu(header->host0)) {
933 dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
934 host0, le16_to_cpu(header->host0));
935 return NULL;
937 if (host1 != le16_to_cpu(header->host1)) {
938 dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
939 host1, le16_to_cpu(header->host1));
940 return NULL;
943 size = le32_to_cpu(header->size);
944 if (size != le32_to_cpu(entry->size)) {
945 dev_err(smem->dev, "bad partition size (%u != %u)\n",
946 size, le32_to_cpu(entry->size));
947 return NULL;
950 if (le32_to_cpu(header->offset_free_uncached) > size) {
951 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
952 le32_to_cpu(header->offset_free_uncached), size);
953 return NULL;
956 return header;
959 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
961 struct smem_partition_header *header;
962 struct smem_ptable_entry *entry;
963 struct smem_ptable *ptable;
964 bool found = false;
965 int i;
967 if (smem->global_partition.virt_base) {
968 dev_err(smem->dev, "Already found the global partition\n");
969 return -EINVAL;
972 ptable = qcom_smem_get_ptable(smem);
973 if (IS_ERR(ptable))
974 return PTR_ERR(ptable);
976 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
977 entry = &ptable->entry[i];
978 if (!le32_to_cpu(entry->offset))
979 continue;
980 if (!le32_to_cpu(entry->size))
981 continue;
983 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
984 continue;
986 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
987 found = true;
988 break;
992 if (!found) {
993 dev_err(smem->dev, "Missing entry for global partition\n");
994 return -EINVAL;
997 header = qcom_smem_partition_header(smem, entry,
998 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
999 if (!header)
1000 return -EINVAL;
1002 smem->global_partition.virt_base = (void __iomem *)header;
1003 smem->global_partition.phys_base = smem->regions[0].aux_base +
1004 le32_to_cpu(entry->offset);
1005 smem->global_partition.size = le32_to_cpu(entry->size);
1006 smem->global_partition.cacheline = le32_to_cpu(entry->cacheline);
1008 return 0;
1011 static int
1012 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
1014 struct smem_partition_header *header;
1015 struct smem_ptable_entry *entry;
1016 struct smem_ptable *ptable;
1017 u16 remote_host;
1018 u16 host0, host1;
1019 int i;
1021 ptable = qcom_smem_get_ptable(smem);
1022 if (IS_ERR(ptable))
1023 return PTR_ERR(ptable);
1025 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
1026 entry = &ptable->entry[i];
1027 if (!le32_to_cpu(entry->offset))
1028 continue;
1029 if (!le32_to_cpu(entry->size))
1030 continue;
1032 host0 = le16_to_cpu(entry->host0);
1033 host1 = le16_to_cpu(entry->host1);
1034 if (host0 == local_host)
1035 remote_host = host1;
1036 else if (host1 == local_host)
1037 remote_host = host0;
1038 else
1039 continue;
1041 if (remote_host >= SMEM_HOST_COUNT) {
1042 dev_err(smem->dev, "bad host %u\n", remote_host);
1043 return -EINVAL;
1046 if (smem->partitions[remote_host].virt_base) {
1047 dev_err(smem->dev, "duplicate host %u\n", remote_host);
1048 return -EINVAL;
1051 header = qcom_smem_partition_header(smem, entry, host0, host1);
1052 if (!header)
1053 return -EINVAL;
1055 smem->partitions[remote_host].virt_base = (void __iomem *)header;
1056 smem->partitions[remote_host].phys_base = smem->regions[0].aux_base +
1057 le32_to_cpu(entry->offset);
1058 smem->partitions[remote_host].size = le32_to_cpu(entry->size);
1059 smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline);
1062 return 0;
1065 static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region)
1067 u32 ptable_start;
1069 /* map starting 4K for smem header */
1070 region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K);
1071 ptable_start = region->aux_base + region->size - SZ_4K;
1072 /* map last 4k for toc */
1073 smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K);
1075 if (!region->virt_base || !smem->ptable)
1076 return -ENOMEM;
1078 return 0;
1081 static int qcom_smem_map_global(struct qcom_smem *smem, u32 size)
1083 u32 phys_addr;
1085 phys_addr = smem->regions[0].aux_base;
1087 smem->regions[0].size = size;
1088 smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size);
1090 if (!smem->regions[0].virt_base)
1091 return -ENOMEM;
1093 return 0;
1096 static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name,
1097 struct smem_region *region)
1099 struct device *dev = smem->dev;
1100 struct device_node *np;
1101 struct resource r;
1102 int ret;
1104 np = of_parse_phandle(dev->of_node, name, 0);
1105 if (!np) {
1106 dev_err(dev, "No %s specified\n", name);
1107 return -EINVAL;
1110 ret = of_address_to_resource(np, 0, &r);
1111 of_node_put(np);
1112 if (ret)
1113 return ret;
1115 region->aux_base = r.start;
1116 region->size = resource_size(&r);
1118 return 0;
1121 static int qcom_smem_probe(struct platform_device *pdev)
1123 struct smem_header *header;
1124 struct reserved_mem *rmem;
1125 struct qcom_smem *smem;
1126 unsigned long flags;
1127 int num_regions;
1128 int hwlock_id;
1129 u32 version;
1130 u32 size;
1131 int ret;
1132 int i;
1134 num_regions = 1;
1135 if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram"))
1136 num_regions++;
1138 smem = devm_kzalloc(&pdev->dev, struct_size(smem, regions, num_regions),
1139 GFP_KERNEL);
1140 if (!smem)
1141 return -ENOMEM;
1143 smem->dev = &pdev->dev;
1144 smem->num_regions = num_regions;
1146 rmem = of_reserved_mem_lookup(pdev->dev.of_node);
1147 if (rmem) {
1148 smem->regions[0].aux_base = rmem->base;
1149 smem->regions[0].size = rmem->size;
1150 } else {
1152 * Fall back to the memory-region reference, if we're not a
1153 * reserved-memory node.
1155 ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]);
1156 if (ret)
1157 return ret;
1160 if (num_regions > 1) {
1161 ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]);
1162 if (ret)
1163 return ret;
1167 ret = qcom_smem_map_toc(smem, &smem->regions[0]);
1168 if (ret)
1169 return ret;
1171 for (i = 1; i < num_regions; i++) {
1172 smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev,
1173 smem->regions[i].aux_base,
1174 smem->regions[i].size);
1175 if (!smem->regions[i].virt_base) {
1176 dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base);
1177 return -ENOMEM;
1181 header = smem->regions[0].virt_base;
1182 if (le32_to_cpu(header->initialized) != 1 ||
1183 le32_to_cpu(header->reserved)) {
1184 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
1185 return -EINVAL;
1188 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
1189 if (hwlock_id < 0)
1190 return dev_err_probe(&pdev->dev, hwlock_id,
1191 "failed to retrieve hwlock\n");
1193 smem->hwlock = hwspin_lock_request_specific(hwlock_id);
1194 if (!smem->hwlock)
1195 return -ENXIO;
1197 ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags);
1198 if (ret)
1199 return ret;
1200 size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset);
1201 hwspin_unlock_irqrestore(smem->hwlock, &flags);
1203 version = qcom_smem_get_sbl_version(smem);
1205 * smem header mapping is required only in heap version scheme, so unmap
1206 * it here. It will be remapped in qcom_smem_map_global() when whole
1207 * partition is mapped again.
1209 devm_iounmap(smem->dev, smem->regions[0].virt_base);
1210 switch (version >> 16) {
1211 case SMEM_GLOBAL_PART_VERSION:
1212 ret = qcom_smem_set_global_partition(smem);
1213 if (ret < 0)
1214 return ret;
1215 smem->item_count = qcom_smem_get_item_count(smem);
1216 break;
1217 case SMEM_GLOBAL_HEAP_VERSION:
1218 qcom_smem_map_global(smem, size);
1219 smem->item_count = SMEM_ITEM_COUNT;
1220 break;
1221 default:
1222 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
1223 return -EINVAL;
1226 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
1227 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
1228 if (ret < 0 && ret != -ENOENT)
1229 return ret;
1231 __smem = smem;
1233 smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
1234 PLATFORM_DEVID_NONE, NULL,
1236 if (IS_ERR(smem->socinfo))
1237 dev_dbg(&pdev->dev, "failed to register socinfo device\n");
1239 return 0;
1242 static void qcom_smem_remove(struct platform_device *pdev)
1244 platform_device_unregister(__smem->socinfo);
1246 hwspin_lock_free(__smem->hwlock);
1247 __smem = NULL;
1250 static const struct of_device_id qcom_smem_of_match[] = {
1251 { .compatible = "qcom,smem" },
1254 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
1256 static struct platform_driver qcom_smem_driver = {
1257 .probe = qcom_smem_probe,
1258 .remove = qcom_smem_remove,
1259 .driver = {
1260 .name = "qcom-smem",
1261 .of_match_table = qcom_smem_of_match,
1262 .suppress_bind_attrs = true,
1266 static int __init qcom_smem_init(void)
1268 return platform_driver_register(&qcom_smem_driver);
1270 arch_initcall(qcom_smem_init);
1272 static void __exit qcom_smem_exit(void)
1274 platform_driver_unregister(&qcom_smem_driver);
1276 module_exit(qcom_smem_exit)
1278 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1279 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1280 MODULE_LICENSE("GPL v2");