Clear padding of PgStat_HashKey when handling pgstats entries
[pgsql.git] / src / backend / utils / adt / array_typanalyze.c
blob2c633bee6b1c6c3768be4313904c516514c23792
1 /*-------------------------------------------------------------------------
3 * array_typanalyze.c
4 * Functions for gathering statistics from array columns
6 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
10 * IDENTIFICATION
11 * src/backend/utils/adt/array_typanalyze.c
13 *-------------------------------------------------------------------------
15 #include "postgres.h"
17 #include "access/detoast.h"
18 #include "commands/vacuum.h"
19 #include "utils/array.h"
20 #include "utils/datum.h"
21 #include "utils/fmgrprotos.h"
22 #include "utils/lsyscache.h"
23 #include "utils/typcache.h"
27 * To avoid consuming too much memory, IO and CPU load during analysis, and/or
28 * too much space in the resulting pg_statistic rows, we ignore arrays that
29 * are wider than ARRAY_WIDTH_THRESHOLD (after detoasting!). Note that this
30 * number is considerably more than the similar WIDTH_THRESHOLD limit used
31 * in analyze.c's standard typanalyze code.
33 #define ARRAY_WIDTH_THRESHOLD 0x10000
35 /* Extra data for compute_array_stats function */
36 typedef struct
38 /* Information about array element type */
39 Oid type_id; /* element type's OID */
40 Oid eq_opr; /* default equality operator's OID */
41 Oid coll_id; /* collation to use */
42 bool typbyval; /* physical properties of element type */
43 int16 typlen;
44 char typalign;
47 * Lookup data for element type's comparison and hash functions (these are
48 * in the type's typcache entry, which we expect to remain valid over the
49 * lifespan of the ANALYZE run)
51 FmgrInfo *cmp;
52 FmgrInfo *hash;
54 /* Saved state from std_typanalyze() */
55 AnalyzeAttrComputeStatsFunc std_compute_stats;
56 void *std_extra_data;
57 } ArrayAnalyzeExtraData;
60 * While compute_array_stats is running, we keep a pointer to the extra data
61 * here for use by assorted subroutines. compute_array_stats doesn't
62 * currently need to be re-entrant, so avoiding this is not worth the extra
63 * notational cruft that would be needed.
65 static ArrayAnalyzeExtraData *array_extra_data;
67 /* A hash table entry for the Lossy Counting algorithm */
68 typedef struct
70 Datum key; /* This is 'e' from the LC algorithm. */
71 int frequency; /* This is 'f'. */
72 int delta; /* And this is 'delta'. */
73 int last_container; /* For de-duplication of array elements. */
74 } TrackItem;
76 /* A hash table entry for distinct-elements counts */
77 typedef struct
79 int count; /* Count of distinct elements in an array */
80 int frequency; /* Number of arrays seen with this count */
81 } DECountItem;
83 static void compute_array_stats(VacAttrStats *stats,
84 AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows);
85 static void prune_element_hashtable(HTAB *elements_tab, int b_current);
86 static uint32 element_hash(const void *key, Size keysize);
87 static int element_match(const void *key1, const void *key2, Size keysize);
88 static int element_compare(const void *key1, const void *key2);
89 static int trackitem_compare_frequencies_desc(const void *e1, const void *e2, void *arg);
90 static int trackitem_compare_element(const void *e1, const void *e2, void *arg);
91 static int countitem_compare_count(const void *e1, const void *e2, void *arg);
95 * array_typanalyze -- typanalyze function for array columns
97 Datum
98 array_typanalyze(PG_FUNCTION_ARGS)
100 VacAttrStats *stats = (VacAttrStats *) PG_GETARG_POINTER(0);
101 Oid element_typeid;
102 TypeCacheEntry *typentry;
103 ArrayAnalyzeExtraData *extra_data;
106 * Call the standard typanalyze function. It may fail to find needed
107 * operators, in which case we also can't do anything, so just fail.
109 if (!std_typanalyze(stats))
110 PG_RETURN_BOOL(false);
113 * Check attribute data type is a varlena array (or a domain over one).
115 element_typeid = get_base_element_type(stats->attrtypid);
116 if (!OidIsValid(element_typeid))
117 elog(ERROR, "array_typanalyze was invoked for non-array type %u",
118 stats->attrtypid);
121 * Gather information about the element type. If we fail to find
122 * something, return leaving the state from std_typanalyze() in place.
124 typentry = lookup_type_cache(element_typeid,
125 TYPECACHE_EQ_OPR |
126 TYPECACHE_CMP_PROC_FINFO |
127 TYPECACHE_HASH_PROC_FINFO);
129 if (!OidIsValid(typentry->eq_opr) ||
130 !OidIsValid(typentry->cmp_proc_finfo.fn_oid) ||
131 !OidIsValid(typentry->hash_proc_finfo.fn_oid))
132 PG_RETURN_BOOL(true);
134 /* Store our findings for use by compute_array_stats() */
135 extra_data = (ArrayAnalyzeExtraData *) palloc(sizeof(ArrayAnalyzeExtraData));
136 extra_data->type_id = typentry->type_id;
137 extra_data->eq_opr = typentry->eq_opr;
138 extra_data->coll_id = stats->attrcollid; /* collation we should use */
139 extra_data->typbyval = typentry->typbyval;
140 extra_data->typlen = typentry->typlen;
141 extra_data->typalign = typentry->typalign;
142 extra_data->cmp = &typentry->cmp_proc_finfo;
143 extra_data->hash = &typentry->hash_proc_finfo;
145 /* Save old compute_stats and extra_data for scalar statistics ... */
146 extra_data->std_compute_stats = stats->compute_stats;
147 extra_data->std_extra_data = stats->extra_data;
149 /* ... and replace with our info */
150 stats->compute_stats = compute_array_stats;
151 stats->extra_data = extra_data;
154 * Note we leave stats->minrows set as std_typanalyze set it. Should it
155 * be increased for array analysis purposes?
158 PG_RETURN_BOOL(true);
162 * compute_array_stats() -- compute statistics for an array column
164 * This function computes statistics useful for determining selectivity of
165 * the array operators <@, &&, and @>. It is invoked by ANALYZE via the
166 * compute_stats hook after sample rows have been collected.
168 * We also invoke the standard compute_stats function, which will compute
169 * "scalar" statistics relevant to the btree-style array comparison operators.
170 * However, exact duplicates of an entire array may be rare despite many
171 * arrays sharing individual elements. This especially afflicts long arrays,
172 * which are also liable to lack all scalar statistics due to the low
173 * WIDTH_THRESHOLD used in analyze.c. So, in addition to the standard stats,
174 * we find the most common array elements and compute a histogram of distinct
175 * element counts.
177 * The algorithm used is Lossy Counting, as proposed in the paper "Approximate
178 * frequency counts over data streams" by G. S. Manku and R. Motwani, in
179 * Proceedings of the 28th International Conference on Very Large Data Bases,
180 * Hong Kong, China, August 2002, section 4.2. The paper is available at
181 * http://www.vldb.org/conf/2002/S10P03.pdf
183 * The Lossy Counting (aka LC) algorithm goes like this:
184 * Let s be the threshold frequency for an item (the minimum frequency we
185 * are interested in) and epsilon the error margin for the frequency. Let D
186 * be a set of triples (e, f, delta), where e is an element value, f is that
187 * element's frequency (actually, its current occurrence count) and delta is
188 * the maximum error in f. We start with D empty and process the elements in
189 * batches of size w. (The batch size is also known as "bucket size" and is
190 * equal to 1/epsilon.) Let the current batch number be b_current, starting
191 * with 1. For each element e we either increment its f count, if it's
192 * already in D, or insert a new triple into D with values (e, 1, b_current
193 * - 1). After processing each batch we prune D, by removing from it all
194 * elements with f + delta <= b_current. After the algorithm finishes we
195 * suppress all elements from D that do not satisfy f >= (s - epsilon) * N,
196 * where N is the total number of elements in the input. We emit the
197 * remaining elements with estimated frequency f/N. The LC paper proves
198 * that this algorithm finds all elements with true frequency at least s,
199 * and that no frequency is overestimated or is underestimated by more than
200 * epsilon. Furthermore, given reasonable assumptions about the input
201 * distribution, the required table size is no more than about 7 times w.
203 * In the absence of a principled basis for other particular values, we
204 * follow ts_typanalyze() and use parameters s = 0.07/K, epsilon = s/10.
205 * But we leave out the correction for stopwords, which do not apply to
206 * arrays. These parameters give bucket width w = K/0.007 and maximum
207 * expected hashtable size of about 1000 * K.
209 * Elements may repeat within an array. Since duplicates do not change the
210 * behavior of <@, && or @>, we want to count each element only once per
211 * array. Therefore, we store in the finished pg_statistic entry each
212 * element's frequency as the fraction of all non-null rows that contain it.
213 * We divide the raw counts by nonnull_cnt to get those figures.
215 static void
216 compute_array_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc,
217 int samplerows, double totalrows)
219 ArrayAnalyzeExtraData *extra_data;
220 int num_mcelem;
221 int null_elem_cnt = 0;
222 int analyzed_rows = 0;
224 /* This is D from the LC algorithm. */
225 HTAB *elements_tab;
226 HASHCTL elem_hash_ctl;
227 HASH_SEQ_STATUS scan_status;
229 /* This is the current bucket number from the LC algorithm */
230 int b_current;
232 /* This is 'w' from the LC algorithm */
233 int bucket_width;
234 int array_no;
235 int64 element_no;
236 TrackItem *item;
237 int slot_idx;
238 HTAB *count_tab;
239 HASHCTL count_hash_ctl;
240 DECountItem *count_item;
242 extra_data = (ArrayAnalyzeExtraData *) stats->extra_data;
245 * Invoke analyze.c's standard analysis function to create scalar-style
246 * stats for the column. It will expect its own extra_data pointer, so
247 * temporarily install that.
249 stats->extra_data = extra_data->std_extra_data;
250 extra_data->std_compute_stats(stats, fetchfunc, samplerows, totalrows);
251 stats->extra_data = extra_data;
254 * Set up static pointer for use by subroutines. We wait till here in
255 * case std_compute_stats somehow recursively invokes us (probably not
256 * possible, but ...)
258 array_extra_data = extra_data;
261 * We want statistics_target * 10 elements in the MCELEM array. This
262 * multiplier is pretty arbitrary, but is meant to reflect the fact that
263 * the number of individual elements tracked in pg_statistic ought to be
264 * more than the number of values for a simple scalar column.
266 num_mcelem = stats->attstattarget * 10;
269 * We set bucket width equal to num_mcelem / 0.007 as per the comment
270 * above.
272 bucket_width = num_mcelem * 1000 / 7;
275 * Create the hashtable. It will be in local memory, so we don't need to
276 * worry about overflowing the initial size. Also we don't need to pay any
277 * attention to locking and memory management.
279 elem_hash_ctl.keysize = sizeof(Datum);
280 elem_hash_ctl.entrysize = sizeof(TrackItem);
281 elem_hash_ctl.hash = element_hash;
282 elem_hash_ctl.match = element_match;
283 elem_hash_ctl.hcxt = CurrentMemoryContext;
284 elements_tab = hash_create("Analyzed elements table",
285 num_mcelem,
286 &elem_hash_ctl,
287 HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
289 /* hashtable for array distinct elements counts */
290 count_hash_ctl.keysize = sizeof(int);
291 count_hash_ctl.entrysize = sizeof(DECountItem);
292 count_hash_ctl.hcxt = CurrentMemoryContext;
293 count_tab = hash_create("Array distinct element count table",
295 &count_hash_ctl,
296 HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
298 /* Initialize counters. */
299 b_current = 1;
300 element_no = 0;
302 /* Loop over the arrays. */
303 for (array_no = 0; array_no < samplerows; array_no++)
305 Datum value;
306 bool isnull;
307 ArrayType *array;
308 int num_elems;
309 Datum *elem_values;
310 bool *elem_nulls;
311 bool null_present;
312 int j;
313 int64 prev_element_no = element_no;
314 int distinct_count;
315 bool count_item_found;
317 vacuum_delay_point();
319 value = fetchfunc(stats, array_no, &isnull);
320 if (isnull)
322 /* ignore arrays that are null overall */
323 continue;
326 /* Skip too-large values. */
327 if (toast_raw_datum_size(value) > ARRAY_WIDTH_THRESHOLD)
328 continue;
329 else
330 analyzed_rows++;
333 * Now detoast the array if needed, and deconstruct into datums.
335 array = DatumGetArrayTypeP(value);
337 Assert(ARR_ELEMTYPE(array) == extra_data->type_id);
338 deconstruct_array(array,
339 extra_data->type_id,
340 extra_data->typlen,
341 extra_data->typbyval,
342 extra_data->typalign,
343 &elem_values, &elem_nulls, &num_elems);
346 * We loop through the elements in the array and add them to our
347 * tracking hashtable.
349 null_present = false;
350 for (j = 0; j < num_elems; j++)
352 Datum elem_value;
353 bool found;
355 /* No null element processing other than flag setting here */
356 if (elem_nulls[j])
358 null_present = true;
359 continue;
362 /* Lookup current element in hashtable, adding it if new */
363 elem_value = elem_values[j];
364 item = (TrackItem *) hash_search(elements_tab,
365 &elem_value,
366 HASH_ENTER, &found);
368 if (found)
370 /* The element value is already on the tracking list */
373 * The operators we assist ignore duplicate array elements, so
374 * count a given distinct element only once per array.
376 if (item->last_container == array_no)
377 continue;
379 item->frequency++;
380 item->last_container = array_no;
382 else
384 /* Initialize new tracking list element */
387 * If element type is pass-by-reference, we must copy it into
388 * palloc'd space, so that we can release the array below. (We
389 * do this so that the space needed for element values is
390 * limited by the size of the hashtable; if we kept all the
391 * array values around, it could be much more.)
393 item->key = datumCopy(elem_value,
394 extra_data->typbyval,
395 extra_data->typlen);
397 item->frequency = 1;
398 item->delta = b_current - 1;
399 item->last_container = array_no;
402 /* element_no is the number of elements processed (ie N) */
403 element_no++;
405 /* We prune the D structure after processing each bucket */
406 if (element_no % bucket_width == 0)
408 prune_element_hashtable(elements_tab, b_current);
409 b_current++;
413 /* Count null element presence once per array. */
414 if (null_present)
415 null_elem_cnt++;
417 /* Update frequency of the particular array distinct element count. */
418 distinct_count = (int) (element_no - prev_element_no);
419 count_item = (DECountItem *) hash_search(count_tab, &distinct_count,
420 HASH_ENTER,
421 &count_item_found);
423 if (count_item_found)
424 count_item->frequency++;
425 else
426 count_item->frequency = 1;
428 /* Free memory allocated while detoasting. */
429 if (PointerGetDatum(array) != value)
430 pfree(array);
431 pfree(elem_values);
432 pfree(elem_nulls);
435 /* Skip pg_statistic slots occupied by standard statistics */
436 slot_idx = 0;
437 while (slot_idx < STATISTIC_NUM_SLOTS && stats->stakind[slot_idx] != 0)
438 slot_idx++;
439 if (slot_idx > STATISTIC_NUM_SLOTS - 2)
440 elog(ERROR, "insufficient pg_statistic slots for array stats");
442 /* We can only compute real stats if we found some non-null values. */
443 if (analyzed_rows > 0)
445 int nonnull_cnt = analyzed_rows;
446 int count_items_count;
447 int i;
448 TrackItem **sort_table;
449 int track_len;
450 int64 cutoff_freq;
451 int64 minfreq,
452 maxfreq;
455 * We assume the standard stats code already took care of setting
456 * stats_valid, stanullfrac, stawidth, stadistinct. We'd have to
457 * re-compute those values if we wanted to not store the standard
458 * stats.
462 * Construct an array of the interesting hashtable items, that is,
463 * those meeting the cutoff frequency (s - epsilon)*N. Also identify
464 * the minimum and maximum frequencies among these items.
466 * Since epsilon = s/10 and bucket_width = 1/epsilon, the cutoff
467 * frequency is 9*N / bucket_width.
469 cutoff_freq = 9 * element_no / bucket_width;
471 i = hash_get_num_entries(elements_tab); /* surely enough space */
472 sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * i);
474 hash_seq_init(&scan_status, elements_tab);
475 track_len = 0;
476 minfreq = element_no;
477 maxfreq = 0;
478 while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
480 if (item->frequency > cutoff_freq)
482 sort_table[track_len++] = item;
483 minfreq = Min(minfreq, item->frequency);
484 maxfreq = Max(maxfreq, item->frequency);
487 Assert(track_len <= i);
489 /* emit some statistics for debug purposes */
490 elog(DEBUG3, "compute_array_stats: target # mces = %d, "
491 "bucket width = %d, "
492 "# elements = " INT64_FORMAT ", hashtable size = %d, "
493 "usable entries = %d",
494 num_mcelem, bucket_width, element_no, i, track_len);
497 * If we obtained more elements than we really want, get rid of those
498 * with least frequencies. The easiest way is to qsort the array into
499 * descending frequency order and truncate the array.
501 if (num_mcelem < track_len)
503 qsort_interruptible(sort_table, track_len, sizeof(TrackItem *),
504 trackitem_compare_frequencies_desc, NULL);
505 /* reset minfreq to the smallest frequency we're keeping */
506 minfreq = sort_table[num_mcelem - 1]->frequency;
508 else
509 num_mcelem = track_len;
511 /* Generate MCELEM slot entry */
512 if (num_mcelem > 0)
514 MemoryContext old_context;
515 Datum *mcelem_values;
516 float4 *mcelem_freqs;
519 * We want to store statistics sorted on the element value using
520 * the element type's default comparison function. This permits
521 * fast binary searches in selectivity estimation functions.
523 qsort_interruptible(sort_table, num_mcelem, sizeof(TrackItem *),
524 trackitem_compare_element, NULL);
526 /* Must copy the target values into anl_context */
527 old_context = MemoryContextSwitchTo(stats->anl_context);
530 * We sorted statistics on the element value, but we want to be
531 * able to find the minimal and maximal frequencies without going
532 * through all the values. We also want the frequency of null
533 * elements. Store these three values at the end of mcelem_freqs.
535 mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum));
536 mcelem_freqs = (float4 *) palloc((num_mcelem + 3) * sizeof(float4));
539 * See comments above about use of nonnull_cnt as the divisor for
540 * the final frequency estimates.
542 for (i = 0; i < num_mcelem; i++)
544 TrackItem *titem = sort_table[i];
546 mcelem_values[i] = datumCopy(titem->key,
547 extra_data->typbyval,
548 extra_data->typlen);
549 mcelem_freqs[i] = (double) titem->frequency /
550 (double) nonnull_cnt;
552 mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt;
553 mcelem_freqs[i++] = (double) maxfreq / (double) nonnull_cnt;
554 mcelem_freqs[i++] = (double) null_elem_cnt / (double) nonnull_cnt;
556 MemoryContextSwitchTo(old_context);
558 stats->stakind[slot_idx] = STATISTIC_KIND_MCELEM;
559 stats->staop[slot_idx] = extra_data->eq_opr;
560 stats->stacoll[slot_idx] = extra_data->coll_id;
561 stats->stanumbers[slot_idx] = mcelem_freqs;
562 /* See above comment about extra stanumber entries */
563 stats->numnumbers[slot_idx] = num_mcelem + 3;
564 stats->stavalues[slot_idx] = mcelem_values;
565 stats->numvalues[slot_idx] = num_mcelem;
566 /* We are storing values of element type */
567 stats->statypid[slot_idx] = extra_data->type_id;
568 stats->statyplen[slot_idx] = extra_data->typlen;
569 stats->statypbyval[slot_idx] = extra_data->typbyval;
570 stats->statypalign[slot_idx] = extra_data->typalign;
571 slot_idx++;
574 /* Generate DECHIST slot entry */
575 count_items_count = hash_get_num_entries(count_tab);
576 if (count_items_count > 0)
578 int num_hist = stats->attstattarget;
579 DECountItem **sorted_count_items;
580 int j;
581 int delta;
582 int64 frac;
583 float4 *hist;
585 /* num_hist must be at least 2 for the loop below to work */
586 num_hist = Max(num_hist, 2);
589 * Create an array of DECountItem pointers, and sort them into
590 * increasing count order.
592 sorted_count_items = (DECountItem **)
593 palloc(sizeof(DECountItem *) * count_items_count);
594 hash_seq_init(&scan_status, count_tab);
595 j = 0;
596 while ((count_item = (DECountItem *) hash_seq_search(&scan_status)) != NULL)
598 sorted_count_items[j++] = count_item;
600 qsort_interruptible(sorted_count_items, count_items_count,
601 sizeof(DECountItem *),
602 countitem_compare_count, NULL);
605 * Prepare to fill stanumbers with the histogram, followed by the
606 * average count. This array must be stored in anl_context.
608 hist = (float4 *)
609 MemoryContextAlloc(stats->anl_context,
610 sizeof(float4) * (num_hist + 1));
611 hist[num_hist] = (double) element_no / (double) nonnull_cnt;
613 /*----------
614 * Construct the histogram of distinct-element counts (DECs).
616 * The object of this loop is to copy the min and max DECs to
617 * hist[0] and hist[num_hist - 1], along with evenly-spaced DECs
618 * in between (where "evenly-spaced" is with reference to the
619 * whole input population of arrays). If we had a complete sorted
620 * array of DECs, one per analyzed row, the i'th hist value would
621 * come from DECs[i * (analyzed_rows - 1) / (num_hist - 1)]
622 * (compare the histogram-making loop in compute_scalar_stats()).
623 * But instead of that we have the sorted_count_items[] array,
624 * which holds unique DEC values with their frequencies (that is,
625 * a run-length-compressed version of the full array). So we
626 * control advancing through sorted_count_items[] with the
627 * variable "frac", which is defined as (x - y) * (num_hist - 1),
628 * where x is the index in the notional DECs array corresponding
629 * to the start of the next sorted_count_items[] element's run,
630 * and y is the index in DECs from which we should take the next
631 * histogram value. We have to advance whenever x <= y, that is
632 * frac <= 0. The x component is the sum of the frequencies seen
633 * so far (up through the current sorted_count_items[] element),
634 * and of course y * (num_hist - 1) = i * (analyzed_rows - 1),
635 * per the subscript calculation above. (The subscript calculation
636 * implies dropping any fractional part of y; in this formulation
637 * that's handled by not advancing until frac reaches 1.)
639 * Even though frac has a bounded range, it could overflow int32
640 * when working with very large statistics targets, so we do that
641 * math in int64.
642 *----------
644 delta = analyzed_rows - 1;
645 j = 0; /* current index in sorted_count_items */
646 /* Initialize frac for sorted_count_items[0]; y is initially 0 */
647 frac = (int64) sorted_count_items[0]->frequency * (num_hist - 1);
648 for (i = 0; i < num_hist; i++)
650 while (frac <= 0)
652 /* Advance, and update x component of frac */
653 j++;
654 frac += (int64) sorted_count_items[j]->frequency * (num_hist - 1);
656 hist[i] = sorted_count_items[j]->count;
657 frac -= delta; /* update y for upcoming i increment */
659 Assert(j == count_items_count - 1);
661 stats->stakind[slot_idx] = STATISTIC_KIND_DECHIST;
662 stats->staop[slot_idx] = extra_data->eq_opr;
663 stats->stacoll[slot_idx] = extra_data->coll_id;
664 stats->stanumbers[slot_idx] = hist;
665 stats->numnumbers[slot_idx] = num_hist + 1;
666 slot_idx++;
671 * We don't need to bother cleaning up any of our temporary palloc's. The
672 * hashtable should also go away, as it used a child memory context.
677 * A function to prune the D structure from the Lossy Counting algorithm.
678 * Consult compute_tsvector_stats() for wider explanation.
680 static void
681 prune_element_hashtable(HTAB *elements_tab, int b_current)
683 HASH_SEQ_STATUS scan_status;
684 TrackItem *item;
686 hash_seq_init(&scan_status, elements_tab);
687 while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
689 if (item->frequency + item->delta <= b_current)
691 Datum value = item->key;
693 if (hash_search(elements_tab, &item->key,
694 HASH_REMOVE, NULL) == NULL)
695 elog(ERROR, "hash table corrupted");
696 /* We should free memory if element is not passed by value */
697 if (!array_extra_data->typbyval)
698 pfree(DatumGetPointer(value));
704 * Hash function for elements.
706 * We use the element type's default hash opclass, and the column collation
707 * if the type is collation-sensitive.
709 static uint32
710 element_hash(const void *key, Size keysize)
712 Datum d = *((const Datum *) key);
713 Datum h;
715 h = FunctionCall1Coll(array_extra_data->hash,
716 array_extra_data->coll_id,
718 return DatumGetUInt32(h);
722 * Matching function for elements, to be used in hashtable lookups.
724 static int
725 element_match(const void *key1, const void *key2, Size keysize)
727 /* The keysize parameter is superfluous here */
728 return element_compare(key1, key2);
732 * Comparison function for elements.
734 * We use the element type's default btree opclass, and the column collation
735 * if the type is collation-sensitive.
737 * XXX consider using SortSupport infrastructure
739 static int
740 element_compare(const void *key1, const void *key2)
742 Datum d1 = *((const Datum *) key1);
743 Datum d2 = *((const Datum *) key2);
744 Datum c;
746 c = FunctionCall2Coll(array_extra_data->cmp,
747 array_extra_data->coll_id,
748 d1, d2);
749 return DatumGetInt32(c);
753 * Comparator for sorting TrackItems by frequencies (descending sort)
755 static int
756 trackitem_compare_frequencies_desc(const void *e1, const void *e2, void *arg)
758 const TrackItem *const *t1 = (const TrackItem *const *) e1;
759 const TrackItem *const *t2 = (const TrackItem *const *) e2;
761 return (*t2)->frequency - (*t1)->frequency;
765 * Comparator for sorting TrackItems by element values
767 static int
768 trackitem_compare_element(const void *e1, const void *e2, void *arg)
770 const TrackItem *const *t1 = (const TrackItem *const *) e1;
771 const TrackItem *const *t2 = (const TrackItem *const *) e2;
773 return element_compare(&(*t1)->key, &(*t2)->key);
777 * Comparator for sorting DECountItems by count
779 static int
780 countitem_compare_count(const void *e1, const void *e2, void *arg)
782 const DECountItem *const *t1 = (const DECountItem *const *) e1;
783 const DECountItem *const *t2 = (const DECountItem *const *) e2;
785 if ((*t1)->count < (*t2)->count)
786 return -1;
787 else if ((*t1)->count == (*t2)->count)
788 return 0;
789 else
790 return 1;