1 /*-------------------------------------------------------------------------
4 * Support for partition pruning during query planning and execution
6 * This module implements partition pruning using the information contained in
7 * a table's partition descriptor, query clauses, and run-time parameters.
9 * During planning, clauses that can be matched to the table's partition key
10 * are turned into a set of "pruning steps", which are then executed to
11 * identify a set of partitions (as indexes in the RelOptInfo->part_rels
12 * array) that satisfy the constraints in the step. Partitions not in the set
13 * are said to have been pruned.
15 * A base pruning step may involve expressions whose values are only known
16 * during execution, such as Params, in which case pruning cannot occur
17 * entirely during planning. In that case, such steps are included alongside
18 * the plan, so that they can be used by the executor for further pruning.
20 * There are two kinds of pruning steps. A "base" pruning step represents
21 * tests on partition key column(s), typically comparisons to expressions.
22 * A "combine" pruning step represents a Boolean connector (AND/OR), and
23 * combines the outputs of some previous steps using the appropriate
26 * See gen_partprune_steps_internal() for more details on step generation.
28 * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
29 * Portions Copyright (c) 1994, Regents of the University of California
32 * src/backend/partitioning/partprune.c
34 *-------------------------------------------------------------------------
38 #include "access/hash.h"
39 #include "access/nbtree.h"
40 #include "catalog/pg_operator.h"
41 #include "catalog/pg_opfamily.h"
42 #include "catalog/pg_proc.h"
43 #include "catalog/pg_type.h"
44 #include "executor/executor.h"
45 #include "miscadmin.h"
46 #include "nodes/makefuncs.h"
47 #include "nodes/nodeFuncs.h"
48 #include "optimizer/appendinfo.h"
49 #include "optimizer/cost.h"
50 #include "optimizer/optimizer.h"
51 #include "optimizer/pathnode.h"
52 #include "parser/parsetree.h"
53 #include "partitioning/partbounds.h"
54 #include "partitioning/partprune.h"
55 #include "rewrite/rewriteManip.h"
56 #include "utils/array.h"
57 #include "utils/lsyscache.h"
61 * Information about a clause matched with a partition key.
63 typedef struct PartClauseInfo
65 int keyno
; /* Partition key number (0 to partnatts - 1) */
66 Oid opno
; /* operator used to compare partkey to expr */
67 bool op_is_ne
; /* is clause's original operator <> ? */
68 Expr
*expr
; /* expr the partition key is compared to */
69 Oid cmpfn
; /* Oid of function to compare 'expr' to the
71 int op_strategy
; /* btree strategy identifying the operator */
75 * PartClauseMatchStatus
76 * Describes the result of match_clause_to_partition_key()
78 typedef enum PartClauseMatchStatus
81 PARTCLAUSE_MATCH_CLAUSE
,
82 PARTCLAUSE_MATCH_NULLNESS
,
83 PARTCLAUSE_MATCH_STEPS
,
84 PARTCLAUSE_MATCH_CONTRADICT
,
85 PARTCLAUSE_UNSUPPORTED
86 } PartClauseMatchStatus
;
90 * Identifies which qual clauses we can use for generating pruning steps
92 typedef enum PartClauseTarget
94 PARTTARGET_PLANNER
, /* want to prune during planning */
95 PARTTARGET_INITIAL
, /* want to prune during executor startup */
96 PARTTARGET_EXEC
/* want to prune during each plan node scan */
100 * GeneratePruningStepsContext
101 * Information about the current state of generation of "pruning steps"
102 * for a given set of clauses
104 * gen_partprune_steps() initializes and returns an instance of this struct.
106 * Note that has_mutable_op, has_mutable_arg, and has_exec_param are set if
107 * we found any potentially-useful-for-pruning clause having those properties,
108 * whether or not we actually used the clause in the steps list. This
109 * definition allows us to skip the PARTTARGET_EXEC pass in some cases.
111 typedef struct GeneratePruningStepsContext
113 /* Copies of input arguments for gen_partprune_steps: */
114 RelOptInfo
*rel
; /* the partitioned relation */
115 PartClauseTarget target
; /* use-case we're generating steps for */
117 List
*steps
; /* list of PartitionPruneSteps */
118 bool has_mutable_op
; /* clauses include any stable operators */
119 bool has_mutable_arg
; /* clauses include any mutable comparison
120 * values, *other than* exec params */
121 bool has_exec_param
; /* clauses include any PARAM_EXEC params */
122 bool contradictory
; /* clauses were proven self-contradictory */
125 } GeneratePruningStepsContext
;
127 /* The result of performing one PartitionPruneStep */
128 typedef struct PruneStepResult
131 * The offsets of bounds (in a table's boundinfo) whose partition is
132 * selected by the pruning step.
134 Bitmapset
*bound_offsets
;
136 bool scan_default
; /* Scan the default partition? */
137 bool scan_null
; /* Scan the partition for NULL values? */
141 static List
*add_part_relids(List
*allpartrelids
, Bitmapset
*partrelids
);
142 static List
*make_partitionedrel_pruneinfo(PlannerInfo
*root
,
143 RelOptInfo
*parentrel
,
145 Bitmapset
*partrelids
,
146 int *relid_subplan_map
,
147 Bitmapset
**matchedsubplans
);
148 static void gen_partprune_steps(RelOptInfo
*rel
, List
*clauses
,
149 PartClauseTarget target
,
150 GeneratePruningStepsContext
*context
);
151 static List
*gen_partprune_steps_internal(GeneratePruningStepsContext
*context
,
153 static PartitionPruneStep
*gen_prune_step_op(GeneratePruningStepsContext
*context
,
154 StrategyNumber opstrategy
, bool op_is_ne
,
155 List
*exprs
, List
*cmpfns
, Bitmapset
*nullkeys
);
156 static PartitionPruneStep
*gen_prune_step_combine(GeneratePruningStepsContext
*context
,
157 List
*source_stepids
,
158 PartitionPruneCombineOp combineOp
);
159 static List
*gen_prune_steps_from_opexps(GeneratePruningStepsContext
*context
,
160 List
**keyclauses
, Bitmapset
*nullkeys
);
161 static PartClauseMatchStatus
match_clause_to_partition_key(GeneratePruningStepsContext
*context
,
162 Expr
*clause
, Expr
*partkey
, int partkeyidx
,
163 bool *clause_is_not_null
,
164 PartClauseInfo
**pc
, List
**clause_steps
);
165 static List
*get_steps_using_prefix(GeneratePruningStepsContext
*context
,
166 StrategyNumber step_opstrategy
,
171 Bitmapset
*step_nullkeys
,
173 static List
*get_steps_using_prefix_recurse(GeneratePruningStepsContext
*context
,
174 StrategyNumber step_opstrategy
,
179 Bitmapset
*step_nullkeys
,
184 static PruneStepResult
*get_matching_hash_bounds(PartitionPruneContext
*context
,
185 StrategyNumber opstrategy
, Datum
*values
, int nvalues
,
186 FmgrInfo
*partsupfunc
, Bitmapset
*nullkeys
);
187 static PruneStepResult
*get_matching_list_bounds(PartitionPruneContext
*context
,
188 StrategyNumber opstrategy
, Datum value
, int nvalues
,
189 FmgrInfo
*partsupfunc
, Bitmapset
*nullkeys
);
190 static PruneStepResult
*get_matching_range_bounds(PartitionPruneContext
*context
,
191 StrategyNumber opstrategy
, Datum
*values
, int nvalues
,
192 FmgrInfo
*partsupfunc
, Bitmapset
*nullkeys
);
193 static Bitmapset
*pull_exec_paramids(Expr
*expr
);
194 static bool pull_exec_paramids_walker(Node
*node
, Bitmapset
**context
);
195 static Bitmapset
*get_partkey_exec_paramids(List
*steps
);
196 static PruneStepResult
*perform_pruning_base_step(PartitionPruneContext
*context
,
197 PartitionPruneStepOp
*opstep
);
198 static PruneStepResult
*perform_pruning_combine_step(PartitionPruneContext
*context
,
199 PartitionPruneStepCombine
*cstep
,
200 PruneStepResult
**step_results
);
201 static PartClauseMatchStatus
match_boolean_partition_clause(Oid partopfamily
,
205 static void partkey_datum_from_expr(PartitionPruneContext
*context
,
206 Expr
*expr
, int stateidx
,
207 Datum
*value
, bool *isnull
);
211 * make_partition_pruneinfo
212 * Builds a PartitionPruneInfo which can be used in the executor to allow
213 * additional partition pruning to take place. Returns NULL when
214 * partition pruning would be useless.
216 * 'parentrel' is the RelOptInfo for an appendrel, and 'subpaths' is the list
217 * of scan paths for its child rels.
218 * 'prunequal' is a list of potential pruning quals (i.e., restriction
219 * clauses that are applicable to the appendrel).
222 make_partition_pruneinfo(PlannerInfo
*root
, RelOptInfo
*parentrel
,
226 PartitionPruneInfo
*pruneinfo
;
227 Bitmapset
*allmatchedsubplans
= NULL
;
230 int *relid_subplan_map
;
235 * Scan the subpaths to see which ones are scans of partition child
236 * relations, and identify their parent partitioned rels. (Note: we must
237 * restrict the parent partitioned rels to be parentrel or children of
238 * parentrel, otherwise we couldn't translate prunequal to match.)
240 * Also construct a temporary array to map from partition-child-relation
241 * relid to the index in 'subpaths' of the scan plan for that partition.
242 * (Use of "subplan" rather than "subpath" is a bit of a misnomer, but
243 * we'll let it stand.) For convenience, we use 1-based indexes here, so
244 * that zero can represent an un-filled array entry.
247 relid_subplan_map
= palloc0(sizeof(int) * root
->simple_rel_array_size
);
250 foreach(lc
, subpaths
)
252 Path
*path
= (Path
*) lfirst(lc
);
253 RelOptInfo
*pathrel
= path
->parent
;
255 /* We don't consider partitioned joins here */
256 if (pathrel
->reloptkind
== RELOPT_OTHER_MEMBER_REL
)
258 RelOptInfo
*prel
= pathrel
;
259 Bitmapset
*partrelids
= NULL
;
262 * Traverse up to the pathrel's topmost partitioned parent,
263 * collecting parent relids as we go; but stop if we reach
264 * parentrel. (Normally, a pathrel's topmost partitioned parent
265 * is either parentrel or a UNION ALL appendrel child of
266 * parentrel. But when handling partitionwise joins of
267 * multi-level partitioning trees, we can see an append path whose
268 * parentrel is an intermediate partitioned table.)
272 AppendRelInfo
*appinfo
;
274 Assert(prel
->relid
< root
->simple_rel_array_size
);
275 appinfo
= root
->append_rel_array
[prel
->relid
];
276 prel
= find_base_rel(root
, appinfo
->parent_relid
);
277 if (!IS_PARTITIONED_REL(prel
))
278 break; /* reached a non-partitioned parent */
279 /* accept this level as an interesting parent */
280 partrelids
= bms_add_member(partrelids
, prel
->relid
);
281 if (prel
== parentrel
)
282 break; /* don't traverse above parentrel */
283 } while (prel
->reloptkind
== RELOPT_OTHER_MEMBER_REL
);
288 * Found some relevant parent partitions, which may or may not
289 * overlap with partition trees we already found. Add new
290 * information to the allpartrelids list.
292 allpartrelids
= add_part_relids(allpartrelids
, partrelids
);
293 /* Also record the subplan in relid_subplan_map[] */
294 /* No duplicates please */
295 Assert(relid_subplan_map
[pathrel
->relid
] == 0);
296 relid_subplan_map
[pathrel
->relid
] = i
;
303 * We now build a PartitionedRelPruneInfo for each topmost partitioned rel
304 * (omitting any that turn out not to have useful pruning quals).
307 foreach(lc
, allpartrelids
)
309 Bitmapset
*partrelids
= (Bitmapset
*) lfirst(lc
);
311 Bitmapset
*matchedsubplans
= NULL
;
313 pinfolist
= make_partitionedrel_pruneinfo(root
, parentrel
,
319 /* When pruning is possible, record the matched subplans */
320 if (pinfolist
!= NIL
)
322 prunerelinfos
= lappend(prunerelinfos
, pinfolist
);
323 allmatchedsubplans
= bms_join(matchedsubplans
,
328 pfree(relid_subplan_map
);
331 * If none of the partition hierarchies had any useful run-time pruning
332 * quals, then we can just not bother with run-time pruning.
334 if (prunerelinfos
== NIL
)
337 /* Else build the result data structure */
338 pruneinfo
= makeNode(PartitionPruneInfo
);
339 pruneinfo
->prune_infos
= prunerelinfos
;
342 * Some subplans may not belong to any of the identified partitioned rels.
343 * This can happen for UNION ALL queries which include a non-partitioned
344 * table, or when some of the hierarchies aren't run-time prunable. Build
345 * a bitmapset of the indexes of all such subplans, so that the executor
346 * can identify which subplans should never be pruned.
348 if (bms_num_members(allmatchedsubplans
) < list_length(subpaths
))
350 Bitmapset
*other_subplans
;
352 /* Create the complement of allmatchedsubplans */
353 other_subplans
= bms_add_range(NULL
, 0, list_length(subpaths
) - 1);
354 other_subplans
= bms_del_members(other_subplans
, allmatchedsubplans
);
356 pruneinfo
->other_subplans
= other_subplans
;
359 pruneinfo
->other_subplans
= NULL
;
366 * Add new info to a list of Bitmapsets of partitioned relids.
368 * Within 'allpartrelids', there is one Bitmapset for each topmost parent
369 * partitioned rel. Each Bitmapset contains the RT indexes of the topmost
370 * parent as well as its relevant non-leaf child partitions. Since (by
371 * construction of the rangetable list) parent partitions must have lower
372 * RT indexes than their children, we can distinguish the topmost parent
373 * as being the lowest set bit in the Bitmapset.
375 * 'partrelids' contains the RT indexes of a parent partitioned rel, and
376 * possibly some non-leaf children, that are newly identified as parents of
377 * some subpath rel passed to make_partition_pruneinfo(). These are added
378 * to an appropriate member of 'allpartrelids'.
380 * Note that the list contains only RT indexes of partitioned tables that
381 * are parents of some scan-level relation appearing in the 'subpaths' that
382 * make_partition_pruneinfo() is dealing with. Also, "topmost" parents are
383 * not allowed to be higher than the 'parentrel' associated with the append
384 * path. In this way, we avoid expending cycles on partitioned rels that
385 * can't contribute useful pruning information for the problem at hand.
386 * (It is possible for 'parentrel' to be a child partitioned table, and it
387 * is also possible for scan-level relations to be child partitioned tables
388 * rather than leaf partitions. Hence we must construct this relation set
389 * with reference to the particular append path we're dealing with, rather
390 * than looking at the full partitioning structure represented in the
394 add_part_relids(List
*allpartrelids
, Bitmapset
*partrelids
)
399 /* We can easily get the lowest set bit this way: */
400 targetpart
= bms_next_member(partrelids
, -1);
401 Assert(targetpart
> 0);
403 /* Look for a matching topmost parent */
404 foreach(lc
, allpartrelids
)
406 Bitmapset
*currpartrelids
= (Bitmapset
*) lfirst(lc
);
407 Index currtarget
= bms_next_member(currpartrelids
, -1);
409 if (targetpart
== currtarget
)
411 /* Found a match, so add any new RT indexes to this hierarchy */
412 currpartrelids
= bms_add_members(currpartrelids
, partrelids
);
413 lfirst(lc
) = currpartrelids
;
414 return allpartrelids
;
417 /* No match, so add the new partition hierarchy to the list */
418 return lappend(allpartrelids
, partrelids
);
422 * make_partitionedrel_pruneinfo
423 * Build a List of PartitionedRelPruneInfos, one for each interesting
424 * partitioned rel in a partitioning hierarchy. These can be used in the
425 * executor to allow additional partition pruning to take place.
427 * parentrel: rel associated with the appendpath being considered
428 * prunequal: potential pruning quals, represented for parentrel
429 * partrelids: Set of RT indexes identifying relevant partitioned tables
430 * within a single partitioning hierarchy
431 * relid_subplan_map[]: maps child relation relids to subplan indexes
432 * matchedsubplans: on success, receives the set of subplan indexes which
433 * were matched to this partition hierarchy
435 * If we cannot find any useful run-time pruning steps, return NIL.
436 * However, on success, each rel identified in partrelids will have
437 * an element in the result list, even if some of them are useless.
440 make_partitionedrel_pruneinfo(PlannerInfo
*root
, RelOptInfo
*parentrel
,
442 Bitmapset
*partrelids
,
443 int *relid_subplan_map
,
444 Bitmapset
**matchedsubplans
)
446 RelOptInfo
*targetpart
= NULL
;
447 List
*pinfolist
= NIL
;
448 bool doruntimeprune
= false;
449 int *relid_subpart_map
;
450 Bitmapset
*subplansfound
= NULL
;
456 * Examine each partitioned rel, constructing a temporary array to map
457 * from planner relids to index of the partitioned rel, and building a
458 * PartitionedRelPruneInfo for each partitioned rel.
460 * In this phase we discover whether runtime pruning is needed at all; if
461 * not, we can avoid doing further work.
463 relid_subpart_map
= palloc0(sizeof(int) * root
->simple_rel_array_size
);
467 while ((rti
= bms_next_member(partrelids
, rti
)) > 0)
469 RelOptInfo
*subpart
= find_base_rel(root
, rti
);
470 PartitionedRelPruneInfo
*pinfo
;
472 List
*initial_pruning_steps
;
473 List
*exec_pruning_steps
;
474 Bitmapset
*execparamids
;
475 GeneratePruningStepsContext context
;
478 * Fill the mapping array.
480 * relid_subpart_map maps relid of a non-leaf partition to the index
481 * in the returned PartitionedRelPruneInfo list of the info for that
482 * partition. We use 1-based indexes here, so that zero can represent
483 * an un-filled array entry.
485 Assert(rti
< root
->simple_rel_array_size
);
486 relid_subpart_map
[rti
] = i
++;
489 * Translate pruning qual, if necessary, for this partition.
491 * The first item in the list is the target partitioned relation.
495 targetpart
= subpart
;
498 * The prunequal is presented to us as a qual for 'parentrel'.
499 * Frequently this rel is the same as targetpart, so we can skip
500 * an adjust_appendrel_attrs step. But it might not be, and then
501 * we have to translate. We update the prunequal parameter here,
502 * because in later iterations of the loop for child partitions,
503 * we want to translate from parent to child variables.
505 if (!bms_equal(parentrel
->relids
, subpart
->relids
))
508 AppendRelInfo
**appinfos
= find_appinfos_by_relids(root
,
512 prunequal
= (List
*) adjust_appendrel_attrs(root
, (Node
*)
520 partprunequal
= prunequal
;
525 * For sub-partitioned tables the columns may not be in the same
526 * order as the parent, so we must translate the prunequal to make
527 * it compatible with this relation.
529 partprunequal
= (List
*)
530 adjust_appendrel_attrs_multilevel(root
,
537 * Convert pruning qual to pruning steps. We may need to do this
538 * twice, once to obtain executor startup pruning steps, and once for
539 * executor per-scan pruning steps. This first pass creates startup
540 * pruning steps and detects whether there's any possibly-useful quals
541 * that would require per-scan pruning.
543 gen_partprune_steps(subpart
, partprunequal
, PARTTARGET_INITIAL
,
546 if (context
.contradictory
)
549 * This shouldn't happen as the planner should have detected this
550 * earlier. However, we do use additional quals from parameterized
551 * paths here. These do only compare Params to the partition key,
552 * so this shouldn't cause the discovery of any new qual
553 * contradictions that were not previously discovered as the Param
554 * values are unknown during planning. Anyway, we'd better do
555 * something sane here, so let's just disable run-time pruning.
561 * If no mutable operators or expressions appear in usable pruning
562 * clauses, then there's no point in running startup pruning, because
563 * plan-time pruning should have pruned everything prunable.
565 if (context
.has_mutable_op
|| context
.has_mutable_arg
)
566 initial_pruning_steps
= context
.steps
;
568 initial_pruning_steps
= NIL
;
571 * If no exec Params appear in potentially-usable pruning clauses,
572 * then there's no point in even thinking about per-scan pruning.
574 if (context
.has_exec_param
)
576 /* ... OK, we'd better think about it */
577 gen_partprune_steps(subpart
, partprunequal
, PARTTARGET_EXEC
,
580 if (context
.contradictory
)
582 /* As above, skip run-time pruning if anything fishy happens */
586 exec_pruning_steps
= context
.steps
;
589 * Detect which exec Params actually got used; the fact that some
590 * were in available clauses doesn't mean we actually used them.
591 * Skip per-scan pruning if there are none.
593 execparamids
= get_partkey_exec_paramids(exec_pruning_steps
);
595 if (bms_is_empty(execparamids
))
596 exec_pruning_steps
= NIL
;
600 /* No exec Params anywhere, so forget about scan-time pruning */
601 exec_pruning_steps
= NIL
;
605 if (initial_pruning_steps
|| exec_pruning_steps
)
606 doruntimeprune
= true;
608 /* Begin constructing the PartitionedRelPruneInfo for this rel */
609 pinfo
= makeNode(PartitionedRelPruneInfo
);
610 pinfo
->rtindex
= rti
;
611 pinfo
->initial_pruning_steps
= initial_pruning_steps
;
612 pinfo
->exec_pruning_steps
= exec_pruning_steps
;
613 pinfo
->execparamids
= execparamids
;
614 /* Remaining fields will be filled in the next loop */
616 pinfolist
= lappend(pinfolist
, pinfo
);
621 /* No run-time pruning required. */
622 pfree(relid_subpart_map
);
627 * Run-time pruning will be required, so initialize other information.
628 * That includes two maps -- one needed to convert partition indexes of
629 * leaf partitions to the indexes of their subplans in the subplan list,
630 * another needed to convert partition indexes of sub-partitioned
631 * partitions to the indexes of their PartitionedRelPruneInfo in the
632 * PartitionedRelPruneInfo list.
634 foreach(lc
, pinfolist
)
636 PartitionedRelPruneInfo
*pinfo
= lfirst(lc
);
637 RelOptInfo
*subpart
= find_base_rel(root
, pinfo
->rtindex
);
638 Bitmapset
*present_parts
;
639 int nparts
= subpart
->nparts
;
645 * Construct the subplan and subpart maps for this partitioning level.
646 * Here we convert to zero-based indexes, with -1 for empty entries.
647 * Also construct a Bitmapset of all partitions that are present (that
648 * is, not pruned already).
650 subplan_map
= (int *) palloc(nparts
* sizeof(int));
651 memset(subplan_map
, -1, nparts
* sizeof(int));
652 subpart_map
= (int *) palloc(nparts
* sizeof(int));
653 memset(subpart_map
, -1, nparts
* sizeof(int));
654 relid_map
= (Oid
*) palloc0(nparts
* sizeof(Oid
));
655 present_parts
= NULL
;
658 while ((i
= bms_next_member(subpart
->live_parts
, i
)) >= 0)
660 RelOptInfo
*partrel
= subpart
->part_rels
[i
];
664 Assert(partrel
!= NULL
);
666 subplan_map
[i
] = subplanidx
= relid_subplan_map
[partrel
->relid
] - 1;
667 subpart_map
[i
] = subpartidx
= relid_subpart_map
[partrel
->relid
] - 1;
668 relid_map
[i
] = planner_rt_fetch(partrel
->relid
, root
)->relid
;
671 present_parts
= bms_add_member(present_parts
, i
);
673 /* Record finding this subplan */
674 subplansfound
= bms_add_member(subplansfound
, subplanidx
);
676 else if (subpartidx
>= 0)
677 present_parts
= bms_add_member(present_parts
, i
);
681 * Ensure there were no stray PartitionedRelPruneInfo generated for
682 * partitioned tables that we have no sub-paths or
683 * sub-PartitionedRelPruneInfo for.
685 Assert(!bms_is_empty(present_parts
));
687 /* Record the maps and other information. */
688 pinfo
->present_parts
= present_parts
;
689 pinfo
->nparts
= nparts
;
690 pinfo
->subplan_map
= subplan_map
;
691 pinfo
->subpart_map
= subpart_map
;
692 pinfo
->relid_map
= relid_map
;
695 pfree(relid_subpart_map
);
697 *matchedsubplans
= subplansfound
;
703 * gen_partprune_steps
704 * Process 'clauses' (typically a rel's baserestrictinfo list of clauses)
705 * and create a list of "partition pruning steps".
707 * 'target' tells whether to generate pruning steps for planning (use
708 * immutable clauses only), or for executor startup (use any allowable
709 * clause except ones containing PARAM_EXEC Params), or for executor
710 * per-scan pruning (use any allowable clause).
712 * 'context' is an output argument that receives the steps list as well as
713 * some subsidiary flags; see the GeneratePruningStepsContext typedef.
716 gen_partprune_steps(RelOptInfo
*rel
, List
*clauses
, PartClauseTarget target
,
717 GeneratePruningStepsContext
*context
)
719 /* Initialize all output values to zero/false/NULL */
720 memset(context
, 0, sizeof(GeneratePruningStepsContext
));
722 context
->target
= target
;
725 * If this partitioned table is in turn a partition, and it shares any
726 * partition keys with its parent, then it's possible that the hierarchy
727 * allows the parent a narrower range of values than some of its
728 * partitions (particularly the default one). This is normally not
729 * useful, but it can be to prune the default partition.
731 if (partition_bound_has_default(rel
->boundinfo
) && rel
->partition_qual
)
733 /* Make a copy to avoid modifying the passed-in List */
734 clauses
= list_concat_copy(clauses
, rel
->partition_qual
);
737 /* Down into the rabbit-hole. */
738 (void) gen_partprune_steps_internal(context
, clauses
);
742 * prune_append_rel_partitions
743 * Process rel's baserestrictinfo and make use of quals which can be
744 * evaluated during query planning in order to determine the minimum set
745 * of partitions which must be scanned to satisfy these quals. Returns
746 * the matching partitions in the form of a Bitmapset containing the
747 * partitions' indexes in the rel's part_rels array.
749 * Callers must ensure that 'rel' is a partitioned table.
752 prune_append_rel_partitions(RelOptInfo
*rel
)
754 List
*clauses
= rel
->baserestrictinfo
;
756 GeneratePruningStepsContext gcontext
;
757 PartitionPruneContext context
;
759 Assert(rel
->part_scheme
!= NULL
);
761 /* If there are no partitions, return the empty set */
762 if (rel
->nparts
== 0)
766 * If pruning is disabled or if there are no clauses to prune with, return
769 if (!enable_partition_pruning
|| clauses
== NIL
)
770 return bms_add_range(NULL
, 0, rel
->nparts
- 1);
773 * Process clauses to extract pruning steps that are usable at plan time.
774 * If the clauses are found to be contradictory, we can return the empty
777 gen_partprune_steps(rel
, clauses
, PARTTARGET_PLANNER
,
779 if (gcontext
.contradictory
)
781 pruning_steps
= gcontext
.steps
;
783 /* If there's nothing usable, return all partitions */
784 if (pruning_steps
== NIL
)
785 return bms_add_range(NULL
, 0, rel
->nparts
- 1);
787 /* Set up PartitionPruneContext */
788 context
.strategy
= rel
->part_scheme
->strategy
;
789 context
.partnatts
= rel
->part_scheme
->partnatts
;
790 context
.nparts
= rel
->nparts
;
791 context
.boundinfo
= rel
->boundinfo
;
792 context
.partcollation
= rel
->part_scheme
->partcollation
;
793 context
.partsupfunc
= rel
->part_scheme
->partsupfunc
;
794 context
.stepcmpfuncs
= (FmgrInfo
*) palloc0(sizeof(FmgrInfo
) *
796 list_length(pruning_steps
));
797 context
.ppccontext
= CurrentMemoryContext
;
799 /* These are not valid when being called from the planner */
800 context
.planstate
= NULL
;
801 context
.exprcontext
= NULL
;
802 context
.exprstates
= NULL
;
804 /* Actual pruning happens here. */
805 return get_matching_partitions(&context
, pruning_steps
);
809 * get_matching_partitions
810 * Determine partitions that survive partition pruning
812 * Note: context->exprcontext must be valid when the pruning_steps were
813 * generated with a target other than PARTTARGET_PLANNER.
815 * Returns a Bitmapset of the RelOptInfo->part_rels indexes of the surviving
819 get_matching_partitions(PartitionPruneContext
*context
, List
*pruning_steps
)
822 int num_steps
= list_length(pruning_steps
),
824 PruneStepResult
**results
,
829 /* If there are no pruning steps then all partitions match. */
832 Assert(context
->nparts
> 0);
833 return bms_add_range(NULL
, 0, context
->nparts
- 1);
837 * Allocate space for individual pruning steps to store its result. Each
838 * slot will hold a PruneStepResult after performing a given pruning step.
839 * Later steps may use the result of one or more earlier steps. The
840 * result of applying all pruning steps is the value contained in the slot
841 * of the last pruning step.
843 results
= (PruneStepResult
**)
844 palloc0(num_steps
* sizeof(PruneStepResult
*));
845 foreach(lc
, pruning_steps
)
847 PartitionPruneStep
*step
= lfirst(lc
);
849 switch (nodeTag(step
))
851 case T_PartitionPruneStepOp
:
852 results
[step
->step_id
] =
853 perform_pruning_base_step(context
,
854 (PartitionPruneStepOp
*) step
);
857 case T_PartitionPruneStepCombine
:
858 results
[step
->step_id
] =
859 perform_pruning_combine_step(context
,
860 (PartitionPruneStepCombine
*) step
,
865 elog(ERROR
, "invalid pruning step type: %d",
866 (int) nodeTag(step
));
871 * At this point we know the offsets of all the datums whose corresponding
872 * partitions need to be in the result, including special null-accepting
873 * and default partitions. Collect the actual partition indexes now.
875 final_result
= results
[num_steps
- 1];
876 Assert(final_result
!= NULL
);
879 scan_default
= final_result
->scan_default
;
880 while ((i
= bms_next_member(final_result
->bound_offsets
, i
)) >= 0)
884 Assert(i
< context
->boundinfo
->nindexes
);
885 partindex
= context
->boundinfo
->indexes
[i
];
890 * In range partitioning cases, if a partition index is -1 it
891 * means that the bound at the offset is the upper bound for a
892 * range not covered by any partition (other than a possible
893 * default partition). In hash partitioning, the same means no
894 * partition has been defined for the corresponding remainder
897 * In either case, the value is still part of the queried range of
898 * values, so mark to scan the default partition if one exists.
900 scan_default
|= partition_bound_has_default(context
->boundinfo
);
904 result
= bms_add_member(result
, partindex
);
907 /* Add the null and/or default partition if needed and present. */
908 if (final_result
->scan_null
)
910 Assert(context
->strategy
== PARTITION_STRATEGY_LIST
);
911 Assert(partition_bound_accepts_nulls(context
->boundinfo
));
912 result
= bms_add_member(result
, context
->boundinfo
->null_index
);
916 Assert(context
->strategy
== PARTITION_STRATEGY_LIST
||
917 context
->strategy
== PARTITION_STRATEGY_RANGE
);
918 Assert(partition_bound_has_default(context
->boundinfo
));
919 result
= bms_add_member(result
, context
->boundinfo
->default_index
);
926 * gen_partprune_steps_internal
927 * Processes 'clauses' to generate a List of partition pruning steps. We
928 * return NIL when no steps were generated.
930 * These partition pruning steps come in 2 forms; operator steps and combine
933 * Operator steps (PartitionPruneStepOp) contain details of clauses that we
934 * determined that we can use for partition pruning. These contain details of
935 * the expression which is being compared to the partition key and the
936 * comparison function.
938 * Combine steps (PartitionPruneStepCombine) instruct the partition pruning
939 * code how it should produce a single set of partitions from multiple input
940 * operator and other combine steps. A PARTPRUNE_COMBINE_INTERSECT type
941 * combine step will merge its input steps to produce a result which only
942 * contains the partitions which are present in all of the input operator
943 * steps. A PARTPRUNE_COMBINE_UNION combine step will produce a result that
944 * has all of the partitions from each of the input operator steps.
946 * For BoolExpr clauses, each argument is processed recursively. Steps
947 * generated from processing an OR BoolExpr will be combined using
948 * PARTPRUNE_COMBINE_UNION. AND BoolExprs get combined using
949 * PARTPRUNE_COMBINE_INTERSECT.
951 * Otherwise, the list of clauses we receive we assume to be mutually ANDed.
952 * We generate all of the pruning steps we can based on these clauses and then
953 * at the end, if we have more than 1 step, we combine each step with a
954 * PARTPRUNE_COMBINE_INTERSECT combine step. Single steps are returned as-is.
956 * If we find clauses that are mutually contradictory, or contradictory with
957 * the partitioning constraint, or a pseudoconstant clause that contains
958 * false, we set context->contradictory to true and return NIL (that is, no
959 * pruning steps). Caller should consider all partitions as pruned in that
963 gen_partprune_steps_internal(GeneratePruningStepsContext
*context
,
966 PartitionScheme part_scheme
= context
->rel
->part_scheme
;
967 List
*keyclauses
[PARTITION_MAX_KEYS
];
968 Bitmapset
*nullkeys
= NULL
,
970 bool generate_opsteps
= false;
975 * If this partitioned relation has a default partition and is itself a
976 * partition (as evidenced by partition_qual being not NIL), we first
977 * check if the clauses contradict the partition constraint. If they do,
978 * there's no need to generate any steps as it'd already be proven that no
979 * partitions need to be scanned.
981 * This is a measure of last resort only to be used because the default
982 * partition cannot be pruned using the steps generated from clauses that
983 * contradict the parent's partition constraint; regular pruning, which is
984 * cheaper, is sufficient when no default partition exists.
986 if (partition_bound_has_default(context
->rel
->boundinfo
) &&
987 predicate_refuted_by(context
->rel
->partition_qual
, clauses
, false))
989 context
->contradictory
= true;
993 memset(keyclauses
, 0, sizeof(keyclauses
));
996 Expr
*clause
= (Expr
*) lfirst(lc
);
999 /* Look through RestrictInfo, if any */
1000 if (IsA(clause
, RestrictInfo
))
1001 clause
= ((RestrictInfo
*) clause
)->clause
;
1003 /* Constant-false-or-null is contradictory */
1004 if (IsA(clause
, Const
) &&
1005 (((Const
*) clause
)->constisnull
||
1006 !DatumGetBool(((Const
*) clause
)->constvalue
)))
1008 context
->contradictory
= true;
1012 /* Get the BoolExpr's out of the way. */
1013 if (IsA(clause
, BoolExpr
))
1016 * Generate steps for arguments.
1018 * While steps generated for the arguments themselves will be
1019 * added to context->steps during recursion and will be evaluated
1020 * independently, collect their step IDs to be stored in the
1021 * combine step we'll be creating.
1023 if (is_orclause(clause
))
1025 List
*arg_stepids
= NIL
;
1026 bool all_args_contradictory
= true;
1030 * We can share the outer context area with the recursive
1031 * call, but contradictory had better not be true yet.
1033 Assert(!context
->contradictory
);
1036 * Get pruning step for each arg. If we get contradictory for
1037 * all args, it means the OR expression is false as a whole.
1039 foreach(lc1
, ((BoolExpr
*) clause
)->args
)
1041 Expr
*arg
= lfirst(lc1
);
1042 bool arg_contradictory
;
1045 argsteps
= gen_partprune_steps_internal(context
,
1047 arg_contradictory
= context
->contradictory
;
1048 /* Keep context->contradictory clear till we're done */
1049 context
->contradictory
= false;
1051 if (arg_contradictory
)
1053 /* Just ignore self-contradictory arguments. */
1057 all_args_contradictory
= false;
1059 if (argsteps
!= NIL
)
1062 * gen_partprune_steps_internal() always adds a single
1063 * combine step when it generates multiple steps, so
1064 * here we can just pay attention to the last one in
1065 * the list. If it just generated one, then the last
1066 * one in the list is still the one we want.
1068 PartitionPruneStep
*last
= llast(argsteps
);
1070 arg_stepids
= lappend_int(arg_stepids
, last
->step_id
);
1074 PartitionPruneStep
*orstep
;
1077 * The arg didn't contain a clause matching this
1078 * partition key. We cannot prune using such an arg.
1079 * To indicate that to the pruning code, we must
1080 * construct a dummy PartitionPruneStepCombine whose
1081 * source_stepids is set to an empty List.
1083 orstep
= gen_prune_step_combine(context
, NIL
,
1084 PARTPRUNE_COMBINE_UNION
);
1085 arg_stepids
= lappend_int(arg_stepids
, orstep
->step_id
);
1089 /* If all the OR arms are contradictory, we can stop */
1090 if (all_args_contradictory
)
1092 context
->contradictory
= true;
1096 if (arg_stepids
!= NIL
)
1098 PartitionPruneStep
*step
;
1100 step
= gen_prune_step_combine(context
, arg_stepids
,
1101 PARTPRUNE_COMBINE_UNION
);
1102 result
= lappend(result
, step
);
1106 else if (is_andclause(clause
))
1108 List
*args
= ((BoolExpr
*) clause
)->args
;
1112 * args may itself contain clauses of arbitrary type, so just
1113 * recurse and later combine the component partitions sets
1114 * using a combine step.
1116 argsteps
= gen_partprune_steps_internal(context
, args
);
1118 /* If any AND arm is contradictory, we can stop immediately */
1119 if (context
->contradictory
)
1123 * gen_partprune_steps_internal() always adds a single combine
1124 * step when it generates multiple steps, so here we can just
1125 * pay attention to the last one in the list. If it just
1126 * generated one, then the last one in the list is still the
1129 if (argsteps
!= NIL
)
1130 result
= lappend(result
, llast(argsteps
));
1136 * Fall-through for a NOT clause, which if it's a Boolean clause,
1137 * will be handled in match_clause_to_partition_key(). We
1138 * currently don't perform any pruning for more complex NOT
1144 * See if we can match this clause to any of the partition keys.
1146 for (i
= 0; i
< part_scheme
->partnatts
; i
++)
1148 Expr
*partkey
= linitial(context
->rel
->partexprs
[i
]);
1149 bool clause_is_not_null
= false;
1150 PartClauseInfo
*pc
= NULL
;
1151 List
*clause_steps
= NIL
;
1153 switch (match_clause_to_partition_key(context
,
1155 &clause_is_not_null
,
1156 &pc
, &clause_steps
))
1158 case PARTCLAUSE_MATCH_CLAUSE
:
1162 * Since we only allow strict operators, check for any
1163 * contradicting IS NULL.
1165 if (bms_is_member(i
, nullkeys
))
1167 context
->contradictory
= true;
1170 generate_opsteps
= true;
1171 keyclauses
[i
] = lappend(keyclauses
[i
], pc
);
1174 case PARTCLAUSE_MATCH_NULLNESS
:
1175 if (!clause_is_not_null
)
1178 * check for conflicting IS NOT NULL as well as
1179 * contradicting strict clauses
1181 if (bms_is_member(i
, notnullkeys
) ||
1182 keyclauses
[i
] != NIL
)
1184 context
->contradictory
= true;
1187 nullkeys
= bms_add_member(nullkeys
, i
);
1191 /* check for conflicting IS NULL */
1192 if (bms_is_member(i
, nullkeys
))
1194 context
->contradictory
= true;
1197 notnullkeys
= bms_add_member(notnullkeys
, i
);
1201 case PARTCLAUSE_MATCH_STEPS
:
1202 Assert(clause_steps
!= NIL
);
1203 result
= list_concat(result
, clause_steps
);
1206 case PARTCLAUSE_MATCH_CONTRADICT
:
1207 /* We've nothing more to do if a contradiction was found. */
1208 context
->contradictory
= true;
1211 case PARTCLAUSE_NOMATCH
:
1214 * Clause didn't match this key, but it might match the
1219 case PARTCLAUSE_UNSUPPORTED
:
1220 /* This clause cannot be used for pruning. */
1224 /* done; go check the next clause. */
1230 * Now generate some (more) pruning steps. We have three strategies:
1232 * 1) Generate pruning steps based on IS NULL clauses:
1233 * a) For list partitioning, null partition keys can only be found in
1234 * the designated null-accepting partition, so if there are IS NULL
1235 * clauses containing partition keys we should generate a pruning
1236 * step that gets rid of all partitions but that one. We can
1237 * disregard any OpExpr we may have found.
1238 * b) For range partitioning, only the default partition can contain
1239 * NULL values, so the same rationale applies.
1240 * c) For hash partitioning, we only apply this strategy if we have
1241 * IS NULL clauses for all the keys. Strategy 2 below will take
1242 * care of the case where some keys have OpExprs and others have
1245 * 2) If not, generate steps based on OpExprs we have (if any).
1247 * 3) If this doesn't work either, we may be able to generate steps to
1248 * prune just the null-accepting partition (if one exists), if we have
1249 * IS NOT NULL clauses for all partition keys.
1251 if (!bms_is_empty(nullkeys
) &&
1252 (part_scheme
->strategy
== PARTITION_STRATEGY_LIST
||
1253 part_scheme
->strategy
== PARTITION_STRATEGY_RANGE
||
1254 (part_scheme
->strategy
== PARTITION_STRATEGY_HASH
&&
1255 bms_num_members(nullkeys
) == part_scheme
->partnatts
)))
1257 PartitionPruneStep
*step
;
1260 step
= gen_prune_step_op(context
, InvalidStrategy
,
1261 false, NIL
, NIL
, nullkeys
);
1262 result
= lappend(result
, step
);
1264 else if (generate_opsteps
)
1269 opsteps
= gen_prune_steps_from_opexps(context
, keyclauses
, nullkeys
);
1270 result
= list_concat(result
, opsteps
);
1272 else if (bms_num_members(notnullkeys
) == part_scheme
->partnatts
)
1274 PartitionPruneStep
*step
;
1277 step
= gen_prune_step_op(context
, InvalidStrategy
,
1278 false, NIL
, NIL
, NULL
);
1279 result
= lappend(result
, step
);
1283 * Finally, if there are multiple steps, since the 'clauses' are mutually
1284 * ANDed, add an INTERSECT step to combine the partition sets resulting
1285 * from them and append it to the result list.
1287 if (list_length(result
) > 1)
1289 List
*step_ids
= NIL
;
1290 PartitionPruneStep
*final
;
1294 PartitionPruneStep
*step
= lfirst(lc
);
1296 step_ids
= lappend_int(step_ids
, step
->step_id
);
1299 final
= gen_prune_step_combine(context
, step_ids
,
1300 PARTPRUNE_COMBINE_INTERSECT
);
1301 result
= lappend(result
, final
);
1309 * Generate a pruning step for a specific operator
1311 * The step is assigned a unique step identifier and added to context's 'steps'
1314 static PartitionPruneStep
*
1315 gen_prune_step_op(GeneratePruningStepsContext
*context
,
1316 StrategyNumber opstrategy
, bool op_is_ne
,
1317 List
*exprs
, List
*cmpfns
,
1318 Bitmapset
*nullkeys
)
1320 PartitionPruneStepOp
*opstep
= makeNode(PartitionPruneStepOp
);
1322 opstep
->step
.step_id
= context
->next_step_id
++;
1325 * For clauses that contain an <> operator, set opstrategy to
1326 * InvalidStrategy to signal get_matching_list_bounds to do the right
1329 opstep
->opstrategy
= op_is_ne
? InvalidStrategy
: opstrategy
;
1330 Assert(list_length(exprs
) == list_length(cmpfns
));
1331 opstep
->exprs
= exprs
;
1332 opstep
->cmpfns
= cmpfns
;
1333 opstep
->nullkeys
= nullkeys
;
1335 context
->steps
= lappend(context
->steps
, opstep
);
1337 return (PartitionPruneStep
*) opstep
;
1341 * gen_prune_step_combine
1342 * Generate a pruning step for a combination of several other steps
1344 * The step is assigned a unique step identifier and added to context's
1347 static PartitionPruneStep
*
1348 gen_prune_step_combine(GeneratePruningStepsContext
*context
,
1349 List
*source_stepids
,
1350 PartitionPruneCombineOp combineOp
)
1352 PartitionPruneStepCombine
*cstep
= makeNode(PartitionPruneStepCombine
);
1354 cstep
->step
.step_id
= context
->next_step_id
++;
1355 cstep
->combineOp
= combineOp
;
1356 cstep
->source_stepids
= source_stepids
;
1358 context
->steps
= lappend(context
->steps
, cstep
);
1360 return (PartitionPruneStep
*) cstep
;
1364 * gen_prune_steps_from_opexps
1365 * Generate and return a list of PartitionPruneStepOp that are based on
1366 * OpExpr and BooleanTest clauses that have been matched to the partition
1369 * 'keyclauses' is an array of List pointers, indexed by the partition key's
1370 * index. Each List element in the array can contain clauses that match to
1371 * the corresponding partition key column. Partition key columns without any
1372 * matched clauses will have an empty List.
1374 * Some partitioning strategies allow pruning to still occur when we only have
1375 * clauses for a prefix of the partition key columns, for example, RANGE
1376 * partitioning. Other strategies, such as HASH partitioning, require clauses
1377 * for all partition key columns.
1379 * When we return multiple pruning steps here, it's up to the caller to add a
1380 * relevant "combine" step to combine the returned steps. This is not done
1381 * here as callers may wish to include additional pruning steps before
1382 * combining them all.
1385 gen_prune_steps_from_opexps(GeneratePruningStepsContext
*context
,
1386 List
**keyclauses
, Bitmapset
*nullkeys
)
1388 PartitionScheme part_scheme
= context
->rel
->part_scheme
;
1389 List
*opsteps
= NIL
;
1390 List
*btree_clauses
[BTMaxStrategyNumber
+ 1],
1391 *hash_clauses
[HTMaxStrategyNumber
+ 1];
1395 memset(btree_clauses
, 0, sizeof(btree_clauses
));
1396 memset(hash_clauses
, 0, sizeof(hash_clauses
));
1397 for (i
= 0; i
< part_scheme
->partnatts
; i
++)
1399 List
*clauselist
= keyclauses
[i
];
1400 bool consider_next_key
= true;
1403 * For range partitioning, if we have no clauses for the current key,
1404 * we can't consider any later keys either, so we can stop here.
1406 if (part_scheme
->strategy
== PARTITION_STRATEGY_RANGE
&&
1411 * For hash partitioning, if a column doesn't have the necessary
1412 * equality clause, there should be an IS NULL clause, otherwise
1413 * pruning is not possible.
1415 if (part_scheme
->strategy
== PARTITION_STRATEGY_HASH
&&
1416 clauselist
== NIL
&& !bms_is_member(i
, nullkeys
))
1419 foreach(lc
, clauselist
)
1421 PartClauseInfo
*pc
= (PartClauseInfo
*) lfirst(lc
);
1425 /* Look up the operator's btree/hash strategy number. */
1426 if (pc
->op_strategy
== InvalidStrategy
)
1427 get_op_opfamily_properties(pc
->opno
,
1428 part_scheme
->partopfamily
[i
],
1434 switch (part_scheme
->strategy
)
1436 case PARTITION_STRATEGY_LIST
:
1437 case PARTITION_STRATEGY_RANGE
:
1438 btree_clauses
[pc
->op_strategy
] =
1439 lappend(btree_clauses
[pc
->op_strategy
], pc
);
1442 * We can't consider subsequent partition keys if the
1443 * clause for the current key contains a non-inclusive
1446 if (pc
->op_strategy
== BTLessStrategyNumber
||
1447 pc
->op_strategy
== BTGreaterStrategyNumber
)
1448 consider_next_key
= false;
1451 case PARTITION_STRATEGY_HASH
:
1452 if (pc
->op_strategy
!= HTEqualStrategyNumber
)
1453 elog(ERROR
, "invalid clause for hash partitioning");
1454 hash_clauses
[pc
->op_strategy
] =
1455 lappend(hash_clauses
[pc
->op_strategy
], pc
);
1459 elog(ERROR
, "invalid partition strategy: %c",
1460 part_scheme
->strategy
);
1466 * If we've decided that clauses for subsequent partition keys
1467 * wouldn't be useful for pruning, don't search any further.
1469 if (!consider_next_key
)
1474 * Now, we have divided clauses according to their operator strategies.
1475 * Check for each strategy if we can generate pruning step(s) by
1476 * collecting a list of expressions whose values will constitute a vector
1477 * that can be used as a lookup key by a partition bound searching
1480 switch (part_scheme
->strategy
)
1482 case PARTITION_STRATEGY_LIST
:
1483 case PARTITION_STRATEGY_RANGE
:
1485 List
*eq_clauses
= btree_clauses
[BTEqualStrategyNumber
];
1486 List
*le_clauses
= btree_clauses
[BTLessEqualStrategyNumber
];
1487 List
*ge_clauses
= btree_clauses
[BTGreaterEqualStrategyNumber
];
1491 * For each clause under consideration for a given strategy,
1492 * we collect expressions from clauses for earlier keys, whose
1493 * operator strategy is inclusive, into a list called
1494 * 'prefix'. By appending the clause's own expression to the
1495 * 'prefix', we'll generate one step using the so generated
1496 * vector and assign the current strategy to it. Actually,
1497 * 'prefix' might contain multiple clauses for the same key,
1498 * in which case, we must generate steps for various
1499 * combinations of expressions of different keys, which
1500 * get_steps_using_prefix takes care of for us.
1502 for (strat
= 1; strat
<= BTMaxStrategyNumber
; strat
++)
1504 foreach(lc
, btree_clauses
[strat
])
1506 PartClauseInfo
*pc
= lfirst(lc
);
1513 bool prefix_valid
= true;
1514 bool pk_has_clauses
;
1518 * If this is a clause for the first partition key,
1519 * there are no preceding expressions; generate a
1520 * pruning step without a prefix.
1522 * Note that we pass NULL for step_nullkeys, because
1523 * we don't search list/range partition bounds where
1524 * some keys are NULL.
1528 Assert(pc
->op_strategy
== strat
);
1529 pc_steps
= get_steps_using_prefix(context
, strat
,
1536 opsteps
= list_concat(opsteps
, pc_steps
);
1540 eq_start
= list_head(eq_clauses
);
1541 le_start
= list_head(le_clauses
);
1542 ge_start
= list_head(ge_clauses
);
1545 * We arrange clauses into prefix in ascending order
1546 * of their partition key numbers.
1548 for (keyno
= 0; keyno
< pc
->keyno
; keyno
++)
1550 pk_has_clauses
= false;
1553 * Expressions from = clauses can always be in the
1554 * prefix, provided they're from an earlier key.
1556 for_each_cell(lc1
, eq_clauses
, eq_start
)
1558 PartClauseInfo
*eqpc
= lfirst(lc1
);
1560 if (eqpc
->keyno
== keyno
)
1562 prefix
= lappend(prefix
, eqpc
);
1563 pk_has_clauses
= true;
1567 Assert(eqpc
->keyno
> keyno
);
1574 * If we're generating steps for </<= strategy, we
1575 * can add other <= clauses to the prefix,
1576 * provided they're from an earlier key.
1578 if (strat
== BTLessStrategyNumber
||
1579 strat
== BTLessEqualStrategyNumber
)
1581 for_each_cell(lc1
, le_clauses
, le_start
)
1583 PartClauseInfo
*lepc
= lfirst(lc1
);
1585 if (lepc
->keyno
== keyno
)
1587 prefix
= lappend(prefix
, lepc
);
1588 pk_has_clauses
= true;
1592 Assert(lepc
->keyno
> keyno
);
1600 * If we're generating steps for >/>= strategy, we
1601 * can add other >= clauses to the prefix,
1602 * provided they're from an earlier key.
1604 if (strat
== BTGreaterStrategyNumber
||
1605 strat
== BTGreaterEqualStrategyNumber
)
1607 for_each_cell(lc1
, ge_clauses
, ge_start
)
1609 PartClauseInfo
*gepc
= lfirst(lc1
);
1611 if (gepc
->keyno
== keyno
)
1613 prefix
= lappend(prefix
, gepc
);
1614 pk_has_clauses
= true;
1618 Assert(gepc
->keyno
> keyno
);
1626 * If this key has no clauses, prefix is not valid
1629 if (!pk_has_clauses
)
1631 prefix_valid
= false;
1637 * If prefix_valid, generate PartitionPruneStepOps.
1638 * Otherwise, we would not find clauses for a valid
1639 * subset of the partition keys anymore for the
1640 * strategy; give up on generating partition pruning
1641 * steps further for the strategy.
1643 * As mentioned above, if 'prefix' contains multiple
1644 * expressions for the same key, the following will
1645 * generate multiple steps, one for each combination
1646 * of the expressions for different keys.
1648 * Note that we pass NULL for step_nullkeys, because
1649 * we don't search list/range partition bounds where
1650 * some keys are NULL.
1654 Assert(pc
->op_strategy
== strat
);
1655 pc_steps
= get_steps_using_prefix(context
, strat
,
1662 opsteps
= list_concat(opsteps
, pc_steps
);
1671 case PARTITION_STRATEGY_HASH
:
1673 List
*eq_clauses
= hash_clauses
[HTEqualStrategyNumber
];
1675 /* For hash partitioning, we have just the = strategy. */
1676 if (eq_clauses
!= NIL
)
1685 * Locate the clause for the greatest column. This may
1686 * not belong to the last partition key, but it is the
1687 * clause belonging to the last partition key we found a
1690 pc
= llast(eq_clauses
);
1693 * There might be multiple clauses which matched to that
1694 * partition key; find the first such clause. While at
1695 * it, add all the clauses before that one to 'prefix'.
1697 last_keyno
= pc
->keyno
;
1698 foreach(lc
, eq_clauses
)
1701 if (pc
->keyno
== last_keyno
)
1703 prefix
= lappend(prefix
, pc
);
1707 * For each clause for the "last" column, after appending
1708 * the clause's own expression to the 'prefix', we'll
1709 * generate one step using the so generated vector and
1710 * assign = as its strategy. Actually, 'prefix' might
1711 * contain multiple clauses for the same key, in which
1712 * case, we must generate steps for various combinations
1713 * of expressions of different keys, which
1714 * get_steps_using_prefix will take care of for us.
1716 for_each_cell(lc1
, eq_clauses
, lc
)
1721 * Note that we pass nullkeys for step_nullkeys,
1722 * because we need to tell hash partition bound search
1723 * function which of the keys we found IS NULL clauses
1726 Assert(pc
->op_strategy
== HTEqualStrategyNumber
);
1728 get_steps_using_prefix(context
,
1729 HTEqualStrategyNumber
,
1736 opsteps
= list_concat(opsteps
, pc_steps
);
1743 elog(ERROR
, "invalid partition strategy: %c",
1744 part_scheme
->strategy
);
1752 * If the partition key has a collation, then the clause must have the same
1753 * input collation. If the partition key is non-collatable, we assume the
1754 * collation doesn't matter, because while collation wasn't considered when
1755 * performing partitioning, the clause still may have a collation assigned
1756 * due to the other input being of a collatable type.
1758 * See also IndexCollMatchesExprColl.
1760 #define PartCollMatchesExprColl(partcoll, exprcoll) \
1761 ((partcoll) == InvalidOid || (partcoll) == (exprcoll))
1764 * match_clause_to_partition_key
1765 * Attempt to match the given 'clause' with the specified partition key.
1768 * * PARTCLAUSE_NOMATCH if the clause doesn't match this partition key (but
1769 * caller should keep trying, because it might match a subsequent key).
1770 * Output arguments: none set.
1772 * * PARTCLAUSE_MATCH_CLAUSE if there is a match.
1773 * Output arguments: *pc is set to a PartClauseInfo constructed for the
1776 * * PARTCLAUSE_MATCH_NULLNESS if there is a match, and the matched clause was
1777 * either a "a IS NULL" or "a IS NOT NULL" clause.
1778 * Output arguments: *clause_is_not_null is set to false in the former case
1781 * * PARTCLAUSE_MATCH_STEPS if there is a match.
1782 * Output arguments: *clause_steps is set to the list of recursively
1783 * generated steps for the clause.
1785 * * PARTCLAUSE_MATCH_CONTRADICT if the clause is self-contradictory, ie
1786 * it provably returns FALSE or NULL.
1787 * Output arguments: none set.
1789 * * PARTCLAUSE_UNSUPPORTED if the clause doesn't match this partition key
1790 * and couldn't possibly match any other one either, due to its form or
1791 * properties (such as containing a volatile function).
1792 * Output arguments: none set.
1794 static PartClauseMatchStatus
1795 match_clause_to_partition_key(GeneratePruningStepsContext
*context
,
1796 Expr
*clause
, Expr
*partkey
, int partkeyidx
,
1797 bool *clause_is_not_null
, PartClauseInfo
**pc
,
1798 List
**clause_steps
)
1800 PartClauseMatchStatus boolmatchstatus
;
1801 PartitionScheme part_scheme
= context
->rel
->part_scheme
;
1802 Oid partopfamily
= part_scheme
->partopfamily
[partkeyidx
],
1803 partcoll
= part_scheme
->partcollation
[partkeyidx
];
1807 * Recognize specially shaped clauses that match a Boolean partition key.
1809 boolmatchstatus
= match_boolean_partition_clause(partopfamily
, clause
,
1812 if (boolmatchstatus
== PARTCLAUSE_MATCH_CLAUSE
)
1814 PartClauseInfo
*partclause
;
1816 partclause
= (PartClauseInfo
*) palloc(sizeof(PartClauseInfo
));
1817 partclause
->keyno
= partkeyidx
;
1818 /* Do pruning with the Boolean equality operator. */
1819 partclause
->opno
= BooleanEqualOperator
;
1820 partclause
->op_is_ne
= false;
1821 partclause
->expr
= expr
;
1822 /* We know that expr is of Boolean type. */
1823 partclause
->cmpfn
= part_scheme
->partsupfunc
[partkeyidx
].fn_oid
;
1824 partclause
->op_strategy
= InvalidStrategy
;
1828 return PARTCLAUSE_MATCH_CLAUSE
;
1830 else if (IsA(clause
, OpExpr
) &&
1831 list_length(((OpExpr
*) clause
)->args
) == 2)
1833 OpExpr
*opclause
= (OpExpr
*) clause
;
1839 negator
= InvalidOid
;
1842 bool is_opne_listp
= false;
1843 PartClauseInfo
*partclause
;
1845 leftop
= (Expr
*) get_leftop(clause
);
1846 if (IsA(leftop
, RelabelType
))
1847 leftop
= ((RelabelType
*) leftop
)->arg
;
1848 rightop
= (Expr
*) get_rightop(clause
);
1849 if (IsA(rightop
, RelabelType
))
1850 rightop
= ((RelabelType
*) rightop
)->arg
;
1851 opno
= opclause
->opno
;
1853 /* check if the clause matches this partition key */
1854 if (equal(leftop
, partkey
))
1856 else if (equal(rightop
, partkey
))
1859 * It's only useful if we can commute the operator to put the
1860 * partkey on the left. If we can't, the clause can be deemed
1861 * UNSUPPORTED. Even if its leftop matches some later partkey, we
1862 * now know it has Vars on the right, so it's no use.
1864 opno
= get_commutator(opno
);
1865 if (!OidIsValid(opno
))
1866 return PARTCLAUSE_UNSUPPORTED
;
1870 /* clause does not match this partition key, but perhaps next. */
1871 return PARTCLAUSE_NOMATCH
;
1874 * Partition key match also requires collation match. There may be
1875 * multiple partkeys with the same expression but different
1876 * collations, so failure is NOMATCH.
1878 if (!PartCollMatchesExprColl(partcoll
, opclause
->inputcollid
))
1879 return PARTCLAUSE_NOMATCH
;
1882 * See if the operator is relevant to the partitioning opfamily.
1884 * Normally we only care about operators that are listed as being part
1885 * of the partitioning operator family. But there is one exception:
1886 * the not-equals operators are not listed in any operator family
1887 * whatsoever, but their negators (equality) are. We can use one of
1888 * those if we find it, but only for list partitioning.
1890 * Note: we report NOMATCH on failure, in case a later partkey has the
1891 * same expression but different opfamily. That's unlikely, but not
1892 * much more so than duplicate expressions with different collations.
1894 if (op_in_opfamily(opno
, partopfamily
))
1896 get_op_opfamily_properties(opno
, partopfamily
, false,
1897 &op_strategy
, &op_lefttype
,
1902 if (part_scheme
->strategy
!= PARTITION_STRATEGY_LIST
)
1903 return PARTCLAUSE_NOMATCH
;
1905 /* See if the negator is equality */
1906 negator
= get_negator(opno
);
1907 if (OidIsValid(negator
) && op_in_opfamily(negator
, partopfamily
))
1909 get_op_opfamily_properties(negator
, partopfamily
, false,
1910 &op_strategy
, &op_lefttype
,
1912 if (op_strategy
== BTEqualStrategyNumber
)
1913 is_opne_listp
= true; /* bingo */
1916 /* Nope, it's not <> either. */
1918 return PARTCLAUSE_NOMATCH
;
1922 * Only allow strict operators. This will guarantee nulls are
1923 * filtered. (This test is likely useless, since btree and hash
1924 * comparison operators are generally strict.)
1926 if (!op_strict(opno
))
1927 return PARTCLAUSE_UNSUPPORTED
;
1930 * OK, we have a match to the partition key and a suitable operator.
1931 * Examine the other argument to see if it's usable for pruning.
1933 * In most of these cases, we can return UNSUPPORTED because the same
1934 * failure would occur no matter which partkey it's matched to. (In
1935 * particular, now that we've successfully matched one side of the
1936 * opclause to a partkey, there is no chance that matching the other
1937 * side to another partkey will produce a usable result, since that'd
1938 * mean there are Vars on both sides.)
1940 * Also, if we reject an argument for a target-dependent reason, set
1941 * appropriate fields of *context to report that. We postpone these
1942 * tests until after matching the partkey and the operator, so as to
1943 * reduce the odds of setting the context fields for clauses that do
1944 * not end up contributing to pruning steps.
1946 * First, check for non-Const argument. (We assume that any immutable
1947 * subexpression will have been folded to a Const already.)
1949 if (!IsA(expr
, Const
))
1951 Bitmapset
*paramids
;
1954 * When pruning in the planner, we only support pruning using
1955 * comparisons to constants. We cannot prune on the basis of
1956 * anything that's not immutable. (Note that has_mutable_arg and
1957 * has_exec_param do not get set for this target value.)
1959 if (context
->target
== PARTTARGET_PLANNER
)
1960 return PARTCLAUSE_UNSUPPORTED
;
1963 * We can never prune using an expression that contains Vars.
1965 if (contain_var_clause((Node
*) expr
))
1966 return PARTCLAUSE_UNSUPPORTED
;
1969 * And we must reject anything containing a volatile function.
1970 * Stable functions are OK though.
1972 if (contain_volatile_functions((Node
*) expr
))
1973 return PARTCLAUSE_UNSUPPORTED
;
1976 * See if there are any exec Params. If so, we can only use this
1977 * expression during per-scan pruning.
1979 paramids
= pull_exec_paramids(expr
);
1980 if (!bms_is_empty(paramids
))
1982 context
->has_exec_param
= true;
1983 if (context
->target
!= PARTTARGET_EXEC
)
1984 return PARTCLAUSE_UNSUPPORTED
;
1988 /* It's potentially usable, but mutable */
1989 context
->has_mutable_arg
= true;
1994 * Check whether the comparison operator itself is immutable. (We
1995 * assume anything that's in a btree or hash opclass is at least
1996 * stable, but we need to check for immutability.)
1998 if (op_volatile(opno
) != PROVOLATILE_IMMUTABLE
)
2000 context
->has_mutable_op
= true;
2003 * When pruning in the planner, we cannot prune with mutable
2006 if (context
->target
== PARTTARGET_PLANNER
)
2007 return PARTCLAUSE_UNSUPPORTED
;
2011 * Now find the procedure to use, based on the types. If the clause's
2012 * other argument is of the same type as the partitioning opclass's
2013 * declared input type, we can use the procedure cached in
2014 * PartitionKey. If not, search for a cross-type one in the same
2015 * opfamily; if one doesn't exist, report no match.
2017 if (op_righttype
== part_scheme
->partopcintype
[partkeyidx
])
2018 cmpfn
= part_scheme
->partsupfunc
[partkeyidx
].fn_oid
;
2021 switch (part_scheme
->strategy
)
2024 * For range and list partitioning, we need the ordering
2025 * procedure with lefttype being the partition key's type,
2026 * and righttype the clause's operator's right type.
2028 case PARTITION_STRATEGY_LIST
:
2029 case PARTITION_STRATEGY_RANGE
:
2031 get_opfamily_proc(part_scheme
->partopfamily
[partkeyidx
],
2032 part_scheme
->partopcintype
[partkeyidx
],
2033 op_righttype
, BTORDER_PROC
);
2037 * For hash partitioning, we need the hashing procedure
2038 * for the clause's type.
2040 case PARTITION_STRATEGY_HASH
:
2042 get_opfamily_proc(part_scheme
->partopfamily
[partkeyidx
],
2043 op_righttype
, op_righttype
,
2048 elog(ERROR
, "invalid partition strategy: %c",
2049 part_scheme
->strategy
);
2050 cmpfn
= InvalidOid
; /* keep compiler quiet */
2054 if (!OidIsValid(cmpfn
))
2055 return PARTCLAUSE_NOMATCH
;
2059 * Build the clause, passing the negator if applicable.
2061 partclause
= (PartClauseInfo
*) palloc(sizeof(PartClauseInfo
));
2062 partclause
->keyno
= partkeyidx
;
2065 Assert(OidIsValid(negator
));
2066 partclause
->opno
= negator
;
2067 partclause
->op_is_ne
= true;
2068 partclause
->op_strategy
= InvalidStrategy
;
2072 partclause
->opno
= opno
;
2073 partclause
->op_is_ne
= false;
2074 partclause
->op_strategy
= op_strategy
;
2076 partclause
->expr
= expr
;
2077 partclause
->cmpfn
= cmpfn
;
2081 return PARTCLAUSE_MATCH_CLAUSE
;
2083 else if (IsA(clause
, ScalarArrayOpExpr
))
2085 ScalarArrayOpExpr
*saop
= (ScalarArrayOpExpr
*) clause
;
2086 Oid saop_op
= saop
->opno
;
2087 Oid saop_coll
= saop
->inputcollid
;
2088 Expr
*leftop
= (Expr
*) linitial(saop
->args
),
2089 *rightop
= (Expr
*) lsecond(saop
->args
);
2094 if (IsA(leftop
, RelabelType
))
2095 leftop
= ((RelabelType
*) leftop
)->arg
;
2097 /* check if the LHS matches this partition key */
2098 if (!equal(leftop
, partkey
) ||
2099 !PartCollMatchesExprColl(partcoll
, saop
->inputcollid
))
2100 return PARTCLAUSE_NOMATCH
;
2103 * See if the operator is relevant to the partitioning opfamily.
2105 * In case of NOT IN (..), we get a '<>', which we handle if list
2106 * partitioning is in use and we're able to confirm that it's negator
2107 * is a btree equality operator belonging to the partitioning operator
2108 * family. As above, report NOMATCH for non-matching operator.
2110 if (!op_in_opfamily(saop_op
, partopfamily
))
2114 if (part_scheme
->strategy
!= PARTITION_STRATEGY_LIST
)
2115 return PARTCLAUSE_NOMATCH
;
2117 negator
= get_negator(saop_op
);
2118 if (OidIsValid(negator
) && op_in_opfamily(negator
, partopfamily
))
2124 get_op_opfamily_properties(negator
, partopfamily
,
2126 &lefttype
, &righttype
);
2127 if (strategy
!= BTEqualStrategyNumber
)
2128 return PARTCLAUSE_NOMATCH
;
2131 return PARTCLAUSE_NOMATCH
; /* no useful negator */
2135 * Only allow strict operators. This will guarantee nulls are
2136 * filtered. (This test is likely useless, since btree and hash
2137 * comparison operators are generally strict.)
2139 if (!op_strict(saop_op
))
2140 return PARTCLAUSE_UNSUPPORTED
;
2143 * OK, we have a match to the partition key and a suitable operator.
2144 * Examine the array argument to see if it's usable for pruning. This
2145 * is identical to the logic for a plain OpExpr.
2147 if (!IsA(rightop
, Const
))
2149 Bitmapset
*paramids
;
2152 * When pruning in the planner, we only support pruning using
2153 * comparisons to constants. We cannot prune on the basis of
2154 * anything that's not immutable. (Note that has_mutable_arg and
2155 * has_exec_param do not get set for this target value.)
2157 if (context
->target
== PARTTARGET_PLANNER
)
2158 return PARTCLAUSE_UNSUPPORTED
;
2161 * We can never prune using an expression that contains Vars.
2163 if (contain_var_clause((Node
*) rightop
))
2164 return PARTCLAUSE_UNSUPPORTED
;
2167 * And we must reject anything containing a volatile function.
2168 * Stable functions are OK though.
2170 if (contain_volatile_functions((Node
*) rightop
))
2171 return PARTCLAUSE_UNSUPPORTED
;
2174 * See if there are any exec Params. If so, we can only use this
2175 * expression during per-scan pruning.
2177 paramids
= pull_exec_paramids(rightop
);
2178 if (!bms_is_empty(paramids
))
2180 context
->has_exec_param
= true;
2181 if (context
->target
!= PARTTARGET_EXEC
)
2182 return PARTCLAUSE_UNSUPPORTED
;
2186 /* It's potentially usable, but mutable */
2187 context
->has_mutable_arg
= true;
2192 * Check whether the comparison operator itself is immutable. (We
2193 * assume anything that's in a btree or hash opclass is at least
2194 * stable, but we need to check for immutability.)
2196 if (op_volatile(saop_op
) != PROVOLATILE_IMMUTABLE
)
2198 context
->has_mutable_op
= true;
2201 * When pruning in the planner, we cannot prune with mutable
2204 if (context
->target
== PARTTARGET_PLANNER
)
2205 return PARTCLAUSE_UNSUPPORTED
;
2209 * Examine the contents of the array argument.
2212 if (IsA(rightop
, Const
))
2215 * For a constant array, convert the elements to a list of Const
2216 * nodes, one for each array element (excepting nulls).
2218 Const
*arr
= (Const
*) rightop
;
2228 /* If the array itself is null, the saop returns null */
2229 if (arr
->constisnull
)
2230 return PARTCLAUSE_MATCH_CONTRADICT
;
2232 arrval
= DatumGetArrayTypeP(arr
->constvalue
);
2233 get_typlenbyvalalign(ARR_ELEMTYPE(arrval
),
2234 &elemlen
, &elembyval
, &elemalign
);
2235 deconstruct_array(arrval
,
2236 ARR_ELEMTYPE(arrval
),
2237 elemlen
, elembyval
, elemalign
,
2238 &elem_values
, &elem_nulls
,
2240 for (i
= 0; i
< num_elems
; i
++)
2245 * A null array element must lead to a null comparison result,
2246 * since saop_op is known strict. We can ignore it in the
2247 * useOr case, but otherwise it implies self-contradiction.
2253 return PARTCLAUSE_MATCH_CONTRADICT
;
2256 elem_expr
= makeConst(ARR_ELEMTYPE(arrval
), -1,
2257 arr
->constcollid
, elemlen
,
2258 elem_values
[i
], false, elembyval
);
2259 elem_exprs
= lappend(elem_exprs
, elem_expr
);
2262 else if (IsA(rightop
, ArrayExpr
))
2264 ArrayExpr
*arrexpr
= castNode(ArrayExpr
, rightop
);
2267 * For a nested ArrayExpr, we don't know how to get the actual
2268 * scalar values out into a flat list, so we give up doing
2269 * anything with this ScalarArrayOpExpr.
2271 if (arrexpr
->multidims
)
2272 return PARTCLAUSE_UNSUPPORTED
;
2275 * Otherwise, we can just use the list of element values.
2277 elem_exprs
= arrexpr
->elements
;
2281 /* Give up on any other clause types. */
2282 return PARTCLAUSE_UNSUPPORTED
;
2286 * Now generate a list of clauses, one for each array element, of the
2287 * form leftop saop_op elem_expr
2290 foreach(lc1
, elem_exprs
)
2292 Expr
*rightop
= (Expr
*) lfirst(lc1
),
2295 elem_clause
= make_opclause(saop_op
, BOOLOID
, false,
2297 InvalidOid
, saop_coll
);
2298 elem_clauses
= lappend(elem_clauses
, elem_clause
);
2302 * If we have an ANY clause and multiple elements, now turn the list
2303 * of clauses into an OR expression.
2305 if (saop
->useOr
&& list_length(elem_clauses
) > 1)
2306 elem_clauses
= list_make1(makeBoolExpr(OR_EXPR
, elem_clauses
, -1));
2308 /* Finally, generate steps */
2309 *clause_steps
= gen_partprune_steps_internal(context
, elem_clauses
);
2310 if (context
->contradictory
)
2311 return PARTCLAUSE_MATCH_CONTRADICT
;
2312 else if (*clause_steps
== NIL
)
2313 return PARTCLAUSE_UNSUPPORTED
; /* step generation failed */
2314 return PARTCLAUSE_MATCH_STEPS
;
2316 else if (IsA(clause
, NullTest
))
2318 NullTest
*nulltest
= (NullTest
*) clause
;
2319 Expr
*arg
= nulltest
->arg
;
2321 if (IsA(arg
, RelabelType
))
2322 arg
= ((RelabelType
*) arg
)->arg
;
2324 /* Does arg match with this partition key column? */
2325 if (!equal(arg
, partkey
))
2326 return PARTCLAUSE_NOMATCH
;
2328 *clause_is_not_null
= (nulltest
->nulltesttype
== IS_NOT_NULL
);
2330 return PARTCLAUSE_MATCH_NULLNESS
;
2334 * If we get here then the return value depends on the result of the
2335 * match_boolean_partition_clause call above. If the call returned
2336 * PARTCLAUSE_UNSUPPORTED then we're either not dealing with a bool qual
2337 * or the bool qual is not suitable for pruning. Since the qual didn't
2338 * match up to any of the other qual types supported here, then trying to
2339 * match it against any other partition key is a waste of time, so just
2340 * return PARTCLAUSE_UNSUPPORTED. If the qual just couldn't be matched to
2341 * this partition key, then it may match another, so return
2342 * PARTCLAUSE_NOMATCH. The only other value that
2343 * match_boolean_partition_clause can return is PARTCLAUSE_MATCH_CLAUSE,
2344 * and since that value was already dealt with above, then we can just
2345 * return boolmatchstatus.
2347 return boolmatchstatus
;
2351 * get_steps_using_prefix
2352 * Generate list of PartitionPruneStepOp steps each consisting of given
2355 * To generate steps, step_lastexpr and step_lastcmpfn are appended to
2356 * expressions and cmpfns, respectively, extracted from the clauses in
2357 * 'prefix'. Actually, since 'prefix' may contain multiple clauses for the
2358 * same partition key column, we must generate steps for various combinations
2359 * of the clauses of different keys.
2361 * For list/range partitioning, callers must ensure that step_nullkeys is
2362 * NULL, and that prefix contains at least one clause for each of the
2363 * partition keys earlier than one specified in step_lastkeyno if it's
2364 * greater than zero. For hash partitioning, step_nullkeys is allowed to be
2365 * non-NULL, but they must ensure that prefix contains at least one clause
2366 * for each of the partition keys other than those specified in step_nullkeys
2367 * and step_lastkeyno.
2369 * For both cases, callers must also ensure that clauses in prefix are sorted
2370 * in ascending order of their partition key numbers.
2373 get_steps_using_prefix(GeneratePruningStepsContext
*context
,
2374 StrategyNumber step_opstrategy
,
2376 Expr
*step_lastexpr
,
2379 Bitmapset
*step_nullkeys
,
2382 Assert(step_nullkeys
== NULL
||
2383 context
->rel
->part_scheme
->strategy
== PARTITION_STRATEGY_HASH
);
2385 /* Quick exit if there are no values to prefix with. */
2388 PartitionPruneStep
*step
;
2390 step
= gen_prune_step_op(context
,
2393 list_make1(step_lastexpr
),
2394 list_make1_oid(step_lastcmpfn
),
2396 return list_make1(step
);
2399 /* Recurse to generate steps for various combinations. */
2400 return get_steps_using_prefix_recurse(context
,
2413 * get_steps_using_prefix_recurse
2414 * Recursively generate combinations of clauses for different partition
2415 * keys and start generating steps upon reaching clauses for the greatest
2416 * column that is less than the one for which we're currently generating
2417 * steps (that is, step_lastkeyno)
2419 * 'prefix' is the list of PartClauseInfos.
2420 * 'start' is where we should start iterating for the current invocation.
2421 * 'step_exprs' and 'step_cmpfns' each contains the expressions and cmpfns
2422 * we've generated so far from the clauses for the previous part keys.
2425 get_steps_using_prefix_recurse(GeneratePruningStepsContext
*context
,
2426 StrategyNumber step_opstrategy
,
2428 Expr
*step_lastexpr
,
2431 Bitmapset
*step_nullkeys
,
2441 /* Actually, recursion would be limited by PARTITION_MAX_KEYS. */
2442 check_stack_depth();
2444 /* Check if we need to recurse. */
2445 Assert(start
!= NULL
);
2446 cur_keyno
= ((PartClauseInfo
*) lfirst(start
))->keyno
;
2447 if (cur_keyno
< step_lastkeyno
- 1)
2450 ListCell
*next_start
;
2453 * For each clause with cur_keyno, add its expr and cmpfn to
2454 * step_exprs and step_cmpfns, respectively, and recurse after setting
2455 * next_start to the ListCell of the first clause for the next
2458 for_each_cell(lc
, prefix
, start
)
2462 if (pc
->keyno
> cur_keyno
)
2467 for_each_cell(lc
, prefix
, start
)
2474 if (pc
->keyno
== cur_keyno
)
2476 /* Leave the original step_exprs unmodified. */
2477 step_exprs1
= list_copy(step_exprs
);
2478 step_exprs1
= lappend(step_exprs1
, pc
->expr
);
2480 /* Leave the original step_cmpfns unmodified. */
2481 step_cmpfns1
= list_copy(step_cmpfns
);
2482 step_cmpfns1
= lappend_oid(step_cmpfns1
, pc
->cmpfn
);
2486 Assert(pc
->keyno
> cur_keyno
);
2490 moresteps
= get_steps_using_prefix_recurse(context
,
2501 result
= list_concat(result
, moresteps
);
2503 list_free(step_exprs1
);
2504 list_free(step_cmpfns1
);
2510 * End the current recursion cycle and start generating steps, one for
2511 * each clause with cur_keyno, which is all clauses from here onward
2512 * till the end of the list. Note that for hash partitioning,
2513 * step_nullkeys is allowed to be non-empty, in which case step_exprs
2514 * would only contain expressions for the earlier partition keys that
2515 * are not specified in step_nullkeys.
2517 Assert(list_length(step_exprs
) == cur_keyno
||
2518 !bms_is_empty(step_nullkeys
));
2521 * Note also that for hash partitioning, each partition key should
2522 * have either equality clauses or an IS NULL clause, so if a
2523 * partition key doesn't have an expression, it would be specified in
2526 Assert(context
->rel
->part_scheme
->strategy
2527 != PARTITION_STRATEGY_HASH
||
2528 list_length(step_exprs
) + 2 + bms_num_members(step_nullkeys
) ==
2529 context
->rel
->part_scheme
->partnatts
);
2530 for_each_cell(lc
, prefix
, start
)
2532 PartClauseInfo
*pc
= lfirst(lc
);
2533 PartitionPruneStep
*step
;
2537 Assert(pc
->keyno
== cur_keyno
);
2539 /* Leave the original step_exprs unmodified. */
2540 step_exprs1
= list_copy(step_exprs
);
2541 step_exprs1
= lappend(step_exprs1
, pc
->expr
);
2542 step_exprs1
= lappend(step_exprs1
, step_lastexpr
);
2544 /* Leave the original step_cmpfns unmodified. */
2545 step_cmpfns1
= list_copy(step_cmpfns
);
2546 step_cmpfns1
= lappend_oid(step_cmpfns1
, pc
->cmpfn
);
2547 step_cmpfns1
= lappend_oid(step_cmpfns1
, step_lastcmpfn
);
2549 step
= gen_prune_step_op(context
,
2550 step_opstrategy
, step_op_is_ne
,
2551 step_exprs1
, step_cmpfns1
,
2553 result
= lappend(result
, step
);
2561 * get_matching_hash_bounds
2562 * Determine offset of the hash bound matching the specified values,
2563 * considering that all the non-null values come from clauses containing
2564 * a compatible hash equality operator and any keys that are null come
2565 * from an IS NULL clause.
2567 * Generally this function will return a single matching bound offset,
2568 * although if a partition has not been setup for a given modulus then we may
2569 * return no matches. If the number of clauses found don't cover the entire
2570 * partition key, then we'll need to return all offsets.
2572 * 'opstrategy' if non-zero must be HTEqualStrategyNumber.
2574 * 'values' contains Datums indexed by the partition key to use for pruning.
2576 * 'nvalues', the number of Datums in the 'values' array.
2578 * 'partsupfunc' contains partition hashing functions that can produce correct
2579 * hash for the type of the values contained in 'values'.
2581 * 'nullkeys' is the set of partition keys that are null.
2583 static PruneStepResult
*
2584 get_matching_hash_bounds(PartitionPruneContext
*context
,
2585 StrategyNumber opstrategy
, Datum
*values
, int nvalues
,
2586 FmgrInfo
*partsupfunc
, Bitmapset
*nullkeys
)
2588 PruneStepResult
*result
= (PruneStepResult
*) palloc0(sizeof(PruneStepResult
));
2589 PartitionBoundInfo boundinfo
= context
->boundinfo
;
2590 int *partindices
= boundinfo
->indexes
;
2591 int partnatts
= context
->partnatts
;
2592 bool isnull
[PARTITION_MAX_KEYS
];
2595 int greatest_modulus
;
2596 Oid
*partcollation
= context
->partcollation
;
2598 Assert(context
->strategy
== PARTITION_STRATEGY_HASH
);
2601 * For hash partitioning we can only perform pruning based on equality
2602 * clauses to the partition key or IS NULL clauses. We also can only
2603 * prune if we got values for all keys.
2605 if (nvalues
+ bms_num_members(nullkeys
) == partnatts
)
2608 * If there are any values, they must have come from clauses
2609 * containing an equality operator compatible with hash partitioning.
2611 Assert(opstrategy
== HTEqualStrategyNumber
|| nvalues
== 0);
2613 for (i
= 0; i
< partnatts
; i
++)
2614 isnull
[i
] = bms_is_member(i
, nullkeys
);
2616 rowHash
= compute_partition_hash_value(partnatts
, partsupfunc
, partcollation
,
2619 greatest_modulus
= boundinfo
->nindexes
;
2620 if (partindices
[rowHash
% greatest_modulus
] >= 0)
2621 result
->bound_offsets
=
2622 bms_make_singleton(rowHash
% greatest_modulus
);
2626 /* Report all valid offsets into the boundinfo->indexes array. */
2627 result
->bound_offsets
= bms_add_range(NULL
, 0,
2628 boundinfo
->nindexes
- 1);
2632 * There is neither a special hash null partition or the default hash
2635 result
->scan_null
= result
->scan_default
= false;
2641 * get_matching_list_bounds
2642 * Determine the offsets of list bounds matching the specified value,
2643 * according to the semantics of the given operator strategy
2645 * scan_default will be set in the returned struct, if the default partition
2646 * needs to be scanned, provided one exists at all. scan_null will be set if
2647 * the special null-accepting partition needs to be scanned.
2649 * 'opstrategy' if non-zero must be a btree strategy number.
2651 * 'value' contains the value to use for pruning.
2653 * 'nvalues', if non-zero, should be exactly 1, because of list partitioning.
2655 * 'partsupfunc' contains the list partitioning comparison function to be used
2656 * to perform partition_list_bsearch
2658 * 'nullkeys' is the set of partition keys that are null.
2660 static PruneStepResult
*
2661 get_matching_list_bounds(PartitionPruneContext
*context
,
2662 StrategyNumber opstrategy
, Datum value
, int nvalues
,
2663 FmgrInfo
*partsupfunc
, Bitmapset
*nullkeys
)
2665 PruneStepResult
*result
= (PruneStepResult
*) palloc0(sizeof(PruneStepResult
));
2666 PartitionBoundInfo boundinfo
= context
->boundinfo
;
2671 bool inclusive
= false;
2672 Oid
*partcollation
= context
->partcollation
;
2674 Assert(context
->strategy
== PARTITION_STRATEGY_LIST
);
2675 Assert(context
->partnatts
== 1);
2677 result
->scan_null
= result
->scan_default
= false;
2679 if (!bms_is_empty(nullkeys
))
2682 * Nulls may exist in only one partition - the partition whose
2683 * accepted set of values includes null or the default partition if
2684 * the former doesn't exist.
2686 if (partition_bound_accepts_nulls(boundinfo
))
2687 result
->scan_null
= true;
2689 result
->scan_default
= partition_bound_has_default(boundinfo
);
2694 * If there are no datums to compare keys with, but there are partitions,
2695 * just return the default partition if one exists.
2697 if (boundinfo
->ndatums
== 0)
2699 result
->scan_default
= partition_bound_has_default(boundinfo
);
2704 maxoff
= boundinfo
->ndatums
- 1;
2707 * If there are no values to compare with the datums in boundinfo, it
2708 * means the caller asked for partitions for all non-null datums. Add
2709 * indexes of *all* partitions, including the default if any.
2713 Assert(boundinfo
->ndatums
> 0);
2714 result
->bound_offsets
= bms_add_range(NULL
, 0,
2715 boundinfo
->ndatums
- 1);
2716 result
->scan_default
= partition_bound_has_default(boundinfo
);
2720 /* Special case handling of values coming from a <> operator clause. */
2721 if (opstrategy
== InvalidStrategy
)
2724 * First match to all bounds. We'll remove any matching datums below.
2726 Assert(boundinfo
->ndatums
> 0);
2727 result
->bound_offsets
= bms_add_range(NULL
, 0,
2728 boundinfo
->ndatums
- 1);
2730 off
= partition_list_bsearch(partsupfunc
, partcollation
, boundinfo
,
2732 if (off
>= 0 && is_equal
)
2735 /* We have a match. Remove from the result. */
2736 Assert(boundinfo
->indexes
[off
] >= 0);
2737 result
->bound_offsets
= bms_del_member(result
->bound_offsets
,
2741 /* Always include the default partition if any. */
2742 result
->scan_default
= partition_bound_has_default(boundinfo
);
2748 * With range queries, always include the default list partition, because
2749 * list partitions divide the key space in a discontinuous manner, not all
2750 * values in the given range will have a partition assigned. This may not
2751 * technically be true for some data types (e.g. integer types), however,
2752 * we currently lack any sort of infrastructure to provide us with proofs
2753 * that would allow us to do anything smarter here.
2755 if (opstrategy
!= BTEqualStrategyNumber
)
2756 result
->scan_default
= partition_bound_has_default(boundinfo
);
2760 case BTEqualStrategyNumber
:
2761 off
= partition_list_bsearch(partsupfunc
,
2765 if (off
>= 0 && is_equal
)
2767 Assert(boundinfo
->indexes
[off
] >= 0);
2768 result
->bound_offsets
= bms_make_singleton(off
);
2771 result
->scan_default
= partition_bound_has_default(boundinfo
);
2774 case BTGreaterEqualStrategyNumber
:
2777 case BTGreaterStrategyNumber
:
2778 off
= partition_list_bsearch(partsupfunc
,
2784 /* We don't want the matched datum to be in the result. */
2785 if (!is_equal
|| !inclusive
)
2791 * This case means all partition bounds are greater, which in
2792 * turn means that all partitions satisfy this key.
2798 * off is greater than the numbers of datums we have partitions
2799 * for. The only possible partition that could contain a match is
2800 * the default partition, but we must've set context->scan_default
2801 * above anyway if one exists.
2803 if (off
> boundinfo
->ndatums
- 1)
2809 case BTLessEqualStrategyNumber
:
2812 case BTLessStrategyNumber
:
2813 off
= partition_list_bsearch(partsupfunc
,
2817 if (off
>= 0 && is_equal
&& !inclusive
)
2821 * off is smaller than the datums of all non-default partitions.
2822 * The only possible partition that could contain a match is the
2823 * default partition, but we must've set context->scan_default
2824 * above anyway if one exists.
2833 elog(ERROR
, "invalid strategy number %d", opstrategy
);
2837 Assert(minoff
>= 0 && maxoff
>= 0);
2838 result
->bound_offsets
= bms_add_range(NULL
, minoff
, maxoff
);
2844 * get_matching_range_bounds
2845 * Determine the offsets of range bounds matching the specified values,
2846 * according to the semantics of the given operator strategy
2848 * Each datum whose offset is in result is to be treated as the upper bound of
2849 * the partition that will contain the desired values.
2851 * scan_default is set in the returned struct if a default partition exists
2852 * and we're absolutely certain that it needs to be scanned. We do *not* set
2853 * it just because values match portions of the key space uncovered by
2854 * partitions other than default (space which we normally assume to belong to
2855 * the default partition): the final set of bounds obtained after combining
2856 * multiple pruning steps might exclude it, so we infer its inclusion
2859 * 'opstrategy' if non-zero must be a btree strategy number.
2861 * 'values' contains Datums indexed by the partition key to use for pruning.
2863 * 'nvalues', number of Datums in 'values' array. Must be <= context->partnatts.
2865 * 'partsupfunc' contains the range partitioning comparison functions to be
2866 * used to perform partition_range_datum_bsearch or partition_rbound_datum_cmp
2869 * 'nullkeys' is the set of partition keys that are null.
2871 static PruneStepResult
*
2872 get_matching_range_bounds(PartitionPruneContext
*context
,
2873 StrategyNumber opstrategy
, Datum
*values
, int nvalues
,
2874 FmgrInfo
*partsupfunc
, Bitmapset
*nullkeys
)
2876 PruneStepResult
*result
= (PruneStepResult
*) palloc0(sizeof(PruneStepResult
));
2877 PartitionBoundInfo boundinfo
= context
->boundinfo
;
2878 Oid
*partcollation
= context
->partcollation
;
2879 int partnatts
= context
->partnatts
;
2880 int *partindices
= boundinfo
->indexes
;
2885 bool inclusive
= false;
2887 Assert(context
->strategy
== PARTITION_STRATEGY_RANGE
);
2888 Assert(nvalues
<= partnatts
);
2890 result
->scan_null
= result
->scan_default
= false;
2893 * If there are no datums to compare keys with, or if we got an IS NULL
2894 * clause just return the default partition, if it exists.
2896 if (boundinfo
->ndatums
== 0 || !bms_is_empty(nullkeys
))
2898 result
->scan_default
= partition_bound_has_default(boundinfo
);
2903 maxoff
= boundinfo
->ndatums
;
2906 * If there are no values to compare with the datums in boundinfo, it
2907 * means the caller asked for partitions for all non-null datums. Add
2908 * indexes of *all* partitions, including the default partition if one
2913 /* ignore key space not covered by any partitions */
2914 if (partindices
[minoff
] < 0)
2916 if (partindices
[maxoff
] < 0)
2919 result
->scan_default
= partition_bound_has_default(boundinfo
);
2920 Assert(partindices
[minoff
] >= 0 &&
2921 partindices
[maxoff
] >= 0);
2922 result
->bound_offsets
= bms_add_range(NULL
, minoff
, maxoff
);
2928 * If the query does not constrain all key columns, we'll need to scan the
2929 * default partition, if any.
2931 if (nvalues
< partnatts
)
2932 result
->scan_default
= partition_bound_has_default(boundinfo
);
2936 case BTEqualStrategyNumber
:
2937 /* Look for the smallest bound that is = lookup value. */
2938 off
= partition_range_datum_bsearch(partsupfunc
,
2944 if (off
>= 0 && is_equal
)
2946 if (nvalues
== partnatts
)
2948 /* There can only be zero or one matching partition. */
2949 result
->bound_offsets
= bms_make_singleton(off
+ 1);
2954 int saved_off
= off
;
2957 * Since the lookup value contains only a prefix of keys,
2958 * we must find other bounds that may also match the
2959 * prefix. partition_range_datum_bsearch() returns the
2960 * offset of one of them, find others by checking adjacent
2965 * First find greatest bound that's smaller than the
2973 partition_rbound_datum_cmp(partsupfunc
,
2975 boundinfo
->datums
[off
- 1],
2976 boundinfo
->kind
[off
- 1],
2984 partition_rbound_datum_cmp(partsupfunc
,
2986 boundinfo
->datums
[off
],
2987 boundinfo
->kind
[off
],
2991 * We can treat 'off' as the offset of the smallest bound
2992 * to be included in the result, if we know it is the
2993 * upper bound of the partition in which the lookup value
2994 * could possibly exist. One case it couldn't is if the
2995 * bound, or precisely the matched portion of its prefix,
2998 if (boundinfo
->kind
[off
][nvalues
] ==
2999 PARTITION_RANGE_DATUM_MINVALUE
)
3005 * Now find smallest bound that's greater than the lookup
3009 while (off
< boundinfo
->ndatums
- 1)
3013 cmpval
= partition_rbound_datum_cmp(partsupfunc
,
3015 boundinfo
->datums
[off
+ 1],
3016 boundinfo
->kind
[off
+ 1],
3024 partition_rbound_datum_cmp(partsupfunc
,
3026 boundinfo
->datums
[off
],
3027 boundinfo
->kind
[off
],
3031 * off + 1, then would be the offset of the greatest bound
3032 * to be included in the result.
3037 Assert(minoff
>= 0 && maxoff
>= 0);
3038 result
->bound_offsets
= bms_add_range(NULL
, minoff
, maxoff
);
3043 * The lookup value falls in the range between some bounds in
3044 * boundinfo. 'off' would be the offset of the greatest bound
3045 * that is <= lookup value, so add off + 1 to the result
3046 * instead as the offset of the upper bound of the only
3047 * partition that may contain the lookup value. If 'off' is
3048 * -1 indicating that all bounds are greater, then we simply
3049 * end up adding the first bound's offset, that is, 0.
3051 result
->bound_offsets
= bms_make_singleton(off
+ 1);
3056 case BTGreaterEqualStrategyNumber
:
3059 case BTGreaterStrategyNumber
:
3062 * Look for the smallest bound that is > or >= lookup value and
3063 * set minoff to its offset.
3065 off
= partition_range_datum_bsearch(partsupfunc
,
3073 * All bounds are greater than the lookup value, so include
3074 * all of them in the result.
3080 if (is_equal
&& nvalues
< partnatts
)
3083 * Since the lookup value contains only a prefix of keys,
3084 * we must find other bounds that may also match the
3085 * prefix. partition_range_datum_bsearch() returns the
3086 * offset of one of them, find others by checking adjacent
3089 * Based on whether the lookup values are inclusive or
3090 * not, we must either include the indexes of all such
3091 * bounds in the result (that is, set minoff to the index
3092 * of smallest such bound) or find the smallest one that's
3093 * greater than the lookup values and set minoff to that.
3095 while (off
>= 1 && off
< boundinfo
->ndatums
- 1)
3100 nextoff
= inclusive
? off
- 1 : off
+ 1;
3102 partition_rbound_datum_cmp(partsupfunc
,
3104 boundinfo
->datums
[nextoff
],
3105 boundinfo
->kind
[nextoff
],
3114 partition_rbound_datum_cmp(partsupfunc
,
3116 boundinfo
->datums
[off
],
3117 boundinfo
->kind
[off
],
3120 minoff
= inclusive
? off
: off
+ 1;
3126 * lookup value falls in the range between some bounds in
3127 * boundinfo. off would be the offset of the greatest
3128 * bound that is <= lookup value, so add off + 1 to the
3129 * result instead as the offset of the upper bound of the
3130 * smallest partition that may contain the lookup value.
3137 case BTLessEqualStrategyNumber
:
3140 case BTLessStrategyNumber
:
3143 * Look for the greatest bound that is < or <= lookup value and
3144 * set maxoff to its offset.
3146 off
= partition_range_datum_bsearch(partsupfunc
,
3154 * See the comment above.
3156 if (is_equal
&& nvalues
< partnatts
)
3158 while (off
>= 1 && off
< boundinfo
->ndatums
- 1)
3163 nextoff
= inclusive
? off
+ 1 : off
- 1;
3164 cmpval
= partition_rbound_datum_cmp(partsupfunc
,
3166 boundinfo
->datums
[nextoff
],
3167 boundinfo
->kind
[nextoff
],
3176 partition_rbound_datum_cmp(partsupfunc
,
3178 boundinfo
->datums
[off
],
3179 boundinfo
->kind
[off
],
3182 maxoff
= inclusive
? off
+ 1 : off
;
3186 * The lookup value falls in the range between some bounds in
3187 * boundinfo. 'off' would be the offset of the greatest bound
3188 * that is <= lookup value, so add off + 1 to the result
3189 * instead as the offset of the upper bound of the greatest
3190 * partition that may contain lookup value. If the lookup
3191 * value had exactly matched the bound, but it isn't
3192 * inclusive, no need add the adjacent partition.
3194 else if (!is_equal
|| inclusive
)
3202 * 'off' is -1 indicating that all bounds are greater, so just
3203 * set the first bound's offset as maxoff.
3210 elog(ERROR
, "invalid strategy number %d", opstrategy
);
3214 Assert(minoff
>= 0 && minoff
<= boundinfo
->ndatums
);
3215 Assert(maxoff
>= 0 && maxoff
<= boundinfo
->ndatums
);
3218 * If the smallest partition to return has MINVALUE (negative infinity) as
3219 * its lower bound, increment it to point to the next finite bound
3220 * (supposedly its upper bound), so that we don't inadvertently end up
3221 * scanning the default partition.
3223 if (minoff
< boundinfo
->ndatums
&& partindices
[minoff
] < 0)
3225 int lastkey
= nvalues
- 1;
3227 if (boundinfo
->kind
[minoff
][lastkey
] ==
3228 PARTITION_RANGE_DATUM_MINVALUE
)
3231 Assert(boundinfo
->indexes
[minoff
] >= 0);
3236 * If the previous greatest partition has MAXVALUE (positive infinity) as
3237 * its upper bound (something only possible to do with multi-column range
3238 * partitioning), we scan switch to it as the greatest partition to
3239 * return. Again, so that we don't inadvertently end up scanning the
3240 * default partition.
3242 if (maxoff
>= 1 && partindices
[maxoff
] < 0)
3244 int lastkey
= nvalues
- 1;
3246 if (boundinfo
->kind
[maxoff
- 1][lastkey
] ==
3247 PARTITION_RANGE_DATUM_MAXVALUE
)
3250 Assert(boundinfo
->indexes
[maxoff
] >= 0);
3254 Assert(minoff
>= 0 && maxoff
>= 0);
3255 if (minoff
<= maxoff
)
3256 result
->bound_offsets
= bms_add_range(NULL
, minoff
, maxoff
);
3262 * pull_exec_paramids
3263 * Returns a Bitmapset containing the paramids of all Params with
3264 * paramkind = PARAM_EXEC in 'expr'.
3267 pull_exec_paramids(Expr
*expr
)
3269 Bitmapset
*result
= NULL
;
3271 (void) pull_exec_paramids_walker((Node
*) expr
, &result
);
3277 pull_exec_paramids_walker(Node
*node
, Bitmapset
**context
)
3281 if (IsA(node
, Param
))
3283 Param
*param
= (Param
*) node
;
3285 if (param
->paramkind
== PARAM_EXEC
)
3286 *context
= bms_add_member(*context
, param
->paramid
);
3289 return expression_tree_walker(node
, pull_exec_paramids_walker
,
3294 * get_partkey_exec_paramids
3295 * Loop through given pruning steps and find out which exec Params
3298 * Returns a Bitmapset of Param IDs.
3301 get_partkey_exec_paramids(List
*steps
)
3303 Bitmapset
*execparamids
= NULL
;
3308 PartitionPruneStepOp
*step
= (PartitionPruneStepOp
*) lfirst(lc
);
3311 if (!IsA(step
, PartitionPruneStepOp
))
3314 foreach(lc2
, step
->exprs
)
3316 Expr
*expr
= lfirst(lc2
);
3318 /* We can be quick for plain Consts */
3319 if (!IsA(expr
, Const
))
3320 execparamids
= bms_join(execparamids
,
3321 pull_exec_paramids(expr
));
3325 return execparamids
;
3329 * perform_pruning_base_step
3330 * Determines the indexes of datums that satisfy conditions specified in
3333 * Result also contains whether special null-accepting and/or default
3334 * partition need to be scanned.
3336 static PruneStepResult
*
3337 perform_pruning_base_step(PartitionPruneContext
*context
,
3338 PartitionPruneStepOp
*opstep
)
3344 Datum values
[PARTITION_MAX_KEYS
];
3345 FmgrInfo
*partsupfunc
;
3349 * There better be the same number of expressions and compare functions.
3351 Assert(list_length(opstep
->exprs
) == list_length(opstep
->cmpfns
));
3354 lc1
= list_head(opstep
->exprs
);
3355 lc2
= list_head(opstep
->cmpfns
);
3358 * Generate the partition lookup key that will be used by one of the
3359 * get_matching_*_bounds functions called below.
3361 for (keyno
= 0; keyno
< context
->partnatts
; keyno
++)
3364 * For hash partitioning, it is possible that values of some keys are
3365 * not provided in operator clauses, but instead the planner found
3366 * that they appeared in a IS NULL clause.
3368 if (bms_is_member(keyno
, opstep
->nullkeys
))
3372 * For range partitioning, we must only perform pruning with values
3373 * for either all partition keys or a prefix thereof.
3375 if (keyno
> nvalues
&& context
->strategy
== PARTITION_STRATEGY_RANGE
)
3386 stateidx
= PruneCxtStateIdx(context
->partnatts
,
3387 opstep
->step
.step_id
, keyno
);
3388 partkey_datum_from_expr(context
, expr
, stateidx
,
3392 * Since we only allow strict operators in pruning steps, any
3393 * null-valued comparison value must cause the comparison to fail,
3394 * so that no partitions could match.
3398 PruneStepResult
*result
;
3400 result
= (PruneStepResult
*) palloc(sizeof(PruneStepResult
));
3401 result
->bound_offsets
= NULL
;
3402 result
->scan_default
= false;
3403 result
->scan_null
= false;
3408 /* Set up the stepcmpfuncs entry, unless we already did */
3409 cmpfn
= lfirst_oid(lc2
);
3410 Assert(OidIsValid(cmpfn
));
3411 if (cmpfn
!= context
->stepcmpfuncs
[stateidx
].fn_oid
)
3414 * If the needed support function is the same one cached in
3415 * the relation's partition key, copy the cached FmgrInfo.
3416 * Otherwise (i.e., when we have a cross-type comparison), an
3417 * actual lookup is required.
3419 if (cmpfn
== context
->partsupfunc
[keyno
].fn_oid
)
3420 fmgr_info_copy(&context
->stepcmpfuncs
[stateidx
],
3421 &context
->partsupfunc
[keyno
],
3422 context
->ppccontext
);
3424 fmgr_info_cxt(cmpfn
, &context
->stepcmpfuncs
[stateidx
],
3425 context
->ppccontext
);
3428 values
[keyno
] = datum
;
3431 lc1
= lnext(opstep
->exprs
, lc1
);
3432 lc2
= lnext(opstep
->cmpfns
, lc2
);
3437 * Point partsupfunc to the entry for the 0th key of this step; the
3438 * additional support functions, if any, follow consecutively.
3440 stateidx
= PruneCxtStateIdx(context
->partnatts
, opstep
->step
.step_id
, 0);
3441 partsupfunc
= &context
->stepcmpfuncs
[stateidx
];
3443 switch (context
->strategy
)
3445 case PARTITION_STRATEGY_HASH
:
3446 return get_matching_hash_bounds(context
,
3452 case PARTITION_STRATEGY_LIST
:
3453 return get_matching_list_bounds(context
,
3459 case PARTITION_STRATEGY_RANGE
:
3460 return get_matching_range_bounds(context
,
3467 elog(ERROR
, "unexpected partition strategy: %d",
3468 (int) context
->strategy
);
3476 * perform_pruning_combine_step
3477 * Determines the indexes of datums obtained by combining those given
3478 * by the steps identified by cstep->source_stepids using the specified
3479 * combination method
3481 * Since cstep may refer to the result of earlier steps, we also receive
3482 * step_results here.
3484 static PruneStepResult
*
3485 perform_pruning_combine_step(PartitionPruneContext
*context
,
3486 PartitionPruneStepCombine
*cstep
,
3487 PruneStepResult
**step_results
)
3489 PruneStepResult
*result
= (PruneStepResult
*) palloc0(sizeof(PruneStepResult
));
3494 * A combine step without any source steps is an indication to not perform
3495 * any partition pruning. Return all datum indexes in that case.
3497 if (cstep
->source_stepids
== NIL
)
3499 PartitionBoundInfo boundinfo
= context
->boundinfo
;
3501 result
->bound_offsets
=
3502 bms_add_range(NULL
, 0, boundinfo
->nindexes
- 1);
3503 result
->scan_default
= partition_bound_has_default(boundinfo
);
3504 result
->scan_null
= partition_bound_accepts_nulls(boundinfo
);
3508 switch (cstep
->combineOp
)
3510 case PARTPRUNE_COMBINE_UNION
:
3511 foreach(lc1
, cstep
->source_stepids
)
3513 int step_id
= lfirst_int(lc1
);
3514 PruneStepResult
*step_result
;
3517 * step_results[step_id] must contain a valid result, which is
3518 * confirmed by the fact that cstep's step_id is greater than
3519 * step_id and the fact that results of the individual steps
3520 * are evaluated in sequence of their step_ids.
3522 if (step_id
>= cstep
->step
.step_id
)
3523 elog(ERROR
, "invalid pruning combine step argument");
3524 step_result
= step_results
[step_id
];
3525 Assert(step_result
!= NULL
);
3527 /* Record any additional datum indexes from this step */
3528 result
->bound_offsets
= bms_add_members(result
->bound_offsets
,
3529 step_result
->bound_offsets
);
3531 /* Update whether to scan null and default partitions. */
3532 if (!result
->scan_null
)
3533 result
->scan_null
= step_result
->scan_null
;
3534 if (!result
->scan_default
)
3535 result
->scan_default
= step_result
->scan_default
;
3539 case PARTPRUNE_COMBINE_INTERSECT
:
3541 foreach(lc1
, cstep
->source_stepids
)
3543 int step_id
= lfirst_int(lc1
);
3544 PruneStepResult
*step_result
;
3546 if (step_id
>= cstep
->step
.step_id
)
3547 elog(ERROR
, "invalid pruning combine step argument");
3548 step_result
= step_results
[step_id
];
3549 Assert(step_result
!= NULL
);
3553 /* Copy step's result the first time. */
3554 result
->bound_offsets
=
3555 bms_copy(step_result
->bound_offsets
);
3556 result
->scan_null
= step_result
->scan_null
;
3557 result
->scan_default
= step_result
->scan_default
;
3562 /* Record datum indexes common to both steps */
3563 result
->bound_offsets
=
3564 bms_int_members(result
->bound_offsets
,
3565 step_result
->bound_offsets
);
3567 /* Update whether to scan null and default partitions. */
3568 if (result
->scan_null
)
3569 result
->scan_null
= step_result
->scan_null
;
3570 if (result
->scan_default
)
3571 result
->scan_default
= step_result
->scan_default
;
3581 * match_boolean_partition_clause
3583 * If we're able to match the clause to the partition key as specially-shaped
3584 * boolean clause, set *outconst to a Const containing a true or false value
3585 * and return PARTCLAUSE_MATCH_CLAUSE. Returns PARTCLAUSE_UNSUPPORTED if the
3586 * clause is not a boolean clause or if the boolean clause is unsuitable for
3587 * partition pruning. Returns PARTCLAUSE_NOMATCH if it's a bool quals but
3588 * just does not match this partition key. *outconst is set to NULL in the
3591 static PartClauseMatchStatus
3592 match_boolean_partition_clause(Oid partopfamily
, Expr
*clause
, Expr
*partkey
,
3600 * Partitioning currently can only use built-in AMs, so checking for
3601 * built-in boolean opfamilies is good enough.
3603 if (!IsBuiltinBooleanOpfamily(partopfamily
))
3604 return PARTCLAUSE_UNSUPPORTED
;
3606 if (IsA(clause
, BooleanTest
))
3608 BooleanTest
*btest
= (BooleanTest
*) clause
;
3610 /* Only IS [NOT] TRUE/FALSE are any good to us */
3611 if (btest
->booltesttype
== IS_UNKNOWN
||
3612 btest
->booltesttype
== IS_NOT_UNKNOWN
)
3613 return PARTCLAUSE_UNSUPPORTED
;
3615 leftop
= btest
->arg
;
3616 if (IsA(leftop
, RelabelType
))
3617 leftop
= ((RelabelType
*) leftop
)->arg
;
3619 if (equal(leftop
, partkey
))
3620 *outconst
= (btest
->booltesttype
== IS_TRUE
||
3621 btest
->booltesttype
== IS_NOT_FALSE
)
3622 ? (Expr
*) makeBoolConst(true, false)
3623 : (Expr
*) makeBoolConst(false, false);
3626 return PARTCLAUSE_MATCH_CLAUSE
;
3630 bool is_not_clause
= is_notclause(clause
);
3632 leftop
= is_not_clause
? get_notclausearg(clause
) : clause
;
3634 if (IsA(leftop
, RelabelType
))
3635 leftop
= ((RelabelType
*) leftop
)->arg
;
3637 /* Compare to the partition key, and make up a clause ... */
3638 if (equal(leftop
, partkey
))
3639 *outconst
= is_not_clause
?
3640 (Expr
*) makeBoolConst(false, false) :
3641 (Expr
*) makeBoolConst(true, false);
3642 else if (equal(negate_clause((Node
*) leftop
), partkey
))
3643 *outconst
= (Expr
*) makeBoolConst(false, false);
3646 return PARTCLAUSE_MATCH_CLAUSE
;
3649 return PARTCLAUSE_NOMATCH
;
3653 * partkey_datum_from_expr
3654 * Evaluate expression for potential partition pruning
3656 * Evaluate 'expr'; set *value and *isnull to the resulting Datum and nullflag.
3658 * If expr isn't a Const, its ExprState is in stateidx of the context
3661 * Note that the evaluated result may be in the per-tuple memory context of
3662 * context->exprcontext, and we may have leaked other memory there too.
3663 * This memory must be recovered by resetting that ExprContext after
3664 * we're done with the pruning operation (see execPartition.c).
3667 partkey_datum_from_expr(PartitionPruneContext
*context
,
3668 Expr
*expr
, int stateidx
,
3669 Datum
*value
, bool *isnull
)
3671 if (IsA(expr
, Const
))
3673 /* We can always determine the value of a constant */
3674 Const
*con
= (Const
*) expr
;
3676 *value
= con
->constvalue
;
3677 *isnull
= con
->constisnull
;
3681 ExprState
*exprstate
;
3685 * We should never see a non-Const in a step unless the caller has
3686 * passed a valid ExprContext.
3688 * When context->planstate is valid, context->exprcontext is same as
3689 * context->planstate->ps_ExprContext.
3691 Assert(context
->planstate
!= NULL
|| context
->exprcontext
!= NULL
);
3692 Assert(context
->planstate
== NULL
||
3693 (context
->exprcontext
== context
->planstate
->ps_ExprContext
));
3695 exprstate
= context
->exprstates
[stateidx
];
3696 ectx
= context
->exprcontext
;
3697 *value
= ExecEvalExprSwitchContext(exprstate
, ectx
, isnull
);