Update obsolete nbtree array preprocessing comments.
[pgsql.git] / src / backend / access / hash / hashovfl.c
blobc280ae885e37a82c0365b5e8450ff7a7d0cb4224
1 /*-------------------------------------------------------------------------
3 * hashovfl.c
4 * Overflow page management code for the Postgres hash access method
6 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
10 * IDENTIFICATION
11 * src/backend/access/hash/hashovfl.c
13 * NOTES
14 * Overflow pages look like ordinary relation pages.
16 *-------------------------------------------------------------------------
18 #include "postgres.h"
20 #include "access/hash.h"
21 #include "access/hash_xlog.h"
22 #include "access/xloginsert.h"
23 #include "miscadmin.h"
24 #include "utils/rel.h"
27 static uint32 _hash_firstfreebit(uint32 map);
31 * Convert overflow page bit number (its index in the free-page bitmaps)
32 * to block number within the index.
34 static BlockNumber
35 bitno_to_blkno(HashMetaPage metap, uint32 ovflbitnum)
37 uint32 splitnum = metap->hashm_ovflpoint;
38 uint32 i;
40 /* Convert zero-based bitnumber to 1-based page number */
41 ovflbitnum += 1;
43 /* Determine the split number for this page (must be >= 1) */
44 for (i = 1;
45 i < splitnum && ovflbitnum > metap->hashm_spares[i];
46 i++)
47 /* loop */ ;
50 * Convert to absolute page number by adding the number of bucket pages
51 * that exist before this split point.
53 return (BlockNumber) (_hash_get_totalbuckets(i) + ovflbitnum);
57 * _hash_ovflblkno_to_bitno
59 * Convert overflow page block number to bit number for free-page bitmap.
61 uint32
62 _hash_ovflblkno_to_bitno(HashMetaPage metap, BlockNumber ovflblkno)
64 uint32 splitnum = metap->hashm_ovflpoint;
65 uint32 i;
66 uint32 bitnum;
68 /* Determine the split number containing this page */
69 for (i = 1; i <= splitnum; i++)
71 if (ovflblkno <= (BlockNumber) _hash_get_totalbuckets(i))
72 break; /* oops */
73 bitnum = ovflblkno - _hash_get_totalbuckets(i);
76 * bitnum has to be greater than number of overflow page added in
77 * previous split point. The overflow page at this splitnum (i) if any
78 * should start from (_hash_get_totalbuckets(i) +
79 * metap->hashm_spares[i - 1] + 1).
81 if (bitnum > metap->hashm_spares[i - 1] &&
82 bitnum <= metap->hashm_spares[i])
83 return bitnum - 1; /* -1 to convert 1-based to 0-based */
86 ereport(ERROR,
87 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
88 errmsg("invalid overflow block number %u", ovflblkno)));
89 return 0; /* keep compiler quiet */
93 * _hash_addovflpage
95 * Add an overflow page to the bucket whose last page is pointed to by 'buf'.
97 * On entry, the caller must hold a pin but no lock on 'buf'. The pin is
98 * dropped before exiting (we assume the caller is not interested in 'buf'
99 * anymore) if not asked to retain. The pin will be retained only for the
100 * primary bucket. The returned overflow page will be pinned and
101 * write-locked; it is guaranteed to be empty.
103 * The caller must hold a pin, but no lock, on the metapage buffer.
104 * That buffer is returned in the same state.
106 * NB: since this could be executed concurrently by multiple processes,
107 * one should not assume that the returned overflow page will be the
108 * immediate successor of the originally passed 'buf'. Additional overflow
109 * pages might have been added to the bucket chain in between.
111 Buffer
112 _hash_addovflpage(Relation rel, Buffer metabuf, Buffer buf, bool retain_pin)
114 Buffer ovflbuf;
115 Page page;
116 Page ovflpage;
117 HashPageOpaque pageopaque;
118 HashPageOpaque ovflopaque;
119 HashMetaPage metap;
120 Buffer mapbuf = InvalidBuffer;
121 Buffer newmapbuf = InvalidBuffer;
122 BlockNumber blkno;
123 uint32 orig_firstfree;
124 uint32 splitnum;
125 uint32 *freep = NULL;
126 uint32 max_ovflpg;
127 uint32 bit;
128 uint32 bitmap_page_bit;
129 uint32 first_page;
130 uint32 last_bit;
131 uint32 last_page;
132 uint32 i,
134 bool page_found = false;
137 * Write-lock the tail page. Here, we need to maintain locking order such
138 * that, first acquire the lock on tail page of bucket, then on meta page
139 * to find and lock the bitmap page and if it is found, then lock on meta
140 * page is released, then finally acquire the lock on new overflow buffer.
141 * We need this locking order to avoid deadlock with backends that are
142 * doing inserts.
144 * Note: We could have avoided locking many buffers here if we made two
145 * WAL records for acquiring an overflow page (one to allocate an overflow
146 * page and another to add it to overflow bucket chain). However, doing
147 * so can leak an overflow page, if the system crashes after allocation.
148 * Needless to say, it is better to have a single record from a
149 * performance point of view as well.
151 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
153 /* probably redundant... */
154 _hash_checkpage(rel, buf, LH_BUCKET_PAGE | LH_OVERFLOW_PAGE);
156 /* loop to find current tail page, in case someone else inserted too */
157 for (;;)
159 BlockNumber nextblkno;
161 page = BufferGetPage(buf);
162 pageopaque = HashPageGetOpaque(page);
163 nextblkno = pageopaque->hasho_nextblkno;
165 if (!BlockNumberIsValid(nextblkno))
166 break;
168 /* we assume we do not need to write the unmodified page */
169 if (retain_pin)
171 /* pin will be retained only for the primary bucket page */
172 Assert((pageopaque->hasho_flag & LH_PAGE_TYPE) == LH_BUCKET_PAGE);
173 LockBuffer(buf, BUFFER_LOCK_UNLOCK);
175 else
176 _hash_relbuf(rel, buf);
178 retain_pin = false;
180 buf = _hash_getbuf(rel, nextblkno, HASH_WRITE, LH_OVERFLOW_PAGE);
183 /* Get exclusive lock on the meta page */
184 LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE);
186 _hash_checkpage(rel, metabuf, LH_META_PAGE);
187 metap = HashPageGetMeta(BufferGetPage(metabuf));
189 /* start search at hashm_firstfree */
190 orig_firstfree = metap->hashm_firstfree;
191 first_page = orig_firstfree >> BMPG_SHIFT(metap);
192 bit = orig_firstfree & BMPG_MASK(metap);
193 i = first_page;
194 j = bit / BITS_PER_MAP;
195 bit &= ~(BITS_PER_MAP - 1);
197 /* outer loop iterates once per bitmap page */
198 for (;;)
200 BlockNumber mapblkno;
201 Page mappage;
202 uint32 last_inpage;
204 /* want to end search with the last existing overflow page */
205 splitnum = metap->hashm_ovflpoint;
206 max_ovflpg = metap->hashm_spares[splitnum] - 1;
207 last_page = max_ovflpg >> BMPG_SHIFT(metap);
208 last_bit = max_ovflpg & BMPG_MASK(metap);
210 if (i > last_page)
211 break;
213 Assert(i < metap->hashm_nmaps);
214 mapblkno = metap->hashm_mapp[i];
216 if (i == last_page)
217 last_inpage = last_bit;
218 else
219 last_inpage = BMPGSZ_BIT(metap) - 1;
221 /* Release exclusive lock on metapage while reading bitmap page */
222 LockBuffer(metabuf, BUFFER_LOCK_UNLOCK);
224 mapbuf = _hash_getbuf(rel, mapblkno, HASH_WRITE, LH_BITMAP_PAGE);
225 mappage = BufferGetPage(mapbuf);
226 freep = HashPageGetBitmap(mappage);
228 for (; bit <= last_inpage; j++, bit += BITS_PER_MAP)
230 if (freep[j] != ALL_SET)
232 page_found = true;
234 /* Reacquire exclusive lock on the meta page */
235 LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE);
237 /* convert bit to bit number within page */
238 bit += _hash_firstfreebit(freep[j]);
239 bitmap_page_bit = bit;
241 /* convert bit to absolute bit number */
242 bit += (i << BMPG_SHIFT(metap));
243 /* Calculate address of the recycled overflow page */
244 blkno = bitno_to_blkno(metap, bit);
246 /* Fetch and init the recycled page */
247 ovflbuf = _hash_getinitbuf(rel, blkno);
249 goto found;
253 /* No free space here, try to advance to next map page */
254 _hash_relbuf(rel, mapbuf);
255 mapbuf = InvalidBuffer;
256 i++;
257 j = 0; /* scan from start of next map page */
258 bit = 0;
260 /* Reacquire exclusive lock on the meta page */
261 LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE);
265 * No free pages --- have to extend the relation to add an overflow page.
266 * First, check to see if we have to add a new bitmap page too.
268 if (last_bit == (uint32) (BMPGSZ_BIT(metap) - 1))
271 * We create the new bitmap page with all pages marked "in use".
272 * Actually two pages in the new bitmap's range will exist
273 * immediately: the bitmap page itself, and the following page which
274 * is the one we return to the caller. Both of these are correctly
275 * marked "in use". Subsequent pages do not exist yet, but it is
276 * convenient to pre-mark them as "in use" too.
278 bit = metap->hashm_spares[splitnum];
280 /* metapage already has a write lock */
281 if (metap->hashm_nmaps >= HASH_MAX_BITMAPS)
282 ereport(ERROR,
283 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
284 errmsg("out of overflow pages in hash index \"%s\"",
285 RelationGetRelationName(rel))));
287 newmapbuf = _hash_getnewbuf(rel, bitno_to_blkno(metap, bit), MAIN_FORKNUM);
289 else
292 * Nothing to do here; since the page will be past the last used page,
293 * we know its bitmap bit was preinitialized to "in use".
297 /* Calculate address of the new overflow page */
298 bit = BufferIsValid(newmapbuf) ?
299 metap->hashm_spares[splitnum] + 1 : metap->hashm_spares[splitnum];
300 blkno = bitno_to_blkno(metap, bit);
303 * Fetch the page with _hash_getnewbuf to ensure smgr's idea of the
304 * relation length stays in sync with ours. XXX It's annoying to do this
305 * with metapage write lock held; would be better to use a lock that
306 * doesn't block incoming searches.
308 * It is okay to hold two buffer locks here (one on tail page of bucket
309 * and other on new overflow page) since there cannot be anyone else
310 * contending for access to ovflbuf.
312 ovflbuf = _hash_getnewbuf(rel, blkno, MAIN_FORKNUM);
314 found:
317 * Do the update. No ereport(ERROR) until changes are logged. We want to
318 * log the changes for bitmap page and overflow page together to avoid
319 * loss of pages in case the new page is added.
321 START_CRIT_SECTION();
323 if (page_found)
325 Assert(BufferIsValid(mapbuf));
327 /* mark page "in use" in the bitmap */
328 SETBIT(freep, bitmap_page_bit);
329 MarkBufferDirty(mapbuf);
331 else
333 /* update the count to indicate new overflow page is added */
334 metap->hashm_spares[splitnum]++;
336 if (BufferIsValid(newmapbuf))
338 _hash_initbitmapbuffer(newmapbuf, metap->hashm_bmsize, false);
339 MarkBufferDirty(newmapbuf);
341 /* add the new bitmap page to the metapage's list of bitmaps */
342 metap->hashm_mapp[metap->hashm_nmaps] = BufferGetBlockNumber(newmapbuf);
343 metap->hashm_nmaps++;
344 metap->hashm_spares[splitnum]++;
347 MarkBufferDirty(metabuf);
350 * for new overflow page, we don't need to explicitly set the bit in
351 * bitmap page, as by default that will be set to "in use".
356 * Adjust hashm_firstfree to avoid redundant searches. But don't risk
357 * changing it if someone moved it while we were searching bitmap pages.
359 if (metap->hashm_firstfree == orig_firstfree)
361 metap->hashm_firstfree = bit + 1;
362 MarkBufferDirty(metabuf);
365 /* initialize new overflow page */
366 ovflpage = BufferGetPage(ovflbuf);
367 ovflopaque = HashPageGetOpaque(ovflpage);
368 ovflopaque->hasho_prevblkno = BufferGetBlockNumber(buf);
369 ovflopaque->hasho_nextblkno = InvalidBlockNumber;
370 ovflopaque->hasho_bucket = pageopaque->hasho_bucket;
371 ovflopaque->hasho_flag = LH_OVERFLOW_PAGE;
372 ovflopaque->hasho_page_id = HASHO_PAGE_ID;
374 MarkBufferDirty(ovflbuf);
376 /* logically chain overflow page to previous page */
377 pageopaque->hasho_nextblkno = BufferGetBlockNumber(ovflbuf);
379 MarkBufferDirty(buf);
381 /* XLOG stuff */
382 if (RelationNeedsWAL(rel))
384 XLogRecPtr recptr;
385 xl_hash_add_ovfl_page xlrec;
387 xlrec.bmpage_found = page_found;
388 xlrec.bmsize = metap->hashm_bmsize;
390 XLogBeginInsert();
391 XLogRegisterData((char *) &xlrec, SizeOfHashAddOvflPage);
393 XLogRegisterBuffer(0, ovflbuf, REGBUF_WILL_INIT);
394 XLogRegisterBufData(0, (char *) &pageopaque->hasho_bucket, sizeof(Bucket));
396 XLogRegisterBuffer(1, buf, REGBUF_STANDARD);
398 if (BufferIsValid(mapbuf))
400 XLogRegisterBuffer(2, mapbuf, REGBUF_STANDARD);
401 XLogRegisterBufData(2, (char *) &bitmap_page_bit, sizeof(uint32));
404 if (BufferIsValid(newmapbuf))
405 XLogRegisterBuffer(3, newmapbuf, REGBUF_WILL_INIT);
407 XLogRegisterBuffer(4, metabuf, REGBUF_STANDARD);
408 XLogRegisterBufData(4, (char *) &metap->hashm_firstfree, sizeof(uint32));
410 recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_ADD_OVFL_PAGE);
412 PageSetLSN(BufferGetPage(ovflbuf), recptr);
413 PageSetLSN(BufferGetPage(buf), recptr);
415 if (BufferIsValid(mapbuf))
416 PageSetLSN(BufferGetPage(mapbuf), recptr);
418 if (BufferIsValid(newmapbuf))
419 PageSetLSN(BufferGetPage(newmapbuf), recptr);
421 PageSetLSN(BufferGetPage(metabuf), recptr);
424 END_CRIT_SECTION();
426 if (retain_pin)
427 LockBuffer(buf, BUFFER_LOCK_UNLOCK);
428 else
429 _hash_relbuf(rel, buf);
431 if (BufferIsValid(mapbuf))
432 _hash_relbuf(rel, mapbuf);
434 LockBuffer(metabuf, BUFFER_LOCK_UNLOCK);
436 if (BufferIsValid(newmapbuf))
437 _hash_relbuf(rel, newmapbuf);
439 return ovflbuf;
443 * _hash_firstfreebit()
445 * Return the number of the first bit that is not set in the word 'map'.
447 static uint32
448 _hash_firstfreebit(uint32 map)
450 uint32 i,
451 mask;
453 mask = 0x1;
454 for (i = 0; i < BITS_PER_MAP; i++)
456 if (!(mask & map))
457 return i;
458 mask <<= 1;
461 elog(ERROR, "firstfreebit found no free bit");
463 return 0; /* keep compiler quiet */
467 * _hash_freeovflpage() -
469 * Remove this overflow page from its bucket's chain, and mark the page as
470 * free. On entry, ovflbuf is write-locked; it is released before exiting.
472 * Add the tuples (itups) to wbuf in this function. We could do that in the
473 * caller as well, but the advantage of doing it here is we can easily write
474 * the WAL for XLOG_HASH_SQUEEZE_PAGE operation. Addition of tuples and
475 * removal of overflow page has to done as an atomic operation, otherwise
476 * during replay on standby users might find duplicate records.
478 * Since this function is invoked in VACUUM, we provide an access strategy
479 * parameter that controls fetches of the bucket pages.
481 * Returns the block number of the page that followed the given page
482 * in the bucket, or InvalidBlockNumber if no following page.
484 * NB: caller must not hold lock on metapage, nor on page, that's next to
485 * ovflbuf in the bucket chain. We don't acquire the lock on page that's
486 * prior to ovflbuf in chain if it is same as wbuf because the caller already
487 * has a lock on same.
489 BlockNumber
490 _hash_freeovflpage(Relation rel, Buffer bucketbuf, Buffer ovflbuf,
491 Buffer wbuf, IndexTuple *itups, OffsetNumber *itup_offsets,
492 Size *tups_size, uint16 nitups,
493 BufferAccessStrategy bstrategy)
495 HashMetaPage metap;
496 Buffer metabuf;
497 Buffer mapbuf;
498 BlockNumber ovflblkno;
499 BlockNumber prevblkno;
500 BlockNumber blkno;
501 BlockNumber nextblkno;
502 BlockNumber writeblkno;
503 HashPageOpaque ovflopaque;
504 Page ovflpage;
505 Page mappage;
506 uint32 *freep;
507 uint32 ovflbitno;
508 int32 bitmappage,
509 bitmapbit;
510 Bucket bucket PG_USED_FOR_ASSERTS_ONLY;
511 Buffer prevbuf = InvalidBuffer;
512 Buffer nextbuf = InvalidBuffer;
513 bool update_metap = false;
515 /* Get information from the doomed page */
516 _hash_checkpage(rel, ovflbuf, LH_OVERFLOW_PAGE);
517 ovflblkno = BufferGetBlockNumber(ovflbuf);
518 ovflpage = BufferGetPage(ovflbuf);
519 ovflopaque = HashPageGetOpaque(ovflpage);
520 nextblkno = ovflopaque->hasho_nextblkno;
521 prevblkno = ovflopaque->hasho_prevblkno;
522 writeblkno = BufferGetBlockNumber(wbuf);
523 bucket = ovflopaque->hasho_bucket;
526 * Fix up the bucket chain. this is a doubly-linked list, so we must fix
527 * up the bucket chain members behind and ahead of the overflow page being
528 * deleted. Concurrency issues are avoided by using lock chaining as
529 * described atop hashbucketcleanup.
531 if (BlockNumberIsValid(prevblkno))
533 if (prevblkno == writeblkno)
534 prevbuf = wbuf;
535 else
536 prevbuf = _hash_getbuf_with_strategy(rel,
537 prevblkno,
538 HASH_WRITE,
539 LH_BUCKET_PAGE | LH_OVERFLOW_PAGE,
540 bstrategy);
542 if (BlockNumberIsValid(nextblkno))
543 nextbuf = _hash_getbuf_with_strategy(rel,
544 nextblkno,
545 HASH_WRITE,
546 LH_OVERFLOW_PAGE,
547 bstrategy);
549 /* Note: bstrategy is intentionally not used for metapage and bitmap */
551 /* Read the metapage so we can determine which bitmap page to use */
552 metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ, LH_META_PAGE);
553 metap = HashPageGetMeta(BufferGetPage(metabuf));
555 /* Identify which bit to set */
556 ovflbitno = _hash_ovflblkno_to_bitno(metap, ovflblkno);
558 bitmappage = ovflbitno >> BMPG_SHIFT(metap);
559 bitmapbit = ovflbitno & BMPG_MASK(metap);
561 if (bitmappage >= metap->hashm_nmaps)
562 elog(ERROR, "invalid overflow bit number %u", ovflbitno);
563 blkno = metap->hashm_mapp[bitmappage];
565 /* Release metapage lock while we access the bitmap page */
566 LockBuffer(metabuf, BUFFER_LOCK_UNLOCK);
568 /* read the bitmap page to clear the bitmap bit */
569 mapbuf = _hash_getbuf(rel, blkno, HASH_WRITE, LH_BITMAP_PAGE);
570 mappage = BufferGetPage(mapbuf);
571 freep = HashPageGetBitmap(mappage);
572 Assert(ISSET(freep, bitmapbit));
574 /* Get write-lock on metapage to update firstfree */
575 LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE);
577 /* This operation needs to log multiple tuples, prepare WAL for that */
578 if (RelationNeedsWAL(rel))
579 XLogEnsureRecordSpace(HASH_XLOG_FREE_OVFL_BUFS, 4 + nitups);
581 START_CRIT_SECTION();
584 * we have to insert tuples on the "write" page, being careful to preserve
585 * hashkey ordering. (If we insert many tuples into the same "write" page
586 * it would be worth qsort'ing them).
588 if (nitups > 0)
590 _hash_pgaddmultitup(rel, wbuf, itups, itup_offsets, nitups);
591 MarkBufferDirty(wbuf);
595 * Reinitialize the freed overflow page. Just zeroing the page won't
596 * work, because WAL replay routines expect pages to be initialized. See
597 * explanation of RBM_NORMAL mode atop XLogReadBufferExtended. We are
598 * careful to make the special space valid here so that tools like
599 * pageinspect won't get confused.
601 _hash_pageinit(ovflpage, BufferGetPageSize(ovflbuf));
603 ovflopaque = HashPageGetOpaque(ovflpage);
605 ovflopaque->hasho_prevblkno = InvalidBlockNumber;
606 ovflopaque->hasho_nextblkno = InvalidBlockNumber;
607 ovflopaque->hasho_bucket = InvalidBucket;
608 ovflopaque->hasho_flag = LH_UNUSED_PAGE;
609 ovflopaque->hasho_page_id = HASHO_PAGE_ID;
611 MarkBufferDirty(ovflbuf);
613 if (BufferIsValid(prevbuf))
615 Page prevpage = BufferGetPage(prevbuf);
616 HashPageOpaque prevopaque = HashPageGetOpaque(prevpage);
618 Assert(prevopaque->hasho_bucket == bucket);
619 prevopaque->hasho_nextblkno = nextblkno;
620 MarkBufferDirty(prevbuf);
622 if (BufferIsValid(nextbuf))
624 Page nextpage = BufferGetPage(nextbuf);
625 HashPageOpaque nextopaque = HashPageGetOpaque(nextpage);
627 Assert(nextopaque->hasho_bucket == bucket);
628 nextopaque->hasho_prevblkno = prevblkno;
629 MarkBufferDirty(nextbuf);
632 /* Clear the bitmap bit to indicate that this overflow page is free */
633 CLRBIT(freep, bitmapbit);
634 MarkBufferDirty(mapbuf);
636 /* if this is now the first free page, update hashm_firstfree */
637 if (ovflbitno < metap->hashm_firstfree)
639 metap->hashm_firstfree = ovflbitno;
640 update_metap = true;
641 MarkBufferDirty(metabuf);
644 /* XLOG stuff */
645 if (RelationNeedsWAL(rel))
647 xl_hash_squeeze_page xlrec;
648 XLogRecPtr recptr;
649 int i;
650 bool mod_wbuf = false;
652 xlrec.prevblkno = prevblkno;
653 xlrec.nextblkno = nextblkno;
654 xlrec.ntups = nitups;
655 xlrec.is_prim_bucket_same_wrt = (wbuf == bucketbuf);
656 xlrec.is_prev_bucket_same_wrt = (wbuf == prevbuf);
658 XLogBeginInsert();
659 XLogRegisterData((char *) &xlrec, SizeOfHashSqueezePage);
662 * bucket buffer was not changed, but still needs to be registered to
663 * ensure that we can acquire a cleanup lock on it during replay.
665 if (!xlrec.is_prim_bucket_same_wrt)
667 uint8 flags = REGBUF_STANDARD | REGBUF_NO_IMAGE | REGBUF_NO_CHANGE;
669 XLogRegisterBuffer(0, bucketbuf, flags);
672 if (xlrec.ntups > 0)
674 XLogRegisterBuffer(1, wbuf, REGBUF_STANDARD);
676 /* Remember that wbuf is modified. */
677 mod_wbuf = true;
679 XLogRegisterBufData(1, (char *) itup_offsets,
680 nitups * sizeof(OffsetNumber));
681 for (i = 0; i < nitups; i++)
682 XLogRegisterBufData(1, (char *) itups[i], tups_size[i]);
684 else if (xlrec.is_prim_bucket_same_wrt || xlrec.is_prev_bucket_same_wrt)
686 uint8 wbuf_flags;
689 * A write buffer needs to be registered even if no tuples are
690 * added to it to ensure that we can acquire a cleanup lock on it
691 * if it is the same as primary bucket buffer or update the
692 * nextblkno if it is same as the previous bucket buffer.
694 Assert(xlrec.ntups == 0);
696 wbuf_flags = REGBUF_STANDARD;
697 if (!xlrec.is_prev_bucket_same_wrt)
699 wbuf_flags |= REGBUF_NO_CHANGE;
701 else
703 /* Remember that wbuf is modified. */
704 mod_wbuf = true;
706 XLogRegisterBuffer(1, wbuf, wbuf_flags);
709 XLogRegisterBuffer(2, ovflbuf, REGBUF_STANDARD);
712 * If prevpage and the writepage (block in which we are moving tuples
713 * from overflow) are same, then no need to separately register
714 * prevpage. During replay, we can directly update the nextblock in
715 * writepage.
717 if (BufferIsValid(prevbuf) && !xlrec.is_prev_bucket_same_wrt)
718 XLogRegisterBuffer(3, prevbuf, REGBUF_STANDARD);
720 if (BufferIsValid(nextbuf))
721 XLogRegisterBuffer(4, nextbuf, REGBUF_STANDARD);
723 XLogRegisterBuffer(5, mapbuf, REGBUF_STANDARD);
724 XLogRegisterBufData(5, (char *) &bitmapbit, sizeof(uint32));
726 if (update_metap)
728 XLogRegisterBuffer(6, metabuf, REGBUF_STANDARD);
729 XLogRegisterBufData(6, (char *) &metap->hashm_firstfree, sizeof(uint32));
732 recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SQUEEZE_PAGE);
734 /* Set LSN iff wbuf is modified. */
735 if (mod_wbuf)
736 PageSetLSN(BufferGetPage(wbuf), recptr);
738 PageSetLSN(BufferGetPage(ovflbuf), recptr);
740 if (BufferIsValid(prevbuf) && !xlrec.is_prev_bucket_same_wrt)
741 PageSetLSN(BufferGetPage(prevbuf), recptr);
742 if (BufferIsValid(nextbuf))
743 PageSetLSN(BufferGetPage(nextbuf), recptr);
745 PageSetLSN(BufferGetPage(mapbuf), recptr);
747 if (update_metap)
748 PageSetLSN(BufferGetPage(metabuf), recptr);
751 END_CRIT_SECTION();
753 /* release previous bucket if it is not same as write bucket */
754 if (BufferIsValid(prevbuf) && prevblkno != writeblkno)
755 _hash_relbuf(rel, prevbuf);
757 if (BufferIsValid(ovflbuf))
758 _hash_relbuf(rel, ovflbuf);
760 if (BufferIsValid(nextbuf))
761 _hash_relbuf(rel, nextbuf);
763 _hash_relbuf(rel, mapbuf);
764 _hash_relbuf(rel, metabuf);
766 return nextblkno;
771 * _hash_initbitmapbuffer()
773 * Initialize a new bitmap page. All bits in the new bitmap page are set to
774 * "1", indicating "in use".
776 void
777 _hash_initbitmapbuffer(Buffer buf, uint16 bmsize, bool initpage)
779 Page pg;
780 HashPageOpaque op;
781 uint32 *freep;
783 pg = BufferGetPage(buf);
785 /* initialize the page */
786 if (initpage)
787 _hash_pageinit(pg, BufferGetPageSize(buf));
789 /* initialize the page's special space */
790 op = HashPageGetOpaque(pg);
791 op->hasho_prevblkno = InvalidBlockNumber;
792 op->hasho_nextblkno = InvalidBlockNumber;
793 op->hasho_bucket = InvalidBucket;
794 op->hasho_flag = LH_BITMAP_PAGE;
795 op->hasho_page_id = HASHO_PAGE_ID;
797 /* set all of the bits to 1 */
798 freep = HashPageGetBitmap(pg);
799 memset(freep, 0xFF, bmsize);
802 * Set pd_lower just past the end of the bitmap page data. We could even
803 * set pd_lower equal to pd_upper, but this is more precise and makes the
804 * page look compressible to xlog.c.
806 ((PageHeader) pg)->pd_lower = ((char *) freep + bmsize) - (char *) pg;
811 * _hash_squeezebucket(rel, bucket)
813 * Try to squeeze the tuples onto pages occurring earlier in the
814 * bucket chain in an attempt to free overflow pages. When we start
815 * the "squeezing", the page from which we start taking tuples (the
816 * "read" page) is the last bucket in the bucket chain and the page
817 * onto which we start squeezing tuples (the "write" page) is the
818 * first page in the bucket chain. The read page works backward and
819 * the write page works forward; the procedure terminates when the
820 * read page and write page are the same page.
822 * At completion of this procedure, it is guaranteed that all pages in
823 * the bucket are nonempty, unless the bucket is totally empty (in
824 * which case all overflow pages will be freed). The original implementation
825 * required that to be true on entry as well, but it's a lot easier for
826 * callers to leave empty overflow pages and let this guy clean it up.
828 * Caller must acquire cleanup lock on the primary page of the target
829 * bucket to exclude any scans that are in progress, which could easily
830 * be confused into returning the same tuple more than once or some tuples
831 * not at all by the rearrangement we are performing here. To prevent
832 * any concurrent scan to cross the squeeze scan we use lock chaining
833 * similar to hashbucketcleanup. Refer comments atop hashbucketcleanup.
835 * We need to retain a pin on the primary bucket to ensure that no concurrent
836 * split can start.
838 * Since this function is invoked in VACUUM, we provide an access strategy
839 * parameter that controls fetches of the bucket pages.
841 void
842 _hash_squeezebucket(Relation rel,
843 Bucket bucket,
844 BlockNumber bucket_blkno,
845 Buffer bucket_buf,
846 BufferAccessStrategy bstrategy)
848 BlockNumber wblkno;
849 BlockNumber rblkno;
850 Buffer wbuf;
851 Buffer rbuf;
852 Page wpage;
853 Page rpage;
854 HashPageOpaque wopaque;
855 HashPageOpaque ropaque;
858 * start squeezing into the primary bucket page.
860 wblkno = bucket_blkno;
861 wbuf = bucket_buf;
862 wpage = BufferGetPage(wbuf);
863 wopaque = HashPageGetOpaque(wpage);
866 * if there aren't any overflow pages, there's nothing to squeeze. caller
867 * is responsible for releasing the pin on primary bucket page.
869 if (!BlockNumberIsValid(wopaque->hasho_nextblkno))
871 LockBuffer(wbuf, BUFFER_LOCK_UNLOCK);
872 return;
876 * Find the last page in the bucket chain by starting at the base bucket
877 * page and working forward. Note: we assume that a hash bucket chain is
878 * usually smaller than the buffer ring being used by VACUUM, else using
879 * the access strategy here would be counterproductive.
881 rbuf = InvalidBuffer;
882 ropaque = wopaque;
885 rblkno = ropaque->hasho_nextblkno;
886 if (rbuf != InvalidBuffer)
887 _hash_relbuf(rel, rbuf);
888 rbuf = _hash_getbuf_with_strategy(rel,
889 rblkno,
890 HASH_WRITE,
891 LH_OVERFLOW_PAGE,
892 bstrategy);
893 rpage = BufferGetPage(rbuf);
894 ropaque = HashPageGetOpaque(rpage);
895 Assert(ropaque->hasho_bucket == bucket);
896 } while (BlockNumberIsValid(ropaque->hasho_nextblkno));
899 * squeeze the tuples.
901 for (;;)
903 OffsetNumber roffnum;
904 OffsetNumber maxroffnum;
905 OffsetNumber deletable[MaxOffsetNumber];
906 IndexTuple itups[MaxIndexTuplesPerPage];
907 Size tups_size[MaxIndexTuplesPerPage];
908 OffsetNumber itup_offsets[MaxIndexTuplesPerPage];
909 uint16 ndeletable = 0;
910 uint16 nitups = 0;
911 Size all_tups_size = 0;
912 int i;
913 bool retain_pin = false;
915 readpage:
916 /* Scan each tuple in "read" page */
917 maxroffnum = PageGetMaxOffsetNumber(rpage);
918 for (roffnum = FirstOffsetNumber;
919 roffnum <= maxroffnum;
920 roffnum = OffsetNumberNext(roffnum))
922 IndexTuple itup;
923 Size itemsz;
925 /* skip dead tuples */
926 if (ItemIdIsDead(PageGetItemId(rpage, roffnum)))
927 continue;
929 itup = (IndexTuple) PageGetItem(rpage,
930 PageGetItemId(rpage, roffnum));
931 itemsz = IndexTupleSize(itup);
932 itemsz = MAXALIGN(itemsz);
935 * Walk up the bucket chain, looking for a page big enough for
936 * this item and all other accumulated items. Exit if we reach
937 * the read page.
939 while (PageGetFreeSpaceForMultipleTuples(wpage, nitups + 1) < (all_tups_size + itemsz))
941 Buffer next_wbuf = InvalidBuffer;
942 bool tups_moved = false;
944 Assert(!PageIsEmpty(wpage));
946 if (wblkno == bucket_blkno)
947 retain_pin = true;
949 wblkno = wopaque->hasho_nextblkno;
950 Assert(BlockNumberIsValid(wblkno));
952 /* don't need to move to next page if we reached the read page */
953 if (wblkno != rblkno)
954 next_wbuf = _hash_getbuf_with_strategy(rel,
955 wblkno,
956 HASH_WRITE,
957 LH_OVERFLOW_PAGE,
958 bstrategy);
960 if (nitups > 0)
962 Assert(nitups == ndeletable);
965 * This operation needs to log multiple tuples, prepare
966 * WAL for that.
968 if (RelationNeedsWAL(rel))
969 XLogEnsureRecordSpace(0, 3 + nitups);
971 START_CRIT_SECTION();
974 * we have to insert tuples on the "write" page, being
975 * careful to preserve hashkey ordering. (If we insert
976 * many tuples into the same "write" page it would be
977 * worth qsort'ing them).
979 _hash_pgaddmultitup(rel, wbuf, itups, itup_offsets, nitups);
980 MarkBufferDirty(wbuf);
982 /* Delete tuples we already moved off read page */
983 PageIndexMultiDelete(rpage, deletable, ndeletable);
984 MarkBufferDirty(rbuf);
986 /* XLOG stuff */
987 if (RelationNeedsWAL(rel))
989 XLogRecPtr recptr;
990 xl_hash_move_page_contents xlrec;
992 xlrec.ntups = nitups;
993 xlrec.is_prim_bucket_same_wrt = (wbuf == bucket_buf);
995 XLogBeginInsert();
996 XLogRegisterData((char *) &xlrec, SizeOfHashMovePageContents);
999 * bucket buffer was not changed, but still needs to
1000 * be registered to ensure that we can acquire a
1001 * cleanup lock on it during replay.
1003 if (!xlrec.is_prim_bucket_same_wrt)
1005 int flags = REGBUF_STANDARD | REGBUF_NO_IMAGE | REGBUF_NO_CHANGE;
1007 XLogRegisterBuffer(0, bucket_buf, flags);
1010 XLogRegisterBuffer(1, wbuf, REGBUF_STANDARD);
1011 XLogRegisterBufData(1, (char *) itup_offsets,
1012 nitups * sizeof(OffsetNumber));
1013 for (i = 0; i < nitups; i++)
1014 XLogRegisterBufData(1, (char *) itups[i], tups_size[i]);
1016 XLogRegisterBuffer(2, rbuf, REGBUF_STANDARD);
1017 XLogRegisterBufData(2, (char *) deletable,
1018 ndeletable * sizeof(OffsetNumber));
1020 recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_MOVE_PAGE_CONTENTS);
1022 PageSetLSN(BufferGetPage(wbuf), recptr);
1023 PageSetLSN(BufferGetPage(rbuf), recptr);
1026 END_CRIT_SECTION();
1028 tups_moved = true;
1032 * release the lock on previous page after acquiring the lock
1033 * on next page
1035 if (retain_pin)
1036 LockBuffer(wbuf, BUFFER_LOCK_UNLOCK);
1037 else
1038 _hash_relbuf(rel, wbuf);
1040 /* nothing more to do if we reached the read page */
1041 if (rblkno == wblkno)
1043 _hash_relbuf(rel, rbuf);
1044 return;
1047 wbuf = next_wbuf;
1048 wpage = BufferGetPage(wbuf);
1049 wopaque = HashPageGetOpaque(wpage);
1050 Assert(wopaque->hasho_bucket == bucket);
1051 retain_pin = false;
1053 /* be tidy */
1054 for (i = 0; i < nitups; i++)
1055 pfree(itups[i]);
1056 nitups = 0;
1057 all_tups_size = 0;
1058 ndeletable = 0;
1061 * after moving the tuples, rpage would have been compacted,
1062 * so we need to rescan it.
1064 if (tups_moved)
1065 goto readpage;
1068 /* remember tuple for deletion from "read" page */
1069 deletable[ndeletable++] = roffnum;
1072 * we need a copy of index tuples as they can be freed as part of
1073 * overflow page, however we need them to write a WAL record in
1074 * _hash_freeovflpage.
1076 itups[nitups] = CopyIndexTuple(itup);
1077 tups_size[nitups++] = itemsz;
1078 all_tups_size += itemsz;
1082 * If we reach here, there are no live tuples on the "read" page ---
1083 * it was empty when we got to it, or we moved them all. So we can
1084 * just free the page without bothering with deleting tuples
1085 * individually. Then advance to the previous "read" page.
1087 * Tricky point here: if our read and write pages are adjacent in the
1088 * bucket chain, our write lock on wbuf will conflict with
1089 * _hash_freeovflpage's attempt to update the sibling links of the
1090 * removed page. In that case, we don't need to lock it again.
1092 rblkno = ropaque->hasho_prevblkno;
1093 Assert(BlockNumberIsValid(rblkno));
1095 /* free this overflow page (releases rbuf) */
1096 _hash_freeovflpage(rel, bucket_buf, rbuf, wbuf, itups, itup_offsets,
1097 tups_size, nitups, bstrategy);
1099 /* be tidy */
1100 for (i = 0; i < nitups; i++)
1101 pfree(itups[i]);
1103 /* are we freeing the page adjacent to wbuf? */
1104 if (rblkno == wblkno)
1106 /* retain the pin on primary bucket page till end of bucket scan */
1107 if (wblkno == bucket_blkno)
1108 LockBuffer(wbuf, BUFFER_LOCK_UNLOCK);
1109 else
1110 _hash_relbuf(rel, wbuf);
1111 return;
1114 rbuf = _hash_getbuf_with_strategy(rel,
1115 rblkno,
1116 HASH_WRITE,
1117 LH_OVERFLOW_PAGE,
1118 bstrategy);
1119 rpage = BufferGetPage(rbuf);
1120 ropaque = HashPageGetOpaque(rpage);
1121 Assert(ropaque->hasho_bucket == bucket);
1124 /* NOTREACHED */