cpufreq/amd-pstate: Move registration after static function call update
[pf-kernel.git] / io_uring / io_uring.c
blobb2736e3491b86222fb78012866e40bab0a2b05bc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <linux/anon_inodes.h>
63 #include <linux/sched/mm.h>
64 #include <linux/uaccess.h>
65 #include <linux/nospec.h>
66 #include <linux/fsnotify.h>
67 #include <linux/fadvise.h>
68 #include <linux/task_work.h>
69 #include <linux/io_uring.h>
70 #include <linux/io_uring/cmd.h>
71 #include <linux/audit.h>
72 #include <linux/security.h>
73 #include <asm/shmparam.h>
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
78 #include <uapi/linux/io_uring.h>
80 #include "io-wq.h"
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
107 #define IORING_MAX_ENTRIES 32768
108 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
110 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
111 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
113 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
114 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
118 REQ_F_ASYNC_DATA)
120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
121 IO_REQ_CLEAN_FLAGS)
123 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
125 #define IO_COMPL_BATCH 32
126 #define IO_REQ_ALLOC_BATCH 8
128 struct io_defer_entry {
129 struct list_head list;
130 struct io_kiocb *req;
131 u32 seq;
134 /* requests with any of those set should undergo io_disarm_next() */
135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
136 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
139 * No waiters. It's larger than any valid value of the tw counter
140 * so that tests against ->cq_wait_nr would fail and skip wake_up().
142 #define IO_CQ_WAKE_INIT (-1U)
143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
144 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
147 struct task_struct *task,
148 bool cancel_all);
150 static void io_queue_sqe(struct io_kiocb *req);
152 struct kmem_cache *req_cachep;
153 static struct workqueue_struct *iou_wq __ro_after_init;
155 static int __read_mostly sysctl_io_uring_disabled;
156 static int __read_mostly sysctl_io_uring_group = -1;
158 #ifdef CONFIG_SYSCTL
159 static struct ctl_table kernel_io_uring_disabled_table[] = {
161 .procname = "io_uring_disabled",
162 .data = &sysctl_io_uring_disabled,
163 .maxlen = sizeof(sysctl_io_uring_disabled),
164 .mode = 0644,
165 .proc_handler = proc_dointvec_minmax,
166 .extra1 = SYSCTL_ZERO,
167 .extra2 = SYSCTL_TWO,
170 .procname = "io_uring_group",
171 .data = &sysctl_io_uring_group,
172 .maxlen = sizeof(gid_t),
173 .mode = 0644,
174 .proc_handler = proc_dointvec,
177 #endif
179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
181 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
186 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
189 static bool io_match_linked(struct io_kiocb *head)
191 struct io_kiocb *req;
193 io_for_each_link(req, head) {
194 if (req->flags & REQ_F_INFLIGHT)
195 return true;
197 return false;
201 * As io_match_task() but protected against racing with linked timeouts.
202 * User must not hold timeout_lock.
204 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
205 bool cancel_all)
207 bool matched;
209 if (task && head->task != task)
210 return false;
211 if (cancel_all)
212 return true;
214 if (head->flags & REQ_F_LINK_TIMEOUT) {
215 struct io_ring_ctx *ctx = head->ctx;
217 /* protect against races with linked timeouts */
218 spin_lock_irq(&ctx->timeout_lock);
219 matched = io_match_linked(head);
220 spin_unlock_irq(&ctx->timeout_lock);
221 } else {
222 matched = io_match_linked(head);
224 return matched;
227 static inline void req_fail_link_node(struct io_kiocb *req, int res)
229 req_set_fail(req);
230 io_req_set_res(req, res, 0);
233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
235 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
242 complete(&ctx->ref_comp);
245 static __cold void io_fallback_req_func(struct work_struct *work)
247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
248 fallback_work.work);
249 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
250 struct io_kiocb *req, *tmp;
251 struct io_tw_state ts = {};
253 percpu_ref_get(&ctx->refs);
254 mutex_lock(&ctx->uring_lock);
255 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
256 req->io_task_work.func(req, &ts);
257 io_submit_flush_completions(ctx);
258 mutex_unlock(&ctx->uring_lock);
259 percpu_ref_put(&ctx->refs);
262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
264 unsigned hash_buckets = 1U << bits;
265 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
267 table->hbs = kmalloc(hash_size, GFP_KERNEL);
268 if (!table->hbs)
269 return -ENOMEM;
271 table->hash_bits = bits;
272 init_hash_table(table, hash_buckets);
273 return 0;
276 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
278 struct io_ring_ctx *ctx;
279 int hash_bits;
280 bool ret;
282 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
283 if (!ctx)
284 return NULL;
286 xa_init(&ctx->io_bl_xa);
289 * Use 5 bits less than the max cq entries, that should give us around
290 * 32 entries per hash list if totally full and uniformly spread, but
291 * don't keep too many buckets to not overconsume memory.
293 hash_bits = ilog2(p->cq_entries) - 5;
294 hash_bits = clamp(hash_bits, 1, 8);
295 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
296 goto err;
297 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
298 goto err;
299 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
300 0, GFP_KERNEL))
301 goto err;
303 ctx->flags = p->flags;
304 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
305 init_waitqueue_head(&ctx->sqo_sq_wait);
306 INIT_LIST_HEAD(&ctx->sqd_list);
307 INIT_LIST_HEAD(&ctx->cq_overflow_list);
308 INIT_LIST_HEAD(&ctx->io_buffers_cache);
309 ret = io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
310 sizeof(struct io_rsrc_node));
311 ret |= io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
312 sizeof(struct async_poll));
313 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
314 sizeof(struct io_async_msghdr));
315 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
316 sizeof(struct io_async_rw));
317 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
318 sizeof(struct uring_cache));
319 spin_lock_init(&ctx->msg_lock);
320 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
321 sizeof(struct io_kiocb));
322 ret |= io_futex_cache_init(ctx);
323 if (ret)
324 goto free_ref;
325 init_completion(&ctx->ref_comp);
326 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
327 mutex_init(&ctx->uring_lock);
328 init_waitqueue_head(&ctx->cq_wait);
329 init_waitqueue_head(&ctx->poll_wq);
330 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
331 spin_lock_init(&ctx->completion_lock);
332 spin_lock_init(&ctx->timeout_lock);
333 INIT_WQ_LIST(&ctx->iopoll_list);
334 INIT_LIST_HEAD(&ctx->io_buffers_comp);
335 INIT_LIST_HEAD(&ctx->defer_list);
336 INIT_LIST_HEAD(&ctx->timeout_list);
337 INIT_LIST_HEAD(&ctx->ltimeout_list);
338 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
339 init_llist_head(&ctx->work_llist);
340 INIT_LIST_HEAD(&ctx->tctx_list);
341 ctx->submit_state.free_list.next = NULL;
342 INIT_HLIST_HEAD(&ctx->waitid_list);
343 #ifdef CONFIG_FUTEX
344 INIT_HLIST_HEAD(&ctx->futex_list);
345 #endif
346 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
347 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
348 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
349 io_napi_init(ctx);
351 return ctx;
353 free_ref:
354 percpu_ref_exit(&ctx->refs);
355 err:
356 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
357 io_alloc_cache_free(&ctx->apoll_cache, kfree);
358 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
359 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
360 io_alloc_cache_free(&ctx->uring_cache, kfree);
361 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
362 io_futex_cache_free(ctx);
363 kfree(ctx->cancel_table.hbs);
364 kfree(ctx->cancel_table_locked.hbs);
365 xa_destroy(&ctx->io_bl_xa);
366 kfree(ctx);
367 return NULL;
370 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
372 struct io_rings *r = ctx->rings;
374 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
375 ctx->cq_extra--;
378 static bool req_need_defer(struct io_kiocb *req, u32 seq)
380 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
381 struct io_ring_ctx *ctx = req->ctx;
383 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
386 return false;
389 static void io_clean_op(struct io_kiocb *req)
391 if (req->flags & REQ_F_BUFFER_SELECTED) {
392 spin_lock(&req->ctx->completion_lock);
393 io_kbuf_drop(req);
394 spin_unlock(&req->ctx->completion_lock);
397 if (req->flags & REQ_F_NEED_CLEANUP) {
398 const struct io_cold_def *def = &io_cold_defs[req->opcode];
400 if (def->cleanup)
401 def->cleanup(req);
403 if ((req->flags & REQ_F_POLLED) && req->apoll) {
404 kfree(req->apoll->double_poll);
405 kfree(req->apoll);
406 req->apoll = NULL;
408 if (req->flags & REQ_F_INFLIGHT) {
409 struct io_uring_task *tctx = req->task->io_uring;
411 atomic_dec(&tctx->inflight_tracked);
413 if (req->flags & REQ_F_CREDS)
414 put_cred(req->creds);
415 if (req->flags & REQ_F_ASYNC_DATA) {
416 kfree(req->async_data);
417 req->async_data = NULL;
419 req->flags &= ~IO_REQ_CLEAN_FLAGS;
422 static inline void io_req_track_inflight(struct io_kiocb *req)
424 if (!(req->flags & REQ_F_INFLIGHT)) {
425 req->flags |= REQ_F_INFLIGHT;
426 atomic_inc(&req->task->io_uring->inflight_tracked);
430 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
432 if (WARN_ON_ONCE(!req->link))
433 return NULL;
435 req->flags &= ~REQ_F_ARM_LTIMEOUT;
436 req->flags |= REQ_F_LINK_TIMEOUT;
438 /* linked timeouts should have two refs once prep'ed */
439 io_req_set_refcount(req);
440 __io_req_set_refcount(req->link, 2);
441 return req->link;
444 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
446 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
447 return NULL;
448 return __io_prep_linked_timeout(req);
451 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
453 io_queue_linked_timeout(__io_prep_linked_timeout(req));
456 static inline void io_arm_ltimeout(struct io_kiocb *req)
458 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
459 __io_arm_ltimeout(req);
462 static void io_prep_async_work(struct io_kiocb *req)
464 const struct io_issue_def *def = &io_issue_defs[req->opcode];
465 struct io_ring_ctx *ctx = req->ctx;
467 if (!(req->flags & REQ_F_CREDS)) {
468 req->flags |= REQ_F_CREDS;
469 req->creds = get_current_cred();
472 req->work.list.next = NULL;
473 atomic_set(&req->work.flags, 0);
474 if (req->flags & REQ_F_FORCE_ASYNC)
475 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
477 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
478 req->flags |= io_file_get_flags(req->file);
480 if (req->file && (req->flags & REQ_F_ISREG)) {
481 bool should_hash = def->hash_reg_file;
483 /* don't serialize this request if the fs doesn't need it */
484 if (should_hash && (req->file->f_flags & O_DIRECT) &&
485 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
486 should_hash = false;
487 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
488 io_wq_hash_work(&req->work, file_inode(req->file));
489 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
490 if (def->unbound_nonreg_file)
491 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
495 static void io_prep_async_link(struct io_kiocb *req)
497 struct io_kiocb *cur;
499 if (req->flags & REQ_F_LINK_TIMEOUT) {
500 struct io_ring_ctx *ctx = req->ctx;
502 spin_lock_irq(&ctx->timeout_lock);
503 io_for_each_link(cur, req)
504 io_prep_async_work(cur);
505 spin_unlock_irq(&ctx->timeout_lock);
506 } else {
507 io_for_each_link(cur, req)
508 io_prep_async_work(cur);
512 static void io_queue_iowq(struct io_kiocb *req)
514 struct io_kiocb *link = io_prep_linked_timeout(req);
515 struct io_uring_task *tctx = req->task->io_uring;
517 BUG_ON(!tctx);
518 BUG_ON(!tctx->io_wq);
520 /* init ->work of the whole link before punting */
521 io_prep_async_link(req);
524 * Not expected to happen, but if we do have a bug where this _can_
525 * happen, catch it here and ensure the request is marked as
526 * canceled. That will make io-wq go through the usual work cancel
527 * procedure rather than attempt to run this request (or create a new
528 * worker for it).
530 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
531 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
533 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
534 io_wq_enqueue(tctx->io_wq, &req->work);
535 if (link)
536 io_queue_linked_timeout(link);
539 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
541 io_queue_iowq(req);
544 void io_req_queue_iowq(struct io_kiocb *req)
546 req->io_task_work.func = io_req_queue_iowq_tw;
547 io_req_task_work_add(req);
550 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
552 while (!list_empty(&ctx->defer_list)) {
553 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
554 struct io_defer_entry, list);
556 if (req_need_defer(de->req, de->seq))
557 break;
558 list_del_init(&de->list);
559 io_req_task_queue(de->req);
560 kfree(de);
564 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
566 if (ctx->poll_activated)
567 io_poll_wq_wake(ctx);
568 if (ctx->off_timeout_used)
569 io_flush_timeouts(ctx);
570 if (ctx->drain_active) {
571 spin_lock(&ctx->completion_lock);
572 io_queue_deferred(ctx);
573 spin_unlock(&ctx->completion_lock);
575 if (ctx->has_evfd)
576 io_eventfd_flush_signal(ctx);
579 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
581 if (!ctx->lockless_cq)
582 spin_lock(&ctx->completion_lock);
585 static inline void io_cq_lock(struct io_ring_ctx *ctx)
586 __acquires(ctx->completion_lock)
588 spin_lock(&ctx->completion_lock);
591 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
593 io_commit_cqring(ctx);
594 if (!ctx->task_complete) {
595 if (!ctx->lockless_cq)
596 spin_unlock(&ctx->completion_lock);
597 /* IOPOLL rings only need to wake up if it's also SQPOLL */
598 if (!ctx->syscall_iopoll)
599 io_cqring_wake(ctx);
601 io_commit_cqring_flush(ctx);
604 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
605 __releases(ctx->completion_lock)
607 io_commit_cqring(ctx);
608 spin_unlock(&ctx->completion_lock);
609 io_cqring_wake(ctx);
610 io_commit_cqring_flush(ctx);
613 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
615 size_t cqe_size = sizeof(struct io_uring_cqe);
617 lockdep_assert_held(&ctx->uring_lock);
619 /* don't abort if we're dying, entries must get freed */
620 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
621 return;
623 if (ctx->flags & IORING_SETUP_CQE32)
624 cqe_size <<= 1;
626 io_cq_lock(ctx);
627 while (!list_empty(&ctx->cq_overflow_list)) {
628 struct io_uring_cqe *cqe;
629 struct io_overflow_cqe *ocqe;
631 ocqe = list_first_entry(&ctx->cq_overflow_list,
632 struct io_overflow_cqe, list);
634 if (!dying) {
635 if (!io_get_cqe_overflow(ctx, &cqe, true))
636 break;
637 memcpy(cqe, &ocqe->cqe, cqe_size);
639 list_del(&ocqe->list);
640 kfree(ocqe);
643 * For silly syzbot cases that deliberately overflow by huge
644 * amounts, check if we need to resched and drop and
645 * reacquire the locks if so. Nothing real would ever hit this.
646 * Ideally we'd have a non-posting unlock for this, but hard
647 * to care for a non-real case.
649 if (need_resched()) {
650 io_cq_unlock_post(ctx);
651 mutex_unlock(&ctx->uring_lock);
652 cond_resched();
653 mutex_lock(&ctx->uring_lock);
654 io_cq_lock(ctx);
658 if (list_empty(&ctx->cq_overflow_list)) {
659 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
660 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
662 io_cq_unlock_post(ctx);
665 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
667 if (ctx->rings)
668 __io_cqring_overflow_flush(ctx, true);
671 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
673 mutex_lock(&ctx->uring_lock);
674 __io_cqring_overflow_flush(ctx, false);
675 mutex_unlock(&ctx->uring_lock);
678 /* can be called by any task */
679 static void io_put_task_remote(struct task_struct *task)
681 struct io_uring_task *tctx = task->io_uring;
683 percpu_counter_sub(&tctx->inflight, 1);
684 if (unlikely(atomic_read(&tctx->in_cancel)))
685 wake_up(&tctx->wait);
686 put_task_struct(task);
689 /* used by a task to put its own references */
690 static void io_put_task_local(struct task_struct *task)
692 task->io_uring->cached_refs++;
695 /* must to be called somewhat shortly after putting a request */
696 static inline void io_put_task(struct task_struct *task)
698 if (likely(task == current))
699 io_put_task_local(task);
700 else
701 io_put_task_remote(task);
704 void io_task_refs_refill(struct io_uring_task *tctx)
706 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
708 percpu_counter_add(&tctx->inflight, refill);
709 refcount_add(refill, &current->usage);
710 tctx->cached_refs += refill;
713 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
715 struct io_uring_task *tctx = task->io_uring;
716 unsigned int refs = tctx->cached_refs;
718 if (refs) {
719 tctx->cached_refs = 0;
720 percpu_counter_sub(&tctx->inflight, refs);
721 put_task_struct_many(task, refs);
725 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
726 s32 res, u32 cflags, u64 extra1, u64 extra2)
728 struct io_overflow_cqe *ocqe;
729 size_t ocq_size = sizeof(struct io_overflow_cqe);
730 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
732 lockdep_assert_held(&ctx->completion_lock);
734 if (is_cqe32)
735 ocq_size += sizeof(struct io_uring_cqe);
737 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
738 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
739 if (!ocqe) {
741 * If we're in ring overflow flush mode, or in task cancel mode,
742 * or cannot allocate an overflow entry, then we need to drop it
743 * on the floor.
745 io_account_cq_overflow(ctx);
746 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
747 return false;
749 if (list_empty(&ctx->cq_overflow_list)) {
750 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
751 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
754 ocqe->cqe.user_data = user_data;
755 ocqe->cqe.res = res;
756 ocqe->cqe.flags = cflags;
757 if (is_cqe32) {
758 ocqe->cqe.big_cqe[0] = extra1;
759 ocqe->cqe.big_cqe[1] = extra2;
761 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
762 return true;
765 static void io_req_cqe_overflow(struct io_kiocb *req)
767 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
768 req->cqe.res, req->cqe.flags,
769 req->big_cqe.extra1, req->big_cqe.extra2);
770 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
774 * writes to the cq entry need to come after reading head; the
775 * control dependency is enough as we're using WRITE_ONCE to
776 * fill the cq entry
778 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
780 struct io_rings *rings = ctx->rings;
781 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
782 unsigned int free, queued, len;
785 * Posting into the CQ when there are pending overflowed CQEs may break
786 * ordering guarantees, which will affect links, F_MORE users and more.
787 * Force overflow the completion.
789 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
790 return false;
792 /* userspace may cheat modifying the tail, be safe and do min */
793 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
794 free = ctx->cq_entries - queued;
795 /* we need a contiguous range, limit based on the current array offset */
796 len = min(free, ctx->cq_entries - off);
797 if (!len)
798 return false;
800 if (ctx->flags & IORING_SETUP_CQE32) {
801 off <<= 1;
802 len <<= 1;
805 ctx->cqe_cached = &rings->cqes[off];
806 ctx->cqe_sentinel = ctx->cqe_cached + len;
807 return true;
810 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
811 u32 cflags)
813 struct io_uring_cqe *cqe;
815 ctx->cq_extra++;
818 * If we can't get a cq entry, userspace overflowed the
819 * submission (by quite a lot). Increment the overflow count in
820 * the ring.
822 if (likely(io_get_cqe(ctx, &cqe))) {
823 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
825 WRITE_ONCE(cqe->user_data, user_data);
826 WRITE_ONCE(cqe->res, res);
827 WRITE_ONCE(cqe->flags, cflags);
829 if (ctx->flags & IORING_SETUP_CQE32) {
830 WRITE_ONCE(cqe->big_cqe[0], 0);
831 WRITE_ONCE(cqe->big_cqe[1], 0);
833 return true;
835 return false;
838 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
839 u32 cflags)
841 bool filled;
843 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
844 if (!filled)
845 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
847 return filled;
850 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
852 bool filled;
854 io_cq_lock(ctx);
855 filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
856 io_cq_unlock_post(ctx);
857 return filled;
861 * Must be called from inline task_work so we now a flush will happen later,
862 * and obviously with ctx->uring_lock held (tw always has that).
864 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
866 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
867 spin_lock(&ctx->completion_lock);
868 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
869 spin_unlock(&ctx->completion_lock);
871 ctx->submit_state.cq_flush = true;
875 * A helper for multishot requests posting additional CQEs.
876 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
878 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
880 struct io_ring_ctx *ctx = req->ctx;
881 bool posted;
883 lockdep_assert(!io_wq_current_is_worker());
884 lockdep_assert_held(&ctx->uring_lock);
886 __io_cq_lock(ctx);
887 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
888 ctx->submit_state.cq_flush = true;
889 __io_cq_unlock_post(ctx);
890 return posted;
893 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
895 struct io_ring_ctx *ctx = req->ctx;
898 * All execution paths but io-wq use the deferred completions by
899 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
901 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
902 return;
905 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
906 * the submitter task context, IOPOLL protects with uring_lock.
908 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
909 req->io_task_work.func = io_req_task_complete;
910 io_req_task_work_add(req);
911 return;
914 io_cq_lock(ctx);
915 if (!(req->flags & REQ_F_CQE_SKIP)) {
916 if (!io_fill_cqe_req(ctx, req))
917 io_req_cqe_overflow(req);
919 io_cq_unlock_post(ctx);
922 * We don't free the request here because we know it's called from
923 * io-wq only, which holds a reference, so it cannot be the last put.
925 req_ref_put(req);
928 void io_req_defer_failed(struct io_kiocb *req, s32 res)
929 __must_hold(&ctx->uring_lock)
931 const struct io_cold_def *def = &io_cold_defs[req->opcode];
933 lockdep_assert_held(&req->ctx->uring_lock);
935 req_set_fail(req);
936 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
937 if (def->fail)
938 def->fail(req);
939 io_req_complete_defer(req);
943 * Don't initialise the fields below on every allocation, but do that in
944 * advance and keep them valid across allocations.
946 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
948 req->ctx = ctx;
949 req->link = NULL;
950 req->async_data = NULL;
951 /* not necessary, but safer to zero */
952 memset(&req->cqe, 0, sizeof(req->cqe));
953 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
957 * A request might get retired back into the request caches even before opcode
958 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
959 * Because of that, io_alloc_req() should be called only under ->uring_lock
960 * and with extra caution to not get a request that is still worked on.
962 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
963 __must_hold(&ctx->uring_lock)
965 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
966 void *reqs[IO_REQ_ALLOC_BATCH];
967 int ret;
969 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
972 * Bulk alloc is all-or-nothing. If we fail to get a batch,
973 * retry single alloc to be on the safe side.
975 if (unlikely(ret <= 0)) {
976 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
977 if (!reqs[0])
978 return false;
979 ret = 1;
982 percpu_ref_get_many(&ctx->refs, ret);
983 while (ret--) {
984 struct io_kiocb *req = reqs[ret];
986 io_preinit_req(req, ctx);
987 io_req_add_to_cache(req, ctx);
989 return true;
992 __cold void io_free_req(struct io_kiocb *req)
994 /* refs were already put, restore them for io_req_task_complete() */
995 req->flags &= ~REQ_F_REFCOUNT;
996 /* we only want to free it, don't post CQEs */
997 req->flags |= REQ_F_CQE_SKIP;
998 req->io_task_work.func = io_req_task_complete;
999 io_req_task_work_add(req);
1002 static void __io_req_find_next_prep(struct io_kiocb *req)
1004 struct io_ring_ctx *ctx = req->ctx;
1006 spin_lock(&ctx->completion_lock);
1007 io_disarm_next(req);
1008 spin_unlock(&ctx->completion_lock);
1011 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1013 struct io_kiocb *nxt;
1016 * If LINK is set, we have dependent requests in this chain. If we
1017 * didn't fail this request, queue the first one up, moving any other
1018 * dependencies to the next request. In case of failure, fail the rest
1019 * of the chain.
1021 if (unlikely(req->flags & IO_DISARM_MASK))
1022 __io_req_find_next_prep(req);
1023 nxt = req->link;
1024 req->link = NULL;
1025 return nxt;
1028 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1030 if (!ctx)
1031 return;
1032 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1033 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1035 io_submit_flush_completions(ctx);
1036 mutex_unlock(&ctx->uring_lock);
1037 percpu_ref_put(&ctx->refs);
1041 * Run queued task_work, returning the number of entries processed in *count.
1042 * If more entries than max_entries are available, stop processing once this
1043 * is reached and return the rest of the list.
1045 struct llist_node *io_handle_tw_list(struct llist_node *node,
1046 unsigned int *count,
1047 unsigned int max_entries)
1049 struct io_ring_ctx *ctx = NULL;
1050 struct io_tw_state ts = { };
1052 do {
1053 struct llist_node *next = node->next;
1054 struct io_kiocb *req = container_of(node, struct io_kiocb,
1055 io_task_work.node);
1057 if (req->ctx != ctx) {
1058 ctx_flush_and_put(ctx, &ts);
1059 ctx = req->ctx;
1060 mutex_lock(&ctx->uring_lock);
1061 percpu_ref_get(&ctx->refs);
1063 INDIRECT_CALL_2(req->io_task_work.func,
1064 io_poll_task_func, io_req_rw_complete,
1065 req, &ts);
1066 node = next;
1067 (*count)++;
1068 if (unlikely(need_resched())) {
1069 ctx_flush_and_put(ctx, &ts);
1070 ctx = NULL;
1071 cond_resched();
1073 } while (node && *count < max_entries);
1075 ctx_flush_and_put(ctx, &ts);
1076 return node;
1080 * io_llist_xchg - swap all entries in a lock-less list
1081 * @head: the head of lock-less list to delete all entries
1082 * @new: new entry as the head of the list
1084 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1085 * The order of entries returned is from the newest to the oldest added one.
1087 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1088 struct llist_node *new)
1090 return xchg(&head->first, new);
1093 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1095 struct llist_node *node = llist_del_all(&tctx->task_list);
1096 struct io_ring_ctx *last_ctx = NULL;
1097 struct io_kiocb *req;
1099 while (node) {
1100 req = container_of(node, struct io_kiocb, io_task_work.node);
1101 node = node->next;
1102 if (sync && last_ctx != req->ctx) {
1103 if (last_ctx) {
1104 flush_delayed_work(&last_ctx->fallback_work);
1105 percpu_ref_put(&last_ctx->refs);
1107 last_ctx = req->ctx;
1108 percpu_ref_get(&last_ctx->refs);
1110 if (llist_add(&req->io_task_work.node,
1111 &req->ctx->fallback_llist))
1112 schedule_delayed_work(&req->ctx->fallback_work, 1);
1115 if (last_ctx) {
1116 flush_delayed_work(&last_ctx->fallback_work);
1117 percpu_ref_put(&last_ctx->refs);
1121 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1122 unsigned int max_entries,
1123 unsigned int *count)
1125 struct llist_node *node;
1127 if (unlikely(current->flags & PF_EXITING)) {
1128 io_fallback_tw(tctx, true);
1129 return NULL;
1132 node = llist_del_all(&tctx->task_list);
1133 if (node) {
1134 node = llist_reverse_order(node);
1135 node = io_handle_tw_list(node, count, max_entries);
1138 /* relaxed read is enough as only the task itself sets ->in_cancel */
1139 if (unlikely(atomic_read(&tctx->in_cancel)))
1140 io_uring_drop_tctx_refs(current);
1142 trace_io_uring_task_work_run(tctx, *count);
1143 return node;
1146 void tctx_task_work(struct callback_head *cb)
1148 struct io_uring_task *tctx;
1149 struct llist_node *ret;
1150 unsigned int count = 0;
1152 tctx = container_of(cb, struct io_uring_task, task_work);
1153 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1154 /* can't happen */
1155 WARN_ON_ONCE(ret);
1158 static inline void io_req_local_work_add(struct io_kiocb *req,
1159 struct io_ring_ctx *ctx,
1160 unsigned flags)
1162 unsigned nr_wait, nr_tw, nr_tw_prev;
1163 struct llist_node *head;
1165 /* See comment above IO_CQ_WAKE_INIT */
1166 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1169 * We don't know how many reuqests is there in the link and whether
1170 * they can even be queued lazily, fall back to non-lazy.
1172 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1173 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1175 guard(rcu)();
1177 head = READ_ONCE(ctx->work_llist.first);
1178 do {
1179 nr_tw_prev = 0;
1180 if (head) {
1181 struct io_kiocb *first_req = container_of(head,
1182 struct io_kiocb,
1183 io_task_work.node);
1185 * Might be executed at any moment, rely on
1186 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1188 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1192 * Theoretically, it can overflow, but that's fine as one of
1193 * previous adds should've tried to wake the task.
1195 nr_tw = nr_tw_prev + 1;
1196 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1197 nr_tw = IO_CQ_WAKE_FORCE;
1199 req->nr_tw = nr_tw;
1200 req->io_task_work.node.next = head;
1201 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1202 &req->io_task_work.node));
1205 * cmpxchg implies a full barrier, which pairs with the barrier
1206 * in set_current_state() on the io_cqring_wait() side. It's used
1207 * to ensure that either we see updated ->cq_wait_nr, or waiters
1208 * going to sleep will observe the work added to the list, which
1209 * is similar to the wait/wawke task state sync.
1212 if (!head) {
1213 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1214 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1215 if (ctx->has_evfd)
1216 io_eventfd_signal(ctx);
1219 nr_wait = atomic_read(&ctx->cq_wait_nr);
1220 /* not enough or no one is waiting */
1221 if (nr_tw < nr_wait)
1222 return;
1223 /* the previous add has already woken it up */
1224 if (nr_tw_prev >= nr_wait)
1225 return;
1226 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1229 static void io_req_normal_work_add(struct io_kiocb *req)
1231 struct io_uring_task *tctx = req->task->io_uring;
1232 struct io_ring_ctx *ctx = req->ctx;
1234 /* task_work already pending, we're done */
1235 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1236 return;
1238 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1239 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1241 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1242 if (ctx->flags & IORING_SETUP_SQPOLL) {
1243 struct io_sq_data *sqd = ctx->sq_data;
1245 if (sqd->thread)
1246 __set_notify_signal(sqd->thread);
1247 return;
1250 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1251 return;
1253 io_fallback_tw(tctx, false);
1256 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1258 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1259 io_req_local_work_add(req, req->ctx, flags);
1260 else
1261 io_req_normal_work_add(req);
1264 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1265 unsigned flags)
1267 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1268 return;
1269 io_req_local_work_add(req, ctx, flags);
1272 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1274 struct llist_node *node;
1276 node = llist_del_all(&ctx->work_llist);
1277 while (node) {
1278 struct io_kiocb *req = container_of(node, struct io_kiocb,
1279 io_task_work.node);
1281 node = node->next;
1282 io_req_normal_work_add(req);
1286 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1287 int min_events)
1289 if (llist_empty(&ctx->work_llist))
1290 return false;
1291 if (events < min_events)
1292 return true;
1293 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1294 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1295 return false;
1298 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1299 int min_events)
1301 struct llist_node *node;
1302 unsigned int loops = 0;
1303 int ret = 0;
1305 if (WARN_ON_ONCE(ctx->submitter_task != current))
1306 return -EEXIST;
1307 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1308 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1309 again:
1311 * llists are in reverse order, flip it back the right way before
1312 * running the pending items.
1314 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1315 while (node) {
1316 struct llist_node *next = node->next;
1317 struct io_kiocb *req = container_of(node, struct io_kiocb,
1318 io_task_work.node);
1319 INDIRECT_CALL_2(req->io_task_work.func,
1320 io_poll_task_func, io_req_rw_complete,
1321 req, ts);
1322 ret++;
1323 node = next;
1325 loops++;
1327 if (io_run_local_work_continue(ctx, ret, min_events))
1328 goto again;
1329 io_submit_flush_completions(ctx);
1330 if (io_run_local_work_continue(ctx, ret, min_events))
1331 goto again;
1333 trace_io_uring_local_work_run(ctx, ret, loops);
1334 return ret;
1337 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1338 int min_events)
1340 struct io_tw_state ts = {};
1342 if (llist_empty(&ctx->work_llist))
1343 return 0;
1344 return __io_run_local_work(ctx, &ts, min_events);
1347 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1349 struct io_tw_state ts = {};
1350 int ret;
1352 mutex_lock(&ctx->uring_lock);
1353 ret = __io_run_local_work(ctx, &ts, min_events);
1354 mutex_unlock(&ctx->uring_lock);
1355 return ret;
1358 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1360 io_tw_lock(req->ctx, ts);
1361 io_req_defer_failed(req, req->cqe.res);
1364 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1366 io_tw_lock(req->ctx, ts);
1367 /* req->task == current here, checking PF_EXITING is safe */
1368 if (unlikely(req->task->flags & PF_EXITING))
1369 io_req_defer_failed(req, -EFAULT);
1370 else if (req->flags & REQ_F_FORCE_ASYNC)
1371 io_queue_iowq(req);
1372 else
1373 io_queue_sqe(req);
1376 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1378 io_req_set_res(req, ret, 0);
1379 req->io_task_work.func = io_req_task_cancel;
1380 io_req_task_work_add(req);
1383 void io_req_task_queue(struct io_kiocb *req)
1385 req->io_task_work.func = io_req_task_submit;
1386 io_req_task_work_add(req);
1389 void io_queue_next(struct io_kiocb *req)
1391 struct io_kiocb *nxt = io_req_find_next(req);
1393 if (nxt)
1394 io_req_task_queue(nxt);
1397 static void io_free_batch_list(struct io_ring_ctx *ctx,
1398 struct io_wq_work_node *node)
1399 __must_hold(&ctx->uring_lock)
1401 do {
1402 struct io_kiocb *req = container_of(node, struct io_kiocb,
1403 comp_list);
1405 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1406 if (req->flags & REQ_F_REFCOUNT) {
1407 node = req->comp_list.next;
1408 if (!req_ref_put_and_test(req))
1409 continue;
1411 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1412 struct async_poll *apoll = req->apoll;
1414 if (apoll->double_poll)
1415 kfree(apoll->double_poll);
1416 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1417 kfree(apoll);
1418 req->flags &= ~REQ_F_POLLED;
1420 if (req->flags & IO_REQ_LINK_FLAGS)
1421 io_queue_next(req);
1422 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1423 io_clean_op(req);
1425 io_put_file(req);
1426 io_put_rsrc_node(ctx, req->rsrc_node);
1427 io_put_task(req->task);
1429 node = req->comp_list.next;
1430 io_req_add_to_cache(req, ctx);
1431 } while (node);
1434 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1435 __must_hold(&ctx->uring_lock)
1437 struct io_submit_state *state = &ctx->submit_state;
1438 struct io_wq_work_node *node;
1440 __io_cq_lock(ctx);
1441 __wq_list_for_each(node, &state->compl_reqs) {
1442 struct io_kiocb *req = container_of(node, struct io_kiocb,
1443 comp_list);
1445 if (!(req->flags & REQ_F_CQE_SKIP) &&
1446 unlikely(!io_fill_cqe_req(ctx, req))) {
1447 if (ctx->lockless_cq) {
1448 spin_lock(&ctx->completion_lock);
1449 io_req_cqe_overflow(req);
1450 spin_unlock(&ctx->completion_lock);
1451 } else {
1452 io_req_cqe_overflow(req);
1456 __io_cq_unlock_post(ctx);
1458 if (!wq_list_empty(&state->compl_reqs)) {
1459 io_free_batch_list(ctx, state->compl_reqs.first);
1460 INIT_WQ_LIST(&state->compl_reqs);
1462 ctx->submit_state.cq_flush = false;
1465 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1467 /* See comment at the top of this file */
1468 smp_rmb();
1469 return __io_cqring_events(ctx);
1473 * We can't just wait for polled events to come to us, we have to actively
1474 * find and complete them.
1476 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1478 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1479 return;
1481 mutex_lock(&ctx->uring_lock);
1482 while (!wq_list_empty(&ctx->iopoll_list)) {
1483 /* let it sleep and repeat later if can't complete a request */
1484 if (io_do_iopoll(ctx, true) == 0)
1485 break;
1487 * Ensure we allow local-to-the-cpu processing to take place,
1488 * in this case we need to ensure that we reap all events.
1489 * Also let task_work, etc. to progress by releasing the mutex
1491 if (need_resched()) {
1492 mutex_unlock(&ctx->uring_lock);
1493 cond_resched();
1494 mutex_lock(&ctx->uring_lock);
1497 mutex_unlock(&ctx->uring_lock);
1500 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1502 unsigned int nr_events = 0;
1503 unsigned long check_cq;
1505 lockdep_assert_held(&ctx->uring_lock);
1507 if (!io_allowed_run_tw(ctx))
1508 return -EEXIST;
1510 check_cq = READ_ONCE(ctx->check_cq);
1511 if (unlikely(check_cq)) {
1512 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1513 __io_cqring_overflow_flush(ctx, false);
1515 * Similarly do not spin if we have not informed the user of any
1516 * dropped CQE.
1518 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1519 return -EBADR;
1522 * Don't enter poll loop if we already have events pending.
1523 * If we do, we can potentially be spinning for commands that
1524 * already triggered a CQE (eg in error).
1526 if (io_cqring_events(ctx))
1527 return 0;
1529 do {
1530 int ret = 0;
1533 * If a submit got punted to a workqueue, we can have the
1534 * application entering polling for a command before it gets
1535 * issued. That app will hold the uring_lock for the duration
1536 * of the poll right here, so we need to take a breather every
1537 * now and then to ensure that the issue has a chance to add
1538 * the poll to the issued list. Otherwise we can spin here
1539 * forever, while the workqueue is stuck trying to acquire the
1540 * very same mutex.
1542 if (wq_list_empty(&ctx->iopoll_list) ||
1543 io_task_work_pending(ctx)) {
1544 u32 tail = ctx->cached_cq_tail;
1546 (void) io_run_local_work_locked(ctx, min);
1548 if (task_work_pending(current) ||
1549 wq_list_empty(&ctx->iopoll_list)) {
1550 mutex_unlock(&ctx->uring_lock);
1551 io_run_task_work();
1552 mutex_lock(&ctx->uring_lock);
1554 /* some requests don't go through iopoll_list */
1555 if (tail != ctx->cached_cq_tail ||
1556 wq_list_empty(&ctx->iopoll_list))
1557 break;
1559 ret = io_do_iopoll(ctx, !min);
1560 if (unlikely(ret < 0))
1561 return ret;
1563 if (task_sigpending(current))
1564 return -EINTR;
1565 if (need_resched())
1566 break;
1568 nr_events += ret;
1569 } while (nr_events < min);
1571 return 0;
1574 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1576 io_req_complete_defer(req);
1580 * After the iocb has been issued, it's safe to be found on the poll list.
1581 * Adding the kiocb to the list AFTER submission ensures that we don't
1582 * find it from a io_do_iopoll() thread before the issuer is done
1583 * accessing the kiocb cookie.
1585 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1587 struct io_ring_ctx *ctx = req->ctx;
1588 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1590 /* workqueue context doesn't hold uring_lock, grab it now */
1591 if (unlikely(needs_lock))
1592 mutex_lock(&ctx->uring_lock);
1595 * Track whether we have multiple files in our lists. This will impact
1596 * how we do polling eventually, not spinning if we're on potentially
1597 * different devices.
1599 if (wq_list_empty(&ctx->iopoll_list)) {
1600 ctx->poll_multi_queue = false;
1601 } else if (!ctx->poll_multi_queue) {
1602 struct io_kiocb *list_req;
1604 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1605 comp_list);
1606 if (list_req->file != req->file)
1607 ctx->poll_multi_queue = true;
1611 * For fast devices, IO may have already completed. If it has, add
1612 * it to the front so we find it first.
1614 if (READ_ONCE(req->iopoll_completed))
1615 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1616 else
1617 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1619 if (unlikely(needs_lock)) {
1621 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1622 * in sq thread task context or in io worker task context. If
1623 * current task context is sq thread, we don't need to check
1624 * whether should wake up sq thread.
1626 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1627 wq_has_sleeper(&ctx->sq_data->wait))
1628 wake_up(&ctx->sq_data->wait);
1630 mutex_unlock(&ctx->uring_lock);
1634 io_req_flags_t io_file_get_flags(struct file *file)
1636 io_req_flags_t res = 0;
1638 if (S_ISREG(file_inode(file)->i_mode))
1639 res |= REQ_F_ISREG;
1640 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1641 res |= REQ_F_SUPPORT_NOWAIT;
1642 return res;
1645 bool io_alloc_async_data(struct io_kiocb *req)
1647 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1649 WARN_ON_ONCE(!def->async_size);
1650 req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1651 if (req->async_data) {
1652 req->flags |= REQ_F_ASYNC_DATA;
1653 return false;
1655 return true;
1658 static u32 io_get_sequence(struct io_kiocb *req)
1660 u32 seq = req->ctx->cached_sq_head;
1661 struct io_kiocb *cur;
1663 /* need original cached_sq_head, but it was increased for each req */
1664 io_for_each_link(cur, req)
1665 seq--;
1666 return seq;
1669 static __cold void io_drain_req(struct io_kiocb *req)
1670 __must_hold(&ctx->uring_lock)
1672 struct io_ring_ctx *ctx = req->ctx;
1673 struct io_defer_entry *de;
1674 int ret;
1675 u32 seq = io_get_sequence(req);
1677 /* Still need defer if there is pending req in defer list. */
1678 spin_lock(&ctx->completion_lock);
1679 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1680 spin_unlock(&ctx->completion_lock);
1681 queue:
1682 ctx->drain_active = false;
1683 io_req_task_queue(req);
1684 return;
1686 spin_unlock(&ctx->completion_lock);
1688 io_prep_async_link(req);
1689 de = kmalloc(sizeof(*de), GFP_KERNEL);
1690 if (!de) {
1691 ret = -ENOMEM;
1692 io_req_defer_failed(req, ret);
1693 return;
1696 spin_lock(&ctx->completion_lock);
1697 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1698 spin_unlock(&ctx->completion_lock);
1699 kfree(de);
1700 goto queue;
1703 trace_io_uring_defer(req);
1704 de->req = req;
1705 de->seq = seq;
1706 list_add_tail(&de->list, &ctx->defer_list);
1707 spin_unlock(&ctx->completion_lock);
1710 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1711 unsigned int issue_flags)
1713 if (req->file || !def->needs_file)
1714 return true;
1716 if (req->flags & REQ_F_FIXED_FILE)
1717 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1718 else
1719 req->file = io_file_get_normal(req, req->cqe.fd);
1721 return !!req->file;
1724 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1726 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1727 const struct cred *creds = NULL;
1728 int ret;
1730 if (unlikely(!io_assign_file(req, def, issue_flags)))
1731 return -EBADF;
1733 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1734 creds = override_creds(req->creds);
1736 if (!def->audit_skip)
1737 audit_uring_entry(req->opcode);
1739 ret = def->issue(req, issue_flags);
1741 if (!def->audit_skip)
1742 audit_uring_exit(!ret, ret);
1744 if (creds)
1745 revert_creds(creds);
1747 if (ret == IOU_OK) {
1748 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1749 io_req_complete_defer(req);
1750 else
1751 io_req_complete_post(req, issue_flags);
1753 return 0;
1756 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1757 ret = 0;
1758 io_arm_ltimeout(req);
1760 /* If the op doesn't have a file, we're not polling for it */
1761 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1762 io_iopoll_req_issued(req, issue_flags);
1764 return ret;
1767 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1769 io_tw_lock(req->ctx, ts);
1770 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1771 IO_URING_F_COMPLETE_DEFER);
1774 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1776 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1777 struct io_kiocb *nxt = NULL;
1779 if (req_ref_put_and_test(req)) {
1780 if (req->flags & IO_REQ_LINK_FLAGS)
1781 nxt = io_req_find_next(req);
1782 io_free_req(req);
1784 return nxt ? &nxt->work : NULL;
1787 void io_wq_submit_work(struct io_wq_work *work)
1789 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1790 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1791 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1792 bool needs_poll = false;
1793 int ret = 0, err = -ECANCELED;
1795 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1796 if (!(req->flags & REQ_F_REFCOUNT))
1797 __io_req_set_refcount(req, 2);
1798 else
1799 req_ref_get(req);
1801 io_arm_ltimeout(req);
1803 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1804 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1805 fail:
1806 io_req_task_queue_fail(req, err);
1807 return;
1809 if (!io_assign_file(req, def, issue_flags)) {
1810 err = -EBADF;
1811 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1812 goto fail;
1816 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1817 * submitter task context. Final request completions are handed to the
1818 * right context, however this is not the case of auxiliary CQEs,
1819 * which is the main mean of operation for multishot requests.
1820 * Don't allow any multishot execution from io-wq. It's more restrictive
1821 * than necessary and also cleaner.
1823 if (req->flags & REQ_F_APOLL_MULTISHOT) {
1824 err = -EBADFD;
1825 if (!io_file_can_poll(req))
1826 goto fail;
1827 if (req->file->f_flags & O_NONBLOCK ||
1828 req->file->f_mode & FMODE_NOWAIT) {
1829 err = -ECANCELED;
1830 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1831 goto fail;
1832 return;
1833 } else {
1834 req->flags &= ~REQ_F_APOLL_MULTISHOT;
1838 if (req->flags & REQ_F_FORCE_ASYNC) {
1839 bool opcode_poll = def->pollin || def->pollout;
1841 if (opcode_poll && io_file_can_poll(req)) {
1842 needs_poll = true;
1843 issue_flags |= IO_URING_F_NONBLOCK;
1847 do {
1848 ret = io_issue_sqe(req, issue_flags);
1849 if (ret != -EAGAIN)
1850 break;
1853 * If REQ_F_NOWAIT is set, then don't wait or retry with
1854 * poll. -EAGAIN is final for that case.
1856 if (req->flags & REQ_F_NOWAIT)
1857 break;
1860 * We can get EAGAIN for iopolled IO even though we're
1861 * forcing a sync submission from here, since we can't
1862 * wait for request slots on the block side.
1864 if (!needs_poll) {
1865 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1866 break;
1867 if (io_wq_worker_stopped())
1868 break;
1869 cond_resched();
1870 continue;
1873 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1874 return;
1875 /* aborted or ready, in either case retry blocking */
1876 needs_poll = false;
1877 issue_flags &= ~IO_URING_F_NONBLOCK;
1878 } while (1);
1880 /* avoid locking problems by failing it from a clean context */
1881 if (ret)
1882 io_req_task_queue_fail(req, ret);
1885 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1886 unsigned int issue_flags)
1888 struct io_ring_ctx *ctx = req->ctx;
1889 struct io_fixed_file *slot;
1890 struct file *file = NULL;
1892 io_ring_submit_lock(ctx, issue_flags);
1894 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1895 goto out;
1896 fd = array_index_nospec(fd, ctx->nr_user_files);
1897 slot = io_fixed_file_slot(&ctx->file_table, fd);
1898 if (!req->rsrc_node)
1899 __io_req_set_rsrc_node(req, ctx);
1900 req->flags |= io_slot_flags(slot);
1901 file = io_slot_file(slot);
1902 out:
1903 io_ring_submit_unlock(ctx, issue_flags);
1904 return file;
1907 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1909 struct file *file = fget(fd);
1911 trace_io_uring_file_get(req, fd);
1913 /* we don't allow fixed io_uring files */
1914 if (file && io_is_uring_fops(file))
1915 io_req_track_inflight(req);
1916 return file;
1919 static void io_queue_async(struct io_kiocb *req, int ret)
1920 __must_hold(&req->ctx->uring_lock)
1922 struct io_kiocb *linked_timeout;
1924 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1925 io_req_defer_failed(req, ret);
1926 return;
1929 linked_timeout = io_prep_linked_timeout(req);
1931 switch (io_arm_poll_handler(req, 0)) {
1932 case IO_APOLL_READY:
1933 io_kbuf_recycle(req, 0);
1934 io_req_task_queue(req);
1935 break;
1936 case IO_APOLL_ABORTED:
1937 io_kbuf_recycle(req, 0);
1938 io_queue_iowq(req);
1939 break;
1940 case IO_APOLL_OK:
1941 break;
1944 if (linked_timeout)
1945 io_queue_linked_timeout(linked_timeout);
1948 static inline void io_queue_sqe(struct io_kiocb *req)
1949 __must_hold(&req->ctx->uring_lock)
1951 int ret;
1953 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1956 * We async punt it if the file wasn't marked NOWAIT, or if the file
1957 * doesn't support non-blocking read/write attempts
1959 if (unlikely(ret))
1960 io_queue_async(req, ret);
1963 static void io_queue_sqe_fallback(struct io_kiocb *req)
1964 __must_hold(&req->ctx->uring_lock)
1966 if (unlikely(req->flags & REQ_F_FAIL)) {
1968 * We don't submit, fail them all, for that replace hardlinks
1969 * with normal links. Extra REQ_F_LINK is tolerated.
1971 req->flags &= ~REQ_F_HARDLINK;
1972 req->flags |= REQ_F_LINK;
1973 io_req_defer_failed(req, req->cqe.res);
1974 } else {
1975 if (unlikely(req->ctx->drain_active))
1976 io_drain_req(req);
1977 else
1978 io_queue_iowq(req);
1983 * Check SQE restrictions (opcode and flags).
1985 * Returns 'true' if SQE is allowed, 'false' otherwise.
1987 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1988 struct io_kiocb *req,
1989 unsigned int sqe_flags)
1991 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1992 return false;
1994 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1995 ctx->restrictions.sqe_flags_required)
1996 return false;
1998 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1999 ctx->restrictions.sqe_flags_required))
2000 return false;
2002 return true;
2005 static void io_init_req_drain(struct io_kiocb *req)
2007 struct io_ring_ctx *ctx = req->ctx;
2008 struct io_kiocb *head = ctx->submit_state.link.head;
2010 ctx->drain_active = true;
2011 if (head) {
2013 * If we need to drain a request in the middle of a link, drain
2014 * the head request and the next request/link after the current
2015 * link. Considering sequential execution of links,
2016 * REQ_F_IO_DRAIN will be maintained for every request of our
2017 * link.
2019 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2020 ctx->drain_next = true;
2024 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2026 /* ensure per-opcode data is cleared if we fail before prep */
2027 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2028 return err;
2031 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2032 const struct io_uring_sqe *sqe)
2033 __must_hold(&ctx->uring_lock)
2035 const struct io_issue_def *def;
2036 unsigned int sqe_flags;
2037 int personality;
2038 u8 opcode;
2040 /* req is partially pre-initialised, see io_preinit_req() */
2041 req->opcode = opcode = READ_ONCE(sqe->opcode);
2042 /* same numerical values with corresponding REQ_F_*, safe to copy */
2043 sqe_flags = READ_ONCE(sqe->flags);
2044 req->flags = (__force io_req_flags_t) sqe_flags;
2045 req->cqe.user_data = READ_ONCE(sqe->user_data);
2046 req->file = NULL;
2047 req->rsrc_node = NULL;
2048 req->task = current;
2049 req->cancel_seq_set = false;
2051 if (unlikely(opcode >= IORING_OP_LAST)) {
2052 req->opcode = 0;
2053 return io_init_fail_req(req, -EINVAL);
2055 def = &io_issue_defs[opcode];
2056 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2057 /* enforce forwards compatibility on users */
2058 if (sqe_flags & ~SQE_VALID_FLAGS)
2059 return io_init_fail_req(req, -EINVAL);
2060 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2061 if (!def->buffer_select)
2062 return io_init_fail_req(req, -EOPNOTSUPP);
2063 req->buf_index = READ_ONCE(sqe->buf_group);
2065 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2066 ctx->drain_disabled = true;
2067 if (sqe_flags & IOSQE_IO_DRAIN) {
2068 if (ctx->drain_disabled)
2069 return io_init_fail_req(req, -EOPNOTSUPP);
2070 io_init_req_drain(req);
2073 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2074 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2075 return io_init_fail_req(req, -EACCES);
2076 /* knock it to the slow queue path, will be drained there */
2077 if (ctx->drain_active)
2078 req->flags |= REQ_F_FORCE_ASYNC;
2079 /* if there is no link, we're at "next" request and need to drain */
2080 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2081 ctx->drain_next = false;
2082 ctx->drain_active = true;
2083 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2087 if (!def->ioprio && sqe->ioprio)
2088 return io_init_fail_req(req, -EINVAL);
2089 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2090 return io_init_fail_req(req, -EINVAL);
2092 if (def->needs_file) {
2093 struct io_submit_state *state = &ctx->submit_state;
2095 req->cqe.fd = READ_ONCE(sqe->fd);
2098 * Plug now if we have more than 2 IO left after this, and the
2099 * target is potentially a read/write to block based storage.
2101 if (state->need_plug && def->plug) {
2102 state->plug_started = true;
2103 state->need_plug = false;
2104 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2108 personality = READ_ONCE(sqe->personality);
2109 if (personality) {
2110 int ret;
2112 req->creds = xa_load(&ctx->personalities, personality);
2113 if (!req->creds)
2114 return io_init_fail_req(req, -EINVAL);
2115 get_cred(req->creds);
2116 ret = security_uring_override_creds(req->creds);
2117 if (ret) {
2118 put_cred(req->creds);
2119 return io_init_fail_req(req, ret);
2121 req->flags |= REQ_F_CREDS;
2124 return def->prep(req, sqe);
2127 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2128 struct io_kiocb *req, int ret)
2130 struct io_ring_ctx *ctx = req->ctx;
2131 struct io_submit_link *link = &ctx->submit_state.link;
2132 struct io_kiocb *head = link->head;
2134 trace_io_uring_req_failed(sqe, req, ret);
2137 * Avoid breaking links in the middle as it renders links with SQPOLL
2138 * unusable. Instead of failing eagerly, continue assembling the link if
2139 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2140 * should find the flag and handle the rest.
2142 req_fail_link_node(req, ret);
2143 if (head && !(head->flags & REQ_F_FAIL))
2144 req_fail_link_node(head, -ECANCELED);
2146 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2147 if (head) {
2148 link->last->link = req;
2149 link->head = NULL;
2150 req = head;
2152 io_queue_sqe_fallback(req);
2153 return ret;
2156 if (head)
2157 link->last->link = req;
2158 else
2159 link->head = req;
2160 link->last = req;
2161 return 0;
2164 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2165 const struct io_uring_sqe *sqe)
2166 __must_hold(&ctx->uring_lock)
2168 struct io_submit_link *link = &ctx->submit_state.link;
2169 int ret;
2171 ret = io_init_req(ctx, req, sqe);
2172 if (unlikely(ret))
2173 return io_submit_fail_init(sqe, req, ret);
2175 trace_io_uring_submit_req(req);
2178 * If we already have a head request, queue this one for async
2179 * submittal once the head completes. If we don't have a head but
2180 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2181 * submitted sync once the chain is complete. If none of those
2182 * conditions are true (normal request), then just queue it.
2184 if (unlikely(link->head)) {
2185 trace_io_uring_link(req, link->last);
2186 link->last->link = req;
2187 link->last = req;
2189 if (req->flags & IO_REQ_LINK_FLAGS)
2190 return 0;
2191 /* last request of the link, flush it */
2192 req = link->head;
2193 link->head = NULL;
2194 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2195 goto fallback;
2197 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2198 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2199 if (req->flags & IO_REQ_LINK_FLAGS) {
2200 link->head = req;
2201 link->last = req;
2202 } else {
2203 fallback:
2204 io_queue_sqe_fallback(req);
2206 return 0;
2209 io_queue_sqe(req);
2210 return 0;
2214 * Batched submission is done, ensure local IO is flushed out.
2216 static void io_submit_state_end(struct io_ring_ctx *ctx)
2218 struct io_submit_state *state = &ctx->submit_state;
2220 if (unlikely(state->link.head))
2221 io_queue_sqe_fallback(state->link.head);
2222 /* flush only after queuing links as they can generate completions */
2223 io_submit_flush_completions(ctx);
2224 if (state->plug_started)
2225 blk_finish_plug(&state->plug);
2229 * Start submission side cache.
2231 static void io_submit_state_start(struct io_submit_state *state,
2232 unsigned int max_ios)
2234 state->plug_started = false;
2235 state->need_plug = max_ios > 2;
2236 state->submit_nr = max_ios;
2237 /* set only head, no need to init link_last in advance */
2238 state->link.head = NULL;
2241 static void io_commit_sqring(struct io_ring_ctx *ctx)
2243 struct io_rings *rings = ctx->rings;
2246 * Ensure any loads from the SQEs are done at this point,
2247 * since once we write the new head, the application could
2248 * write new data to them.
2250 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2254 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2255 * that is mapped by userspace. This means that care needs to be taken to
2256 * ensure that reads are stable, as we cannot rely on userspace always
2257 * being a good citizen. If members of the sqe are validated and then later
2258 * used, it's important that those reads are done through READ_ONCE() to
2259 * prevent a re-load down the line.
2261 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2263 unsigned mask = ctx->sq_entries - 1;
2264 unsigned head = ctx->cached_sq_head++ & mask;
2266 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2267 head = READ_ONCE(ctx->sq_array[head]);
2268 if (unlikely(head >= ctx->sq_entries)) {
2269 /* drop invalid entries */
2270 spin_lock(&ctx->completion_lock);
2271 ctx->cq_extra--;
2272 spin_unlock(&ctx->completion_lock);
2273 WRITE_ONCE(ctx->rings->sq_dropped,
2274 READ_ONCE(ctx->rings->sq_dropped) + 1);
2275 return false;
2280 * The cached sq head (or cq tail) serves two purposes:
2282 * 1) allows us to batch the cost of updating the user visible
2283 * head updates.
2284 * 2) allows the kernel side to track the head on its own, even
2285 * though the application is the one updating it.
2288 /* double index for 128-byte SQEs, twice as long */
2289 if (ctx->flags & IORING_SETUP_SQE128)
2290 head <<= 1;
2291 *sqe = &ctx->sq_sqes[head];
2292 return true;
2295 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2296 __must_hold(&ctx->uring_lock)
2298 unsigned int entries = io_sqring_entries(ctx);
2299 unsigned int left;
2300 int ret;
2302 if (unlikely(!entries))
2303 return 0;
2304 /* make sure SQ entry isn't read before tail */
2305 ret = left = min(nr, entries);
2306 io_get_task_refs(left);
2307 io_submit_state_start(&ctx->submit_state, left);
2309 do {
2310 const struct io_uring_sqe *sqe;
2311 struct io_kiocb *req;
2313 if (unlikely(!io_alloc_req(ctx, &req)))
2314 break;
2315 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2316 io_req_add_to_cache(req, ctx);
2317 break;
2321 * Continue submitting even for sqe failure if the
2322 * ring was setup with IORING_SETUP_SUBMIT_ALL
2324 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2325 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2326 left--;
2327 break;
2329 } while (--left);
2331 if (unlikely(left)) {
2332 ret -= left;
2333 /* try again if it submitted nothing and can't allocate a req */
2334 if (!ret && io_req_cache_empty(ctx))
2335 ret = -EAGAIN;
2336 current->io_uring->cached_refs += left;
2339 io_submit_state_end(ctx);
2340 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2341 io_commit_sqring(ctx);
2342 return ret;
2345 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2346 int wake_flags, void *key)
2348 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2351 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2352 * the task, and the next invocation will do it.
2354 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2355 return autoremove_wake_function(curr, mode, wake_flags, key);
2356 return -1;
2359 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2361 if (!llist_empty(&ctx->work_llist)) {
2362 __set_current_state(TASK_RUNNING);
2363 if (io_run_local_work(ctx, INT_MAX) > 0)
2364 return 0;
2366 if (io_run_task_work() > 0)
2367 return 0;
2368 if (task_sigpending(current))
2369 return -EINTR;
2370 return 0;
2373 static bool current_pending_io(void)
2375 struct io_uring_task *tctx = current->io_uring;
2377 if (!tctx)
2378 return false;
2379 return percpu_counter_read_positive(&tctx->inflight);
2382 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2384 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2386 WRITE_ONCE(iowq->hit_timeout, 1);
2387 iowq->min_timeout = 0;
2388 wake_up_process(iowq->wq.private);
2389 return HRTIMER_NORESTART;
2393 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2394 * wake up. If not, and we have a normal timeout, switch to that and keep
2395 * sleeping.
2397 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2399 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2400 struct io_ring_ctx *ctx = iowq->ctx;
2402 /* no general timeout, or shorter (or equal), we are done */
2403 if (iowq->timeout == KTIME_MAX ||
2404 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2405 goto out_wake;
2406 /* work we may need to run, wake function will see if we need to wake */
2407 if (io_has_work(ctx))
2408 goto out_wake;
2409 /* got events since we started waiting, min timeout is done */
2410 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2411 goto out_wake;
2412 /* if we have any events and min timeout expired, we're done */
2413 if (io_cqring_events(ctx))
2414 goto out_wake;
2417 * If using deferred task_work running and application is waiting on
2418 * more than one request, ensure we reset it now where we are switching
2419 * to normal sleeps. Any request completion post min_wait should wake
2420 * the task and return.
2422 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2423 atomic_set(&ctx->cq_wait_nr, 1);
2424 smp_mb();
2425 if (!llist_empty(&ctx->work_llist))
2426 goto out_wake;
2429 iowq->t.function = io_cqring_timer_wakeup;
2430 hrtimer_set_expires(timer, iowq->timeout);
2431 return HRTIMER_RESTART;
2432 out_wake:
2433 return io_cqring_timer_wakeup(timer);
2436 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2437 clockid_t clock_id, ktime_t start_time)
2439 ktime_t timeout;
2441 hrtimer_init_on_stack(&iowq->t, clock_id, HRTIMER_MODE_ABS);
2442 if (iowq->min_timeout) {
2443 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2444 iowq->t.function = io_cqring_min_timer_wakeup;
2445 } else {
2446 timeout = iowq->timeout;
2447 iowq->t.function = io_cqring_timer_wakeup;
2450 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2451 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2453 if (!READ_ONCE(iowq->hit_timeout))
2454 schedule();
2456 hrtimer_cancel(&iowq->t);
2457 destroy_hrtimer_on_stack(&iowq->t);
2458 __set_current_state(TASK_RUNNING);
2460 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2463 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2464 struct io_wait_queue *iowq,
2465 ktime_t start_time)
2467 int ret = 0;
2470 * Mark us as being in io_wait if we have pending requests, so cpufreq
2471 * can take into account that the task is waiting for IO - turns out
2472 * to be important for low QD IO.
2474 if (current_pending_io())
2475 current->in_iowait = 1;
2476 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2477 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2478 else
2479 schedule();
2480 current->in_iowait = 0;
2481 return ret;
2484 /* If this returns > 0, the caller should retry */
2485 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2486 struct io_wait_queue *iowq,
2487 ktime_t start_time)
2489 if (unlikely(READ_ONCE(ctx->check_cq)))
2490 return 1;
2491 if (unlikely(!llist_empty(&ctx->work_llist)))
2492 return 1;
2493 if (unlikely(task_work_pending(current)))
2494 return 1;
2495 if (unlikely(task_sigpending(current)))
2496 return -EINTR;
2497 if (unlikely(io_should_wake(iowq)))
2498 return 0;
2500 return __io_cqring_wait_schedule(ctx, iowq, start_time);
2503 struct ext_arg {
2504 size_t argsz;
2505 struct __kernel_timespec __user *ts;
2506 const sigset_t __user *sig;
2507 ktime_t min_time;
2511 * Wait until events become available, if we don't already have some. The
2512 * application must reap them itself, as they reside on the shared cq ring.
2514 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2515 struct ext_arg *ext_arg)
2517 struct io_wait_queue iowq;
2518 struct io_rings *rings = ctx->rings;
2519 ktime_t start_time;
2520 int ret;
2522 if (!io_allowed_run_tw(ctx))
2523 return -EEXIST;
2524 if (!llist_empty(&ctx->work_llist))
2525 io_run_local_work(ctx, min_events);
2526 io_run_task_work();
2528 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2529 io_cqring_do_overflow_flush(ctx);
2530 if (__io_cqring_events_user(ctx) >= min_events)
2531 return 0;
2533 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2534 iowq.wq.private = current;
2535 INIT_LIST_HEAD(&iowq.wq.entry);
2536 iowq.ctx = ctx;
2537 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2538 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2539 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2540 iowq.hit_timeout = 0;
2541 iowq.min_timeout = ext_arg->min_time;
2542 iowq.timeout = KTIME_MAX;
2543 start_time = io_get_time(ctx);
2545 if (ext_arg->ts) {
2546 struct timespec64 ts;
2548 if (get_timespec64(&ts, ext_arg->ts))
2549 return -EFAULT;
2551 iowq.timeout = timespec64_to_ktime(ts);
2552 if (!(flags & IORING_ENTER_ABS_TIMER))
2553 iowq.timeout = ktime_add(iowq.timeout, start_time);
2556 if (ext_arg->sig) {
2557 #ifdef CONFIG_COMPAT
2558 if (in_compat_syscall())
2559 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2560 ext_arg->argsz);
2561 else
2562 #endif
2563 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2565 if (ret)
2566 return ret;
2569 io_napi_busy_loop(ctx, &iowq);
2571 trace_io_uring_cqring_wait(ctx, min_events);
2572 do {
2573 unsigned long check_cq;
2574 int nr_wait;
2576 /* if min timeout has been hit, don't reset wait count */
2577 if (!iowq.hit_timeout)
2578 nr_wait = (int) iowq.cq_tail -
2579 READ_ONCE(ctx->rings->cq.tail);
2580 else
2581 nr_wait = 1;
2583 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2584 atomic_set(&ctx->cq_wait_nr, nr_wait);
2585 set_current_state(TASK_INTERRUPTIBLE);
2586 } else {
2587 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2588 TASK_INTERRUPTIBLE);
2591 ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2592 __set_current_state(TASK_RUNNING);
2593 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2596 * Run task_work after scheduling and before io_should_wake().
2597 * If we got woken because of task_work being processed, run it
2598 * now rather than let the caller do another wait loop.
2600 if (!llist_empty(&ctx->work_llist))
2601 io_run_local_work(ctx, nr_wait);
2602 io_run_task_work();
2605 * Non-local task_work will be run on exit to userspace, but
2606 * if we're using DEFER_TASKRUN, then we could have waited
2607 * with a timeout for a number of requests. If the timeout
2608 * hits, we could have some requests ready to process. Ensure
2609 * this break is _after_ we have run task_work, to avoid
2610 * deferring running potentially pending requests until the
2611 * next time we wait for events.
2613 if (ret < 0)
2614 break;
2616 check_cq = READ_ONCE(ctx->check_cq);
2617 if (unlikely(check_cq)) {
2618 /* let the caller flush overflows, retry */
2619 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2620 io_cqring_do_overflow_flush(ctx);
2621 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2622 ret = -EBADR;
2623 break;
2627 if (io_should_wake(&iowq)) {
2628 ret = 0;
2629 break;
2631 cond_resched();
2632 } while (1);
2634 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2635 finish_wait(&ctx->cq_wait, &iowq.wq);
2636 restore_saved_sigmask_unless(ret == -EINTR);
2638 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2641 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2642 size_t size)
2644 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2645 size);
2648 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2649 size_t size)
2651 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2652 size);
2655 static void io_rings_free(struct io_ring_ctx *ctx)
2657 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2658 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2659 true);
2660 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2661 true);
2662 } else {
2663 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2664 ctx->n_ring_pages = 0;
2665 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2666 ctx->n_sqe_pages = 0;
2667 vunmap(ctx->rings);
2668 vunmap(ctx->sq_sqes);
2671 ctx->rings = NULL;
2672 ctx->sq_sqes = NULL;
2675 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2676 unsigned int cq_entries, size_t *sq_offset)
2678 struct io_rings *rings;
2679 size_t off, sq_array_size;
2681 off = struct_size(rings, cqes, cq_entries);
2682 if (off == SIZE_MAX)
2683 return SIZE_MAX;
2684 if (ctx->flags & IORING_SETUP_CQE32) {
2685 if (check_shl_overflow(off, 1, &off))
2686 return SIZE_MAX;
2689 #ifdef CONFIG_SMP
2690 off = ALIGN(off, SMP_CACHE_BYTES);
2691 if (off == 0)
2692 return SIZE_MAX;
2693 #endif
2695 if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2696 *sq_offset = SIZE_MAX;
2697 return off;
2700 *sq_offset = off;
2702 sq_array_size = array_size(sizeof(u32), sq_entries);
2703 if (sq_array_size == SIZE_MAX)
2704 return SIZE_MAX;
2706 if (check_add_overflow(off, sq_array_size, &off))
2707 return SIZE_MAX;
2709 return off;
2712 static void io_req_caches_free(struct io_ring_ctx *ctx)
2714 struct io_kiocb *req;
2715 int nr = 0;
2717 mutex_lock(&ctx->uring_lock);
2719 while (!io_req_cache_empty(ctx)) {
2720 req = io_extract_req(ctx);
2721 kmem_cache_free(req_cachep, req);
2722 nr++;
2724 if (nr)
2725 percpu_ref_put_many(&ctx->refs, nr);
2726 mutex_unlock(&ctx->uring_lock);
2729 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2731 io_sq_thread_finish(ctx);
2732 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2733 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2734 return;
2736 mutex_lock(&ctx->uring_lock);
2737 if (ctx->buf_data)
2738 __io_sqe_buffers_unregister(ctx);
2739 if (ctx->file_data)
2740 __io_sqe_files_unregister(ctx);
2741 io_cqring_overflow_kill(ctx);
2742 io_eventfd_unregister(ctx);
2743 io_alloc_cache_free(&ctx->apoll_cache, kfree);
2744 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2745 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2746 io_alloc_cache_free(&ctx->uring_cache, kfree);
2747 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
2748 io_futex_cache_free(ctx);
2749 io_destroy_buffers(ctx);
2750 mutex_unlock(&ctx->uring_lock);
2751 if (ctx->sq_creds)
2752 put_cred(ctx->sq_creds);
2753 if (ctx->submitter_task)
2754 put_task_struct(ctx->submitter_task);
2756 /* there are no registered resources left, nobody uses it */
2757 if (ctx->rsrc_node)
2758 io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2760 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2761 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2763 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
2764 if (ctx->mm_account) {
2765 mmdrop(ctx->mm_account);
2766 ctx->mm_account = NULL;
2768 io_rings_free(ctx);
2770 percpu_ref_exit(&ctx->refs);
2771 free_uid(ctx->user);
2772 io_req_caches_free(ctx);
2773 if (ctx->hash_map)
2774 io_wq_put_hash(ctx->hash_map);
2775 io_napi_free(ctx);
2776 kfree(ctx->cancel_table.hbs);
2777 kfree(ctx->cancel_table_locked.hbs);
2778 xa_destroy(&ctx->io_bl_xa);
2779 kfree(ctx);
2782 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2784 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2785 poll_wq_task_work);
2787 mutex_lock(&ctx->uring_lock);
2788 ctx->poll_activated = true;
2789 mutex_unlock(&ctx->uring_lock);
2792 * Wake ups for some events between start of polling and activation
2793 * might've been lost due to loose synchronisation.
2795 wake_up_all(&ctx->poll_wq);
2796 percpu_ref_put(&ctx->refs);
2799 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2801 spin_lock(&ctx->completion_lock);
2802 /* already activated or in progress */
2803 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2804 goto out;
2805 if (WARN_ON_ONCE(!ctx->task_complete))
2806 goto out;
2807 if (!ctx->submitter_task)
2808 goto out;
2810 * with ->submitter_task only the submitter task completes requests, we
2811 * only need to sync with it, which is done by injecting a tw
2813 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2814 percpu_ref_get(&ctx->refs);
2815 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2816 percpu_ref_put(&ctx->refs);
2817 out:
2818 spin_unlock(&ctx->completion_lock);
2821 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2823 struct io_ring_ctx *ctx = file->private_data;
2824 __poll_t mask = 0;
2826 if (unlikely(!ctx->poll_activated))
2827 io_activate_pollwq(ctx);
2829 poll_wait(file, &ctx->poll_wq, wait);
2831 * synchronizes with barrier from wq_has_sleeper call in
2832 * io_commit_cqring
2834 smp_rmb();
2835 if (!io_sqring_full(ctx))
2836 mask |= EPOLLOUT | EPOLLWRNORM;
2839 * Don't flush cqring overflow list here, just do a simple check.
2840 * Otherwise there could possible be ABBA deadlock:
2841 * CPU0 CPU1
2842 * ---- ----
2843 * lock(&ctx->uring_lock);
2844 * lock(&ep->mtx);
2845 * lock(&ctx->uring_lock);
2846 * lock(&ep->mtx);
2848 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2849 * pushes them to do the flush.
2852 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2853 mask |= EPOLLIN | EPOLLRDNORM;
2855 return mask;
2858 struct io_tctx_exit {
2859 struct callback_head task_work;
2860 struct completion completion;
2861 struct io_ring_ctx *ctx;
2864 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2866 struct io_uring_task *tctx = current->io_uring;
2867 struct io_tctx_exit *work;
2869 work = container_of(cb, struct io_tctx_exit, task_work);
2871 * When @in_cancel, we're in cancellation and it's racy to remove the
2872 * node. It'll be removed by the end of cancellation, just ignore it.
2873 * tctx can be NULL if the queueing of this task_work raced with
2874 * work cancelation off the exec path.
2876 if (tctx && !atomic_read(&tctx->in_cancel))
2877 io_uring_del_tctx_node((unsigned long)work->ctx);
2878 complete(&work->completion);
2881 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2883 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2885 return req->ctx == data;
2888 static __cold void io_ring_exit_work(struct work_struct *work)
2890 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2891 unsigned long timeout = jiffies + HZ * 60 * 5;
2892 unsigned long interval = HZ / 20;
2893 struct io_tctx_exit exit;
2894 struct io_tctx_node *node;
2895 int ret;
2898 * If we're doing polled IO and end up having requests being
2899 * submitted async (out-of-line), then completions can come in while
2900 * we're waiting for refs to drop. We need to reap these manually,
2901 * as nobody else will be looking for them.
2903 do {
2904 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2905 mutex_lock(&ctx->uring_lock);
2906 io_cqring_overflow_kill(ctx);
2907 mutex_unlock(&ctx->uring_lock);
2910 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2911 io_move_task_work_from_local(ctx);
2913 while (io_uring_try_cancel_requests(ctx, NULL, true))
2914 cond_resched();
2916 if (ctx->sq_data) {
2917 struct io_sq_data *sqd = ctx->sq_data;
2918 struct task_struct *tsk;
2920 io_sq_thread_park(sqd);
2921 tsk = sqd->thread;
2922 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2923 io_wq_cancel_cb(tsk->io_uring->io_wq,
2924 io_cancel_ctx_cb, ctx, true);
2925 io_sq_thread_unpark(sqd);
2928 io_req_caches_free(ctx);
2930 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2931 /* there is little hope left, don't run it too often */
2932 interval = HZ * 60;
2935 * This is really an uninterruptible wait, as it has to be
2936 * complete. But it's also run from a kworker, which doesn't
2937 * take signals, so it's fine to make it interruptible. This
2938 * avoids scenarios where we knowingly can wait much longer
2939 * on completions, for example if someone does a SIGSTOP on
2940 * a task that needs to finish task_work to make this loop
2941 * complete. That's a synthetic situation that should not
2942 * cause a stuck task backtrace, and hence a potential panic
2943 * on stuck tasks if that is enabled.
2945 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2947 init_completion(&exit.completion);
2948 init_task_work(&exit.task_work, io_tctx_exit_cb);
2949 exit.ctx = ctx;
2951 mutex_lock(&ctx->uring_lock);
2952 while (!list_empty(&ctx->tctx_list)) {
2953 WARN_ON_ONCE(time_after(jiffies, timeout));
2955 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2956 ctx_node);
2957 /* don't spin on a single task if cancellation failed */
2958 list_rotate_left(&ctx->tctx_list);
2959 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2960 if (WARN_ON_ONCE(ret))
2961 continue;
2963 mutex_unlock(&ctx->uring_lock);
2965 * See comment above for
2966 * wait_for_completion_interruptible_timeout() on why this
2967 * wait is marked as interruptible.
2969 wait_for_completion_interruptible(&exit.completion);
2970 mutex_lock(&ctx->uring_lock);
2972 mutex_unlock(&ctx->uring_lock);
2973 spin_lock(&ctx->completion_lock);
2974 spin_unlock(&ctx->completion_lock);
2976 /* pairs with RCU read section in io_req_local_work_add() */
2977 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2978 synchronize_rcu();
2980 io_ring_ctx_free(ctx);
2983 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2985 unsigned long index;
2986 struct creds *creds;
2988 mutex_lock(&ctx->uring_lock);
2989 percpu_ref_kill(&ctx->refs);
2990 xa_for_each(&ctx->personalities, index, creds)
2991 io_unregister_personality(ctx, index);
2992 mutex_unlock(&ctx->uring_lock);
2994 flush_delayed_work(&ctx->fallback_work);
2996 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2998 * Use system_unbound_wq to avoid spawning tons of event kworkers
2999 * if we're exiting a ton of rings at the same time. It just adds
3000 * noise and overhead, there's no discernable change in runtime
3001 * over using system_wq.
3003 queue_work(iou_wq, &ctx->exit_work);
3006 static int io_uring_release(struct inode *inode, struct file *file)
3008 struct io_ring_ctx *ctx = file->private_data;
3010 file->private_data = NULL;
3011 io_ring_ctx_wait_and_kill(ctx);
3012 return 0;
3015 struct io_task_cancel {
3016 struct task_struct *task;
3017 bool all;
3020 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3022 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3023 struct io_task_cancel *cancel = data;
3025 return io_match_task_safe(req, cancel->task, cancel->all);
3028 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3029 struct task_struct *task,
3030 bool cancel_all)
3032 struct io_defer_entry *de;
3033 LIST_HEAD(list);
3035 spin_lock(&ctx->completion_lock);
3036 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3037 if (io_match_task_safe(de->req, task, cancel_all)) {
3038 list_cut_position(&list, &ctx->defer_list, &de->list);
3039 break;
3042 spin_unlock(&ctx->completion_lock);
3043 if (list_empty(&list))
3044 return false;
3046 while (!list_empty(&list)) {
3047 de = list_first_entry(&list, struct io_defer_entry, list);
3048 list_del_init(&de->list);
3049 io_req_task_queue_fail(de->req, -ECANCELED);
3050 kfree(de);
3052 return true;
3055 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3057 struct io_tctx_node *node;
3058 enum io_wq_cancel cret;
3059 bool ret = false;
3061 mutex_lock(&ctx->uring_lock);
3062 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3063 struct io_uring_task *tctx = node->task->io_uring;
3066 * io_wq will stay alive while we hold uring_lock, because it's
3067 * killed after ctx nodes, which requires to take the lock.
3069 if (!tctx || !tctx->io_wq)
3070 continue;
3071 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3072 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3074 mutex_unlock(&ctx->uring_lock);
3076 return ret;
3079 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3080 struct task_struct *task,
3081 bool cancel_all)
3083 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3084 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3085 enum io_wq_cancel cret;
3086 bool ret = false;
3088 /* set it so io_req_local_work_add() would wake us up */
3089 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3090 atomic_set(&ctx->cq_wait_nr, 1);
3091 smp_mb();
3094 /* failed during ring init, it couldn't have issued any requests */
3095 if (!ctx->rings)
3096 return false;
3098 if (!task) {
3099 ret |= io_uring_try_cancel_iowq(ctx);
3100 } else if (tctx && tctx->io_wq) {
3102 * Cancels requests of all rings, not only @ctx, but
3103 * it's fine as the task is in exit/exec.
3105 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3106 &cancel, true);
3107 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3110 /* SQPOLL thread does its own polling */
3111 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3112 (ctx->sq_data && ctx->sq_data->thread == current)) {
3113 while (!wq_list_empty(&ctx->iopoll_list)) {
3114 io_iopoll_try_reap_events(ctx);
3115 ret = true;
3116 cond_resched();
3120 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3121 io_allowed_defer_tw_run(ctx))
3122 ret |= io_run_local_work(ctx, INT_MAX) > 0;
3123 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3124 mutex_lock(&ctx->uring_lock);
3125 ret |= io_poll_remove_all(ctx, task, cancel_all);
3126 ret |= io_waitid_remove_all(ctx, task, cancel_all);
3127 ret |= io_futex_remove_all(ctx, task, cancel_all);
3128 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3129 mutex_unlock(&ctx->uring_lock);
3130 ret |= io_kill_timeouts(ctx, task, cancel_all);
3131 if (task)
3132 ret |= io_run_task_work() > 0;
3133 else
3134 ret |= flush_delayed_work(&ctx->fallback_work);
3135 return ret;
3138 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3140 if (tracked)
3141 return atomic_read(&tctx->inflight_tracked);
3142 return percpu_counter_sum(&tctx->inflight);
3146 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3147 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3149 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3151 struct io_uring_task *tctx = current->io_uring;
3152 struct io_ring_ctx *ctx;
3153 struct io_tctx_node *node;
3154 unsigned long index;
3155 s64 inflight;
3156 DEFINE_WAIT(wait);
3158 WARN_ON_ONCE(sqd && sqd->thread != current);
3160 if (!current->io_uring)
3161 return;
3162 if (tctx->io_wq)
3163 io_wq_exit_start(tctx->io_wq);
3165 atomic_inc(&tctx->in_cancel);
3166 do {
3167 bool loop = false;
3169 io_uring_drop_tctx_refs(current);
3170 if (!tctx_inflight(tctx, !cancel_all))
3171 break;
3173 /* read completions before cancelations */
3174 inflight = tctx_inflight(tctx, false);
3175 if (!inflight)
3176 break;
3178 if (!sqd) {
3179 xa_for_each(&tctx->xa, index, node) {
3180 /* sqpoll task will cancel all its requests */
3181 if (node->ctx->sq_data)
3182 continue;
3183 loop |= io_uring_try_cancel_requests(node->ctx,
3184 current, cancel_all);
3186 } else {
3187 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3188 loop |= io_uring_try_cancel_requests(ctx,
3189 current,
3190 cancel_all);
3193 if (loop) {
3194 cond_resched();
3195 continue;
3198 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3199 io_run_task_work();
3200 io_uring_drop_tctx_refs(current);
3201 xa_for_each(&tctx->xa, index, node) {
3202 if (!llist_empty(&node->ctx->work_llist)) {
3203 WARN_ON_ONCE(node->ctx->submitter_task &&
3204 node->ctx->submitter_task != current);
3205 goto end_wait;
3209 * If we've seen completions, retry without waiting. This
3210 * avoids a race where a completion comes in before we did
3211 * prepare_to_wait().
3213 if (inflight == tctx_inflight(tctx, !cancel_all))
3214 schedule();
3215 end_wait:
3216 finish_wait(&tctx->wait, &wait);
3217 } while (1);
3219 io_uring_clean_tctx(tctx);
3220 if (cancel_all) {
3222 * We shouldn't run task_works after cancel, so just leave
3223 * ->in_cancel set for normal exit.
3225 atomic_dec(&tctx->in_cancel);
3226 /* for exec all current's requests should be gone, kill tctx */
3227 __io_uring_free(current);
3231 void __io_uring_cancel(bool cancel_all)
3233 io_uring_cancel_generic(cancel_all, NULL);
3236 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3238 if (flags & IORING_ENTER_EXT_ARG) {
3239 struct io_uring_getevents_arg arg;
3241 if (argsz != sizeof(arg))
3242 return -EINVAL;
3243 if (copy_from_user(&arg, argp, sizeof(arg)))
3244 return -EFAULT;
3246 return 0;
3249 static int io_get_ext_arg(unsigned flags, const void __user *argp,
3250 struct ext_arg *ext_arg)
3252 struct io_uring_getevents_arg arg;
3255 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3256 * is just a pointer to the sigset_t.
3258 if (!(flags & IORING_ENTER_EXT_ARG)) {
3259 ext_arg->sig = (const sigset_t __user *) argp;
3260 ext_arg->ts = NULL;
3261 return 0;
3265 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3266 * timespec and sigset_t pointers if good.
3268 if (ext_arg->argsz != sizeof(arg))
3269 return -EINVAL;
3270 if (copy_from_user(&arg, argp, sizeof(arg)))
3271 return -EFAULT;
3272 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3273 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3274 ext_arg->argsz = arg.sigmask_sz;
3275 ext_arg->ts = u64_to_user_ptr(arg.ts);
3276 return 0;
3279 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3280 u32, min_complete, u32, flags, const void __user *, argp,
3281 size_t, argsz)
3283 struct io_ring_ctx *ctx;
3284 struct file *file;
3285 long ret;
3287 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3288 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3289 IORING_ENTER_REGISTERED_RING |
3290 IORING_ENTER_ABS_TIMER)))
3291 return -EINVAL;
3294 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3295 * need only dereference our task private array to find it.
3297 if (flags & IORING_ENTER_REGISTERED_RING) {
3298 struct io_uring_task *tctx = current->io_uring;
3300 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3301 return -EINVAL;
3302 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3303 file = tctx->registered_rings[fd];
3304 if (unlikely(!file))
3305 return -EBADF;
3306 } else {
3307 file = fget(fd);
3308 if (unlikely(!file))
3309 return -EBADF;
3310 ret = -EOPNOTSUPP;
3311 if (unlikely(!io_is_uring_fops(file)))
3312 goto out;
3315 ctx = file->private_data;
3316 ret = -EBADFD;
3317 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3318 goto out;
3321 * For SQ polling, the thread will do all submissions and completions.
3322 * Just return the requested submit count, and wake the thread if
3323 * we were asked to.
3325 ret = 0;
3326 if (ctx->flags & IORING_SETUP_SQPOLL) {
3327 if (unlikely(ctx->sq_data->thread == NULL)) {
3328 ret = -EOWNERDEAD;
3329 goto out;
3331 if (flags & IORING_ENTER_SQ_WAKEUP)
3332 wake_up(&ctx->sq_data->wait);
3333 if (flags & IORING_ENTER_SQ_WAIT)
3334 io_sqpoll_wait_sq(ctx);
3336 ret = to_submit;
3337 } else if (to_submit) {
3338 ret = io_uring_add_tctx_node(ctx);
3339 if (unlikely(ret))
3340 goto out;
3342 mutex_lock(&ctx->uring_lock);
3343 ret = io_submit_sqes(ctx, to_submit);
3344 if (ret != to_submit) {
3345 mutex_unlock(&ctx->uring_lock);
3346 goto out;
3348 if (flags & IORING_ENTER_GETEVENTS) {
3349 if (ctx->syscall_iopoll)
3350 goto iopoll_locked;
3352 * Ignore errors, we'll soon call io_cqring_wait() and
3353 * it should handle ownership problems if any.
3355 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3356 (void)io_run_local_work_locked(ctx, min_complete);
3358 mutex_unlock(&ctx->uring_lock);
3361 if (flags & IORING_ENTER_GETEVENTS) {
3362 int ret2;
3364 if (ctx->syscall_iopoll) {
3366 * We disallow the app entering submit/complete with
3367 * polling, but we still need to lock the ring to
3368 * prevent racing with polled issue that got punted to
3369 * a workqueue.
3371 mutex_lock(&ctx->uring_lock);
3372 iopoll_locked:
3373 ret2 = io_validate_ext_arg(flags, argp, argsz);
3374 if (likely(!ret2)) {
3375 min_complete = min(min_complete,
3376 ctx->cq_entries);
3377 ret2 = io_iopoll_check(ctx, min_complete);
3379 mutex_unlock(&ctx->uring_lock);
3380 } else {
3381 struct ext_arg ext_arg = { .argsz = argsz };
3383 ret2 = io_get_ext_arg(flags, argp, &ext_arg);
3384 if (likely(!ret2)) {
3385 min_complete = min(min_complete,
3386 ctx->cq_entries);
3387 ret2 = io_cqring_wait(ctx, min_complete, flags,
3388 &ext_arg);
3392 if (!ret) {
3393 ret = ret2;
3396 * EBADR indicates that one or more CQE were dropped.
3397 * Once the user has been informed we can clear the bit
3398 * as they are obviously ok with those drops.
3400 if (unlikely(ret2 == -EBADR))
3401 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3402 &ctx->check_cq);
3405 out:
3406 if (!(flags & IORING_ENTER_REGISTERED_RING))
3407 fput(file);
3408 return ret;
3411 static const struct file_operations io_uring_fops = {
3412 .release = io_uring_release,
3413 .mmap = io_uring_mmap,
3414 .get_unmapped_area = io_uring_get_unmapped_area,
3415 #ifndef CONFIG_MMU
3416 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3417 #endif
3418 .poll = io_uring_poll,
3419 #ifdef CONFIG_PROC_FS
3420 .show_fdinfo = io_uring_show_fdinfo,
3421 #endif
3424 bool io_is_uring_fops(struct file *file)
3426 return file->f_op == &io_uring_fops;
3429 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3430 struct io_uring_params *p)
3432 struct io_rings *rings;
3433 size_t size, sq_array_offset;
3434 void *ptr;
3436 /* make sure these are sane, as we already accounted them */
3437 ctx->sq_entries = p->sq_entries;
3438 ctx->cq_entries = p->cq_entries;
3440 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3441 if (size == SIZE_MAX)
3442 return -EOVERFLOW;
3444 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3445 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3446 else
3447 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3449 if (IS_ERR(rings))
3450 return PTR_ERR(rings);
3452 ctx->rings = rings;
3453 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3454 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3455 rings->sq_ring_mask = p->sq_entries - 1;
3456 rings->cq_ring_mask = p->cq_entries - 1;
3457 rings->sq_ring_entries = p->sq_entries;
3458 rings->cq_ring_entries = p->cq_entries;
3460 if (p->flags & IORING_SETUP_SQE128)
3461 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3462 else
3463 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3464 if (size == SIZE_MAX) {
3465 io_rings_free(ctx);
3466 return -EOVERFLOW;
3469 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3470 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3471 else
3472 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3474 if (IS_ERR(ptr)) {
3475 io_rings_free(ctx);
3476 return PTR_ERR(ptr);
3479 ctx->sq_sqes = ptr;
3480 return 0;
3483 static int io_uring_install_fd(struct file *file)
3485 int fd;
3487 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3488 if (fd < 0)
3489 return fd;
3490 fd_install(fd, file);
3491 return fd;
3495 * Allocate an anonymous fd, this is what constitutes the application
3496 * visible backing of an io_uring instance. The application mmaps this
3497 * fd to gain access to the SQ/CQ ring details.
3499 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3501 /* Create a new inode so that the LSM can block the creation. */
3502 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3503 O_RDWR | O_CLOEXEC, NULL);
3506 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3507 struct io_uring_params __user *params)
3509 struct io_ring_ctx *ctx;
3510 struct io_uring_task *tctx;
3511 struct file *file;
3512 int ret;
3514 if (!entries)
3515 return -EINVAL;
3516 if (entries > IORING_MAX_ENTRIES) {
3517 if (!(p->flags & IORING_SETUP_CLAMP))
3518 return -EINVAL;
3519 entries = IORING_MAX_ENTRIES;
3522 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3523 && !(p->flags & IORING_SETUP_NO_MMAP))
3524 return -EINVAL;
3527 * Use twice as many entries for the CQ ring. It's possible for the
3528 * application to drive a higher depth than the size of the SQ ring,
3529 * since the sqes are only used at submission time. This allows for
3530 * some flexibility in overcommitting a bit. If the application has
3531 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3532 * of CQ ring entries manually.
3534 p->sq_entries = roundup_pow_of_two(entries);
3535 if (p->flags & IORING_SETUP_CQSIZE) {
3537 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3538 * to a power-of-two, if it isn't already. We do NOT impose
3539 * any cq vs sq ring sizing.
3541 if (!p->cq_entries)
3542 return -EINVAL;
3543 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3544 if (!(p->flags & IORING_SETUP_CLAMP))
3545 return -EINVAL;
3546 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3548 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3549 if (p->cq_entries < p->sq_entries)
3550 return -EINVAL;
3551 } else {
3552 p->cq_entries = 2 * p->sq_entries;
3555 ctx = io_ring_ctx_alloc(p);
3556 if (!ctx)
3557 return -ENOMEM;
3559 ctx->clockid = CLOCK_MONOTONIC;
3560 ctx->clock_offset = 0;
3562 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3563 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3564 !(ctx->flags & IORING_SETUP_SQPOLL))
3565 ctx->task_complete = true;
3567 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3568 ctx->lockless_cq = true;
3571 * lazy poll_wq activation relies on ->task_complete for synchronisation
3572 * purposes, see io_activate_pollwq()
3574 if (!ctx->task_complete)
3575 ctx->poll_activated = true;
3578 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3579 * space applications don't need to do io completion events
3580 * polling again, they can rely on io_sq_thread to do polling
3581 * work, which can reduce cpu usage and uring_lock contention.
3583 if (ctx->flags & IORING_SETUP_IOPOLL &&
3584 !(ctx->flags & IORING_SETUP_SQPOLL))
3585 ctx->syscall_iopoll = 1;
3587 ctx->compat = in_compat_syscall();
3588 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3589 ctx->user = get_uid(current_user());
3592 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3593 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3595 ret = -EINVAL;
3596 if (ctx->flags & IORING_SETUP_SQPOLL) {
3597 /* IPI related flags don't make sense with SQPOLL */
3598 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3599 IORING_SETUP_TASKRUN_FLAG |
3600 IORING_SETUP_DEFER_TASKRUN))
3601 goto err;
3602 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3603 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3604 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3605 } else {
3606 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3607 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3608 goto err;
3609 ctx->notify_method = TWA_SIGNAL;
3613 * For DEFER_TASKRUN we require the completion task to be the same as the
3614 * submission task. This implies that there is only one submitter, so enforce
3615 * that.
3617 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3618 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3619 goto err;
3623 * This is just grabbed for accounting purposes. When a process exits,
3624 * the mm is exited and dropped before the files, hence we need to hang
3625 * on to this mm purely for the purposes of being able to unaccount
3626 * memory (locked/pinned vm). It's not used for anything else.
3628 mmgrab(current->mm);
3629 ctx->mm_account = current->mm;
3631 ret = io_allocate_scq_urings(ctx, p);
3632 if (ret)
3633 goto err;
3635 ret = io_sq_offload_create(ctx, p);
3636 if (ret)
3637 goto err;
3639 ret = io_rsrc_init(ctx);
3640 if (ret)
3641 goto err;
3643 p->sq_off.head = offsetof(struct io_rings, sq.head);
3644 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3645 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3646 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3647 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3648 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3649 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3650 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3651 p->sq_off.resv1 = 0;
3652 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3653 p->sq_off.user_addr = 0;
3655 p->cq_off.head = offsetof(struct io_rings, cq.head);
3656 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3657 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3658 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3659 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3660 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3661 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3662 p->cq_off.resv1 = 0;
3663 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3664 p->cq_off.user_addr = 0;
3666 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3667 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3668 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3669 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3670 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3671 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3672 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3673 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT;
3675 if (copy_to_user(params, p, sizeof(*p))) {
3676 ret = -EFAULT;
3677 goto err;
3680 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3681 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3682 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3684 file = io_uring_get_file(ctx);
3685 if (IS_ERR(file)) {
3686 ret = PTR_ERR(file);
3687 goto err;
3690 ret = __io_uring_add_tctx_node(ctx);
3691 if (ret)
3692 goto err_fput;
3693 tctx = current->io_uring;
3696 * Install ring fd as the very last thing, so we don't risk someone
3697 * having closed it before we finish setup
3699 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3700 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3701 else
3702 ret = io_uring_install_fd(file);
3703 if (ret < 0)
3704 goto err_fput;
3706 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3707 return ret;
3708 err:
3709 io_ring_ctx_wait_and_kill(ctx);
3710 return ret;
3711 err_fput:
3712 fput(file);
3713 return ret;
3717 * Sets up an aio uring context, and returns the fd. Applications asks for a
3718 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3719 * params structure passed in.
3721 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3723 struct io_uring_params p;
3724 int i;
3726 if (copy_from_user(&p, params, sizeof(p)))
3727 return -EFAULT;
3728 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3729 if (p.resv[i])
3730 return -EINVAL;
3733 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3734 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3735 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3736 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3737 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3738 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3739 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3740 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3741 IORING_SETUP_NO_SQARRAY))
3742 return -EINVAL;
3744 return io_uring_create(entries, &p, params);
3747 static inline bool io_uring_allowed(void)
3749 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3750 kgid_t io_uring_group;
3752 if (disabled == 2)
3753 return false;
3755 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3756 return true;
3758 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3759 if (!gid_valid(io_uring_group))
3760 return false;
3762 return in_group_p(io_uring_group);
3765 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3766 struct io_uring_params __user *, params)
3768 if (!io_uring_allowed())
3769 return -EPERM;
3771 return io_uring_setup(entries, params);
3774 static int __init io_uring_init(void)
3776 struct kmem_cache_args kmem_args = {
3777 .useroffset = offsetof(struct io_kiocb, cmd.data),
3778 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3781 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3782 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3783 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3784 } while (0)
3786 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3787 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3788 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3789 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3790 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3791 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3792 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3793 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3794 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3795 BUILD_BUG_SQE_ELEM(8, __u64, off);
3796 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3797 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3798 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3799 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3800 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3801 BUILD_BUG_SQE_ELEM(24, __u32, len);
3802 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3803 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3804 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3805 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3806 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3807 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3808 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3809 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3810 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3811 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3812 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3813 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3814 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3815 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3816 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3817 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3818 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3819 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3820 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3821 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3822 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3823 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3824 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3825 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3826 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3827 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3828 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3829 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3830 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3831 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3832 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3834 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3835 sizeof(struct io_uring_rsrc_update));
3836 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3837 sizeof(struct io_uring_rsrc_update2));
3839 /* ->buf_index is u16 */
3840 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3841 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3842 offsetof(struct io_uring_buf_ring, tail));
3844 /* should fit into one byte */
3845 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3846 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3847 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3849 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3851 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3853 /* top 8bits are for internal use */
3854 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3856 io_uring_optable_init();
3859 * Allow user copy in the per-command field, which starts after the
3860 * file in io_kiocb and until the opcode field. The openat2 handling
3861 * requires copying in user memory into the io_kiocb object in that
3862 * range, and HARDENED_USERCOPY will complain if we haven't
3863 * correctly annotated this range.
3865 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3866 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3867 SLAB_TYPESAFE_BY_RCU);
3868 io_buf_cachep = KMEM_CACHE(io_buffer,
3869 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3871 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3873 #ifdef CONFIG_SYSCTL
3874 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3875 #endif
3877 return 0;
3879 __initcall(io_uring_init);