Define __EXTENSIONS__ on Solaris, too.
[pgsql.git] / src / backend / catalog / index.c
blob1c3a9e06d37b9bfce737c3259c95d6dec14dc25a
1 /*-------------------------------------------------------------------------
3 * index.c
4 * code to create and destroy POSTGRES index relations
6 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
10 * IDENTIFICATION
11 * src/backend/catalog/index.c
14 * INTERFACE ROUTINES
15 * index_create() - Create a cataloged index relation
16 * index_drop() - Removes index relation from catalogs
17 * BuildIndexInfo() - Prepare to insert index tuples
18 * FormIndexDatum() - Construct datum vector for one index tuple
20 *-------------------------------------------------------------------------
22 #include "postgres.h"
24 #include <unistd.h>
26 #include "access/amapi.h"
27 #include "access/heapam.h"
28 #include "access/multixact.h"
29 #include "access/relscan.h"
30 #include "access/tableam.h"
31 #include "access/toast_compression.h"
32 #include "access/transam.h"
33 #include "access/visibilitymap.h"
34 #include "access/xact.h"
35 #include "bootstrap/bootstrap.h"
36 #include "catalog/binary_upgrade.h"
37 #include "catalog/catalog.h"
38 #include "catalog/dependency.h"
39 #include "catalog/heap.h"
40 #include "catalog/index.h"
41 #include "catalog/objectaccess.h"
42 #include "catalog/partition.h"
43 #include "catalog/pg_am.h"
44 #include "catalog/pg_collation.h"
45 #include "catalog/pg_constraint.h"
46 #include "catalog/pg_description.h"
47 #include "catalog/pg_inherits.h"
48 #include "catalog/pg_opclass.h"
49 #include "catalog/pg_operator.h"
50 #include "catalog/pg_tablespace.h"
51 #include "catalog/pg_trigger.h"
52 #include "catalog/pg_type.h"
53 #include "catalog/storage.h"
54 #include "catalog/storage_xlog.h"
55 #include "commands/event_trigger.h"
56 #include "commands/progress.h"
57 #include "commands/tablecmds.h"
58 #include "commands/trigger.h"
59 #include "executor/executor.h"
60 #include "miscadmin.h"
61 #include "nodes/makefuncs.h"
62 #include "nodes/nodeFuncs.h"
63 #include "optimizer/optimizer.h"
64 #include "parser/parser.h"
65 #include "pgstat.h"
66 #include "rewrite/rewriteManip.h"
67 #include "storage/bufmgr.h"
68 #include "storage/lmgr.h"
69 #include "storage/predicate.h"
70 #include "storage/smgr.h"
71 #include "utils/builtins.h"
72 #include "utils/fmgroids.h"
73 #include "utils/guc.h"
74 #include "utils/inval.h"
75 #include "utils/lsyscache.h"
76 #include "utils/memutils.h"
77 #include "utils/pg_rusage.h"
78 #include "utils/rel.h"
79 #include "utils/snapmgr.h"
80 #include "utils/syscache.h"
81 #include "utils/tuplesort.h"
83 /* Potentially set by pg_upgrade_support functions */
84 Oid binary_upgrade_next_index_pg_class_oid = InvalidOid;
85 RelFileNumber binary_upgrade_next_index_pg_class_relfilenumber =
86 InvalidRelFileNumber;
89 * Pointer-free representation of variables used when reindexing system
90 * catalogs; we use this to propagate those values to parallel workers.
92 typedef struct
94 Oid currentlyReindexedHeap;
95 Oid currentlyReindexedIndex;
96 int numPendingReindexedIndexes;
97 Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER];
98 } SerializedReindexState;
100 /* non-export function prototypes */
101 static bool relationHasPrimaryKey(Relation rel);
102 static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
103 const IndexInfo *indexInfo,
104 const List *indexColNames,
105 Oid accessMethodId,
106 const Oid *collationIds,
107 const Oid *opclassIds);
108 static void InitializeAttributeOids(Relation indexRelation,
109 int numatts, Oid indexoid);
110 static void AppendAttributeTuples(Relation indexRelation, const Datum *attopts, const NullableDatum *stattargets);
111 static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
112 Oid parentIndexId,
113 const IndexInfo *indexInfo,
114 const Oid *collationOids,
115 const Oid *opclassOids,
116 const int16 *coloptions,
117 bool primary,
118 bool isexclusion,
119 bool immediate,
120 bool isvalid,
121 bool isready);
122 static void index_update_stats(Relation rel,
123 bool hasindex,
124 double reltuples);
125 static void IndexCheckExclusion(Relation heapRelation,
126 Relation indexRelation,
127 IndexInfo *indexInfo);
128 static bool validate_index_callback(ItemPointer itemptr, void *opaque);
129 static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid);
130 static void SetReindexProcessing(Oid heapOid, Oid indexOid);
131 static void ResetReindexProcessing(void);
132 static void SetReindexPending(List *indexes);
133 static void RemoveReindexPending(Oid indexOid);
137 * relationHasPrimaryKey
138 * See whether an existing relation has a primary key.
140 * Caller must have suitable lock on the relation.
142 * Note: we intentionally do not check indisvalid here; that's because this
143 * is used to enforce the rule that there can be only one indisprimary index,
144 * and we want that to be true even if said index is invalid.
146 static bool
147 relationHasPrimaryKey(Relation rel)
149 bool result = false;
150 List *indexoidlist;
151 ListCell *indexoidscan;
154 * Get the list of index OIDs for the table from the relcache, and look up
155 * each one in the pg_index syscache until we find one marked primary key
156 * (hopefully there isn't more than one such).
158 indexoidlist = RelationGetIndexList(rel);
160 foreach(indexoidscan, indexoidlist)
162 Oid indexoid = lfirst_oid(indexoidscan);
163 HeapTuple indexTuple;
165 indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid));
166 if (!HeapTupleIsValid(indexTuple)) /* should not happen */
167 elog(ERROR, "cache lookup failed for index %u", indexoid);
168 result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary;
169 ReleaseSysCache(indexTuple);
170 if (result)
171 break;
174 list_free(indexoidlist);
176 return result;
180 * index_check_primary_key
181 * Apply special checks needed before creating a PRIMARY KEY index
183 * This processing used to be in DefineIndex(), but has been split out
184 * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
186 * We check for a pre-existing primary key, and that all columns of the index
187 * are simple column references (not expressions), and that all those
188 * columns are marked NOT NULL. If not, fail.
190 * We used to automatically change unmarked columns to NOT NULL here by doing
191 * our own local ALTER TABLE command. But that doesn't work well if we're
192 * executing one subcommand of an ALTER TABLE: the operations may not get
193 * performed in the right order overall. Now we expect that the parser
194 * inserted any required ALTER TABLE SET NOT NULL operations before trying
195 * to create a primary-key index.
197 * Caller had better have at least ShareLock on the table, else the not-null
198 * checking isn't trustworthy.
200 void
201 index_check_primary_key(Relation heapRel,
202 const IndexInfo *indexInfo,
203 bool is_alter_table,
204 const IndexStmt *stmt)
206 int i;
209 * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
210 * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we
211 * have faith that the parser rejected multiple pkey clauses; and CREATE
212 * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
214 if ((is_alter_table || heapRel->rd_rel->relispartition) &&
215 relationHasPrimaryKey(heapRel))
217 ereport(ERROR,
218 (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
219 errmsg("multiple primary keys for table \"%s\" are not allowed",
220 RelationGetRelationName(heapRel))));
224 * Indexes created with NULLS NOT DISTINCT cannot be used for primary key
225 * constraints. While there is no direct syntax to reach here, it can be
226 * done by creating a separate index and attaching it via ALTER TABLE ..
227 * USING INDEX.
229 if (indexInfo->ii_NullsNotDistinct)
231 ereport(ERROR,
232 (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
233 errmsg("primary keys cannot use NULLS NOT DISTINCT indexes")));
237 * Check that all of the attributes in a primary key are marked as not
238 * null. (We don't really expect to see that; it'd mean the parser messed
239 * up. But it seems wise to check anyway.)
241 for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
243 AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i];
244 HeapTuple atttuple;
245 Form_pg_attribute attform;
247 if (attnum == 0)
248 ereport(ERROR,
249 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
250 errmsg("primary keys cannot be expressions")));
252 /* System attributes are never null, so no need to check */
253 if (attnum < 0)
254 continue;
256 atttuple = SearchSysCache2(ATTNUM,
257 ObjectIdGetDatum(RelationGetRelid(heapRel)),
258 Int16GetDatum(attnum));
259 if (!HeapTupleIsValid(atttuple))
260 elog(ERROR, "cache lookup failed for attribute %d of relation %u",
261 attnum, RelationGetRelid(heapRel));
262 attform = (Form_pg_attribute) GETSTRUCT(atttuple);
264 if (!attform->attnotnull)
265 ereport(ERROR,
266 (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
267 errmsg("primary key column \"%s\" is not marked NOT NULL",
268 NameStr(attform->attname))));
270 ReleaseSysCache(atttuple);
275 * ConstructTupleDescriptor
277 * Build an index tuple descriptor for a new index
279 static TupleDesc
280 ConstructTupleDescriptor(Relation heapRelation,
281 const IndexInfo *indexInfo,
282 const List *indexColNames,
283 Oid accessMethodId,
284 const Oid *collationIds,
285 const Oid *opclassIds)
287 int numatts = indexInfo->ii_NumIndexAttrs;
288 int numkeyatts = indexInfo->ii_NumIndexKeyAttrs;
289 ListCell *colnames_item = list_head(indexColNames);
290 ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
291 IndexAmRoutine *amroutine;
292 TupleDesc heapTupDesc;
293 TupleDesc indexTupDesc;
294 int natts; /* #atts in heap rel --- for error checks */
295 int i;
297 /* We need access to the index AM's API struct */
298 amroutine = GetIndexAmRoutineByAmId(accessMethodId, false);
300 /* ... and to the table's tuple descriptor */
301 heapTupDesc = RelationGetDescr(heapRelation);
302 natts = RelationGetForm(heapRelation)->relnatts;
305 * allocate the new tuple descriptor
307 indexTupDesc = CreateTemplateTupleDesc(numatts);
310 * Fill in the pg_attribute row.
312 for (i = 0; i < numatts; i++)
314 AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i];
315 Form_pg_attribute to = TupleDescAttr(indexTupDesc, i);
316 HeapTuple tuple;
317 Form_pg_type typeTup;
318 Form_pg_opclass opclassTup;
319 Oid keyType;
321 MemSet(to, 0, ATTRIBUTE_FIXED_PART_SIZE);
322 to->attnum = i + 1;
323 to->attcacheoff = -1;
324 to->attislocal = true;
325 to->attcollation = (i < numkeyatts) ? collationIds[i] : InvalidOid;
328 * Set the attribute name as specified by caller.
330 if (colnames_item == NULL) /* shouldn't happen */
331 elog(ERROR, "too few entries in colnames list");
332 namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
333 colnames_item = lnext(indexColNames, colnames_item);
336 * For simple index columns, we copy some pg_attribute fields from the
337 * parent relation. For expressions we have to look at the expression
338 * result.
340 if (atnum != 0)
342 /* Simple index column */
343 const FormData_pg_attribute *from;
345 Assert(atnum > 0); /* should've been caught above */
347 if (atnum > natts) /* safety check */
348 elog(ERROR, "invalid column number %d", atnum);
349 from = TupleDescAttr(heapTupDesc,
350 AttrNumberGetAttrOffset(atnum));
352 to->atttypid = from->atttypid;
353 to->attlen = from->attlen;
354 to->attndims = from->attndims;
355 to->atttypmod = from->atttypmod;
356 to->attbyval = from->attbyval;
357 to->attalign = from->attalign;
358 to->attstorage = from->attstorage;
359 to->attcompression = from->attcompression;
361 else
363 /* Expressional index */
364 Node *indexkey;
366 if (indexpr_item == NULL) /* shouldn't happen */
367 elog(ERROR, "too few entries in indexprs list");
368 indexkey = (Node *) lfirst(indexpr_item);
369 indexpr_item = lnext(indexInfo->ii_Expressions, indexpr_item);
372 * Lookup the expression type in pg_type for the type length etc.
374 keyType = exprType(indexkey);
375 tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
376 if (!HeapTupleIsValid(tuple))
377 elog(ERROR, "cache lookup failed for type %u", keyType);
378 typeTup = (Form_pg_type) GETSTRUCT(tuple);
381 * Assign some of the attributes values. Leave the rest.
383 to->atttypid = keyType;
384 to->attlen = typeTup->typlen;
385 to->atttypmod = exprTypmod(indexkey);
386 to->attbyval = typeTup->typbyval;
387 to->attalign = typeTup->typalign;
388 to->attstorage = typeTup->typstorage;
391 * For expression columns, set attcompression invalid, since
392 * there's no table column from which to copy the value. Whenever
393 * we actually need to compress a value, we'll use whatever the
394 * current value of default_toast_compression is at that point in
395 * time.
397 to->attcompression = InvalidCompressionMethod;
399 ReleaseSysCache(tuple);
402 * Make sure the expression yields a type that's safe to store in
403 * an index. We need this defense because we have index opclasses
404 * for pseudo-types such as "record", and the actually stored type
405 * had better be safe; eg, a named composite type is okay, an
406 * anonymous record type is not. The test is the same as for
407 * whether a table column is of a safe type (which is why we
408 * needn't check for the non-expression case).
410 CheckAttributeType(NameStr(to->attname),
411 to->atttypid, to->attcollation,
412 NIL, 0);
416 * We do not yet have the correct relation OID for the index, so just
417 * set it invalid for now. InitializeAttributeOids() will fix it
418 * later.
420 to->attrelid = InvalidOid;
423 * Check the opclass and index AM to see if either provides a keytype
424 * (overriding the attribute type). Opclass (if exists) takes
425 * precedence.
427 keyType = amroutine->amkeytype;
429 if (i < indexInfo->ii_NumIndexKeyAttrs)
431 tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclassIds[i]));
432 if (!HeapTupleIsValid(tuple))
433 elog(ERROR, "cache lookup failed for opclass %u", opclassIds[i]);
434 opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
435 if (OidIsValid(opclassTup->opckeytype))
436 keyType = opclassTup->opckeytype;
439 * If keytype is specified as ANYELEMENT, and opcintype is
440 * ANYARRAY, then the attribute type must be an array (else it'd
441 * not have matched this opclass); use its element type.
443 * We could also allow ANYCOMPATIBLE/ANYCOMPATIBLEARRAY here, but
444 * there seems no need to do so; there's no reason to declare an
445 * opclass as taking ANYCOMPATIBLEARRAY rather than ANYARRAY.
447 if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID)
449 keyType = get_base_element_type(to->atttypid);
450 if (!OidIsValid(keyType))
451 elog(ERROR, "could not get element type of array type %u",
452 to->atttypid);
455 ReleaseSysCache(tuple);
459 * If a key type different from the heap value is specified, update
460 * the type-related fields in the index tupdesc.
462 if (OidIsValid(keyType) && keyType != to->atttypid)
464 tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
465 if (!HeapTupleIsValid(tuple))
466 elog(ERROR, "cache lookup failed for type %u", keyType);
467 typeTup = (Form_pg_type) GETSTRUCT(tuple);
469 to->atttypid = keyType;
470 to->atttypmod = -1;
471 to->attlen = typeTup->typlen;
472 to->attbyval = typeTup->typbyval;
473 to->attalign = typeTup->typalign;
474 to->attstorage = typeTup->typstorage;
475 /* As above, use the default compression method in this case */
476 to->attcompression = InvalidCompressionMethod;
478 ReleaseSysCache(tuple);
482 pfree(amroutine);
484 return indexTupDesc;
487 /* ----------------------------------------------------------------
488 * InitializeAttributeOids
489 * ----------------------------------------------------------------
491 static void
492 InitializeAttributeOids(Relation indexRelation,
493 int numatts,
494 Oid indexoid)
496 TupleDesc tupleDescriptor;
497 int i;
499 tupleDescriptor = RelationGetDescr(indexRelation);
501 for (i = 0; i < numatts; i += 1)
502 TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid;
505 /* ----------------------------------------------------------------
506 * AppendAttributeTuples
507 * ----------------------------------------------------------------
509 static void
510 AppendAttributeTuples(Relation indexRelation, const Datum *attopts, const NullableDatum *stattargets)
512 Relation pg_attribute;
513 CatalogIndexState indstate;
514 TupleDesc indexTupDesc;
515 FormExtraData_pg_attribute *attrs_extra = NULL;
517 if (attopts)
519 attrs_extra = palloc0_array(FormExtraData_pg_attribute, indexRelation->rd_att->natts);
521 for (int i = 0; i < indexRelation->rd_att->natts; i++)
523 if (attopts[i])
524 attrs_extra[i].attoptions.value = attopts[i];
525 else
526 attrs_extra[i].attoptions.isnull = true;
528 if (stattargets)
529 attrs_extra[i].attstattarget = stattargets[i];
530 else
531 attrs_extra[i].attstattarget.isnull = true;
536 * open the attribute relation and its indexes
538 pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
540 indstate = CatalogOpenIndexes(pg_attribute);
543 * insert data from new index's tupdesc into pg_attribute
545 indexTupDesc = RelationGetDescr(indexRelation);
547 InsertPgAttributeTuples(pg_attribute, indexTupDesc, InvalidOid, attrs_extra, indstate);
549 CatalogCloseIndexes(indstate);
551 table_close(pg_attribute, RowExclusiveLock);
554 /* ----------------------------------------------------------------
555 * UpdateIndexRelation
557 * Construct and insert a new entry in the pg_index catalog
558 * ----------------------------------------------------------------
560 static void
561 UpdateIndexRelation(Oid indexoid,
562 Oid heapoid,
563 Oid parentIndexId,
564 const IndexInfo *indexInfo,
565 const Oid *collationOids,
566 const Oid *opclassOids,
567 const int16 *coloptions,
568 bool primary,
569 bool isexclusion,
570 bool immediate,
571 bool isvalid,
572 bool isready)
574 int2vector *indkey;
575 oidvector *indcollation;
576 oidvector *indclass;
577 int2vector *indoption;
578 Datum exprsDatum;
579 Datum predDatum;
580 Datum values[Natts_pg_index];
581 bool nulls[Natts_pg_index] = {0};
582 Relation pg_index;
583 HeapTuple tuple;
584 int i;
587 * Copy the index key, opclass, and indoption info into arrays (should we
588 * make the caller pass them like this to start with?)
590 indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
591 for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
592 indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i];
593 indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs);
594 indclass = buildoidvector(opclassOids, indexInfo->ii_NumIndexKeyAttrs);
595 indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs);
598 * Convert the index expressions (if any) to a text datum
600 if (indexInfo->ii_Expressions != NIL)
602 char *exprsString;
604 exprsString = nodeToString(indexInfo->ii_Expressions);
605 exprsDatum = CStringGetTextDatum(exprsString);
606 pfree(exprsString);
608 else
609 exprsDatum = (Datum) 0;
612 * Convert the index predicate (if any) to a text datum. Note we convert
613 * implicit-AND format to normal explicit-AND for storage.
615 if (indexInfo->ii_Predicate != NIL)
617 char *predString;
619 predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
620 predDatum = CStringGetTextDatum(predString);
621 pfree(predString);
623 else
624 predDatum = (Datum) 0;
628 * open the system catalog index relation
630 pg_index = table_open(IndexRelationId, RowExclusiveLock);
633 * Build a pg_index tuple
635 values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
636 values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
637 values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
638 values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs);
639 values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
640 values[Anum_pg_index_indnullsnotdistinct - 1] = BoolGetDatum(indexInfo->ii_NullsNotDistinct);
641 values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
642 values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion);
643 values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
644 values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
645 values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
646 values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
647 values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready);
648 values[Anum_pg_index_indislive - 1] = BoolGetDatum(true);
649 values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false);
650 values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
651 values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation);
652 values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
653 values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
654 values[Anum_pg_index_indexprs - 1] = exprsDatum;
655 if (exprsDatum == (Datum) 0)
656 nulls[Anum_pg_index_indexprs - 1] = true;
657 values[Anum_pg_index_indpred - 1] = predDatum;
658 if (predDatum == (Datum) 0)
659 nulls[Anum_pg_index_indpred - 1] = true;
661 tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
664 * insert the tuple into the pg_index catalog
666 CatalogTupleInsert(pg_index, tuple);
669 * close the relation and free the tuple
671 table_close(pg_index, RowExclusiveLock);
672 heap_freetuple(tuple);
677 * index_create
679 * heapRelation: table to build index on (suitably locked by caller)
680 * indexRelationName: what it say
681 * indexRelationId: normally, pass InvalidOid to let this routine
682 * generate an OID for the index. During bootstrap this may be
683 * nonzero to specify a preselected OID.
684 * parentIndexRelid: if creating an index partition, the OID of the
685 * parent index; otherwise InvalidOid.
686 * parentConstraintId: if creating a constraint on a partition, the OID
687 * of the constraint in the parent; otherwise InvalidOid.
688 * relFileNumber: normally, pass InvalidRelFileNumber to get new storage.
689 * May be nonzero to attach an existing valid build.
690 * indexInfo: same info executor uses to insert into the index
691 * indexColNames: column names to use for index (List of char *)
692 * accessMethodId: OID of index AM to use
693 * tableSpaceId: OID of tablespace to use
694 * collationIds: array of collation OIDs, one per index column
695 * opclassIds: array of index opclass OIDs, one per index column
696 * coloptions: array of per-index-column indoption settings
697 * reloptions: AM-specific options
698 * flags: bitmask that can include any combination of these bits:
699 * INDEX_CREATE_IS_PRIMARY
700 * the index is a primary key
701 * INDEX_CREATE_ADD_CONSTRAINT:
702 * invoke index_constraint_create also
703 * INDEX_CREATE_SKIP_BUILD:
704 * skip the index_build() step for the moment; caller must do it
705 * later (typically via reindex_index())
706 * INDEX_CREATE_CONCURRENT:
707 * do not lock the table against writers. The index will be
708 * marked "invalid" and the caller must take additional steps
709 * to fix it up.
710 * INDEX_CREATE_IF_NOT_EXISTS:
711 * do not throw an error if a relation with the same name
712 * already exists.
713 * INDEX_CREATE_PARTITIONED:
714 * create a partitioned index (table must be partitioned)
715 * constr_flags: flags passed to index_constraint_create
716 * (only if INDEX_CREATE_ADD_CONSTRAINT is set)
717 * allow_system_table_mods: allow table to be a system catalog
718 * is_internal: if true, post creation hook for new index
719 * constraintId: if not NULL, receives OID of created constraint
721 * Returns the OID of the created index.
724 index_create(Relation heapRelation,
725 const char *indexRelationName,
726 Oid indexRelationId,
727 Oid parentIndexRelid,
728 Oid parentConstraintId,
729 RelFileNumber relFileNumber,
730 IndexInfo *indexInfo,
731 const List *indexColNames,
732 Oid accessMethodId,
733 Oid tableSpaceId,
734 const Oid *collationIds,
735 const Oid *opclassIds,
736 const Datum *opclassOptions,
737 const int16 *coloptions,
738 const NullableDatum *stattargets,
739 Datum reloptions,
740 bits16 flags,
741 bits16 constr_flags,
742 bool allow_system_table_mods,
743 bool is_internal,
744 Oid *constraintId)
746 Oid heapRelationId = RelationGetRelid(heapRelation);
747 Relation pg_class;
748 Relation indexRelation;
749 TupleDesc indexTupDesc;
750 bool shared_relation;
751 bool mapped_relation;
752 bool is_exclusion;
753 Oid namespaceId;
754 int i;
755 char relpersistence;
756 bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0;
757 bool invalid = (flags & INDEX_CREATE_INVALID) != 0;
758 bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0;
759 bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0;
760 char relkind;
761 TransactionId relfrozenxid;
762 MultiXactId relminmxid;
763 bool create_storage = !RelFileNumberIsValid(relFileNumber);
765 /* constraint flags can only be set when a constraint is requested */
766 Assert((constr_flags == 0) ||
767 ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0));
768 /* partitioned indexes must never be "built" by themselves */
769 Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD));
771 relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX;
772 is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
774 pg_class = table_open(RelationRelationId, RowExclusiveLock);
777 * The index will be in the same namespace as its parent table, and is
778 * shared across databases if and only if the parent is. Likewise, it
779 * will use the relfilenumber map if and only if the parent does; and it
780 * inherits the parent's relpersistence.
782 namespaceId = RelationGetNamespace(heapRelation);
783 shared_relation = heapRelation->rd_rel->relisshared;
784 mapped_relation = RelationIsMapped(heapRelation);
785 relpersistence = heapRelation->rd_rel->relpersistence;
788 * check parameters
790 if (indexInfo->ii_NumIndexAttrs < 1)
791 elog(ERROR, "must index at least one column");
793 if (!allow_system_table_mods &&
794 IsSystemRelation(heapRelation) &&
795 IsNormalProcessingMode())
796 ereport(ERROR,
797 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
798 errmsg("user-defined indexes on system catalog tables are not supported")));
801 * Btree text_pattern_ops uses text_eq as the equality operator, which is
802 * fine as long as the collation is deterministic; text_eq then reduces to
803 * bitwise equality and so it is semantically compatible with the other
804 * operators and functions in that opclass. But with a nondeterministic
805 * collation, text_eq could yield results that are incompatible with the
806 * actual behavior of the index (which is determined by the opclass's
807 * comparison function). We prevent such problems by refusing creation of
808 * an index with that opclass and a nondeterministic collation.
810 * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we
811 * find more cases, we might decide to create a real mechanism for marking
812 * opclasses as incompatible with nondeterminism; but for now, this small
813 * hack suffices.
815 * Another solution is to use a special operator, not text_eq, as the
816 * equality opclass member; but that is undesirable because it would
817 * prevent index usage in many queries that work fine today.
819 for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
821 Oid collation = collationIds[i];
822 Oid opclass = opclassIds[i];
824 if (collation)
826 if ((opclass == TEXT_BTREE_PATTERN_OPS_OID ||
827 opclass == VARCHAR_BTREE_PATTERN_OPS_OID ||
828 opclass == BPCHAR_BTREE_PATTERN_OPS_OID) &&
829 !get_collation_isdeterministic(collation))
831 HeapTuple classtup;
833 classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
834 if (!HeapTupleIsValid(classtup))
835 elog(ERROR, "cache lookup failed for operator class %u", opclass);
836 ereport(ERROR,
837 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
838 errmsg("nondeterministic collations are not supported for operator class \"%s\"",
839 NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname))));
840 ReleaseSysCache(classtup);
846 * Concurrent index build on a system catalog is unsafe because we tend to
847 * release locks before committing in catalogs.
849 if (concurrent &&
850 IsCatalogRelation(heapRelation))
851 ereport(ERROR,
852 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
853 errmsg("concurrent index creation on system catalog tables is not supported")));
856 * This case is currently not supported. There's no way to ask for it in
857 * the grammar with CREATE INDEX, but it can happen with REINDEX.
859 if (concurrent && is_exclusion)
860 ereport(ERROR,
861 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
862 errmsg("concurrent index creation for exclusion constraints is not supported")));
865 * We cannot allow indexing a shared relation after initdb (because
866 * there's no way to make the entry in other databases' pg_class).
868 if (shared_relation && !IsBootstrapProcessingMode())
869 ereport(ERROR,
870 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
871 errmsg("shared indexes cannot be created after initdb")));
874 * Shared relations must be in pg_global, too (last-ditch check)
876 if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID)
877 elog(ERROR, "shared relations must be placed in pg_global tablespace");
880 * Check for duplicate name (both as to the index, and as to the
881 * associated constraint if any). Such cases would fail on the relevant
882 * catalogs' unique indexes anyway, but we prefer to give a friendlier
883 * error message.
885 if (get_relname_relid(indexRelationName, namespaceId))
887 if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0)
889 ereport(NOTICE,
890 (errcode(ERRCODE_DUPLICATE_TABLE),
891 errmsg("relation \"%s\" already exists, skipping",
892 indexRelationName)));
893 table_close(pg_class, RowExclusiveLock);
894 return InvalidOid;
897 ereport(ERROR,
898 (errcode(ERRCODE_DUPLICATE_TABLE),
899 errmsg("relation \"%s\" already exists",
900 indexRelationName)));
903 if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 &&
904 ConstraintNameIsUsed(CONSTRAINT_RELATION, heapRelationId,
905 indexRelationName))
908 * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
909 * conflicting constraint is not an index.
911 ereport(ERROR,
912 (errcode(ERRCODE_DUPLICATE_OBJECT),
913 errmsg("constraint \"%s\" for relation \"%s\" already exists",
914 indexRelationName, RelationGetRelationName(heapRelation))));
918 * construct tuple descriptor for index tuples
920 indexTupDesc = ConstructTupleDescriptor(heapRelation,
921 indexInfo,
922 indexColNames,
923 accessMethodId,
924 collationIds,
925 opclassIds);
928 * Allocate an OID for the index, unless we were told what to use.
930 * The OID will be the relfilenumber as well, so make sure it doesn't
931 * collide with either pg_class OIDs or existing physical files.
933 if (!OidIsValid(indexRelationId))
935 /* Use binary-upgrade override for pg_class.oid and relfilenumber */
936 if (IsBinaryUpgrade)
938 if (!OidIsValid(binary_upgrade_next_index_pg_class_oid))
939 ereport(ERROR,
940 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
941 errmsg("pg_class index OID value not set when in binary upgrade mode")));
943 indexRelationId = binary_upgrade_next_index_pg_class_oid;
944 binary_upgrade_next_index_pg_class_oid = InvalidOid;
946 /* Override the index relfilenumber */
947 if ((relkind == RELKIND_INDEX) &&
948 (!RelFileNumberIsValid(binary_upgrade_next_index_pg_class_relfilenumber)))
949 ereport(ERROR,
950 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
951 errmsg("index relfilenumber value not set when in binary upgrade mode")));
952 relFileNumber = binary_upgrade_next_index_pg_class_relfilenumber;
953 binary_upgrade_next_index_pg_class_relfilenumber = InvalidRelFileNumber;
956 * Note that we want create_storage = true for binary upgrade. The
957 * storage we create here will be replaced later, but we need to
958 * have something on disk in the meanwhile.
960 Assert(create_storage);
962 else
964 indexRelationId =
965 GetNewRelFileNumber(tableSpaceId, pg_class, relpersistence);
970 * create the index relation's relcache entry and, if necessary, the
971 * physical disk file. (If we fail further down, it's the smgr's
972 * responsibility to remove the disk file again, if any.)
974 indexRelation = heap_create(indexRelationName,
975 namespaceId,
976 tableSpaceId,
977 indexRelationId,
978 relFileNumber,
979 accessMethodId,
980 indexTupDesc,
981 relkind,
982 relpersistence,
983 shared_relation,
984 mapped_relation,
985 allow_system_table_mods,
986 &relfrozenxid,
987 &relminmxid,
988 create_storage);
990 Assert(relfrozenxid == InvalidTransactionId);
991 Assert(relminmxid == InvalidMultiXactId);
992 Assert(indexRelationId == RelationGetRelid(indexRelation));
995 * Obtain exclusive lock on it. Although no other transactions can see it
996 * until we commit, this prevents deadlock-risk complaints from lock
997 * manager in cases such as CLUSTER.
999 LockRelation(indexRelation, AccessExclusiveLock);
1002 * Fill in fields of the index's pg_class entry that are not set correctly
1003 * by heap_create.
1005 * XXX should have a cleaner way to create cataloged indexes
1007 indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
1008 indexRelation->rd_rel->relam = accessMethodId;
1009 indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid);
1012 * store index's pg_class entry
1014 InsertPgClassTuple(pg_class, indexRelation,
1015 RelationGetRelid(indexRelation),
1016 (Datum) 0,
1017 reloptions);
1019 /* done with pg_class */
1020 table_close(pg_class, RowExclusiveLock);
1023 * now update the object id's of all the attribute tuple forms in the
1024 * index relation's tuple descriptor
1026 InitializeAttributeOids(indexRelation,
1027 indexInfo->ii_NumIndexAttrs,
1028 indexRelationId);
1031 * append ATTRIBUTE tuples for the index
1033 AppendAttributeTuples(indexRelation, opclassOptions, stattargets);
1035 /* ----------------
1036 * update pg_index
1037 * (append INDEX tuple)
1039 * Note that this stows away a representation of "predicate".
1040 * (Or, could define a rule to maintain the predicate) --Nels, Feb '92
1041 * ----------------
1043 UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid,
1044 indexInfo,
1045 collationIds, opclassIds, coloptions,
1046 isprimary, is_exclusion,
1047 (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0,
1048 !concurrent && !invalid,
1049 !concurrent);
1052 * Register relcache invalidation on the indexes' heap relation, to
1053 * maintain consistency of its index list
1055 CacheInvalidateRelcache(heapRelation);
1057 /* update pg_inherits and the parent's relhassubclass, if needed */
1058 if (OidIsValid(parentIndexRelid))
1060 StoreSingleInheritance(indexRelationId, parentIndexRelid, 1);
1061 LockRelationOid(parentIndexRelid, ShareUpdateExclusiveLock);
1062 SetRelationHasSubclass(parentIndexRelid, true);
1066 * Register constraint and dependencies for the index.
1068 * If the index is from a CONSTRAINT clause, construct a pg_constraint
1069 * entry. The index will be linked to the constraint, which in turn is
1070 * linked to the table. If it's not a CONSTRAINT, we need to make a
1071 * dependency directly on the table.
1073 * We don't need a dependency on the namespace, because there'll be an
1074 * indirect dependency via our parent table.
1076 * During bootstrap we can't register any dependencies, and we don't try
1077 * to make a constraint either.
1079 if (!IsBootstrapProcessingMode())
1081 ObjectAddress myself,
1082 referenced;
1083 ObjectAddresses *addrs;
1085 ObjectAddressSet(myself, RelationRelationId, indexRelationId);
1087 if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)
1089 char constraintType;
1090 ObjectAddress localaddr;
1092 if (isprimary)
1093 constraintType = CONSTRAINT_PRIMARY;
1094 else if (indexInfo->ii_Unique)
1095 constraintType = CONSTRAINT_UNIQUE;
1096 else if (is_exclusion)
1097 constraintType = CONSTRAINT_EXCLUSION;
1098 else
1100 elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1101 constraintType = 0; /* keep compiler quiet */
1104 localaddr = index_constraint_create(heapRelation,
1105 indexRelationId,
1106 parentConstraintId,
1107 indexInfo,
1108 indexRelationName,
1109 constraintType,
1110 constr_flags,
1111 allow_system_table_mods,
1112 is_internal);
1113 if (constraintId)
1114 *constraintId = localaddr.objectId;
1116 else
1118 bool have_simple_col = false;
1120 addrs = new_object_addresses();
1122 /* Create auto dependencies on simply-referenced columns */
1123 for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
1125 if (indexInfo->ii_IndexAttrNumbers[i] != 0)
1127 ObjectAddressSubSet(referenced, RelationRelationId,
1128 heapRelationId,
1129 indexInfo->ii_IndexAttrNumbers[i]);
1130 add_exact_object_address(&referenced, addrs);
1131 have_simple_col = true;
1136 * If there are no simply-referenced columns, give the index an
1137 * auto dependency on the whole table. In most cases, this will
1138 * be redundant, but it might not be if the index expressions and
1139 * predicate contain no Vars or only whole-row Vars.
1141 if (!have_simple_col)
1143 ObjectAddressSet(referenced, RelationRelationId,
1144 heapRelationId);
1145 add_exact_object_address(&referenced, addrs);
1148 record_object_address_dependencies(&myself, addrs, DEPENDENCY_AUTO);
1149 free_object_addresses(addrs);
1153 * If this is an index partition, create partition dependencies on
1154 * both the parent index and the table. (Note: these must be *in
1155 * addition to*, not instead of, all other dependencies. Otherwise
1156 * we'll be short some dependencies after DETACH PARTITION.)
1158 if (OidIsValid(parentIndexRelid))
1160 ObjectAddressSet(referenced, RelationRelationId, parentIndexRelid);
1161 recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1163 ObjectAddressSet(referenced, RelationRelationId, heapRelationId);
1164 recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1167 /* placeholder for normal dependencies */
1168 addrs = new_object_addresses();
1170 /* Store dependency on collations */
1172 /* The default collation is pinned, so don't bother recording it */
1173 for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1175 if (OidIsValid(collationIds[i]) && collationIds[i] != DEFAULT_COLLATION_OID)
1177 ObjectAddressSet(referenced, CollationRelationId, collationIds[i]);
1178 add_exact_object_address(&referenced, addrs);
1182 /* Store dependency on operator classes */
1183 for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1185 ObjectAddressSet(referenced, OperatorClassRelationId, opclassIds[i]);
1186 add_exact_object_address(&referenced, addrs);
1189 record_object_address_dependencies(&myself, addrs, DEPENDENCY_NORMAL);
1190 free_object_addresses(addrs);
1192 /* Store dependencies on anything mentioned in index expressions */
1193 if (indexInfo->ii_Expressions)
1195 recordDependencyOnSingleRelExpr(&myself,
1196 (Node *) indexInfo->ii_Expressions,
1197 heapRelationId,
1198 DEPENDENCY_NORMAL,
1199 DEPENDENCY_AUTO, false);
1202 /* Store dependencies on anything mentioned in predicate */
1203 if (indexInfo->ii_Predicate)
1205 recordDependencyOnSingleRelExpr(&myself,
1206 (Node *) indexInfo->ii_Predicate,
1207 heapRelationId,
1208 DEPENDENCY_NORMAL,
1209 DEPENDENCY_AUTO, false);
1212 else
1214 /* Bootstrap mode - assert we weren't asked for constraint support */
1215 Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0);
1218 /* Post creation hook for new index */
1219 InvokeObjectPostCreateHookArg(RelationRelationId,
1220 indexRelationId, 0, is_internal);
1223 * Advance the command counter so that we can see the newly-entered
1224 * catalog tuples for the index.
1226 CommandCounterIncrement();
1229 * In bootstrap mode, we have to fill in the index strategy structure with
1230 * information from the catalogs. If we aren't bootstrapping, then the
1231 * relcache entry has already been rebuilt thanks to sinval update during
1232 * CommandCounterIncrement.
1234 if (IsBootstrapProcessingMode())
1235 RelationInitIndexAccessInfo(indexRelation);
1236 else
1237 Assert(indexRelation->rd_indexcxt != NULL);
1239 indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs;
1241 /* Validate opclass-specific options */
1242 if (opclassOptions)
1243 for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1244 (void) index_opclass_options(indexRelation, i + 1,
1245 opclassOptions[i],
1246 true);
1249 * If this is bootstrap (initdb) time, then we don't actually fill in the
1250 * index yet. We'll be creating more indexes and classes later, so we
1251 * delay filling them in until just before we're done with bootstrapping.
1252 * Similarly, if the caller specified to skip the build then filling the
1253 * index is delayed till later (ALTER TABLE can save work in some cases
1254 * with this). Otherwise, we call the AM routine that constructs the
1255 * index.
1257 if (IsBootstrapProcessingMode())
1259 index_register(heapRelationId, indexRelationId, indexInfo);
1261 else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0)
1264 * Caller is responsible for filling the index later on. However,
1265 * we'd better make sure that the heap relation is correctly marked as
1266 * having an index.
1268 index_update_stats(heapRelation,
1269 true,
1270 -1.0);
1271 /* Make the above update visible */
1272 CommandCounterIncrement();
1274 else
1276 index_build(heapRelation, indexRelation, indexInfo, false, true);
1280 * Close the index; but we keep the lock that we acquired above until end
1281 * of transaction. Closing the heap is caller's responsibility.
1283 index_close(indexRelation, NoLock);
1285 return indexRelationId;
1289 * index_concurrently_create_copy
1291 * Create concurrently an index based on the definition of the one provided by
1292 * caller. The index is inserted into catalogs and needs to be built later
1293 * on. This is called during concurrent reindex processing.
1295 * "tablespaceOid" is the tablespace to use for this index.
1298 index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId,
1299 Oid tablespaceOid, const char *newName)
1301 Relation indexRelation;
1302 IndexInfo *oldInfo,
1303 *newInfo;
1304 Oid newIndexId = InvalidOid;
1305 HeapTuple indexTuple,
1306 classTuple;
1307 Datum indclassDatum,
1308 colOptionDatum,
1309 reloptionsDatum;
1310 Datum *opclassOptions;
1311 oidvector *indclass;
1312 int2vector *indcoloptions;
1313 NullableDatum *stattargets;
1314 bool isnull;
1315 List *indexColNames = NIL;
1316 List *indexExprs = NIL;
1317 List *indexPreds = NIL;
1319 indexRelation = index_open(oldIndexId, RowExclusiveLock);
1321 /* The new index needs some information from the old index */
1322 oldInfo = BuildIndexInfo(indexRelation);
1325 * Concurrent build of an index with exclusion constraints is not
1326 * supported.
1328 if (oldInfo->ii_ExclusionOps != NULL)
1329 ereport(ERROR,
1330 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1331 errmsg("concurrent index creation for exclusion constraints is not supported")));
1333 /* Get the array of class and column options IDs from index info */
1334 indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId));
1335 if (!HeapTupleIsValid(indexTuple))
1336 elog(ERROR, "cache lookup failed for index %u", oldIndexId);
1337 indclassDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1338 Anum_pg_index_indclass);
1339 indclass = (oidvector *) DatumGetPointer(indclassDatum);
1341 colOptionDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1342 Anum_pg_index_indoption);
1343 indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum);
1345 /* Fetch reloptions of index if any */
1346 classTuple = SearchSysCache1(RELOID, ObjectIdGetDatum(oldIndexId));
1347 if (!HeapTupleIsValid(classTuple))
1348 elog(ERROR, "cache lookup failed for relation %u", oldIndexId);
1349 reloptionsDatum = SysCacheGetAttr(RELOID, classTuple,
1350 Anum_pg_class_reloptions, &isnull);
1353 * Fetch the list of expressions and predicates directly from the
1354 * catalogs. This cannot rely on the information from IndexInfo of the
1355 * old index as these have been flattened for the planner.
1357 if (oldInfo->ii_Expressions != NIL)
1359 Datum exprDatum;
1360 char *exprString;
1362 exprDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1363 Anum_pg_index_indexprs);
1364 exprString = TextDatumGetCString(exprDatum);
1365 indexExprs = (List *) stringToNode(exprString);
1366 pfree(exprString);
1368 if (oldInfo->ii_Predicate != NIL)
1370 Datum predDatum;
1371 char *predString;
1373 predDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1374 Anum_pg_index_indpred);
1375 predString = TextDatumGetCString(predDatum);
1376 indexPreds = (List *) stringToNode(predString);
1378 /* Also convert to implicit-AND format */
1379 indexPreds = make_ands_implicit((Expr *) indexPreds);
1380 pfree(predString);
1384 * Build the index information for the new index. Note that rebuild of
1385 * indexes with exclusion constraints is not supported, hence there is no
1386 * need to fill all the ii_Exclusion* fields.
1388 newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs,
1389 oldInfo->ii_NumIndexKeyAttrs,
1390 oldInfo->ii_Am,
1391 indexExprs,
1392 indexPreds,
1393 oldInfo->ii_Unique,
1394 oldInfo->ii_NullsNotDistinct,
1395 false, /* not ready for inserts */
1396 true,
1397 indexRelation->rd_indam->amsummarizing,
1398 oldInfo->ii_WithoutOverlaps);
1401 * Extract the list of column names and the column numbers for the new
1402 * index information. All this information will be used for the index
1403 * creation.
1405 for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++)
1407 TupleDesc indexTupDesc = RelationGetDescr(indexRelation);
1408 Form_pg_attribute att = TupleDescAttr(indexTupDesc, i);
1410 indexColNames = lappend(indexColNames, NameStr(att->attname));
1411 newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i];
1414 /* Extract opclass options for each attribute */
1415 opclassOptions = palloc0(sizeof(Datum) * newInfo->ii_NumIndexAttrs);
1416 for (int i = 0; i < newInfo->ii_NumIndexAttrs; i++)
1417 opclassOptions[i] = get_attoptions(oldIndexId, i + 1);
1419 /* Extract statistic targets for each attribute */
1420 stattargets = palloc0_array(NullableDatum, newInfo->ii_NumIndexAttrs);
1421 for (int i = 0; i < newInfo->ii_NumIndexAttrs; i++)
1423 HeapTuple tp;
1424 Datum dat;
1426 tp = SearchSysCache2(ATTNUM, ObjectIdGetDatum(oldIndexId), Int16GetDatum(i + 1));
1427 if (!HeapTupleIsValid(tp))
1428 elog(ERROR, "cache lookup failed for attribute %d of relation %u",
1429 i + 1, oldIndexId);
1430 dat = SysCacheGetAttr(ATTNUM, tp, Anum_pg_attribute_attstattarget, &isnull);
1431 ReleaseSysCache(tp);
1432 stattargets[i].value = dat;
1433 stattargets[i].isnull = isnull;
1437 * Now create the new index.
1439 * For a partition index, we adjust the partition dependency later, to
1440 * ensure a consistent state at all times. That is why parentIndexRelid
1441 * is not set here.
1443 newIndexId = index_create(heapRelation,
1444 newName,
1445 InvalidOid, /* indexRelationId */
1446 InvalidOid, /* parentIndexRelid */
1447 InvalidOid, /* parentConstraintId */
1448 InvalidRelFileNumber, /* relFileNumber */
1449 newInfo,
1450 indexColNames,
1451 indexRelation->rd_rel->relam,
1452 tablespaceOid,
1453 indexRelation->rd_indcollation,
1454 indclass->values,
1455 opclassOptions,
1456 indcoloptions->values,
1457 stattargets,
1458 reloptionsDatum,
1459 INDEX_CREATE_SKIP_BUILD | INDEX_CREATE_CONCURRENT,
1461 true, /* allow table to be a system catalog? */
1462 false, /* is_internal? */
1463 NULL);
1465 /* Close the relations used and clean up */
1466 index_close(indexRelation, NoLock);
1467 ReleaseSysCache(indexTuple);
1468 ReleaseSysCache(classTuple);
1470 return newIndexId;
1474 * index_concurrently_build
1476 * Build index for a concurrent operation. Low-level locks are taken when
1477 * this operation is performed to prevent only schema changes, but they need
1478 * to be kept until the end of the transaction performing this operation.
1479 * 'indexOid' refers to an index relation OID already created as part of
1480 * previous processing, and 'heapOid' refers to its parent heap relation.
1482 void
1483 index_concurrently_build(Oid heapRelationId,
1484 Oid indexRelationId)
1486 Relation heapRel;
1487 Oid save_userid;
1488 int save_sec_context;
1489 int save_nestlevel;
1490 Relation indexRelation;
1491 IndexInfo *indexInfo;
1493 /* This had better make sure that a snapshot is active */
1494 Assert(ActiveSnapshotSet());
1496 /* Open and lock the parent heap relation */
1497 heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock);
1500 * Switch to the table owner's userid, so that any index functions are run
1501 * as that user. Also lock down security-restricted operations and
1502 * arrange to make GUC variable changes local to this command.
1504 GetUserIdAndSecContext(&save_userid, &save_sec_context);
1505 SetUserIdAndSecContext(heapRel->rd_rel->relowner,
1506 save_sec_context | SECURITY_RESTRICTED_OPERATION);
1507 save_nestlevel = NewGUCNestLevel();
1508 RestrictSearchPath();
1510 indexRelation = index_open(indexRelationId, RowExclusiveLock);
1513 * We have to re-build the IndexInfo struct, since it was lost in the
1514 * commit of the transaction where this concurrent index was created at
1515 * the catalog level.
1517 indexInfo = BuildIndexInfo(indexRelation);
1518 Assert(!indexInfo->ii_ReadyForInserts);
1519 indexInfo->ii_Concurrent = true;
1520 indexInfo->ii_BrokenHotChain = false;
1522 /* Now build the index */
1523 index_build(heapRel, indexRelation, indexInfo, false, true);
1525 /* Roll back any GUC changes executed by index functions */
1526 AtEOXact_GUC(false, save_nestlevel);
1528 /* Restore userid and security context */
1529 SetUserIdAndSecContext(save_userid, save_sec_context);
1531 /* Close both the relations, but keep the locks */
1532 table_close(heapRel, NoLock);
1533 index_close(indexRelation, NoLock);
1536 * Update the pg_index row to mark the index as ready for inserts. Once we
1537 * commit this transaction, any new transactions that open the table must
1538 * insert new entries into the index for insertions and non-HOT updates.
1540 index_set_state_flags(indexRelationId, INDEX_CREATE_SET_READY);
1544 * index_concurrently_swap
1546 * Swap name, dependencies, and constraints of the old index over to the new
1547 * index, while marking the old index as invalid and the new as valid.
1549 void
1550 index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
1552 Relation pg_class,
1553 pg_index,
1554 pg_constraint,
1555 pg_trigger;
1556 Relation oldClassRel,
1557 newClassRel;
1558 HeapTuple oldClassTuple,
1559 newClassTuple;
1560 Form_pg_class oldClassForm,
1561 newClassForm;
1562 HeapTuple oldIndexTuple,
1563 newIndexTuple;
1564 Form_pg_index oldIndexForm,
1565 newIndexForm;
1566 bool isPartition;
1567 Oid indexConstraintOid;
1568 List *constraintOids = NIL;
1569 ListCell *lc;
1572 * Take a necessary lock on the old and new index before swapping them.
1574 oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock);
1575 newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock);
1577 /* Now swap names and dependencies of those indexes */
1578 pg_class = table_open(RelationRelationId, RowExclusiveLock);
1580 oldClassTuple = SearchSysCacheCopy1(RELOID,
1581 ObjectIdGetDatum(oldIndexId));
1582 if (!HeapTupleIsValid(oldClassTuple))
1583 elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1584 newClassTuple = SearchSysCacheCopy1(RELOID,
1585 ObjectIdGetDatum(newIndexId));
1586 if (!HeapTupleIsValid(newClassTuple))
1587 elog(ERROR, "could not find tuple for relation %u", newIndexId);
1589 oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple);
1590 newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple);
1592 /* Swap the names */
1593 namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname));
1594 namestrcpy(&oldClassForm->relname, oldName);
1596 /* Swap the partition flags to track inheritance properly */
1597 isPartition = newClassForm->relispartition;
1598 newClassForm->relispartition = oldClassForm->relispartition;
1599 oldClassForm->relispartition = isPartition;
1601 CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple);
1602 CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple);
1604 heap_freetuple(oldClassTuple);
1605 heap_freetuple(newClassTuple);
1607 /* Now swap index info */
1608 pg_index = table_open(IndexRelationId, RowExclusiveLock);
1610 oldIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1611 ObjectIdGetDatum(oldIndexId));
1612 if (!HeapTupleIsValid(oldIndexTuple))
1613 elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1614 newIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1615 ObjectIdGetDatum(newIndexId));
1616 if (!HeapTupleIsValid(newIndexTuple))
1617 elog(ERROR, "could not find tuple for relation %u", newIndexId);
1619 oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple);
1620 newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple);
1623 * Copy constraint flags from the old index. This is safe because the old
1624 * index guaranteed uniqueness.
1626 newIndexForm->indisprimary = oldIndexForm->indisprimary;
1627 oldIndexForm->indisprimary = false;
1628 newIndexForm->indisexclusion = oldIndexForm->indisexclusion;
1629 oldIndexForm->indisexclusion = false;
1630 newIndexForm->indimmediate = oldIndexForm->indimmediate;
1631 oldIndexForm->indimmediate = true;
1633 /* Preserve indisreplident in the new index */
1634 newIndexForm->indisreplident = oldIndexForm->indisreplident;
1636 /* Preserve indisclustered in the new index */
1637 newIndexForm->indisclustered = oldIndexForm->indisclustered;
1640 * Mark the new index as valid, and the old index as invalid similarly to
1641 * what index_set_state_flags() does.
1643 newIndexForm->indisvalid = true;
1644 oldIndexForm->indisvalid = false;
1645 oldIndexForm->indisclustered = false;
1646 oldIndexForm->indisreplident = false;
1648 CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple);
1649 CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple);
1651 heap_freetuple(oldIndexTuple);
1652 heap_freetuple(newIndexTuple);
1655 * Move constraints and triggers over to the new index
1658 constraintOids = get_index_ref_constraints(oldIndexId);
1660 indexConstraintOid = get_index_constraint(oldIndexId);
1662 if (OidIsValid(indexConstraintOid))
1663 constraintOids = lappend_oid(constraintOids, indexConstraintOid);
1665 pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock);
1666 pg_trigger = table_open(TriggerRelationId, RowExclusiveLock);
1668 foreach(lc, constraintOids)
1670 HeapTuple constraintTuple,
1671 triggerTuple;
1672 Form_pg_constraint conForm;
1673 ScanKeyData key[1];
1674 SysScanDesc scan;
1675 Oid constraintOid = lfirst_oid(lc);
1677 /* Move the constraint from the old to the new index */
1678 constraintTuple = SearchSysCacheCopy1(CONSTROID,
1679 ObjectIdGetDatum(constraintOid));
1680 if (!HeapTupleIsValid(constraintTuple))
1681 elog(ERROR, "could not find tuple for constraint %u", constraintOid);
1683 conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple));
1685 if (conForm->conindid == oldIndexId)
1687 conForm->conindid = newIndexId;
1689 CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple);
1692 heap_freetuple(constraintTuple);
1694 /* Search for trigger records */
1695 ScanKeyInit(&key[0],
1696 Anum_pg_trigger_tgconstraint,
1697 BTEqualStrategyNumber, F_OIDEQ,
1698 ObjectIdGetDatum(constraintOid));
1700 scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true,
1701 NULL, 1, key);
1703 while (HeapTupleIsValid((triggerTuple = systable_getnext(scan))))
1705 Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1707 if (tgForm->tgconstrindid != oldIndexId)
1708 continue;
1710 /* Make a modifiable copy */
1711 triggerTuple = heap_copytuple(triggerTuple);
1712 tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1714 tgForm->tgconstrindid = newIndexId;
1716 CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple);
1718 heap_freetuple(triggerTuple);
1721 systable_endscan(scan);
1725 * Move comment if any
1728 Relation description;
1729 ScanKeyData skey[3];
1730 SysScanDesc sd;
1731 HeapTuple tuple;
1732 Datum values[Natts_pg_description] = {0};
1733 bool nulls[Natts_pg_description] = {0};
1734 bool replaces[Natts_pg_description] = {0};
1736 values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId);
1737 replaces[Anum_pg_description_objoid - 1] = true;
1739 ScanKeyInit(&skey[0],
1740 Anum_pg_description_objoid,
1741 BTEqualStrategyNumber, F_OIDEQ,
1742 ObjectIdGetDatum(oldIndexId));
1743 ScanKeyInit(&skey[1],
1744 Anum_pg_description_classoid,
1745 BTEqualStrategyNumber, F_OIDEQ,
1746 ObjectIdGetDatum(RelationRelationId));
1747 ScanKeyInit(&skey[2],
1748 Anum_pg_description_objsubid,
1749 BTEqualStrategyNumber, F_INT4EQ,
1750 Int32GetDatum(0));
1752 description = table_open(DescriptionRelationId, RowExclusiveLock);
1754 sd = systable_beginscan(description, DescriptionObjIndexId, true,
1755 NULL, 3, skey);
1757 while ((tuple = systable_getnext(sd)) != NULL)
1759 tuple = heap_modify_tuple(tuple, RelationGetDescr(description),
1760 values, nulls, replaces);
1761 CatalogTupleUpdate(description, &tuple->t_self, tuple);
1763 break; /* Assume there can be only one match */
1766 systable_endscan(sd);
1767 table_close(description, NoLock);
1771 * Swap inheritance relationship with parent index
1773 if (get_rel_relispartition(oldIndexId))
1775 List *ancestors = get_partition_ancestors(oldIndexId);
1776 Oid parentIndexRelid = linitial_oid(ancestors);
1778 DeleteInheritsTuple(oldIndexId, parentIndexRelid, false, NULL);
1779 StoreSingleInheritance(newIndexId, parentIndexRelid, 1);
1781 list_free(ancestors);
1785 * Swap all dependencies of and on the old index to the new one, and
1786 * vice-versa. Note that a call to CommandCounterIncrement() would cause
1787 * duplicate entries in pg_depend, so this should not be done.
1789 changeDependenciesOf(RelationRelationId, newIndexId, oldIndexId);
1790 changeDependenciesOn(RelationRelationId, newIndexId, oldIndexId);
1792 changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId);
1793 changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId);
1795 /* copy over statistics from old to new index */
1796 pgstat_copy_relation_stats(newClassRel, oldClassRel);
1798 /* Copy data of pg_statistic from the old index to the new one */
1799 CopyStatistics(oldIndexId, newIndexId);
1801 /* Close relations */
1802 table_close(pg_class, RowExclusiveLock);
1803 table_close(pg_index, RowExclusiveLock);
1804 table_close(pg_constraint, RowExclusiveLock);
1805 table_close(pg_trigger, RowExclusiveLock);
1807 /* The lock taken previously is not released until the end of transaction */
1808 relation_close(oldClassRel, NoLock);
1809 relation_close(newClassRel, NoLock);
1813 * index_concurrently_set_dead
1815 * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1816 * CONCURRENTLY before actually dropping the index. After calling this
1817 * function, the index is seen by all the backends as dead. Low-level locks
1818 * taken here are kept until the end of the transaction calling this function.
1820 void
1821 index_concurrently_set_dead(Oid heapId, Oid indexId)
1823 Relation userHeapRelation;
1824 Relation userIndexRelation;
1827 * No more predicate locks will be acquired on this index, and we're about
1828 * to stop doing inserts into the index which could show conflicts with
1829 * existing predicate locks, so now is the time to move them to the heap
1830 * relation.
1832 userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
1833 userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock);
1834 TransferPredicateLocksToHeapRelation(userIndexRelation);
1837 * Now we are sure that nobody uses the index for queries; they just might
1838 * have it open for updating it. So now we can unset indisready and
1839 * indislive, then wait till nobody could be using it at all anymore.
1841 index_set_state_flags(indexId, INDEX_DROP_SET_DEAD);
1844 * Invalidate the relcache for the table, so that after this commit all
1845 * sessions will refresh the table's index list. Forgetting just the
1846 * index's relcache entry is not enough.
1848 CacheInvalidateRelcache(userHeapRelation);
1851 * Close the relations again, though still holding session lock.
1853 table_close(userHeapRelation, NoLock);
1854 index_close(userIndexRelation, NoLock);
1858 * index_constraint_create
1860 * Set up a constraint associated with an index. Return the new constraint's
1861 * address.
1863 * heapRelation: table owning the index (must be suitably locked by caller)
1864 * indexRelationId: OID of the index
1865 * parentConstraintId: if constraint is on a partition, the OID of the
1866 * constraint in the parent.
1867 * indexInfo: same info executor uses to insert into the index
1868 * constraintName: what it say (generally, should match name of index)
1869 * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1870 * CONSTRAINT_EXCLUSION
1871 * flags: bitmask that can include any combination of these bits:
1872 * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1873 * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1874 * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1875 * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1876 * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1877 * of index on table's columns
1878 * INDEX_CONSTR_CREATE_WITHOUT_OVERLAPS: constraint uses WITHOUT OVERLAPS
1879 * allow_system_table_mods: allow table to be a system catalog
1880 * is_internal: index is constructed due to internal process
1882 ObjectAddress
1883 index_constraint_create(Relation heapRelation,
1884 Oid indexRelationId,
1885 Oid parentConstraintId,
1886 const IndexInfo *indexInfo,
1887 const char *constraintName,
1888 char constraintType,
1889 bits16 constr_flags,
1890 bool allow_system_table_mods,
1891 bool is_internal)
1893 Oid namespaceId = RelationGetNamespace(heapRelation);
1894 ObjectAddress myself,
1895 idxaddr;
1896 Oid conOid;
1897 bool deferrable;
1898 bool initdeferred;
1899 bool mark_as_primary;
1900 bool islocal;
1901 bool noinherit;
1902 bool is_without_overlaps;
1903 int16 inhcount;
1905 deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0;
1906 initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0;
1907 mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0;
1908 is_without_overlaps = (constr_flags & INDEX_CONSTR_CREATE_WITHOUT_OVERLAPS) != 0;
1910 /* constraint creation support doesn't work while bootstrapping */
1911 Assert(!IsBootstrapProcessingMode());
1913 /* enforce system-table restriction */
1914 if (!allow_system_table_mods &&
1915 IsSystemRelation(heapRelation) &&
1916 IsNormalProcessingMode())
1917 ereport(ERROR,
1918 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1919 errmsg("user-defined indexes on system catalog tables are not supported")));
1921 /* primary/unique constraints shouldn't have any expressions */
1922 if (indexInfo->ii_Expressions &&
1923 constraintType != CONSTRAINT_EXCLUSION)
1924 elog(ERROR, "constraints cannot have index expressions");
1927 * If we're manufacturing a constraint for a pre-existing index, we need
1928 * to get rid of the existing auto dependencies for the index (the ones
1929 * that index_create() would have made instead of calling this function).
1931 * Note: this code would not necessarily do the right thing if the index
1932 * has any expressions or predicate, but we'd never be turning such an
1933 * index into a UNIQUE or PRIMARY KEY constraint.
1935 if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS)
1936 deleteDependencyRecordsForClass(RelationRelationId, indexRelationId,
1937 RelationRelationId, DEPENDENCY_AUTO);
1939 if (OidIsValid(parentConstraintId))
1941 islocal = false;
1942 inhcount = 1;
1943 noinherit = false;
1945 else
1947 islocal = true;
1948 inhcount = 0;
1949 noinherit = true;
1953 * Construct a pg_constraint entry.
1955 conOid = CreateConstraintEntry(constraintName,
1956 namespaceId,
1957 constraintType,
1958 deferrable,
1959 initdeferred,
1960 true,
1961 parentConstraintId,
1962 RelationGetRelid(heapRelation),
1963 indexInfo->ii_IndexAttrNumbers,
1964 indexInfo->ii_NumIndexKeyAttrs,
1965 indexInfo->ii_NumIndexAttrs,
1966 InvalidOid, /* no domain */
1967 indexRelationId, /* index OID */
1968 InvalidOid, /* no foreign key */
1969 NULL,
1970 NULL,
1971 NULL,
1972 NULL,
1974 ' ',
1975 ' ',
1976 NULL,
1978 ' ',
1979 indexInfo->ii_ExclusionOps,
1980 NULL, /* no check constraint */
1981 NULL,
1982 islocal,
1983 inhcount,
1984 noinherit,
1985 is_without_overlaps,
1986 is_internal);
1989 * Register the index as internally dependent on the constraint.
1991 * Note that the constraint has a dependency on the table, so we don't
1992 * need (or want) any direct dependency from the index to the table.
1994 ObjectAddressSet(myself, ConstraintRelationId, conOid);
1995 ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId);
1996 recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL);
1999 * Also, if this is a constraint on a partition, give it partition-type
2000 * dependencies on the parent constraint as well as the table.
2002 if (OidIsValid(parentConstraintId))
2004 ObjectAddress referenced;
2006 ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId);
2007 recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
2008 ObjectAddressSet(referenced, RelationRelationId,
2009 RelationGetRelid(heapRelation));
2010 recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
2014 * If the constraint is deferrable, create the deferred uniqueness
2015 * checking trigger. (The trigger will be given an internal dependency on
2016 * the constraint by CreateTrigger.)
2018 if (deferrable)
2020 CreateTrigStmt *trigger = makeNode(CreateTrigStmt);
2022 trigger->replace = false;
2023 trigger->isconstraint = true;
2024 trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ?
2025 "PK_ConstraintTrigger" :
2026 "Unique_ConstraintTrigger";
2027 trigger->relation = NULL;
2028 trigger->funcname = SystemFuncName("unique_key_recheck");
2029 trigger->args = NIL;
2030 trigger->row = true;
2031 trigger->timing = TRIGGER_TYPE_AFTER;
2032 trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
2033 trigger->columns = NIL;
2034 trigger->whenClause = NULL;
2035 trigger->transitionRels = NIL;
2036 trigger->deferrable = true;
2037 trigger->initdeferred = initdeferred;
2038 trigger->constrrel = NULL;
2040 (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation),
2041 InvalidOid, conOid, indexRelationId, InvalidOid,
2042 InvalidOid, NULL, true, false);
2046 * If needed, mark the index as primary and/or deferred in pg_index.
2048 * Note: When making an existing index into a constraint, caller must have
2049 * a table lock that prevents concurrent table updates; otherwise, there
2050 * is a risk that concurrent readers of the table will miss seeing this
2051 * index at all.
2053 if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) &&
2054 (mark_as_primary || deferrable))
2056 Relation pg_index;
2057 HeapTuple indexTuple;
2058 Form_pg_index indexForm;
2059 bool dirty = false;
2060 bool marked_as_primary = false;
2062 pg_index = table_open(IndexRelationId, RowExclusiveLock);
2064 indexTuple = SearchSysCacheCopy1(INDEXRELID,
2065 ObjectIdGetDatum(indexRelationId));
2066 if (!HeapTupleIsValid(indexTuple))
2067 elog(ERROR, "cache lookup failed for index %u", indexRelationId);
2068 indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
2070 if (mark_as_primary && !indexForm->indisprimary)
2072 indexForm->indisprimary = true;
2073 dirty = true;
2074 marked_as_primary = true;
2077 if (deferrable && indexForm->indimmediate)
2079 indexForm->indimmediate = false;
2080 dirty = true;
2083 if (dirty)
2085 CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
2088 * When we mark an existing index as primary, force a relcache
2089 * flush on its parent table, so that all sessions will become
2090 * aware that the table now has a primary key. This is important
2091 * because it affects some replication behaviors.
2093 if (marked_as_primary)
2094 CacheInvalidateRelcache(heapRelation);
2096 InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0,
2097 InvalidOid, is_internal);
2100 heap_freetuple(indexTuple);
2101 table_close(pg_index, RowExclusiveLock);
2104 return myself;
2108 * index_drop
2110 * NOTE: this routine should now only be called through performDeletion(),
2111 * else associated dependencies won't be cleaned up.
2113 * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is
2114 * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
2115 * take a lock for CONCURRENTLY processing. That is used as part of REINDEX
2116 * CONCURRENTLY.
2118 void
2119 index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
2121 Oid heapId;
2122 Relation userHeapRelation;
2123 Relation userIndexRelation;
2124 Relation indexRelation;
2125 HeapTuple tuple;
2126 bool hasexprs;
2127 LockRelId heaprelid,
2128 indexrelid;
2129 LOCKTAG heaplocktag;
2130 LOCKMODE lockmode;
2133 * A temporary relation uses a non-concurrent DROP. Other backends can't
2134 * access a temporary relation, so there's no harm in grabbing a stronger
2135 * lock (see comments in RemoveRelations), and a non-concurrent DROP is
2136 * more efficient.
2138 Assert(get_rel_persistence(indexId) != RELPERSISTENCE_TEMP ||
2139 (!concurrent && !concurrent_lock_mode));
2142 * To drop an index safely, we must grab exclusive lock on its parent
2143 * table. Exclusive lock on the index alone is insufficient because
2144 * another backend might be about to execute a query on the parent table.
2145 * If it relies on a previously cached list of index OIDs, then it could
2146 * attempt to access the just-dropped index. We must therefore take a
2147 * table lock strong enough to prevent all queries on the table from
2148 * proceeding until we commit and send out a shared-cache-inval notice
2149 * that will make them update their index lists.
2151 * In the concurrent case we avoid this requirement by disabling index use
2152 * in multiple steps and waiting out any transactions that might be using
2153 * the index, so we don't need exclusive lock on the parent table. Instead
2154 * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2155 * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get
2156 * AccessExclusiveLock on the index below, once we're sure nobody else is
2157 * using it.)
2159 heapId = IndexGetRelation(indexId, false);
2160 lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock;
2161 userHeapRelation = table_open(heapId, lockmode);
2162 userIndexRelation = index_open(indexId, lockmode);
2165 * We might still have open queries using it in our own session, which the
2166 * above locking won't prevent, so test explicitly.
2168 CheckTableNotInUse(userIndexRelation, "DROP INDEX");
2171 * Drop Index Concurrently is more or less the reverse process of Create
2172 * Index Concurrently.
2174 * First we unset indisvalid so queries starting afterwards don't use the
2175 * index to answer queries anymore. We have to keep indisready = true so
2176 * transactions that are still scanning the index can continue to see
2177 * valid index contents. For instance, if they are using READ COMMITTED
2178 * mode, and another transaction makes changes and commits, they need to
2179 * see those new tuples in the index.
2181 * After all transactions that could possibly have used the index for
2182 * queries end, we can unset indisready and indislive, then wait till
2183 * nobody could be touching it anymore. (Note: we need indislive because
2184 * this state must be distinct from the initial state during CREATE INDEX
2185 * CONCURRENTLY, which has indislive true while indisready and indisvalid
2186 * are false. That's because in that state, transactions must examine the
2187 * index for HOT-safety decisions, while in this state we don't want them
2188 * to open it at all.)
2190 * Since all predicate locks on the index are about to be made invalid, we
2191 * must promote them to predicate locks on the heap. In the
2192 * non-concurrent case we can just do that now. In the concurrent case
2193 * it's a bit trickier. The predicate locks must be moved when there are
2194 * no index scans in progress on the index and no more can subsequently
2195 * start, so that no new predicate locks can be made on the index. Also,
2196 * they must be moved before heap inserts stop maintaining the index, else
2197 * the conflict with the predicate lock on the index gap could be missed
2198 * before the lock on the heap relation is in place to detect a conflict
2199 * based on the heap tuple insert.
2201 if (concurrent)
2204 * We must commit our transaction in order to make the first pg_index
2205 * state update visible to other sessions. If the DROP machinery has
2206 * already performed any other actions (removal of other objects,
2207 * pg_depend entries, etc), the commit would make those actions
2208 * permanent, which would leave us with inconsistent catalog state if
2209 * we fail partway through the following sequence. Since DROP INDEX
2210 * CONCURRENTLY is restricted to dropping just one index that has no
2211 * dependencies, we should get here before anything's been done ---
2212 * but let's check that to be sure. We can verify that the current
2213 * transaction has not executed any transactional updates by checking
2214 * that no XID has been assigned.
2216 if (GetTopTransactionIdIfAny() != InvalidTransactionId)
2217 ereport(ERROR,
2218 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2219 errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2222 * Mark index invalid by updating its pg_index entry
2224 index_set_state_flags(indexId, INDEX_DROP_CLEAR_VALID);
2227 * Invalidate the relcache for the table, so that after this commit
2228 * all sessions will refresh any cached plans that might reference the
2229 * index.
2231 CacheInvalidateRelcache(userHeapRelation);
2233 /* save lockrelid and locktag for below, then close but keep locks */
2234 heaprelid = userHeapRelation->rd_lockInfo.lockRelId;
2235 SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
2236 indexrelid = userIndexRelation->rd_lockInfo.lockRelId;
2238 table_close(userHeapRelation, NoLock);
2239 index_close(userIndexRelation, NoLock);
2242 * We must commit our current transaction so that the indisvalid
2243 * update becomes visible to other transactions; then start another.
2244 * Note that any previously-built data structures are lost in the
2245 * commit. The only data we keep past here are the relation IDs.
2247 * Before committing, get a session-level lock on the table, to ensure
2248 * that neither it nor the index can be dropped before we finish. This
2249 * cannot block, even if someone else is waiting for access, because
2250 * we already have the same lock within our transaction.
2252 LockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock);
2253 LockRelationIdForSession(&indexrelid, ShareUpdateExclusiveLock);
2255 PopActiveSnapshot();
2256 CommitTransactionCommand();
2257 StartTransactionCommand();
2260 * Now we must wait until no running transaction could be using the
2261 * index for a query. Use AccessExclusiveLock here to check for
2262 * running transactions that hold locks of any kind on the table. Note
2263 * we do not need to worry about xacts that open the table for reading
2264 * after this point; they will see the index as invalid when they open
2265 * the relation.
2267 * Note: the reason we use actual lock acquisition here, rather than
2268 * just checking the ProcArray and sleeping, is that deadlock is
2269 * possible if one of the transactions in question is blocked trying
2270 * to acquire an exclusive lock on our table. The lock code will
2271 * detect deadlock and error out properly.
2273 * Note: we report progress through WaitForLockers() unconditionally
2274 * here, even though it will only be used when we're called by REINDEX
2275 * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2277 WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2280 * Updating pg_index might involve TOAST table access, so ensure we
2281 * have a valid snapshot.
2283 PushActiveSnapshot(GetTransactionSnapshot());
2285 /* Finish invalidation of index and mark it as dead */
2286 index_concurrently_set_dead(heapId, indexId);
2288 PopActiveSnapshot();
2291 * Again, commit the transaction to make the pg_index update visible
2292 * to other sessions.
2294 CommitTransactionCommand();
2295 StartTransactionCommand();
2298 * Wait till every transaction that saw the old index state has
2299 * finished. See above about progress reporting.
2301 WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2304 * Re-open relations to allow us to complete our actions.
2306 * At this point, nothing should be accessing the index, but lets
2307 * leave nothing to chance and grab AccessExclusiveLock on the index
2308 * before the physical deletion.
2310 userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
2311 userIndexRelation = index_open(indexId, AccessExclusiveLock);
2313 else
2315 /* Not concurrent, so just transfer predicate locks and we're good */
2316 TransferPredicateLocksToHeapRelation(userIndexRelation);
2320 * Schedule physical removal of the files (if any)
2322 if (RELKIND_HAS_STORAGE(userIndexRelation->rd_rel->relkind))
2323 RelationDropStorage(userIndexRelation);
2325 /* ensure that stats are dropped if transaction commits */
2326 pgstat_drop_relation(userIndexRelation);
2329 * Close and flush the index's relcache entry, to ensure relcache doesn't
2330 * try to rebuild it while we're deleting catalog entries. We keep the
2331 * lock though.
2333 index_close(userIndexRelation, NoLock);
2335 RelationForgetRelation(indexId);
2338 * Updating pg_index might involve TOAST table access, so ensure we have a
2339 * valid snapshot.
2341 PushActiveSnapshot(GetTransactionSnapshot());
2344 * fix INDEX relation, and check for expressional index
2346 indexRelation = table_open(IndexRelationId, RowExclusiveLock);
2348 tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
2349 if (!HeapTupleIsValid(tuple))
2350 elog(ERROR, "cache lookup failed for index %u", indexId);
2352 hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs,
2353 RelationGetDescr(indexRelation));
2355 CatalogTupleDelete(indexRelation, &tuple->t_self);
2357 ReleaseSysCache(tuple);
2358 table_close(indexRelation, RowExclusiveLock);
2360 PopActiveSnapshot();
2363 * if it has any expression columns, we might have stored statistics about
2364 * them.
2366 if (hasexprs)
2367 RemoveStatistics(indexId, 0);
2370 * fix ATTRIBUTE relation
2372 DeleteAttributeTuples(indexId);
2375 * fix RELATION relation
2377 DeleteRelationTuple(indexId);
2380 * fix INHERITS relation
2382 DeleteInheritsTuple(indexId, InvalidOid, false, NULL);
2385 * We are presently too lazy to attempt to compute the new correct value
2386 * of relhasindex (the next VACUUM will fix it if necessary). So there is
2387 * no need to update the pg_class tuple for the owning relation. But we
2388 * must send out a shared-cache-inval notice on the owning relation to
2389 * ensure other backends update their relcache lists of indexes. (In the
2390 * concurrent case, this is redundant but harmless.)
2392 CacheInvalidateRelcache(userHeapRelation);
2395 * Close owning rel, but keep lock
2397 table_close(userHeapRelation, NoLock);
2400 * Release the session locks before we go.
2402 if (concurrent)
2404 UnlockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock);
2405 UnlockRelationIdForSession(&indexrelid, ShareUpdateExclusiveLock);
2409 /* ----------------------------------------------------------------
2410 * index_build support
2411 * ----------------------------------------------------------------
2414 /* ----------------
2415 * BuildIndexInfo
2416 * Construct an IndexInfo record for an open index
2418 * IndexInfo stores the information about the index that's needed by
2419 * FormIndexDatum, which is used for both index_build() and later insertion
2420 * of individual index tuples. Normally we build an IndexInfo for an index
2421 * just once per command, and then use it for (potentially) many tuples.
2422 * ----------------
2424 IndexInfo *
2425 BuildIndexInfo(Relation index)
2427 IndexInfo *ii;
2428 Form_pg_index indexStruct = index->rd_index;
2429 int i;
2430 int numAtts;
2432 /* check the number of keys, and copy attr numbers into the IndexInfo */
2433 numAtts = indexStruct->indnatts;
2434 if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2435 elog(ERROR, "invalid indnatts %d for index %u",
2436 numAtts, RelationGetRelid(index));
2439 * Create the node, fetching any expressions needed for expressional
2440 * indexes and index predicate if any.
2442 ii = makeIndexInfo(indexStruct->indnatts,
2443 indexStruct->indnkeyatts,
2444 index->rd_rel->relam,
2445 RelationGetIndexExpressions(index),
2446 RelationGetIndexPredicate(index),
2447 indexStruct->indisunique,
2448 indexStruct->indnullsnotdistinct,
2449 indexStruct->indisready,
2450 false,
2451 index->rd_indam->amsummarizing,
2452 indexStruct->indisexclusion && indexStruct->indisunique);
2454 /* fill in attribute numbers */
2455 for (i = 0; i < numAtts; i++)
2456 ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2458 /* fetch exclusion constraint info if any */
2459 if (indexStruct->indisexclusion)
2461 RelationGetExclusionInfo(index,
2462 &ii->ii_ExclusionOps,
2463 &ii->ii_ExclusionProcs,
2464 &ii->ii_ExclusionStrats);
2467 return ii;
2470 /* ----------------
2471 * BuildDummyIndexInfo
2472 * Construct a dummy IndexInfo record for an open index
2474 * This differs from the real BuildIndexInfo in that it will never run any
2475 * user-defined code that might exist in index expressions or predicates.
2476 * Instead of the real index expressions, we return null constants that have
2477 * the right types/typmods/collations. Predicates and exclusion clauses are
2478 * just ignored. This is sufficient for the purpose of truncating an index,
2479 * since we will not need to actually evaluate the expressions or predicates;
2480 * the only thing that's likely to be done with the data is construction of
2481 * a tupdesc describing the index's rowtype.
2482 * ----------------
2484 IndexInfo *
2485 BuildDummyIndexInfo(Relation index)
2487 IndexInfo *ii;
2488 Form_pg_index indexStruct = index->rd_index;
2489 int i;
2490 int numAtts;
2492 /* check the number of keys, and copy attr numbers into the IndexInfo */
2493 numAtts = indexStruct->indnatts;
2494 if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2495 elog(ERROR, "invalid indnatts %d for index %u",
2496 numAtts, RelationGetRelid(index));
2499 * Create the node, using dummy index expressions, and pretending there is
2500 * no predicate.
2502 ii = makeIndexInfo(indexStruct->indnatts,
2503 indexStruct->indnkeyatts,
2504 index->rd_rel->relam,
2505 RelationGetDummyIndexExpressions(index),
2506 NIL,
2507 indexStruct->indisunique,
2508 indexStruct->indnullsnotdistinct,
2509 indexStruct->indisready,
2510 false,
2511 index->rd_indam->amsummarizing,
2512 indexStruct->indisexclusion && indexStruct->indisunique);
2514 /* fill in attribute numbers */
2515 for (i = 0; i < numAtts; i++)
2516 ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2518 /* We ignore the exclusion constraint if any */
2520 return ii;
2524 * CompareIndexInfo
2525 * Return whether the properties of two indexes (in different tables)
2526 * indicate that they have the "same" definitions.
2528 * Note: passing collations and opfamilies separately is a kludge. Adding
2529 * them to IndexInfo may result in better coding here and elsewhere.
2531 * Use build_attrmap_by_name(index2, index1) to build the attmap.
2533 bool
2534 CompareIndexInfo(const IndexInfo *info1, const IndexInfo *info2,
2535 const Oid *collations1, const Oid *collations2,
2536 const Oid *opfamilies1, const Oid *opfamilies2,
2537 const AttrMap *attmap)
2539 int i;
2541 if (info1->ii_Unique != info2->ii_Unique)
2542 return false;
2544 if (info1->ii_NullsNotDistinct != info2->ii_NullsNotDistinct)
2545 return false;
2547 /* indexes are only equivalent if they have the same access method */
2548 if (info1->ii_Am != info2->ii_Am)
2549 return false;
2551 /* and same number of attributes */
2552 if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs)
2553 return false;
2555 /* and same number of key attributes */
2556 if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs)
2557 return false;
2560 * and columns match through the attribute map (actual attribute numbers
2561 * might differ!) Note that this checks that index columns that are
2562 * expressions appear in the same positions. We will next compare the
2563 * expressions themselves.
2565 for (i = 0; i < info1->ii_NumIndexAttrs; i++)
2567 if (attmap->maplen < info2->ii_IndexAttrNumbers[i])
2568 elog(ERROR, "incorrect attribute map");
2570 /* ignore expressions for now (but check their collation/opfamily) */
2571 if (!(info1->ii_IndexAttrNumbers[i] == InvalidAttrNumber &&
2572 info2->ii_IndexAttrNumbers[i] == InvalidAttrNumber))
2574 /* fail if just one index has an expression in this column */
2575 if (info1->ii_IndexAttrNumbers[i] == InvalidAttrNumber ||
2576 info2->ii_IndexAttrNumbers[i] == InvalidAttrNumber)
2577 return false;
2579 /* both are columns, so check for match after mapping */
2580 if (attmap->attnums[info2->ii_IndexAttrNumbers[i] - 1] !=
2581 info1->ii_IndexAttrNumbers[i])
2582 return false;
2585 /* collation and opfamily are not valid for included columns */
2586 if (i >= info1->ii_NumIndexKeyAttrs)
2587 continue;
2589 if (collations1[i] != collations2[i])
2590 return false;
2591 if (opfamilies1[i] != opfamilies2[i])
2592 return false;
2596 * For expression indexes: either both are expression indexes, or neither
2597 * is; if they are, make sure the expressions match.
2599 if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL))
2600 return false;
2601 if (info1->ii_Expressions != NIL)
2603 bool found_whole_row;
2604 Node *mapped;
2606 mapped = map_variable_attnos((Node *) info2->ii_Expressions,
2607 1, 0, attmap,
2608 InvalidOid, &found_whole_row);
2609 if (found_whole_row)
2612 * we could throw an error here, but seems out of scope for this
2613 * routine.
2615 return false;
2618 if (!equal(info1->ii_Expressions, mapped))
2619 return false;
2622 /* Partial index predicates must be identical, if they exist */
2623 if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL))
2624 return false;
2625 if (info1->ii_Predicate != NULL)
2627 bool found_whole_row;
2628 Node *mapped;
2630 mapped = map_variable_attnos((Node *) info2->ii_Predicate,
2631 1, 0, attmap,
2632 InvalidOid, &found_whole_row);
2633 if (found_whole_row)
2636 * we could throw an error here, but seems out of scope for this
2637 * routine.
2639 return false;
2641 if (!equal(info1->ii_Predicate, mapped))
2642 return false;
2645 /* No support currently for comparing exclusion indexes. */
2646 if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL)
2647 return false;
2649 return true;
2652 /* ----------------
2653 * BuildSpeculativeIndexInfo
2654 * Add extra state to IndexInfo record
2656 * For unique indexes, we usually don't want to add info to the IndexInfo for
2657 * checking uniqueness, since the B-Tree AM handles that directly. However, in
2658 * the case of speculative insertion and conflict detection in logical
2659 * replication, additional support is required.
2661 * Do this processing here rather than in BuildIndexInfo() to not incur the
2662 * overhead in the common non-speculative cases.
2663 * ----------------
2665 void
2666 BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii)
2668 int indnkeyatts;
2669 int i;
2671 indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index);
2674 * fetch info for checking unique indexes
2676 Assert(ii->ii_Unique);
2678 if (index->rd_rel->relam != BTREE_AM_OID)
2679 elog(ERROR, "unexpected non-btree speculative unique index");
2681 ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2682 ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2683 ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts);
2686 * We have to look up the operator's strategy number. This provides a
2687 * cross-check that the operator does match the index.
2689 /* We need the func OIDs and strategy numbers too */
2690 for (i = 0; i < indnkeyatts; i++)
2692 ii->ii_UniqueStrats[i] = BTEqualStrategyNumber;
2693 ii->ii_UniqueOps[i] =
2694 get_opfamily_member(index->rd_opfamily[i],
2695 index->rd_opcintype[i],
2696 index->rd_opcintype[i],
2697 ii->ii_UniqueStrats[i]);
2698 if (!OidIsValid(ii->ii_UniqueOps[i]))
2699 elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2700 ii->ii_UniqueStrats[i], index->rd_opcintype[i],
2701 index->rd_opcintype[i], index->rd_opfamily[i]);
2702 ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]);
2706 /* ----------------
2707 * FormIndexDatum
2708 * Construct values[] and isnull[] arrays for a new index tuple.
2710 * indexInfo Info about the index
2711 * slot Heap tuple for which we must prepare an index entry
2712 * estate executor state for evaluating any index expressions
2713 * values Array of index Datums (output area)
2714 * isnull Array of is-null indicators (output area)
2716 * When there are no index expressions, estate may be NULL. Otherwise it
2717 * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2718 * context must point to the heap tuple passed in.
2720 * Notice we don't actually call index_form_tuple() here; we just prepare
2721 * its input arrays values[] and isnull[]. This is because the index AM
2722 * may wish to alter the data before storage.
2723 * ----------------
2725 void
2726 FormIndexDatum(IndexInfo *indexInfo,
2727 TupleTableSlot *slot,
2728 EState *estate,
2729 Datum *values,
2730 bool *isnull)
2732 ListCell *indexpr_item;
2733 int i;
2735 if (indexInfo->ii_Expressions != NIL &&
2736 indexInfo->ii_ExpressionsState == NIL)
2738 /* First time through, set up expression evaluation state */
2739 indexInfo->ii_ExpressionsState =
2740 ExecPrepareExprList(indexInfo->ii_Expressions, estate);
2741 /* Check caller has set up context correctly */
2742 Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
2744 indexpr_item = list_head(indexInfo->ii_ExpressionsState);
2746 for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
2748 int keycol = indexInfo->ii_IndexAttrNumbers[i];
2749 Datum iDatum;
2750 bool isNull;
2752 if (keycol < 0)
2753 iDatum = slot_getsysattr(slot, keycol, &isNull);
2754 else if (keycol != 0)
2757 * Plain index column; get the value we need directly from the
2758 * heap tuple.
2760 iDatum = slot_getattr(slot, keycol, &isNull);
2762 else
2765 * Index expression --- need to evaluate it.
2767 if (indexpr_item == NULL)
2768 elog(ERROR, "wrong number of index expressions");
2769 iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
2770 GetPerTupleExprContext(estate),
2771 &isNull);
2772 indexpr_item = lnext(indexInfo->ii_ExpressionsState, indexpr_item);
2774 values[i] = iDatum;
2775 isnull[i] = isNull;
2778 if (indexpr_item != NULL)
2779 elog(ERROR, "wrong number of index expressions");
2784 * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2786 * This routine updates the pg_class row of either an index or its parent
2787 * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
2788 * to ensure we can do all the necessary work in just one update.
2790 * hasindex: set relhasindex to this value
2791 * reltuples: if >= 0, set reltuples to this value; else no change
2793 * If reltuples >= 0, relpages and relallvisible are also updated (using
2794 * RelationGetNumberOfBlocks() and visibilitymap_count()).
2796 * NOTE: an important side-effect of this operation is that an SI invalidation
2797 * message is sent out to all backends --- including me --- causing relcache
2798 * entries to be flushed or updated with the new data. This must happen even
2799 * if we find that no change is needed in the pg_class row. When updating
2800 * a heap entry, this ensures that other backends find out about the new
2801 * index. When updating an index, it's important because some index AMs
2802 * expect a relcache flush to occur after REINDEX.
2804 static void
2805 index_update_stats(Relation rel,
2806 bool hasindex,
2807 double reltuples)
2809 bool update_stats;
2810 BlockNumber relpages = 0; /* keep compiler quiet */
2811 BlockNumber relallvisible = 0;
2812 Oid relid = RelationGetRelid(rel);
2813 Relation pg_class;
2814 ScanKeyData key[1];
2815 HeapTuple tuple;
2816 void *state;
2817 Form_pg_class rd_rel;
2818 bool dirty;
2821 * As a special hack, if we are dealing with an empty table and the
2822 * existing reltuples is -1, we leave that alone. This ensures that
2823 * creating an index as part of CREATE TABLE doesn't cause the table to
2824 * prematurely look like it's been vacuumed. The rd_rel we modify may
2825 * differ from rel->rd_rel due to e.g. commit of concurrent GRANT, but the
2826 * commands that change reltuples take locks conflicting with ours. (Even
2827 * if a command changed reltuples under a weaker lock, this affects only
2828 * statistics for an empty table.)
2830 if (reltuples == 0 && rel->rd_rel->reltuples < 0)
2831 reltuples = -1;
2834 * Don't update statistics during binary upgrade, because the indexes are
2835 * created before the data is moved into place.
2837 update_stats = reltuples >= 0 && !IsBinaryUpgrade;
2840 * Finish I/O and visibility map buffer locks before
2841 * systable_inplace_update_begin() locks the pg_class buffer. The rd_rel
2842 * we modify may differ from rel->rd_rel due to e.g. commit of concurrent
2843 * GRANT, but no command changes a relkind from non-index to index. (Even
2844 * if one did, relallvisible doesn't break functionality.)
2846 if (update_stats)
2848 relpages = RelationGetNumberOfBlocks(rel);
2850 if (rel->rd_rel->relkind != RELKIND_INDEX)
2851 visibilitymap_count(rel, &relallvisible, NULL);
2855 * We always update the pg_class row using a non-transactional,
2856 * overwrite-in-place update. There are several reasons for this:
2858 * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2860 * 2. We could be reindexing pg_class itself, in which case we can't move
2861 * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2862 * not know about all the indexes yet (see reindex_relation).
2864 * 3. Because we execute CREATE INDEX with just share lock on the parent
2865 * rel (to allow concurrent index creations), an ordinary update could
2866 * suffer a tuple-concurrently-updated failure against another CREATE
2867 * INDEX committing at about the same time. We can avoid that by having
2868 * them both do nontransactional updates (we assume they will both be
2869 * trying to change the pg_class row to the same thing, so it doesn't
2870 * matter which goes first).
2872 * It is safe to use a non-transactional update even though our
2873 * transaction could still fail before committing. Setting relhasindex
2874 * true is safe even if there are no indexes (VACUUM will eventually fix
2875 * it). And of course the new relpages and reltuples counts are correct
2876 * regardless. However, we don't want to change relpages (or
2877 * relallvisible) if the caller isn't providing an updated reltuples
2878 * count, because that would bollix the reltuples/relpages ratio which is
2879 * what's really important.
2882 pg_class = table_open(RelationRelationId, RowExclusiveLock);
2884 ScanKeyInit(&key[0],
2885 Anum_pg_class_oid,
2886 BTEqualStrategyNumber, F_OIDEQ,
2887 ObjectIdGetDatum(relid));
2888 systable_inplace_update_begin(pg_class, ClassOidIndexId, true, NULL,
2889 1, key, &tuple, &state);
2891 if (!HeapTupleIsValid(tuple))
2892 elog(ERROR, "could not find tuple for relation %u", relid);
2893 rd_rel = (Form_pg_class) GETSTRUCT(tuple);
2895 /* Should this be a more comprehensive test? */
2896 Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX);
2898 /* Apply required updates, if any, to copied tuple */
2900 dirty = false;
2901 if (rd_rel->relhasindex != hasindex)
2903 rd_rel->relhasindex = hasindex;
2904 dirty = true;
2907 if (update_stats)
2909 if (rd_rel->relpages != (int32) relpages)
2911 rd_rel->relpages = (int32) relpages;
2912 dirty = true;
2914 if (rd_rel->reltuples != (float4) reltuples)
2916 rd_rel->reltuples = (float4) reltuples;
2917 dirty = true;
2919 if (rd_rel->relallvisible != (int32) relallvisible)
2921 rd_rel->relallvisible = (int32) relallvisible;
2922 dirty = true;
2927 * If anything changed, write out the tuple
2929 if (dirty)
2931 systable_inplace_update_finish(state, tuple);
2932 /* the above sends transactional and immediate cache inval messages */
2934 else
2936 systable_inplace_update_cancel(state);
2939 * While we didn't change relhasindex, CREATE INDEX needs a
2940 * transactional inval for when the new index's catalog rows become
2941 * visible. Other CREATE INDEX and REINDEX code happens to also queue
2942 * this inval, but keep this in case rare callers rely on this part of
2943 * our API contract.
2945 CacheInvalidateRelcacheByTuple(tuple);
2948 heap_freetuple(tuple);
2950 table_close(pg_class, RowExclusiveLock);
2955 * index_build - invoke access-method-specific index build procedure
2957 * On entry, the index's catalog entries are valid, and its physical disk
2958 * file has been created but is empty. We call the AM-specific build
2959 * procedure to fill in the index contents. We then update the pg_class
2960 * entries of the index and heap relation as needed, using statistics
2961 * returned by ambuild as well as data passed by the caller.
2963 * isreindex indicates we are recreating a previously-existing index.
2964 * parallel indicates if parallelism may be useful.
2966 * Note: before Postgres 8.2, the passed-in heap and index Relations
2967 * were automatically closed by this routine. This is no longer the case.
2968 * The caller opened 'em, and the caller should close 'em.
2970 void
2971 index_build(Relation heapRelation,
2972 Relation indexRelation,
2973 IndexInfo *indexInfo,
2974 bool isreindex,
2975 bool parallel)
2977 IndexBuildResult *stats;
2978 Oid save_userid;
2979 int save_sec_context;
2980 int save_nestlevel;
2983 * sanity checks
2985 Assert(RelationIsValid(indexRelation));
2986 Assert(PointerIsValid(indexRelation->rd_indam));
2987 Assert(PointerIsValid(indexRelation->rd_indam->ambuild));
2988 Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty));
2991 * Determine worker process details for parallel CREATE INDEX. Currently,
2992 * only btree has support for parallel builds.
2994 * Note that planner considers parallel safety for us.
2996 if (parallel && IsNormalProcessingMode() &&
2997 indexRelation->rd_indam->amcanbuildparallel)
2998 indexInfo->ii_ParallelWorkers =
2999 plan_create_index_workers(RelationGetRelid(heapRelation),
3000 RelationGetRelid(indexRelation));
3002 if (indexInfo->ii_ParallelWorkers == 0)
3003 ereport(DEBUG1,
3004 (errmsg_internal("building index \"%s\" on table \"%s\" serially",
3005 RelationGetRelationName(indexRelation),
3006 RelationGetRelationName(heapRelation))));
3007 else
3008 ereport(DEBUG1,
3009 (errmsg_internal("building index \"%s\" on table \"%s\" with request for %d parallel workers",
3010 RelationGetRelationName(indexRelation),
3011 RelationGetRelationName(heapRelation),
3012 indexInfo->ii_ParallelWorkers)));
3015 * Switch to the table owner's userid, so that any index functions are run
3016 * as that user. Also lock down security-restricted operations and
3017 * arrange to make GUC variable changes local to this command.
3019 GetUserIdAndSecContext(&save_userid, &save_sec_context);
3020 SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3021 save_sec_context | SECURITY_RESTRICTED_OPERATION);
3022 save_nestlevel = NewGUCNestLevel();
3023 RestrictSearchPath();
3025 /* Set up initial progress report status */
3027 const int progress_index[] = {
3028 PROGRESS_CREATEIDX_PHASE,
3029 PROGRESS_CREATEIDX_SUBPHASE,
3030 PROGRESS_CREATEIDX_TUPLES_DONE,
3031 PROGRESS_CREATEIDX_TUPLES_TOTAL,
3032 PROGRESS_SCAN_BLOCKS_DONE,
3033 PROGRESS_SCAN_BLOCKS_TOTAL
3035 const int64 progress_vals[] = {
3036 PROGRESS_CREATEIDX_PHASE_BUILD,
3037 PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE,
3038 0, 0, 0, 0
3041 pgstat_progress_update_multi_param(6, progress_index, progress_vals);
3045 * Call the access method's build procedure
3047 stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation,
3048 indexInfo);
3049 Assert(PointerIsValid(stats));
3052 * If this is an unlogged index, we may need to write out an init fork for
3053 * it -- but we must first check whether one already exists. If, for
3054 * example, an unlogged relation is truncated in the transaction that
3055 * created it, or truncated twice in a subsequent transaction, the
3056 * relfilenumber won't change, and nothing needs to be done here.
3058 if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED &&
3059 !smgrexists(RelationGetSmgr(indexRelation), INIT_FORKNUM))
3061 smgrcreate(RelationGetSmgr(indexRelation), INIT_FORKNUM, false);
3062 log_smgrcreate(&indexRelation->rd_locator, INIT_FORKNUM);
3063 indexRelation->rd_indam->ambuildempty(indexRelation);
3067 * If we found any potentially broken HOT chains, mark the index as not
3068 * being usable until the current transaction is below the event horizon.
3069 * See src/backend/access/heap/README.HOT for discussion. While it might
3070 * become safe to use the index earlier based on actual cleanup activity
3071 * and other active transactions, the test for that would be much more
3072 * complex and would require some form of blocking, so keep it simple and
3073 * fast by just using the current transaction.
3075 * However, when reindexing an existing index, we should do nothing here.
3076 * Any HOT chains that are broken with respect to the index must predate
3077 * the index's original creation, so there is no need to change the
3078 * index's usability horizon. Moreover, we *must not* try to change the
3079 * index's pg_index entry while reindexing pg_index itself, and this
3080 * optimization nicely prevents that. The more complex rules needed for a
3081 * reindex are handled separately after this function returns.
3083 * We also need not set indcheckxmin during a concurrent index build,
3084 * because we won't set indisvalid true until all transactions that care
3085 * about the broken HOT chains are gone.
3087 * Therefore, this code path can only be taken during non-concurrent
3088 * CREATE INDEX. Thus the fact that heap_update will set the pg_index
3089 * tuple's xmin doesn't matter, because that tuple was created in the
3090 * current transaction anyway. That also means we don't need to worry
3091 * about any concurrent readers of the tuple; no other transaction can see
3092 * it yet.
3094 if (indexInfo->ii_BrokenHotChain &&
3095 !isreindex &&
3096 !indexInfo->ii_Concurrent)
3098 Oid indexId = RelationGetRelid(indexRelation);
3099 Relation pg_index;
3100 HeapTuple indexTuple;
3101 Form_pg_index indexForm;
3103 pg_index = table_open(IndexRelationId, RowExclusiveLock);
3105 indexTuple = SearchSysCacheCopy1(INDEXRELID,
3106 ObjectIdGetDatum(indexId));
3107 if (!HeapTupleIsValid(indexTuple))
3108 elog(ERROR, "cache lookup failed for index %u", indexId);
3109 indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3111 /* If it's a new index, indcheckxmin shouldn't be set ... */
3112 Assert(!indexForm->indcheckxmin);
3114 indexForm->indcheckxmin = true;
3115 CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3117 heap_freetuple(indexTuple);
3118 table_close(pg_index, RowExclusiveLock);
3122 * Update heap and index pg_class rows
3124 index_update_stats(heapRelation,
3125 true,
3126 stats->heap_tuples);
3128 index_update_stats(indexRelation,
3129 false,
3130 stats->index_tuples);
3132 /* Make the updated catalog row versions visible */
3133 CommandCounterIncrement();
3136 * If it's for an exclusion constraint, make a second pass over the heap
3137 * to verify that the constraint is satisfied. We must not do this until
3138 * the index is fully valid. (Broken HOT chains shouldn't matter, though;
3139 * see comments for IndexCheckExclusion.)
3141 if (indexInfo->ii_ExclusionOps != NULL)
3142 IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
3144 /* Roll back any GUC changes executed by index functions */
3145 AtEOXact_GUC(false, save_nestlevel);
3147 /* Restore userid and security context */
3148 SetUserIdAndSecContext(save_userid, save_sec_context);
3152 * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
3154 * When creating an exclusion constraint, we first build the index normally
3155 * and then rescan the heap to check for conflicts. We assume that we only
3156 * need to validate tuples that are live according to an up-to-date snapshot,
3157 * and that these were correctly indexed even in the presence of broken HOT
3158 * chains. This should be OK since we are holding at least ShareLock on the
3159 * table, meaning there can be no uncommitted updates from other transactions.
3160 * (Note: that wouldn't necessarily work for system catalogs, since many
3161 * operations release write lock early on the system catalogs.)
3163 static void
3164 IndexCheckExclusion(Relation heapRelation,
3165 Relation indexRelation,
3166 IndexInfo *indexInfo)
3168 TableScanDesc scan;
3169 Datum values[INDEX_MAX_KEYS];
3170 bool isnull[INDEX_MAX_KEYS];
3171 ExprState *predicate;
3172 TupleTableSlot *slot;
3173 EState *estate;
3174 ExprContext *econtext;
3175 Snapshot snapshot;
3178 * If we are reindexing the target index, mark it as no longer being
3179 * reindexed, to forestall an Assert in index_beginscan when we try to use
3180 * the index for probes. This is OK because the index is now fully valid.
3182 if (ReindexIsCurrentlyProcessingIndex(RelationGetRelid(indexRelation)))
3183 ResetReindexProcessing();
3186 * Need an EState for evaluation of index expressions and partial-index
3187 * predicates. Also a slot to hold the current tuple.
3189 estate = CreateExecutorState();
3190 econtext = GetPerTupleExprContext(estate);
3191 slot = table_slot_create(heapRelation, NULL);
3193 /* Arrange for econtext's scan tuple to be the tuple under test */
3194 econtext->ecxt_scantuple = slot;
3196 /* Set up execution state for predicate, if any. */
3197 predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
3200 * Scan all live tuples in the base relation.
3202 snapshot = RegisterSnapshot(GetLatestSnapshot());
3203 scan = table_beginscan_strat(heapRelation, /* relation */
3204 snapshot, /* snapshot */
3205 0, /* number of keys */
3206 NULL, /* scan key */
3207 true, /* buffer access strategy OK */
3208 true); /* syncscan OK */
3210 while (table_scan_getnextslot(scan, ForwardScanDirection, slot))
3212 CHECK_FOR_INTERRUPTS();
3215 * In a partial index, ignore tuples that don't satisfy the predicate.
3217 if (predicate != NULL)
3219 if (!ExecQual(predicate, econtext))
3220 continue;
3224 * Extract index column values, including computing expressions.
3226 FormIndexDatum(indexInfo,
3227 slot,
3228 estate,
3229 values,
3230 isnull);
3233 * Check that this tuple has no conflicts.
3235 check_exclusion_constraint(heapRelation,
3236 indexRelation, indexInfo,
3237 &(slot->tts_tid), values, isnull,
3238 estate, true);
3240 MemoryContextReset(econtext->ecxt_per_tuple_memory);
3243 table_endscan(scan);
3244 UnregisterSnapshot(snapshot);
3246 ExecDropSingleTupleTableSlot(slot);
3248 FreeExecutorState(estate);
3250 /* These may have been pointing to the now-gone estate */
3251 indexInfo->ii_ExpressionsState = NIL;
3252 indexInfo->ii_PredicateState = NULL;
3256 * validate_index - support code for concurrent index builds
3258 * We do a concurrent index build by first inserting the catalog entry for the
3259 * index via index_create(), marking it not indisready and not indisvalid.
3260 * Then we commit our transaction and start a new one, then we wait for all
3261 * transactions that could have been modifying the table to terminate. Now
3262 * we know that any subsequently-started transactions will see the index and
3263 * honor its constraints on HOT updates; so while existing HOT-chains might
3264 * be broken with respect to the index, no currently live tuple will have an
3265 * incompatible HOT update done to it. We now build the index normally via
3266 * index_build(), while holding a weak lock that allows concurrent
3267 * insert/update/delete. Also, we index only tuples that are valid
3268 * as of the start of the scan (see table_index_build_scan), whereas a normal
3269 * build takes care to include recently-dead tuples. This is OK because
3270 * we won't mark the index valid until all transactions that might be able
3271 * to see those tuples are gone. The reason for doing that is to avoid
3272 * bogus unique-index failures due to concurrent UPDATEs (we might see
3273 * different versions of the same row as being valid when we pass over them,
3274 * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
3275 * does not contain any tuples added to the table while we built the index.
3277 * Next, we mark the index "indisready" (but still not "indisvalid") and
3278 * commit the second transaction and start a third. Again we wait for all
3279 * transactions that could have been modifying the table to terminate. Now
3280 * we know that any subsequently-started transactions will see the index and
3281 * insert their new tuples into it. We then take a new reference snapshot
3282 * which is passed to validate_index(). Any tuples that are valid according
3283 * to this snap, but are not in the index, must be added to the index.
3284 * (Any tuples committed live after the snap will be inserted into the
3285 * index by their originating transaction. Any tuples committed dead before
3286 * the snap need not be indexed, because we will wait out all transactions
3287 * that might care about them before we mark the index valid.)
3289 * validate_index() works by first gathering all the TIDs currently in the
3290 * index, using a bulkdelete callback that just stores the TIDs and doesn't
3291 * ever say "delete it". (This should be faster than a plain indexscan;
3292 * also, not all index AMs support full-index indexscan.) Then we sort the
3293 * TIDs, and finally scan the table doing a "merge join" against the TID list
3294 * to see which tuples are missing from the index. Thus we will ensure that
3295 * all tuples valid according to the reference snapshot are in the index.
3297 * Building a unique index this way is tricky: we might try to insert a
3298 * tuple that is already dead or is in process of being deleted, and we
3299 * mustn't have a uniqueness failure against an updated version of the same
3300 * row. We could try to check the tuple to see if it's already dead and tell
3301 * index_insert() not to do the uniqueness check, but that still leaves us
3302 * with a race condition against an in-progress update. To handle that,
3303 * we expect the index AM to recheck liveness of the to-be-inserted tuple
3304 * before it declares a uniqueness error.
3306 * After completing validate_index(), we wait until all transactions that
3307 * were alive at the time of the reference snapshot are gone; this is
3308 * necessary to be sure there are none left with a transaction snapshot
3309 * older than the reference (and hence possibly able to see tuples we did
3310 * not index). Then we mark the index "indisvalid" and commit. Subsequent
3311 * transactions will be able to use it for queries.
3313 * Doing two full table scans is a brute-force strategy. We could try to be
3314 * cleverer, eg storing new tuples in a special area of the table (perhaps
3315 * making the table append-only by setting use_fsm). However that would
3316 * add yet more locking issues.
3318 void
3319 validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
3321 Relation heapRelation,
3322 indexRelation;
3323 IndexInfo *indexInfo;
3324 IndexVacuumInfo ivinfo;
3325 ValidateIndexState state;
3326 Oid save_userid;
3327 int save_sec_context;
3328 int save_nestlevel;
3331 const int progress_index[] = {
3332 PROGRESS_CREATEIDX_PHASE,
3333 PROGRESS_CREATEIDX_TUPLES_DONE,
3334 PROGRESS_CREATEIDX_TUPLES_TOTAL,
3335 PROGRESS_SCAN_BLOCKS_DONE,
3336 PROGRESS_SCAN_BLOCKS_TOTAL
3338 const int64 progress_vals[] = {
3339 PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN,
3340 0, 0, 0, 0
3343 pgstat_progress_update_multi_param(5, progress_index, progress_vals);
3346 /* Open and lock the parent heap relation */
3347 heapRelation = table_open(heapId, ShareUpdateExclusiveLock);
3350 * Switch to the table owner's userid, so that any index functions are run
3351 * as that user. Also lock down security-restricted operations and
3352 * arrange to make GUC variable changes local to this command.
3354 GetUserIdAndSecContext(&save_userid, &save_sec_context);
3355 SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3356 save_sec_context | SECURITY_RESTRICTED_OPERATION);
3357 save_nestlevel = NewGUCNestLevel();
3358 RestrictSearchPath();
3360 indexRelation = index_open(indexId, RowExclusiveLock);
3363 * Fetch info needed for index_insert. (You might think this should be
3364 * passed in from DefineIndex, but its copy is long gone due to having
3365 * been built in a previous transaction.)
3367 indexInfo = BuildIndexInfo(indexRelation);
3369 /* mark build is concurrent just for consistency */
3370 indexInfo->ii_Concurrent = true;
3373 * Scan the index and gather up all the TIDs into a tuplesort object.
3375 ivinfo.index = indexRelation;
3376 ivinfo.heaprel = heapRelation;
3377 ivinfo.analyze_only = false;
3378 ivinfo.report_progress = true;
3379 ivinfo.estimated_count = true;
3380 ivinfo.message_level = DEBUG2;
3381 ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
3382 ivinfo.strategy = NULL;
3385 * Encode TIDs as int8 values for the sort, rather than directly sorting
3386 * item pointers. This can be significantly faster, primarily because TID
3387 * is a pass-by-reference type on all platforms, whereas int8 is
3388 * pass-by-value on most platforms.
3390 state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator,
3391 InvalidOid, false,
3392 maintenance_work_mem,
3393 NULL, TUPLESORT_NONE);
3394 state.htups = state.itups = state.tups_inserted = 0;
3396 /* ambulkdelete updates progress metrics */
3397 (void) index_bulk_delete(&ivinfo, NULL,
3398 validate_index_callback, &state);
3400 /* Execute the sort */
3402 const int progress_index[] = {
3403 PROGRESS_CREATEIDX_PHASE,
3404 PROGRESS_SCAN_BLOCKS_DONE,
3405 PROGRESS_SCAN_BLOCKS_TOTAL
3407 const int64 progress_vals[] = {
3408 PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT,
3409 0, 0
3412 pgstat_progress_update_multi_param(3, progress_index, progress_vals);
3414 tuplesort_performsort(state.tuplesort);
3417 * Now scan the heap and "merge" it with the index
3419 pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
3420 PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN);
3421 table_index_validate_scan(heapRelation,
3422 indexRelation,
3423 indexInfo,
3424 snapshot,
3425 &state);
3427 /* Done with tuplesort object */
3428 tuplesort_end(state.tuplesort);
3430 /* Make sure to release resources cached in indexInfo (if needed). */
3431 index_insert_cleanup(indexRelation, indexInfo);
3433 elog(DEBUG2,
3434 "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3435 state.htups, state.itups, state.tups_inserted);
3437 /* Roll back any GUC changes executed by index functions */
3438 AtEOXact_GUC(false, save_nestlevel);
3440 /* Restore userid and security context */
3441 SetUserIdAndSecContext(save_userid, save_sec_context);
3443 /* Close rels, but keep locks */
3444 index_close(indexRelation, NoLock);
3445 table_close(heapRelation, NoLock);
3449 * validate_index_callback - bulkdelete callback to collect the index TIDs
3451 static bool
3452 validate_index_callback(ItemPointer itemptr, void *opaque)
3454 ValidateIndexState *state = (ValidateIndexState *) opaque;
3455 int64 encoded = itemptr_encode(itemptr);
3457 tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false);
3458 state->itups += 1;
3459 return false; /* never actually delete anything */
3463 * index_set_state_flags - adjust pg_index state flags
3465 * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3466 * flags that denote the index's state.
3468 * Note that CatalogTupleUpdate() sends a cache invalidation message for the
3469 * tuple, so other sessions will hear about the update as soon as we commit.
3471 void
3472 index_set_state_flags(Oid indexId, IndexStateFlagsAction action)
3474 Relation pg_index;
3475 HeapTuple indexTuple;
3476 Form_pg_index indexForm;
3478 /* Open pg_index and fetch a writable copy of the index's tuple */
3479 pg_index = table_open(IndexRelationId, RowExclusiveLock);
3481 indexTuple = SearchSysCacheCopy1(INDEXRELID,
3482 ObjectIdGetDatum(indexId));
3483 if (!HeapTupleIsValid(indexTuple))
3484 elog(ERROR, "cache lookup failed for index %u", indexId);
3485 indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3487 /* Perform the requested state change on the copy */
3488 switch (action)
3490 case INDEX_CREATE_SET_READY:
3491 /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3492 Assert(indexForm->indislive);
3493 Assert(!indexForm->indisready);
3494 Assert(!indexForm->indisvalid);
3495 indexForm->indisready = true;
3496 break;
3497 case INDEX_CREATE_SET_VALID:
3498 /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3499 Assert(indexForm->indislive);
3500 Assert(indexForm->indisready);
3501 Assert(!indexForm->indisvalid);
3502 indexForm->indisvalid = true;
3503 break;
3504 case INDEX_DROP_CLEAR_VALID:
3507 * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3509 * If indisready == true we leave it set so the index still gets
3510 * maintained by active transactions. We only need to ensure that
3511 * indisvalid is false. (We don't assert that either is initially
3512 * true, though, since we want to be able to retry a DROP INDEX
3513 * CONCURRENTLY that failed partway through.)
3515 * Note: the CLUSTER logic assumes that indisclustered cannot be
3516 * set on any invalid index, so clear that flag too. For
3517 * cleanliness, also clear indisreplident.
3519 indexForm->indisvalid = false;
3520 indexForm->indisclustered = false;
3521 indexForm->indisreplident = false;
3522 break;
3523 case INDEX_DROP_SET_DEAD:
3526 * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3528 * We clear both indisready and indislive, because we not only
3529 * want to stop updates, we want to prevent sessions from touching
3530 * the index at all.
3532 Assert(!indexForm->indisvalid);
3533 Assert(!indexForm->indisclustered);
3534 Assert(!indexForm->indisreplident);
3535 indexForm->indisready = false;
3536 indexForm->indislive = false;
3537 break;
3540 /* ... and update it */
3541 CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3543 table_close(pg_index, RowExclusiveLock);
3548 * IndexGetRelation: given an index's relation OID, get the OID of the
3549 * relation it is an index on. Uses the system cache.
3552 IndexGetRelation(Oid indexId, bool missing_ok)
3554 HeapTuple tuple;
3555 Form_pg_index index;
3556 Oid result;
3558 tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
3559 if (!HeapTupleIsValid(tuple))
3561 if (missing_ok)
3562 return InvalidOid;
3563 elog(ERROR, "cache lookup failed for index %u", indexId);
3565 index = (Form_pg_index) GETSTRUCT(tuple);
3566 Assert(index->indexrelid == indexId);
3568 result = index->indrelid;
3569 ReleaseSysCache(tuple);
3570 return result;
3574 * reindex_index - This routine is used to recreate a single index
3576 void
3577 reindex_index(const ReindexStmt *stmt, Oid indexId,
3578 bool skip_constraint_checks, char persistence,
3579 const ReindexParams *params)
3581 Relation iRel,
3582 heapRelation;
3583 Oid heapId;
3584 Oid save_userid;
3585 int save_sec_context;
3586 int save_nestlevel;
3587 IndexInfo *indexInfo;
3588 volatile bool skipped_constraint = false;
3589 PGRUsage ru0;
3590 bool progress = ((params->options & REINDEXOPT_REPORT_PROGRESS) != 0);
3591 bool set_tablespace = false;
3593 pg_rusage_init(&ru0);
3596 * Open and lock the parent heap relation. ShareLock is sufficient since
3597 * we only need to be sure no schema or data changes are going on.
3599 heapId = IndexGetRelation(indexId,
3600 (params->options & REINDEXOPT_MISSING_OK) != 0);
3601 /* if relation is missing, leave */
3602 if (!OidIsValid(heapId))
3603 return;
3605 if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3606 heapRelation = try_table_open(heapId, ShareLock);
3607 else
3608 heapRelation = table_open(heapId, ShareLock);
3610 /* if relation is gone, leave */
3611 if (!heapRelation)
3612 return;
3615 * Switch to the table owner's userid, so that any index functions are run
3616 * as that user. Also lock down security-restricted operations and
3617 * arrange to make GUC variable changes local to this command.
3619 GetUserIdAndSecContext(&save_userid, &save_sec_context);
3620 SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3621 save_sec_context | SECURITY_RESTRICTED_OPERATION);
3622 save_nestlevel = NewGUCNestLevel();
3623 RestrictSearchPath();
3625 if (progress)
3627 const int progress_cols[] = {
3628 PROGRESS_CREATEIDX_COMMAND,
3629 PROGRESS_CREATEIDX_INDEX_OID
3631 const int64 progress_vals[] = {
3632 PROGRESS_CREATEIDX_COMMAND_REINDEX,
3633 indexId
3636 pgstat_progress_start_command(PROGRESS_COMMAND_CREATE_INDEX,
3637 heapId);
3638 pgstat_progress_update_multi_param(2, progress_cols, progress_vals);
3642 * Open the target index relation and get an exclusive lock on it, to
3643 * ensure that no one else is touching this particular index.
3645 if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3646 iRel = try_index_open(indexId, AccessExclusiveLock);
3647 else
3648 iRel = index_open(indexId, AccessExclusiveLock);
3650 /* if index relation is gone, leave */
3651 if (!iRel)
3653 /* Roll back any GUC changes */
3654 AtEOXact_GUC(false, save_nestlevel);
3656 /* Restore userid and security context */
3657 SetUserIdAndSecContext(save_userid, save_sec_context);
3659 /* Close parent heap relation, but keep locks */
3660 table_close(heapRelation, NoLock);
3661 return;
3664 if (progress)
3665 pgstat_progress_update_param(PROGRESS_CREATEIDX_ACCESS_METHOD_OID,
3666 iRel->rd_rel->relam);
3669 * If a statement is available, telling that this comes from a REINDEX
3670 * command, collect the index for event triggers.
3672 if (stmt)
3674 ObjectAddress address;
3676 ObjectAddressSet(address, RelationRelationId, indexId);
3677 EventTriggerCollectSimpleCommand(address,
3678 InvalidObjectAddress,
3679 (Node *) stmt);
3683 * Partitioned indexes should never get processed here, as they have no
3684 * physical storage.
3686 if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
3687 elog(ERROR, "cannot reindex partitioned index \"%s.%s\"",
3688 get_namespace_name(RelationGetNamespace(iRel)),
3689 RelationGetRelationName(iRel));
3692 * Don't allow reindex on temp tables of other backends ... their local
3693 * buffer manager is not going to cope.
3695 if (RELATION_IS_OTHER_TEMP(iRel))
3696 ereport(ERROR,
3697 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3698 errmsg("cannot reindex temporary tables of other sessions")));
3701 * Don't allow reindex of an invalid index on TOAST table. This is a
3702 * leftover from a failed REINDEX CONCURRENTLY, and if rebuilt it would
3703 * not be possible to drop it anymore.
3705 if (IsToastNamespace(RelationGetNamespace(iRel)) &&
3706 !get_index_isvalid(indexId))
3707 ereport(ERROR,
3708 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3709 errmsg("cannot reindex invalid index on TOAST table")));
3712 * System relations cannot be moved even if allow_system_table_mods is
3713 * enabled to keep things consistent with the concurrent case where all
3714 * the indexes of a relation are processed in series, including indexes of
3715 * toast relations.
3717 * Note that this check is not part of CheckRelationTableSpaceMove() as it
3718 * gets used for ALTER TABLE SET TABLESPACE that could cascade across
3719 * toast relations.
3721 if (OidIsValid(params->tablespaceOid) &&
3722 IsSystemRelation(iRel))
3723 ereport(ERROR,
3724 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3725 errmsg("cannot move system relation \"%s\"",
3726 RelationGetRelationName(iRel))));
3728 /* Check if the tablespace of this index needs to be changed */
3729 if (OidIsValid(params->tablespaceOid) &&
3730 CheckRelationTableSpaceMove(iRel, params->tablespaceOid))
3731 set_tablespace = true;
3734 * Also check for active uses of the index in the current transaction; we
3735 * don't want to reindex underneath an open indexscan.
3737 CheckTableNotInUse(iRel, "REINDEX INDEX");
3739 /* Set new tablespace, if requested */
3740 if (set_tablespace)
3742 /* Update its pg_class row */
3743 SetRelationTableSpace(iRel, params->tablespaceOid, InvalidOid);
3746 * Schedule unlinking of the old index storage at transaction commit.
3748 RelationDropStorage(iRel);
3749 RelationAssumeNewRelfilelocator(iRel);
3751 /* Make sure the reltablespace change is visible */
3752 CommandCounterIncrement();
3756 * All predicate locks on the index are about to be made invalid. Promote
3757 * them to relation locks on the heap.
3759 TransferPredicateLocksToHeapRelation(iRel);
3761 /* Fetch info needed for index_build */
3762 indexInfo = BuildIndexInfo(iRel);
3764 /* If requested, skip checking uniqueness/exclusion constraints */
3765 if (skip_constraint_checks)
3767 if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL)
3768 skipped_constraint = true;
3769 indexInfo->ii_Unique = false;
3770 indexInfo->ii_ExclusionOps = NULL;
3771 indexInfo->ii_ExclusionProcs = NULL;
3772 indexInfo->ii_ExclusionStrats = NULL;
3775 /* Suppress use of the target index while rebuilding it */
3776 SetReindexProcessing(heapId, indexId);
3778 /* Create a new physical relation for the index */
3779 RelationSetNewRelfilenumber(iRel, persistence);
3781 /* Initialize the index and rebuild */
3782 /* Note: we do not need to re-establish pkey setting */
3783 index_build(heapRelation, iRel, indexInfo, true, true);
3785 /* Re-allow use of target index */
3786 ResetReindexProcessing();
3789 * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3790 * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3791 * and we didn't skip a uniqueness check, we can now mark it valid. This
3792 * allows REINDEX to be used to clean up in such cases.
3794 * We can also reset indcheckxmin, because we have now done a
3795 * non-concurrent index build, *except* in the case where index_build
3796 * found some still-broken HOT chains. If it did, and we don't have to
3797 * change any of the other flags, we just leave indcheckxmin alone (note
3798 * that index_build won't have changed it, because this is a reindex).
3799 * This is okay and desirable because not updating the tuple leaves the
3800 * index's usability horizon (recorded as the tuple's xmin value) the same
3801 * as it was.
3803 * But, if the index was invalid/not-ready/dead and there were broken HOT
3804 * chains, we had better force indcheckxmin true, because the normal
3805 * argument that the HOT chains couldn't conflict with the index is
3806 * suspect for an invalid index. (A conflict is definitely possible if
3807 * the index was dead. It probably shouldn't happen otherwise, but let's
3808 * be conservative.) In this case advancing the usability horizon is
3809 * appropriate.
3811 * Another reason for avoiding unnecessary updates here is that while
3812 * reindexing pg_index itself, we must not try to update tuples in it.
3813 * pg_index's indexes should always have these flags in their clean state,
3814 * so that won't happen.
3816 if (!skipped_constraint)
3818 Relation pg_index;
3819 HeapTuple indexTuple;
3820 Form_pg_index indexForm;
3821 bool index_bad;
3823 pg_index = table_open(IndexRelationId, RowExclusiveLock);
3825 indexTuple = SearchSysCacheCopy1(INDEXRELID,
3826 ObjectIdGetDatum(indexId));
3827 if (!HeapTupleIsValid(indexTuple))
3828 elog(ERROR, "cache lookup failed for index %u", indexId);
3829 indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3831 index_bad = (!indexForm->indisvalid ||
3832 !indexForm->indisready ||
3833 !indexForm->indislive);
3834 if (index_bad ||
3835 (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain))
3837 if (!indexInfo->ii_BrokenHotChain)
3838 indexForm->indcheckxmin = false;
3839 else if (index_bad)
3840 indexForm->indcheckxmin = true;
3841 indexForm->indisvalid = true;
3842 indexForm->indisready = true;
3843 indexForm->indislive = true;
3844 CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3847 * Invalidate the relcache for the table, so that after we commit
3848 * all sessions will refresh the table's index list. This ensures
3849 * that if anyone misses seeing the pg_index row during this
3850 * update, they'll refresh their list before attempting any update
3851 * on the table.
3853 CacheInvalidateRelcache(heapRelation);
3856 table_close(pg_index, RowExclusiveLock);
3859 /* Log what we did */
3860 if ((params->options & REINDEXOPT_VERBOSE) != 0)
3861 ereport(INFO,
3862 (errmsg("index \"%s\" was reindexed",
3863 get_rel_name(indexId)),
3864 errdetail_internal("%s",
3865 pg_rusage_show(&ru0))));
3867 /* Roll back any GUC changes executed by index functions */
3868 AtEOXact_GUC(false, save_nestlevel);
3870 /* Restore userid and security context */
3871 SetUserIdAndSecContext(save_userid, save_sec_context);
3873 /* Close rels, but keep locks */
3874 index_close(iRel, NoLock);
3875 table_close(heapRelation, NoLock);
3877 if (progress)
3878 pgstat_progress_end_command();
3882 * reindex_relation - This routine is used to recreate all indexes
3883 * of a relation (and optionally its toast relation too, if any).
3885 * "flags" is a bitmask that can include any combination of these bits:
3887 * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3889 * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3890 * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3891 * indexes are inconsistent with it. This makes things tricky if the relation
3892 * is a system catalog that we might consult during the reindexing. To deal
3893 * with that case, we mark all of the indexes as pending rebuild so that they
3894 * won't be trusted until rebuilt. The caller is required to call us *without*
3895 * having made the rebuilt table visible by doing CommandCounterIncrement;
3896 * we'll do CCI after having collected the index list. (This way we can still
3897 * use catalog indexes while collecting the list.)
3899 * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3900 * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or
3901 * CLUSTER on a system catalog must omit this flag. REINDEX should be used to
3902 * rebuild an index if constraint inconsistency is suspected. For optimal
3903 * performance, other callers should include the flag only after transforming
3904 * the data in a manner that risks a change in constraint validity.
3906 * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3907 * rebuilt indexes to unlogged.
3909 * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3910 * rebuilt indexes to permanent.
3912 * Returns true if any indexes were rebuilt (including toast table's index
3913 * when relevant). Note that a CommandCounterIncrement will occur after each
3914 * index rebuild.
3916 bool
3917 reindex_relation(const ReindexStmt *stmt, Oid relid, int flags,
3918 const ReindexParams *params)
3920 Relation rel;
3921 Oid toast_relid;
3922 List *indexIds;
3923 char persistence;
3924 bool result = false;
3925 ListCell *indexId;
3926 int i;
3929 * Open and lock the relation. ShareLock is sufficient since we only need
3930 * to prevent schema and data changes in it. The lock level used here
3931 * should match ReindexTable().
3933 if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3934 rel = try_table_open(relid, ShareLock);
3935 else
3936 rel = table_open(relid, ShareLock);
3938 /* if relation is gone, leave */
3939 if (!rel)
3940 return false;
3943 * Partitioned tables should never get processed here, as they have no
3944 * physical storage.
3946 if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
3947 elog(ERROR, "cannot reindex partitioned table \"%s.%s\"",
3948 get_namespace_name(RelationGetNamespace(rel)),
3949 RelationGetRelationName(rel));
3951 toast_relid = rel->rd_rel->reltoastrelid;
3954 * Get the list of index OIDs for this relation. (We trust the relcache
3955 * to get this with a sequential scan if ignoring system indexes.)
3957 indexIds = RelationGetIndexList(rel);
3959 if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
3961 /* Suppress use of all the indexes until they are rebuilt */
3962 SetReindexPending(indexIds);
3965 * Make the new heap contents visible --- now things might be
3966 * inconsistent!
3968 CommandCounterIncrement();
3972 * Reindex the toast table, if any, before the main table.
3974 * This helps in cases where a corruption in the toast table's index would
3975 * otherwise error and stop REINDEX TABLE command when it tries to fetch a
3976 * toasted datum. This way. the toast table's index is rebuilt and fixed
3977 * before it is used for reindexing the main table.
3979 * It is critical to call reindex_relation() *after* the call to
3980 * RelationGetIndexList() returning the list of indexes on the relation,
3981 * because reindex_relation() will call CommandCounterIncrement() after
3982 * every reindex_index(). See REINDEX_REL_SUPPRESS_INDEX_USE for more
3983 * details.
3985 if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid))
3988 * Note that this should fail if the toast relation is missing, so
3989 * reset REINDEXOPT_MISSING_OK. Even if a new tablespace is set for
3990 * the parent relation, the indexes on its toast table are not moved.
3991 * This rule is enforced by setting tablespaceOid to InvalidOid.
3993 ReindexParams newparams = *params;
3995 newparams.options &= ~(REINDEXOPT_MISSING_OK);
3996 newparams.tablespaceOid = InvalidOid;
3997 result |= reindex_relation(stmt, toast_relid, flags, &newparams);
4001 * Compute persistence of indexes: same as that of owning rel, unless
4002 * caller specified otherwise.
4004 if (flags & REINDEX_REL_FORCE_INDEXES_UNLOGGED)
4005 persistence = RELPERSISTENCE_UNLOGGED;
4006 else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT)
4007 persistence = RELPERSISTENCE_PERMANENT;
4008 else
4009 persistence = rel->rd_rel->relpersistence;
4011 /* Reindex all the indexes. */
4012 i = 1;
4013 foreach(indexId, indexIds)
4015 Oid indexOid = lfirst_oid(indexId);
4016 Oid indexNamespaceId = get_rel_namespace(indexOid);
4019 * Skip any invalid indexes on a TOAST table. These can only be
4020 * duplicate leftovers from a failed REINDEX CONCURRENTLY, and if
4021 * rebuilt it would not be possible to drop them anymore.
4023 if (IsToastNamespace(indexNamespaceId) &&
4024 !get_index_isvalid(indexOid))
4026 ereport(WARNING,
4027 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4028 errmsg("cannot reindex invalid index \"%s.%s\" on TOAST table, skipping",
4029 get_namespace_name(indexNamespaceId),
4030 get_rel_name(indexOid))));
4033 * Remove this invalid toast index from the reindex pending list,
4034 * as it is skipped here due to the hard failure that would happen
4035 * in reindex_index(), should we try to process it.
4037 if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
4038 RemoveReindexPending(indexOid);
4039 continue;
4042 reindex_index(stmt, indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS),
4043 persistence, params);
4045 CommandCounterIncrement();
4047 /* Index should no longer be in the pending list */
4048 Assert(!ReindexIsProcessingIndex(indexOid));
4050 /* Set index rebuild count */
4051 pgstat_progress_update_param(PROGRESS_CLUSTER_INDEX_REBUILD_COUNT,
4053 i++;
4057 * Close rel, but continue to hold the lock.
4059 table_close(rel, NoLock);
4061 result |= (indexIds != NIL);
4063 return result;
4067 /* ----------------------------------------------------------------
4068 * System index reindexing support
4070 * When we are busy reindexing a system index, this code provides support
4071 * for preventing catalog lookups from using that index. We also make use
4072 * of this to catch attempted uses of user indexes during reindexing of
4073 * those indexes. This information is propagated to parallel workers;
4074 * attempting to change it during a parallel operation is not permitted.
4075 * ----------------------------------------------------------------
4078 static Oid currentlyReindexedHeap = InvalidOid;
4079 static Oid currentlyReindexedIndex = InvalidOid;
4080 static List *pendingReindexedIndexes = NIL;
4081 static int reindexingNestLevel = 0;
4084 * ReindexIsProcessingHeap
4085 * True if heap specified by OID is currently being reindexed.
4087 bool
4088 ReindexIsProcessingHeap(Oid heapOid)
4090 return heapOid == currentlyReindexedHeap;
4094 * ReindexIsCurrentlyProcessingIndex
4095 * True if index specified by OID is currently being reindexed.
4097 static bool
4098 ReindexIsCurrentlyProcessingIndex(Oid indexOid)
4100 return indexOid == currentlyReindexedIndex;
4104 * ReindexIsProcessingIndex
4105 * True if index specified by OID is currently being reindexed,
4106 * or should be treated as invalid because it is awaiting reindex.
4108 bool
4109 ReindexIsProcessingIndex(Oid indexOid)
4111 return indexOid == currentlyReindexedIndex ||
4112 list_member_oid(pendingReindexedIndexes, indexOid);
4116 * SetReindexProcessing
4117 * Set flag that specified heap/index are being reindexed.
4119 static void
4120 SetReindexProcessing(Oid heapOid, Oid indexOid)
4122 Assert(OidIsValid(heapOid) && OidIsValid(indexOid));
4123 /* Reindexing is not re-entrant. */
4124 if (OidIsValid(currentlyReindexedHeap))
4125 elog(ERROR, "cannot reindex while reindexing");
4126 currentlyReindexedHeap = heapOid;
4127 currentlyReindexedIndex = indexOid;
4128 /* Index is no longer "pending" reindex. */
4129 RemoveReindexPending(indexOid);
4130 /* This may have been set already, but in case it isn't, do so now. */
4131 reindexingNestLevel = GetCurrentTransactionNestLevel();
4135 * ResetReindexProcessing
4136 * Unset reindexing status.
4138 static void
4139 ResetReindexProcessing(void)
4141 currentlyReindexedHeap = InvalidOid;
4142 currentlyReindexedIndex = InvalidOid;
4143 /* reindexingNestLevel remains set till end of (sub)transaction */
4147 * SetReindexPending
4148 * Mark the given indexes as pending reindex.
4150 * NB: we assume that the current memory context stays valid throughout.
4152 static void
4153 SetReindexPending(List *indexes)
4155 /* Reindexing is not re-entrant. */
4156 if (pendingReindexedIndexes)
4157 elog(ERROR, "cannot reindex while reindexing");
4158 if (IsInParallelMode())
4159 elog(ERROR, "cannot modify reindex state during a parallel operation");
4160 pendingReindexedIndexes = list_copy(indexes);
4161 reindexingNestLevel = GetCurrentTransactionNestLevel();
4165 * RemoveReindexPending
4166 * Remove the given index from the pending list.
4168 static void
4169 RemoveReindexPending(Oid indexOid)
4171 if (IsInParallelMode())
4172 elog(ERROR, "cannot modify reindex state during a parallel operation");
4173 pendingReindexedIndexes = list_delete_oid(pendingReindexedIndexes,
4174 indexOid);
4178 * ResetReindexState
4179 * Clear all reindexing state during (sub)transaction abort.
4181 void
4182 ResetReindexState(int nestLevel)
4185 * Because reindexing is not re-entrant, we don't need to cope with nested
4186 * reindexing states. We just need to avoid messing up the outer-level
4187 * state in case a subtransaction fails within a REINDEX. So checking the
4188 * current nest level against that of the reindex operation is sufficient.
4190 if (reindexingNestLevel >= nestLevel)
4192 currentlyReindexedHeap = InvalidOid;
4193 currentlyReindexedIndex = InvalidOid;
4196 * We needn't try to release the contents of pendingReindexedIndexes;
4197 * that list should be in a transaction-lifespan context, so it will
4198 * go away automatically.
4200 pendingReindexedIndexes = NIL;
4202 reindexingNestLevel = 0;
4207 * EstimateReindexStateSpace
4208 * Estimate space needed to pass reindex state to parallel workers.
4210 Size
4211 EstimateReindexStateSpace(void)
4213 return offsetof(SerializedReindexState, pendingReindexedIndexes)
4214 + mul_size(sizeof(Oid), list_length(pendingReindexedIndexes));
4218 * SerializeReindexState
4219 * Serialize reindex state for parallel workers.
4221 void
4222 SerializeReindexState(Size maxsize, char *start_address)
4224 SerializedReindexState *sistate = (SerializedReindexState *) start_address;
4225 int c = 0;
4226 ListCell *lc;
4228 sistate->currentlyReindexedHeap = currentlyReindexedHeap;
4229 sistate->currentlyReindexedIndex = currentlyReindexedIndex;
4230 sistate->numPendingReindexedIndexes = list_length(pendingReindexedIndexes);
4231 foreach(lc, pendingReindexedIndexes)
4232 sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc);
4236 * RestoreReindexState
4237 * Restore reindex state in a parallel worker.
4239 void
4240 RestoreReindexState(const void *reindexstate)
4242 const SerializedReindexState *sistate = (const SerializedReindexState *) reindexstate;
4243 int c = 0;
4244 MemoryContext oldcontext;
4246 currentlyReindexedHeap = sistate->currentlyReindexedHeap;
4247 currentlyReindexedIndex = sistate->currentlyReindexedIndex;
4249 Assert(pendingReindexedIndexes == NIL);
4250 oldcontext = MemoryContextSwitchTo(TopMemoryContext);
4251 for (c = 0; c < sistate->numPendingReindexedIndexes; ++c)
4252 pendingReindexedIndexes =
4253 lappend_oid(pendingReindexedIndexes,
4254 sistate->pendingReindexedIndexes[c]);
4255 MemoryContextSwitchTo(oldcontext);
4257 /* Note the worker has its own transaction nesting level */
4258 reindexingNestLevel = GetCurrentTransactionNestLevel();