1 /*-------------------------------------------------------------------------
4 * functions for gathering statistics from tsvector columns
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
10 * src/backend/tsearch/ts_typanalyze.c
12 *-------------------------------------------------------------------------
16 #include "catalog/pg_collation.h"
17 #include "catalog/pg_operator.h"
18 #include "commands/vacuum.h"
19 #include "common/hashfn.h"
20 #include "tsearch/ts_type.h"
21 #include "utils/builtins.h"
25 /* A hash key for lexemes */
28 char *lexeme
; /* lexeme (not NULL terminated!) */
29 int length
; /* its length in bytes */
32 /* A hash table entry for the Lossy Counting algorithm */
35 LexemeHashKey key
; /* This is 'e' from the LC algorithm. */
36 int frequency
; /* This is 'f'. */
37 int delta
; /* And this is 'delta'. */
40 static void compute_tsvector_stats(VacAttrStats
*stats
,
41 AnalyzeAttrFetchFunc fetchfunc
,
44 static void prune_lexemes_hashtable(HTAB
*lexemes_tab
, int b_current
);
45 static uint32
lexeme_hash(const void *key
, Size keysize
);
46 static int lexeme_match(const void *key1
, const void *key2
, Size keysize
);
47 static int lexeme_compare(const void *key1
, const void *key2
);
48 static int trackitem_compare_frequencies_desc(const void *e1
, const void *e2
,
50 static int trackitem_compare_lexemes(const void *e1
, const void *e2
,
55 * ts_typanalyze -- a custom typanalyze function for tsvector columns
58 ts_typanalyze(PG_FUNCTION_ARGS
)
60 VacAttrStats
*stats
= (VacAttrStats
*) PG_GETARG_POINTER(0);
62 /* If the attstattarget column is negative, use the default value */
63 if (stats
->attstattarget
< 0)
64 stats
->attstattarget
= default_statistics_target
;
66 stats
->compute_stats
= compute_tsvector_stats
;
67 /* see comment about the choice of minrows in commands/analyze.c */
68 stats
->minrows
= 300 * stats
->attstattarget
;
74 * compute_tsvector_stats() -- compute statistics for a tsvector column
76 * This functions computes statistics that are useful for determining @@
77 * operations' selectivity, along with the fraction of non-null rows and
80 * Instead of finding the most common values, as we do for most datatypes,
81 * we're looking for the most common lexemes. This is more useful, because
82 * there most probably won't be any two rows with the same tsvector and thus
83 * the notion of a MCV is a bit bogus with this datatype. With a list of the
84 * most common lexemes we can do a better job at figuring out @@ selectivity.
86 * For the same reasons we assume that tsvector columns are unique when
87 * determining the number of distinct values.
89 * The algorithm used is Lossy Counting, as proposed in the paper "Approximate
90 * frequency counts over data streams" by G. S. Manku and R. Motwani, in
91 * Proceedings of the 28th International Conference on Very Large Data Bases,
92 * Hong Kong, China, August 2002, section 4.2. The paper is available at
93 * http://www.vldb.org/conf/2002/S10P03.pdf
95 * The Lossy Counting (aka LC) algorithm goes like this:
96 * Let s be the threshold frequency for an item (the minimum frequency we
97 * are interested in) and epsilon the error margin for the frequency. Let D
98 * be a set of triples (e, f, delta), where e is an element value, f is that
99 * element's frequency (actually, its current occurrence count) and delta is
100 * the maximum error in f. We start with D empty and process the elements in
101 * batches of size w. (The batch size is also known as "bucket size" and is
102 * equal to 1/epsilon.) Let the current batch number be b_current, starting
103 * with 1. For each element e we either increment its f count, if it's
104 * already in D, or insert a new triple into D with values (e, 1, b_current
105 * - 1). After processing each batch we prune D, by removing from it all
106 * elements with f + delta <= b_current. After the algorithm finishes we
107 * suppress all elements from D that do not satisfy f >= (s - epsilon) * N,
108 * where N is the total number of elements in the input. We emit the
109 * remaining elements with estimated frequency f/N. The LC paper proves
110 * that this algorithm finds all elements with true frequency at least s,
111 * and that no frequency is overestimated or is underestimated by more than
112 * epsilon. Furthermore, given reasonable assumptions about the input
113 * distribution, the required table size is no more than about 7 times w.
115 * We set s to be the estimated frequency of the K'th word in a natural
116 * language's frequency table, where K is the target number of entries in
117 * the MCELEM array plus an arbitrary constant, meant to reflect the fact
118 * that the most common words in any language would usually be stopwords
119 * so we will not actually see them in the input. We assume that the
120 * distribution of word frequencies (including the stopwords) follows Zipf's
121 * law with an exponent of 1.
123 * Assuming Zipfian distribution, the frequency of the K'th word is equal
124 * to 1/(K * H(W)) where H(n) is 1/2 + 1/3 + ... + 1/n and W is the number of
125 * words in the language. Putting W as one million, we get roughly 0.07/K.
126 * Assuming top 10 words are stopwords gives s = 0.07/(K + 10). We set
127 * epsilon = s/10, which gives bucket width w = (K + 10)/0.007 and
128 * maximum expected hashtable size of about 1000 * (K + 10).
130 * Note: in the above discussion, s, epsilon, and f/N are in terms of a
131 * lexeme's frequency as a fraction of all lexemes seen in the input.
132 * However, what we actually want to store in the finished pg_statistic
133 * entry is each lexeme's frequency as a fraction of all rows that it occurs
134 * in. Assuming that the input tsvectors are correctly constructed, no
135 * lexeme occurs more than once per tsvector, so the final count f is a
136 * correct estimate of the number of input tsvectors it occurs in, and we
137 * need only change the divisor from N to nonnull_cnt to get the number we
141 compute_tsvector_stats(VacAttrStats
*stats
,
142 AnalyzeAttrFetchFunc fetchfunc
,
148 double total_width
= 0;
150 /* This is D from the LC algorithm. */
153 HASH_SEQ_STATUS scan_status
;
155 /* This is the current bucket number from the LC algorithm */
158 /* This is 'w' from the LC algorithm */
162 LexemeHashKey hash_key
;
165 * We want statistics_target * 10 lexemes in the MCELEM array. This
166 * multiplier is pretty arbitrary, but is meant to reflect the fact that
167 * the number of individual lexeme values tracked in pg_statistic ought to
168 * be more than the number of values for a simple scalar column.
170 num_mcelem
= stats
->attstattarget
* 10;
173 * We set bucket width equal to (num_mcelem + 10) / 0.007 as per the
176 bucket_width
= (num_mcelem
+ 10) * 1000 / 7;
179 * Create the hashtable. It will be in local memory, so we don't need to
180 * worry about overflowing the initial size. Also we don't need to pay any
181 * attention to locking and memory management.
183 hash_ctl
.keysize
= sizeof(LexemeHashKey
);
184 hash_ctl
.entrysize
= sizeof(TrackItem
);
185 hash_ctl
.hash
= lexeme_hash
;
186 hash_ctl
.match
= lexeme_match
;
187 hash_ctl
.hcxt
= CurrentMemoryContext
;
188 lexemes_tab
= hash_create("Analyzed lexemes table",
191 HASH_ELEM
| HASH_FUNCTION
| HASH_COMPARE
| HASH_CONTEXT
);
193 /* Initialize counters. */
197 /* Loop over the tsvectors. */
198 for (vector_no
= 0; vector_no
< samplerows
; vector_no
++)
203 WordEntry
*curentryptr
;
207 vacuum_delay_point();
209 value
= fetchfunc(stats
, vector_no
, &isnull
);
212 * Check for null/nonnull.
221 * Add up widths for average-width calculation. Since it's a
222 * tsvector, we know it's varlena. As in the regular
223 * compute_minimal_stats function, we use the toasted width for this
226 total_width
+= VARSIZE_ANY(DatumGetPointer(value
));
229 * Now detoast the tsvector if needed.
231 vector
= DatumGetTSVector(value
);
234 * We loop through the lexemes in the tsvector and add them to our
235 * tracking hashtable.
237 lexemesptr
= STRPTR(vector
);
238 curentryptr
= ARRPTR(vector
);
239 for (j
= 0; j
< vector
->size
; j
++)
245 * Construct a hash key. The key points into the (detoasted)
246 * tsvector value at this point, but if a new entry is created, we
247 * make a copy of it. This way we can free the tsvector value
248 * once we've processed all its lexemes.
250 hash_key
.lexeme
= lexemesptr
+ curentryptr
->pos
;
251 hash_key
.length
= curentryptr
->len
;
253 /* Lookup current lexeme in hashtable, adding it if new */
254 item
= (TrackItem
*) hash_search(lexemes_tab
,
260 /* The lexeme is already on the tracking list */
265 /* Initialize new tracking list element */
267 item
->delta
= b_current
- 1;
269 item
->key
.lexeme
= palloc(hash_key
.length
);
270 memcpy(item
->key
.lexeme
, hash_key
.lexeme
, hash_key
.length
);
273 /* lexeme_no is the number of elements processed (ie N) */
276 /* We prune the D structure after processing each bucket */
277 if (lexeme_no
% bucket_width
== 0)
279 prune_lexemes_hashtable(lexemes_tab
, b_current
);
283 /* Advance to the next WordEntry in the tsvector */
287 /* If the vector was toasted, free the detoasted copy. */
288 if (TSVectorGetDatum(vector
) != value
)
292 /* We can only compute real stats if we found some non-null values. */
293 if (null_cnt
< samplerows
)
295 int nonnull_cnt
= samplerows
- null_cnt
;
297 TrackItem
**sort_table
;
304 stats
->stats_valid
= true;
305 /* Do the simple null-frac and average width stats */
306 stats
->stanullfrac
= (double) null_cnt
/ (double) samplerows
;
307 stats
->stawidth
= total_width
/ (double) nonnull_cnt
;
309 /* Assume it's a unique column (see notes above) */
310 stats
->stadistinct
= -1.0 * (1.0 - stats
->stanullfrac
);
313 * Construct an array of the interesting hashtable items, that is,
314 * those meeting the cutoff frequency (s - epsilon)*N. Also identify
315 * the minimum and maximum frequencies among these items.
317 * Since epsilon = s/10 and bucket_width = 1/epsilon, the cutoff
318 * frequency is 9*N / bucket_width.
320 cutoff_freq
= 9 * lexeme_no
/ bucket_width
;
322 i
= hash_get_num_entries(lexemes_tab
); /* surely enough space */
323 sort_table
= (TrackItem
**) palloc(sizeof(TrackItem
*) * i
);
325 hash_seq_init(&scan_status
, lexemes_tab
);
329 while ((item
= (TrackItem
*) hash_seq_search(&scan_status
)) != NULL
)
331 if (item
->frequency
> cutoff_freq
)
333 sort_table
[track_len
++] = item
;
334 minfreq
= Min(minfreq
, item
->frequency
);
335 maxfreq
= Max(maxfreq
, item
->frequency
);
338 Assert(track_len
<= i
);
340 /* emit some statistics for debug purposes */
341 elog(DEBUG3
, "tsvector_stats: target # mces = %d, bucket width = %d, "
342 "# lexemes = %d, hashtable size = %d, usable entries = %d",
343 num_mcelem
, bucket_width
, lexeme_no
, i
, track_len
);
346 * If we obtained more lexemes than we really want, get rid of those
347 * with least frequencies. The easiest way is to qsort the array into
348 * descending frequency order and truncate the array.
350 if (num_mcelem
< track_len
)
352 qsort_interruptible(sort_table
, track_len
, sizeof(TrackItem
*),
353 trackitem_compare_frequencies_desc
, NULL
);
354 /* reset minfreq to the smallest frequency we're keeping */
355 minfreq
= sort_table
[num_mcelem
- 1]->frequency
;
358 num_mcelem
= track_len
;
360 /* Generate MCELEM slot entry */
363 MemoryContext old_context
;
364 Datum
*mcelem_values
;
365 float4
*mcelem_freqs
;
368 * We want to store statistics sorted on the lexeme value using
369 * first length, then byte-for-byte comparison. The reason for
370 * doing length comparison first is that we don't care about the
371 * ordering so long as it's consistent, and comparing lengths
372 * first gives us a chance to avoid a strncmp() call.
374 * This is different from what we do with scalar statistics --
375 * they get sorted on frequencies. The rationale is that we
376 * usually search through most common elements looking for a
377 * specific value, so we can grab its frequency. When values are
378 * presorted we can employ binary search for that. See
379 * ts_selfuncs.c for a real usage scenario.
381 qsort_interruptible(sort_table
, num_mcelem
, sizeof(TrackItem
*),
382 trackitem_compare_lexemes
, NULL
);
384 /* Must copy the target values into anl_context */
385 old_context
= MemoryContextSwitchTo(stats
->anl_context
);
388 * We sorted statistics on the lexeme value, but we want to be
389 * able to find out the minimal and maximal frequency without
390 * going through all the values. We keep those two extra
391 * frequencies in two extra cells in mcelem_freqs.
393 * (Note: the MCELEM statistics slot definition allows for a third
394 * extra number containing the frequency of nulls, but we don't
395 * create that for a tsvector column, since null elements aren't
398 mcelem_values
= (Datum
*) palloc(num_mcelem
* sizeof(Datum
));
399 mcelem_freqs
= (float4
*) palloc((num_mcelem
+ 2) * sizeof(float4
));
402 * See comments above about use of nonnull_cnt as the divisor for
403 * the final frequency estimates.
405 for (i
= 0; i
< num_mcelem
; i
++)
407 TrackItem
*titem
= sort_table
[i
];
410 PointerGetDatum(cstring_to_text_with_len(titem
->key
.lexeme
,
412 mcelem_freqs
[i
] = (double) titem
->frequency
/ (double) nonnull_cnt
;
414 mcelem_freqs
[i
++] = (double) minfreq
/ (double) nonnull_cnt
;
415 mcelem_freqs
[i
] = (double) maxfreq
/ (double) nonnull_cnt
;
416 MemoryContextSwitchTo(old_context
);
418 stats
->stakind
[0] = STATISTIC_KIND_MCELEM
;
419 stats
->staop
[0] = TextEqualOperator
;
420 stats
->stacoll
[0] = DEFAULT_COLLATION_OID
;
421 stats
->stanumbers
[0] = mcelem_freqs
;
422 /* See above comment about two extra frequency fields */
423 stats
->numnumbers
[0] = num_mcelem
+ 2;
424 stats
->stavalues
[0] = mcelem_values
;
425 stats
->numvalues
[0] = num_mcelem
;
426 /* We are storing text values */
427 stats
->statypid
[0] = TEXTOID
;
428 stats
->statyplen
[0] = -1; /* typlen, -1 for varlena */
429 stats
->statypbyval
[0] = false;
430 stats
->statypalign
[0] = 'i';
435 /* We found only nulls; assume the column is entirely null */
436 stats
->stats_valid
= true;
437 stats
->stanullfrac
= 1.0;
438 stats
->stawidth
= 0; /* "unknown" */
439 stats
->stadistinct
= 0.0; /* "unknown" */
443 * We don't need to bother cleaning up any of our temporary palloc's. The
444 * hashtable should also go away, as it used a child memory context.
449 * A function to prune the D structure from the Lossy Counting algorithm.
450 * Consult compute_tsvector_stats() for wider explanation.
453 prune_lexemes_hashtable(HTAB
*lexemes_tab
, int b_current
)
455 HASH_SEQ_STATUS scan_status
;
458 hash_seq_init(&scan_status
, lexemes_tab
);
459 while ((item
= (TrackItem
*) hash_seq_search(&scan_status
)) != NULL
)
461 if (item
->frequency
+ item
->delta
<= b_current
)
463 char *lexeme
= item
->key
.lexeme
;
465 if (hash_search(lexemes_tab
, &item
->key
,
466 HASH_REMOVE
, NULL
) == NULL
)
467 elog(ERROR
, "hash table corrupted");
474 * Hash functions for lexemes. They are strings, but not NULL terminated,
475 * so we need a special hash function.
478 lexeme_hash(const void *key
, Size keysize
)
480 const LexemeHashKey
*l
= (const LexemeHashKey
*) key
;
482 return DatumGetUInt32(hash_any((const unsigned char *) l
->lexeme
,
487 * Matching function for lexemes, to be used in hashtable lookups.
490 lexeme_match(const void *key1
, const void *key2
, Size keysize
)
492 /* The keysize parameter is superfluous, the keys store their lengths */
493 return lexeme_compare(key1
, key2
);
497 * Comparison function for lexemes.
500 lexeme_compare(const void *key1
, const void *key2
)
502 const LexemeHashKey
*d1
= (const LexemeHashKey
*) key1
;
503 const LexemeHashKey
*d2
= (const LexemeHashKey
*) key2
;
505 /* First, compare by length */
506 if (d1
->length
> d2
->length
)
508 else if (d1
->length
< d2
->length
)
510 /* Lengths are equal, do a byte-by-byte comparison */
511 return strncmp(d1
->lexeme
, d2
->lexeme
, d1
->length
);
515 * Comparator for sorting TrackItems on frequencies (descending sort)
518 trackitem_compare_frequencies_desc(const void *e1
, const void *e2
, void *arg
)
520 const TrackItem
*const *t1
= (const TrackItem
*const *) e1
;
521 const TrackItem
*const *t2
= (const TrackItem
*const *) e2
;
523 return (*t2
)->frequency
- (*t1
)->frequency
;
527 * Comparator for sorting TrackItems on lexemes
530 trackitem_compare_lexemes(const void *e1
, const void *e2
, void *arg
)
532 const TrackItem
*const *t1
= (const TrackItem
*const *) e1
;
533 const TrackItem
*const *t2
= (const TrackItem
*const *) e2
;
535 return lexeme_compare(&(*t1
)->key
, &(*t2
)->key
);