1 /*-------------------------------------------------------------------------
4 * code to create and destroy POSTGRES index relations
6 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
11 * src/backend/catalog/index.c
15 * index_create() - Create a cataloged index relation
16 * index_drop() - Removes index relation from catalogs
17 * BuildIndexInfo() - Prepare to insert index tuples
18 * FormIndexDatum() - Construct datum vector for one index tuple
20 *-------------------------------------------------------------------------
26 #include "access/amapi.h"
27 #include "access/heapam.h"
28 #include "access/multixact.h"
29 #include "access/relscan.h"
30 #include "access/tableam.h"
31 #include "access/toast_compression.h"
32 #include "access/transam.h"
33 #include "access/visibilitymap.h"
34 #include "access/xact.h"
35 #include "bootstrap/bootstrap.h"
36 #include "catalog/binary_upgrade.h"
37 #include "catalog/catalog.h"
38 #include "catalog/dependency.h"
39 #include "catalog/heap.h"
40 #include "catalog/index.h"
41 #include "catalog/objectaccess.h"
42 #include "catalog/partition.h"
43 #include "catalog/pg_am.h"
44 #include "catalog/pg_collation.h"
45 #include "catalog/pg_constraint.h"
46 #include "catalog/pg_description.h"
47 #include "catalog/pg_inherits.h"
48 #include "catalog/pg_opclass.h"
49 #include "catalog/pg_operator.h"
50 #include "catalog/pg_tablespace.h"
51 #include "catalog/pg_trigger.h"
52 #include "catalog/pg_type.h"
53 #include "catalog/storage.h"
54 #include "catalog/storage_xlog.h"
55 #include "commands/event_trigger.h"
56 #include "commands/progress.h"
57 #include "commands/tablecmds.h"
58 #include "commands/trigger.h"
59 #include "executor/executor.h"
60 #include "miscadmin.h"
61 #include "nodes/makefuncs.h"
62 #include "nodes/nodeFuncs.h"
63 #include "optimizer/optimizer.h"
64 #include "parser/parser.h"
66 #include "rewrite/rewriteManip.h"
67 #include "storage/bufmgr.h"
68 #include "storage/lmgr.h"
69 #include "storage/predicate.h"
70 #include "storage/smgr.h"
71 #include "utils/builtins.h"
72 #include "utils/fmgroids.h"
73 #include "utils/guc.h"
74 #include "utils/inval.h"
75 #include "utils/lsyscache.h"
76 #include "utils/memutils.h"
77 #include "utils/pg_rusage.h"
78 #include "utils/rel.h"
79 #include "utils/snapmgr.h"
80 #include "utils/syscache.h"
81 #include "utils/tuplesort.h"
83 /* Potentially set by pg_upgrade_support functions */
84 Oid binary_upgrade_next_index_pg_class_oid
= InvalidOid
;
85 RelFileNumber binary_upgrade_next_index_pg_class_relfilenumber
=
89 * Pointer-free representation of variables used when reindexing system
90 * catalogs; we use this to propagate those values to parallel workers.
94 Oid currentlyReindexedHeap
;
95 Oid currentlyReindexedIndex
;
96 int numPendingReindexedIndexes
;
97 Oid pendingReindexedIndexes
[FLEXIBLE_ARRAY_MEMBER
];
98 } SerializedReindexState
;
100 /* non-export function prototypes */
101 static bool relationHasPrimaryKey(Relation rel
);
102 static TupleDesc
ConstructTupleDescriptor(Relation heapRelation
,
103 const IndexInfo
*indexInfo
,
104 const List
*indexColNames
,
106 const Oid
*collationIds
,
107 const Oid
*opclassIds
);
108 static void InitializeAttributeOids(Relation indexRelation
,
109 int numatts
, Oid indexoid
);
110 static void AppendAttributeTuples(Relation indexRelation
, const Datum
*attopts
, const NullableDatum
*stattargets
);
111 static void UpdateIndexRelation(Oid indexoid
, Oid heapoid
,
113 const IndexInfo
*indexInfo
,
114 const Oid
*collationOids
,
115 const Oid
*opclassOids
,
116 const int16
*coloptions
,
122 static void index_update_stats(Relation rel
,
125 static void IndexCheckExclusion(Relation heapRelation
,
126 Relation indexRelation
,
127 IndexInfo
*indexInfo
);
128 static bool validate_index_callback(ItemPointer itemptr
, void *opaque
);
129 static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid
);
130 static void SetReindexProcessing(Oid heapOid
, Oid indexOid
);
131 static void ResetReindexProcessing(void);
132 static void SetReindexPending(List
*indexes
);
133 static void RemoveReindexPending(Oid indexOid
);
137 * relationHasPrimaryKey
138 * See whether an existing relation has a primary key.
140 * Caller must have suitable lock on the relation.
142 * Note: we intentionally do not check indisvalid here; that's because this
143 * is used to enforce the rule that there can be only one indisprimary index,
144 * and we want that to be true even if said index is invalid.
147 relationHasPrimaryKey(Relation rel
)
151 ListCell
*indexoidscan
;
154 * Get the list of index OIDs for the table from the relcache, and look up
155 * each one in the pg_index syscache until we find one marked primary key
156 * (hopefully there isn't more than one such).
158 indexoidlist
= RelationGetIndexList(rel
);
160 foreach(indexoidscan
, indexoidlist
)
162 Oid indexoid
= lfirst_oid(indexoidscan
);
163 HeapTuple indexTuple
;
165 indexTuple
= SearchSysCache1(INDEXRELID
, ObjectIdGetDatum(indexoid
));
166 if (!HeapTupleIsValid(indexTuple
)) /* should not happen */
167 elog(ERROR
, "cache lookup failed for index %u", indexoid
);
168 result
= ((Form_pg_index
) GETSTRUCT(indexTuple
))->indisprimary
;
169 ReleaseSysCache(indexTuple
);
174 list_free(indexoidlist
);
180 * index_check_primary_key
181 * Apply special checks needed before creating a PRIMARY KEY index
183 * This processing used to be in DefineIndex(), but has been split out
184 * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
186 * We check for a pre-existing primary key, and that all columns of the index
187 * are simple column references (not expressions), and that all those
188 * columns are marked NOT NULL. If not, fail.
190 * We used to automatically change unmarked columns to NOT NULL here by doing
191 * our own local ALTER TABLE command. But that doesn't work well if we're
192 * executing one subcommand of an ALTER TABLE: the operations may not get
193 * performed in the right order overall. Now we expect that the parser
194 * inserted any required ALTER TABLE SET NOT NULL operations before trying
195 * to create a primary-key index.
197 * Caller had better have at least ShareLock on the table, else the not-null
198 * checking isn't trustworthy.
201 index_check_primary_key(Relation heapRel
,
202 const IndexInfo
*indexInfo
,
204 const IndexStmt
*stmt
)
209 * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
210 * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we
211 * have faith that the parser rejected multiple pkey clauses; and CREATE
212 * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
214 if ((is_alter_table
|| heapRel
->rd_rel
->relispartition
) &&
215 relationHasPrimaryKey(heapRel
))
218 (errcode(ERRCODE_INVALID_TABLE_DEFINITION
),
219 errmsg("multiple primary keys for table \"%s\" are not allowed",
220 RelationGetRelationName(heapRel
))));
224 * Indexes created with NULLS NOT DISTINCT cannot be used for primary key
225 * constraints. While there is no direct syntax to reach here, it can be
226 * done by creating a separate index and attaching it via ALTER TABLE ..
229 if (indexInfo
->ii_NullsNotDistinct
)
232 (errcode(ERRCODE_INVALID_TABLE_DEFINITION
),
233 errmsg("primary keys cannot use NULLS NOT DISTINCT indexes")));
237 * Check that all of the attributes in a primary key are marked as not
238 * null. (We don't really expect to see that; it'd mean the parser messed
239 * up. But it seems wise to check anyway.)
241 for (i
= 0; i
< indexInfo
->ii_NumIndexKeyAttrs
; i
++)
243 AttrNumber attnum
= indexInfo
->ii_IndexAttrNumbers
[i
];
245 Form_pg_attribute attform
;
249 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
250 errmsg("primary keys cannot be expressions")));
252 /* System attributes are never null, so no need to check */
256 atttuple
= SearchSysCache2(ATTNUM
,
257 ObjectIdGetDatum(RelationGetRelid(heapRel
)),
258 Int16GetDatum(attnum
));
259 if (!HeapTupleIsValid(atttuple
))
260 elog(ERROR
, "cache lookup failed for attribute %d of relation %u",
261 attnum
, RelationGetRelid(heapRel
));
262 attform
= (Form_pg_attribute
) GETSTRUCT(atttuple
);
264 if (!attform
->attnotnull
)
266 (errcode(ERRCODE_INVALID_TABLE_DEFINITION
),
267 errmsg("primary key column \"%s\" is not marked NOT NULL",
268 NameStr(attform
->attname
))));
270 ReleaseSysCache(atttuple
);
275 * ConstructTupleDescriptor
277 * Build an index tuple descriptor for a new index
280 ConstructTupleDescriptor(Relation heapRelation
,
281 const IndexInfo
*indexInfo
,
282 const List
*indexColNames
,
284 const Oid
*collationIds
,
285 const Oid
*opclassIds
)
287 int numatts
= indexInfo
->ii_NumIndexAttrs
;
288 int numkeyatts
= indexInfo
->ii_NumIndexKeyAttrs
;
289 ListCell
*colnames_item
= list_head(indexColNames
);
290 ListCell
*indexpr_item
= list_head(indexInfo
->ii_Expressions
);
291 IndexAmRoutine
*amroutine
;
292 TupleDesc heapTupDesc
;
293 TupleDesc indexTupDesc
;
294 int natts
; /* #atts in heap rel --- for error checks */
297 /* We need access to the index AM's API struct */
298 amroutine
= GetIndexAmRoutineByAmId(accessMethodId
, false);
300 /* ... and to the table's tuple descriptor */
301 heapTupDesc
= RelationGetDescr(heapRelation
);
302 natts
= RelationGetForm(heapRelation
)->relnatts
;
305 * allocate the new tuple descriptor
307 indexTupDesc
= CreateTemplateTupleDesc(numatts
);
310 * Fill in the pg_attribute row.
312 for (i
= 0; i
< numatts
; i
++)
314 AttrNumber atnum
= indexInfo
->ii_IndexAttrNumbers
[i
];
315 Form_pg_attribute to
= TupleDescAttr(indexTupDesc
, i
);
317 Form_pg_type typeTup
;
318 Form_pg_opclass opclassTup
;
321 MemSet(to
, 0, ATTRIBUTE_FIXED_PART_SIZE
);
323 to
->attcacheoff
= -1;
324 to
->attislocal
= true;
325 to
->attcollation
= (i
< numkeyatts
) ? collationIds
[i
] : InvalidOid
;
328 * Set the attribute name as specified by caller.
330 if (colnames_item
== NULL
) /* shouldn't happen */
331 elog(ERROR
, "too few entries in colnames list");
332 namestrcpy(&to
->attname
, (const char *) lfirst(colnames_item
));
333 colnames_item
= lnext(indexColNames
, colnames_item
);
336 * For simple index columns, we copy some pg_attribute fields from the
337 * parent relation. For expressions we have to look at the expression
342 /* Simple index column */
343 const FormData_pg_attribute
*from
;
345 Assert(atnum
> 0); /* should've been caught above */
347 if (atnum
> natts
) /* safety check */
348 elog(ERROR
, "invalid column number %d", atnum
);
349 from
= TupleDescAttr(heapTupDesc
,
350 AttrNumberGetAttrOffset(atnum
));
352 to
->atttypid
= from
->atttypid
;
353 to
->attlen
= from
->attlen
;
354 to
->attndims
= from
->attndims
;
355 to
->atttypmod
= from
->atttypmod
;
356 to
->attbyval
= from
->attbyval
;
357 to
->attalign
= from
->attalign
;
358 to
->attstorage
= from
->attstorage
;
359 to
->attcompression
= from
->attcompression
;
363 /* Expressional index */
366 if (indexpr_item
== NULL
) /* shouldn't happen */
367 elog(ERROR
, "too few entries in indexprs list");
368 indexkey
= (Node
*) lfirst(indexpr_item
);
369 indexpr_item
= lnext(indexInfo
->ii_Expressions
, indexpr_item
);
372 * Lookup the expression type in pg_type for the type length etc.
374 keyType
= exprType(indexkey
);
375 tuple
= SearchSysCache1(TYPEOID
, ObjectIdGetDatum(keyType
));
376 if (!HeapTupleIsValid(tuple
))
377 elog(ERROR
, "cache lookup failed for type %u", keyType
);
378 typeTup
= (Form_pg_type
) GETSTRUCT(tuple
);
381 * Assign some of the attributes values. Leave the rest.
383 to
->atttypid
= keyType
;
384 to
->attlen
= typeTup
->typlen
;
385 to
->atttypmod
= exprTypmod(indexkey
);
386 to
->attbyval
= typeTup
->typbyval
;
387 to
->attalign
= typeTup
->typalign
;
388 to
->attstorage
= typeTup
->typstorage
;
391 * For expression columns, set attcompression invalid, since
392 * there's no table column from which to copy the value. Whenever
393 * we actually need to compress a value, we'll use whatever the
394 * current value of default_toast_compression is at that point in
397 to
->attcompression
= InvalidCompressionMethod
;
399 ReleaseSysCache(tuple
);
402 * Make sure the expression yields a type that's safe to store in
403 * an index. We need this defense because we have index opclasses
404 * for pseudo-types such as "record", and the actually stored type
405 * had better be safe; eg, a named composite type is okay, an
406 * anonymous record type is not. The test is the same as for
407 * whether a table column is of a safe type (which is why we
408 * needn't check for the non-expression case).
410 CheckAttributeType(NameStr(to
->attname
),
411 to
->atttypid
, to
->attcollation
,
416 * We do not yet have the correct relation OID for the index, so just
417 * set it invalid for now. InitializeAttributeOids() will fix it
420 to
->attrelid
= InvalidOid
;
423 * Check the opclass and index AM to see if either provides a keytype
424 * (overriding the attribute type). Opclass (if exists) takes
427 keyType
= amroutine
->amkeytype
;
429 if (i
< indexInfo
->ii_NumIndexKeyAttrs
)
431 tuple
= SearchSysCache1(CLAOID
, ObjectIdGetDatum(opclassIds
[i
]));
432 if (!HeapTupleIsValid(tuple
))
433 elog(ERROR
, "cache lookup failed for opclass %u", opclassIds
[i
]);
434 opclassTup
= (Form_pg_opclass
) GETSTRUCT(tuple
);
435 if (OidIsValid(opclassTup
->opckeytype
))
436 keyType
= opclassTup
->opckeytype
;
439 * If keytype is specified as ANYELEMENT, and opcintype is
440 * ANYARRAY, then the attribute type must be an array (else it'd
441 * not have matched this opclass); use its element type.
443 * We could also allow ANYCOMPATIBLE/ANYCOMPATIBLEARRAY here, but
444 * there seems no need to do so; there's no reason to declare an
445 * opclass as taking ANYCOMPATIBLEARRAY rather than ANYARRAY.
447 if (keyType
== ANYELEMENTOID
&& opclassTup
->opcintype
== ANYARRAYOID
)
449 keyType
= get_base_element_type(to
->atttypid
);
450 if (!OidIsValid(keyType
))
451 elog(ERROR
, "could not get element type of array type %u",
455 ReleaseSysCache(tuple
);
459 * If a key type different from the heap value is specified, update
460 * the type-related fields in the index tupdesc.
462 if (OidIsValid(keyType
) && keyType
!= to
->atttypid
)
464 tuple
= SearchSysCache1(TYPEOID
, ObjectIdGetDatum(keyType
));
465 if (!HeapTupleIsValid(tuple
))
466 elog(ERROR
, "cache lookup failed for type %u", keyType
);
467 typeTup
= (Form_pg_type
) GETSTRUCT(tuple
);
469 to
->atttypid
= keyType
;
471 to
->attlen
= typeTup
->typlen
;
472 to
->attbyval
= typeTup
->typbyval
;
473 to
->attalign
= typeTup
->typalign
;
474 to
->attstorage
= typeTup
->typstorage
;
475 /* As above, use the default compression method in this case */
476 to
->attcompression
= InvalidCompressionMethod
;
478 ReleaseSysCache(tuple
);
487 /* ----------------------------------------------------------------
488 * InitializeAttributeOids
489 * ----------------------------------------------------------------
492 InitializeAttributeOids(Relation indexRelation
,
496 TupleDesc tupleDescriptor
;
499 tupleDescriptor
= RelationGetDescr(indexRelation
);
501 for (i
= 0; i
< numatts
; i
+= 1)
502 TupleDescAttr(tupleDescriptor
, i
)->attrelid
= indexoid
;
505 /* ----------------------------------------------------------------
506 * AppendAttributeTuples
507 * ----------------------------------------------------------------
510 AppendAttributeTuples(Relation indexRelation
, const Datum
*attopts
, const NullableDatum
*stattargets
)
512 Relation pg_attribute
;
513 CatalogIndexState indstate
;
514 TupleDesc indexTupDesc
;
515 FormExtraData_pg_attribute
*attrs_extra
= NULL
;
519 attrs_extra
= palloc0_array(FormExtraData_pg_attribute
, indexRelation
->rd_att
->natts
);
521 for (int i
= 0; i
< indexRelation
->rd_att
->natts
; i
++)
524 attrs_extra
[i
].attoptions
.value
= attopts
[i
];
526 attrs_extra
[i
].attoptions
.isnull
= true;
529 attrs_extra
[i
].attstattarget
= stattargets
[i
];
531 attrs_extra
[i
].attstattarget
.isnull
= true;
536 * open the attribute relation and its indexes
538 pg_attribute
= table_open(AttributeRelationId
, RowExclusiveLock
);
540 indstate
= CatalogOpenIndexes(pg_attribute
);
543 * insert data from new index's tupdesc into pg_attribute
545 indexTupDesc
= RelationGetDescr(indexRelation
);
547 InsertPgAttributeTuples(pg_attribute
, indexTupDesc
, InvalidOid
, attrs_extra
, indstate
);
549 CatalogCloseIndexes(indstate
);
551 table_close(pg_attribute
, RowExclusiveLock
);
554 /* ----------------------------------------------------------------
555 * UpdateIndexRelation
557 * Construct and insert a new entry in the pg_index catalog
558 * ----------------------------------------------------------------
561 UpdateIndexRelation(Oid indexoid
,
564 const IndexInfo
*indexInfo
,
565 const Oid
*collationOids
,
566 const Oid
*opclassOids
,
567 const int16
*coloptions
,
575 oidvector
*indcollation
;
577 int2vector
*indoption
;
580 Datum values
[Natts_pg_index
];
581 bool nulls
[Natts_pg_index
] = {0};
587 * Copy the index key, opclass, and indoption info into arrays (should we
588 * make the caller pass them like this to start with?)
590 indkey
= buildint2vector(NULL
, indexInfo
->ii_NumIndexAttrs
);
591 for (i
= 0; i
< indexInfo
->ii_NumIndexAttrs
; i
++)
592 indkey
->values
[i
] = indexInfo
->ii_IndexAttrNumbers
[i
];
593 indcollation
= buildoidvector(collationOids
, indexInfo
->ii_NumIndexKeyAttrs
);
594 indclass
= buildoidvector(opclassOids
, indexInfo
->ii_NumIndexKeyAttrs
);
595 indoption
= buildint2vector(coloptions
, indexInfo
->ii_NumIndexKeyAttrs
);
598 * Convert the index expressions (if any) to a text datum
600 if (indexInfo
->ii_Expressions
!= NIL
)
604 exprsString
= nodeToString(indexInfo
->ii_Expressions
);
605 exprsDatum
= CStringGetTextDatum(exprsString
);
609 exprsDatum
= (Datum
) 0;
612 * Convert the index predicate (if any) to a text datum. Note we convert
613 * implicit-AND format to normal explicit-AND for storage.
615 if (indexInfo
->ii_Predicate
!= NIL
)
619 predString
= nodeToString(make_ands_explicit(indexInfo
->ii_Predicate
));
620 predDatum
= CStringGetTextDatum(predString
);
624 predDatum
= (Datum
) 0;
628 * open the system catalog index relation
630 pg_index
= table_open(IndexRelationId
, RowExclusiveLock
);
633 * Build a pg_index tuple
635 values
[Anum_pg_index_indexrelid
- 1] = ObjectIdGetDatum(indexoid
);
636 values
[Anum_pg_index_indrelid
- 1] = ObjectIdGetDatum(heapoid
);
637 values
[Anum_pg_index_indnatts
- 1] = Int16GetDatum(indexInfo
->ii_NumIndexAttrs
);
638 values
[Anum_pg_index_indnkeyatts
- 1] = Int16GetDatum(indexInfo
->ii_NumIndexKeyAttrs
);
639 values
[Anum_pg_index_indisunique
- 1] = BoolGetDatum(indexInfo
->ii_Unique
);
640 values
[Anum_pg_index_indnullsnotdistinct
- 1] = BoolGetDatum(indexInfo
->ii_NullsNotDistinct
);
641 values
[Anum_pg_index_indisprimary
- 1] = BoolGetDatum(primary
);
642 values
[Anum_pg_index_indisexclusion
- 1] = BoolGetDatum(isexclusion
);
643 values
[Anum_pg_index_indimmediate
- 1] = BoolGetDatum(immediate
);
644 values
[Anum_pg_index_indisclustered
- 1] = BoolGetDatum(false);
645 values
[Anum_pg_index_indisvalid
- 1] = BoolGetDatum(isvalid
);
646 values
[Anum_pg_index_indcheckxmin
- 1] = BoolGetDatum(false);
647 values
[Anum_pg_index_indisready
- 1] = BoolGetDatum(isready
);
648 values
[Anum_pg_index_indislive
- 1] = BoolGetDatum(true);
649 values
[Anum_pg_index_indisreplident
- 1] = BoolGetDatum(false);
650 values
[Anum_pg_index_indkey
- 1] = PointerGetDatum(indkey
);
651 values
[Anum_pg_index_indcollation
- 1] = PointerGetDatum(indcollation
);
652 values
[Anum_pg_index_indclass
- 1] = PointerGetDatum(indclass
);
653 values
[Anum_pg_index_indoption
- 1] = PointerGetDatum(indoption
);
654 values
[Anum_pg_index_indexprs
- 1] = exprsDatum
;
655 if (exprsDatum
== (Datum
) 0)
656 nulls
[Anum_pg_index_indexprs
- 1] = true;
657 values
[Anum_pg_index_indpred
- 1] = predDatum
;
658 if (predDatum
== (Datum
) 0)
659 nulls
[Anum_pg_index_indpred
- 1] = true;
661 tuple
= heap_form_tuple(RelationGetDescr(pg_index
), values
, nulls
);
664 * insert the tuple into the pg_index catalog
666 CatalogTupleInsert(pg_index
, tuple
);
669 * close the relation and free the tuple
671 table_close(pg_index
, RowExclusiveLock
);
672 heap_freetuple(tuple
);
679 * heapRelation: table to build index on (suitably locked by caller)
680 * indexRelationName: what it say
681 * indexRelationId: normally, pass InvalidOid to let this routine
682 * generate an OID for the index. During bootstrap this may be
683 * nonzero to specify a preselected OID.
684 * parentIndexRelid: if creating an index partition, the OID of the
685 * parent index; otherwise InvalidOid.
686 * parentConstraintId: if creating a constraint on a partition, the OID
687 * of the constraint in the parent; otherwise InvalidOid.
688 * relFileNumber: normally, pass InvalidRelFileNumber to get new storage.
689 * May be nonzero to attach an existing valid build.
690 * indexInfo: same info executor uses to insert into the index
691 * indexColNames: column names to use for index (List of char *)
692 * accessMethodId: OID of index AM to use
693 * tableSpaceId: OID of tablespace to use
694 * collationIds: array of collation OIDs, one per index column
695 * opclassIds: array of index opclass OIDs, one per index column
696 * coloptions: array of per-index-column indoption settings
697 * reloptions: AM-specific options
698 * flags: bitmask that can include any combination of these bits:
699 * INDEX_CREATE_IS_PRIMARY
700 * the index is a primary key
701 * INDEX_CREATE_ADD_CONSTRAINT:
702 * invoke index_constraint_create also
703 * INDEX_CREATE_SKIP_BUILD:
704 * skip the index_build() step for the moment; caller must do it
705 * later (typically via reindex_index())
706 * INDEX_CREATE_CONCURRENT:
707 * do not lock the table against writers. The index will be
708 * marked "invalid" and the caller must take additional steps
710 * INDEX_CREATE_IF_NOT_EXISTS:
711 * do not throw an error if a relation with the same name
713 * INDEX_CREATE_PARTITIONED:
714 * create a partitioned index (table must be partitioned)
715 * constr_flags: flags passed to index_constraint_create
716 * (only if INDEX_CREATE_ADD_CONSTRAINT is set)
717 * allow_system_table_mods: allow table to be a system catalog
718 * is_internal: if true, post creation hook for new index
719 * constraintId: if not NULL, receives OID of created constraint
721 * Returns the OID of the created index.
724 index_create(Relation heapRelation
,
725 const char *indexRelationName
,
727 Oid parentIndexRelid
,
728 Oid parentConstraintId
,
729 RelFileNumber relFileNumber
,
730 IndexInfo
*indexInfo
,
731 const List
*indexColNames
,
734 const Oid
*collationIds
,
735 const Oid
*opclassIds
,
736 const Datum
*opclassOptions
,
737 const int16
*coloptions
,
738 const NullableDatum
*stattargets
,
742 bool allow_system_table_mods
,
746 Oid heapRelationId
= RelationGetRelid(heapRelation
);
748 Relation indexRelation
;
749 TupleDesc indexTupDesc
;
750 bool shared_relation
;
751 bool mapped_relation
;
756 bool isprimary
= (flags
& INDEX_CREATE_IS_PRIMARY
) != 0;
757 bool invalid
= (flags
& INDEX_CREATE_INVALID
) != 0;
758 bool concurrent
= (flags
& INDEX_CREATE_CONCURRENT
) != 0;
759 bool partitioned
= (flags
& INDEX_CREATE_PARTITIONED
) != 0;
761 TransactionId relfrozenxid
;
762 MultiXactId relminmxid
;
763 bool create_storage
= !RelFileNumberIsValid(relFileNumber
);
765 /* constraint flags can only be set when a constraint is requested */
766 Assert((constr_flags
== 0) ||
767 ((flags
& INDEX_CREATE_ADD_CONSTRAINT
) != 0));
768 /* partitioned indexes must never be "built" by themselves */
769 Assert(!partitioned
|| (flags
& INDEX_CREATE_SKIP_BUILD
));
771 relkind
= partitioned
? RELKIND_PARTITIONED_INDEX
: RELKIND_INDEX
;
772 is_exclusion
= (indexInfo
->ii_ExclusionOps
!= NULL
);
774 pg_class
= table_open(RelationRelationId
, RowExclusiveLock
);
777 * The index will be in the same namespace as its parent table, and is
778 * shared across databases if and only if the parent is. Likewise, it
779 * will use the relfilenumber map if and only if the parent does; and it
780 * inherits the parent's relpersistence.
782 namespaceId
= RelationGetNamespace(heapRelation
);
783 shared_relation
= heapRelation
->rd_rel
->relisshared
;
784 mapped_relation
= RelationIsMapped(heapRelation
);
785 relpersistence
= heapRelation
->rd_rel
->relpersistence
;
790 if (indexInfo
->ii_NumIndexAttrs
< 1)
791 elog(ERROR
, "must index at least one column");
793 if (!allow_system_table_mods
&&
794 IsSystemRelation(heapRelation
) &&
795 IsNormalProcessingMode())
797 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
798 errmsg("user-defined indexes on system catalog tables are not supported")));
801 * Btree text_pattern_ops uses text_eq as the equality operator, which is
802 * fine as long as the collation is deterministic; text_eq then reduces to
803 * bitwise equality and so it is semantically compatible with the other
804 * operators and functions in that opclass. But with a nondeterministic
805 * collation, text_eq could yield results that are incompatible with the
806 * actual behavior of the index (which is determined by the opclass's
807 * comparison function). We prevent such problems by refusing creation of
808 * an index with that opclass and a nondeterministic collation.
810 * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we
811 * find more cases, we might decide to create a real mechanism for marking
812 * opclasses as incompatible with nondeterminism; but for now, this small
815 * Another solution is to use a special operator, not text_eq, as the
816 * equality opclass member; but that is undesirable because it would
817 * prevent index usage in many queries that work fine today.
819 for (i
= 0; i
< indexInfo
->ii_NumIndexKeyAttrs
; i
++)
821 Oid collation
= collationIds
[i
];
822 Oid opclass
= opclassIds
[i
];
826 if ((opclass
== TEXT_BTREE_PATTERN_OPS_OID
||
827 opclass
== VARCHAR_BTREE_PATTERN_OPS_OID
||
828 opclass
== BPCHAR_BTREE_PATTERN_OPS_OID
) &&
829 !get_collation_isdeterministic(collation
))
833 classtup
= SearchSysCache1(CLAOID
, ObjectIdGetDatum(opclass
));
834 if (!HeapTupleIsValid(classtup
))
835 elog(ERROR
, "cache lookup failed for operator class %u", opclass
);
837 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
838 errmsg("nondeterministic collations are not supported for operator class \"%s\"",
839 NameStr(((Form_pg_opclass
) GETSTRUCT(classtup
))->opcname
))));
840 ReleaseSysCache(classtup
);
846 * Concurrent index build on a system catalog is unsafe because we tend to
847 * release locks before committing in catalogs.
850 IsCatalogRelation(heapRelation
))
852 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
853 errmsg("concurrent index creation on system catalog tables is not supported")));
856 * This case is currently not supported. There's no way to ask for it in
857 * the grammar with CREATE INDEX, but it can happen with REINDEX.
859 if (concurrent
&& is_exclusion
)
861 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
862 errmsg("concurrent index creation for exclusion constraints is not supported")));
865 * We cannot allow indexing a shared relation after initdb (because
866 * there's no way to make the entry in other databases' pg_class).
868 if (shared_relation
&& !IsBootstrapProcessingMode())
870 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE
),
871 errmsg("shared indexes cannot be created after initdb")));
874 * Shared relations must be in pg_global, too (last-ditch check)
876 if (shared_relation
&& tableSpaceId
!= GLOBALTABLESPACE_OID
)
877 elog(ERROR
, "shared relations must be placed in pg_global tablespace");
880 * Check for duplicate name (both as to the index, and as to the
881 * associated constraint if any). Such cases would fail on the relevant
882 * catalogs' unique indexes anyway, but we prefer to give a friendlier
885 if (get_relname_relid(indexRelationName
, namespaceId
))
887 if ((flags
& INDEX_CREATE_IF_NOT_EXISTS
) != 0)
890 (errcode(ERRCODE_DUPLICATE_TABLE
),
891 errmsg("relation \"%s\" already exists, skipping",
892 indexRelationName
)));
893 table_close(pg_class
, RowExclusiveLock
);
898 (errcode(ERRCODE_DUPLICATE_TABLE
),
899 errmsg("relation \"%s\" already exists",
900 indexRelationName
)));
903 if ((flags
& INDEX_CREATE_ADD_CONSTRAINT
) != 0 &&
904 ConstraintNameIsUsed(CONSTRAINT_RELATION
, heapRelationId
,
908 * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
909 * conflicting constraint is not an index.
912 (errcode(ERRCODE_DUPLICATE_OBJECT
),
913 errmsg("constraint \"%s\" for relation \"%s\" already exists",
914 indexRelationName
, RelationGetRelationName(heapRelation
))));
918 * construct tuple descriptor for index tuples
920 indexTupDesc
= ConstructTupleDescriptor(heapRelation
,
928 * Allocate an OID for the index, unless we were told what to use.
930 * The OID will be the relfilenumber as well, so make sure it doesn't
931 * collide with either pg_class OIDs or existing physical files.
933 if (!OidIsValid(indexRelationId
))
935 /* Use binary-upgrade override for pg_class.oid and relfilenumber */
938 if (!OidIsValid(binary_upgrade_next_index_pg_class_oid
))
940 (errcode(ERRCODE_INVALID_PARAMETER_VALUE
),
941 errmsg("pg_class index OID value not set when in binary upgrade mode")));
943 indexRelationId
= binary_upgrade_next_index_pg_class_oid
;
944 binary_upgrade_next_index_pg_class_oid
= InvalidOid
;
946 /* Override the index relfilenumber */
947 if ((relkind
== RELKIND_INDEX
) &&
948 (!RelFileNumberIsValid(binary_upgrade_next_index_pg_class_relfilenumber
)))
950 (errcode(ERRCODE_INVALID_PARAMETER_VALUE
),
951 errmsg("index relfilenumber value not set when in binary upgrade mode")));
952 relFileNumber
= binary_upgrade_next_index_pg_class_relfilenumber
;
953 binary_upgrade_next_index_pg_class_relfilenumber
= InvalidRelFileNumber
;
956 * Note that we want create_storage = true for binary upgrade. The
957 * storage we create here will be replaced later, but we need to
958 * have something on disk in the meanwhile.
960 Assert(create_storage
);
965 GetNewRelFileNumber(tableSpaceId
, pg_class
, relpersistence
);
970 * create the index relation's relcache entry and, if necessary, the
971 * physical disk file. (If we fail further down, it's the smgr's
972 * responsibility to remove the disk file again, if any.)
974 indexRelation
= heap_create(indexRelationName
,
985 allow_system_table_mods
,
990 Assert(relfrozenxid
== InvalidTransactionId
);
991 Assert(relminmxid
== InvalidMultiXactId
);
992 Assert(indexRelationId
== RelationGetRelid(indexRelation
));
995 * Obtain exclusive lock on it. Although no other transactions can see it
996 * until we commit, this prevents deadlock-risk complaints from lock
997 * manager in cases such as CLUSTER.
999 LockRelation(indexRelation
, AccessExclusiveLock
);
1002 * Fill in fields of the index's pg_class entry that are not set correctly
1005 * XXX should have a cleaner way to create cataloged indexes
1007 indexRelation
->rd_rel
->relowner
= heapRelation
->rd_rel
->relowner
;
1008 indexRelation
->rd_rel
->relam
= accessMethodId
;
1009 indexRelation
->rd_rel
->relispartition
= OidIsValid(parentIndexRelid
);
1012 * store index's pg_class entry
1014 InsertPgClassTuple(pg_class
, indexRelation
,
1015 RelationGetRelid(indexRelation
),
1019 /* done with pg_class */
1020 table_close(pg_class
, RowExclusiveLock
);
1023 * now update the object id's of all the attribute tuple forms in the
1024 * index relation's tuple descriptor
1026 InitializeAttributeOids(indexRelation
,
1027 indexInfo
->ii_NumIndexAttrs
,
1031 * append ATTRIBUTE tuples for the index
1033 AppendAttributeTuples(indexRelation
, opclassOptions
, stattargets
);
1037 * (append INDEX tuple)
1039 * Note that this stows away a representation of "predicate".
1040 * (Or, could define a rule to maintain the predicate) --Nels, Feb '92
1043 UpdateIndexRelation(indexRelationId
, heapRelationId
, parentIndexRelid
,
1045 collationIds
, opclassIds
, coloptions
,
1046 isprimary
, is_exclusion
,
1047 (constr_flags
& INDEX_CONSTR_CREATE_DEFERRABLE
) == 0,
1048 !concurrent
&& !invalid
,
1052 * Register relcache invalidation on the indexes' heap relation, to
1053 * maintain consistency of its index list
1055 CacheInvalidateRelcache(heapRelation
);
1057 /* update pg_inherits and the parent's relhassubclass, if needed */
1058 if (OidIsValid(parentIndexRelid
))
1060 StoreSingleInheritance(indexRelationId
, parentIndexRelid
, 1);
1061 LockRelationOid(parentIndexRelid
, ShareUpdateExclusiveLock
);
1062 SetRelationHasSubclass(parentIndexRelid
, true);
1066 * Register constraint and dependencies for the index.
1068 * If the index is from a CONSTRAINT clause, construct a pg_constraint
1069 * entry. The index will be linked to the constraint, which in turn is
1070 * linked to the table. If it's not a CONSTRAINT, we need to make a
1071 * dependency directly on the table.
1073 * We don't need a dependency on the namespace, because there'll be an
1074 * indirect dependency via our parent table.
1076 * During bootstrap we can't register any dependencies, and we don't try
1077 * to make a constraint either.
1079 if (!IsBootstrapProcessingMode())
1081 ObjectAddress myself
,
1083 ObjectAddresses
*addrs
;
1085 ObjectAddressSet(myself
, RelationRelationId
, indexRelationId
);
1087 if ((flags
& INDEX_CREATE_ADD_CONSTRAINT
) != 0)
1089 char constraintType
;
1090 ObjectAddress localaddr
;
1093 constraintType
= CONSTRAINT_PRIMARY
;
1094 else if (indexInfo
->ii_Unique
)
1095 constraintType
= CONSTRAINT_UNIQUE
;
1096 else if (is_exclusion
)
1097 constraintType
= CONSTRAINT_EXCLUSION
;
1100 elog(ERROR
, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1101 constraintType
= 0; /* keep compiler quiet */
1104 localaddr
= index_constraint_create(heapRelation
,
1111 allow_system_table_mods
,
1114 *constraintId
= localaddr
.objectId
;
1118 bool have_simple_col
= false;
1120 addrs
= new_object_addresses();
1122 /* Create auto dependencies on simply-referenced columns */
1123 for (i
= 0; i
< indexInfo
->ii_NumIndexAttrs
; i
++)
1125 if (indexInfo
->ii_IndexAttrNumbers
[i
] != 0)
1127 ObjectAddressSubSet(referenced
, RelationRelationId
,
1129 indexInfo
->ii_IndexAttrNumbers
[i
]);
1130 add_exact_object_address(&referenced
, addrs
);
1131 have_simple_col
= true;
1136 * If there are no simply-referenced columns, give the index an
1137 * auto dependency on the whole table. In most cases, this will
1138 * be redundant, but it might not be if the index expressions and
1139 * predicate contain no Vars or only whole-row Vars.
1141 if (!have_simple_col
)
1143 ObjectAddressSet(referenced
, RelationRelationId
,
1145 add_exact_object_address(&referenced
, addrs
);
1148 record_object_address_dependencies(&myself
, addrs
, DEPENDENCY_AUTO
);
1149 free_object_addresses(addrs
);
1153 * If this is an index partition, create partition dependencies on
1154 * both the parent index and the table. (Note: these must be *in
1155 * addition to*, not instead of, all other dependencies. Otherwise
1156 * we'll be short some dependencies after DETACH PARTITION.)
1158 if (OidIsValid(parentIndexRelid
))
1160 ObjectAddressSet(referenced
, RelationRelationId
, parentIndexRelid
);
1161 recordDependencyOn(&myself
, &referenced
, DEPENDENCY_PARTITION_PRI
);
1163 ObjectAddressSet(referenced
, RelationRelationId
, heapRelationId
);
1164 recordDependencyOn(&myself
, &referenced
, DEPENDENCY_PARTITION_SEC
);
1167 /* placeholder for normal dependencies */
1168 addrs
= new_object_addresses();
1170 /* Store dependency on collations */
1172 /* The default collation is pinned, so don't bother recording it */
1173 for (i
= 0; i
< indexInfo
->ii_NumIndexKeyAttrs
; i
++)
1175 if (OidIsValid(collationIds
[i
]) && collationIds
[i
] != DEFAULT_COLLATION_OID
)
1177 ObjectAddressSet(referenced
, CollationRelationId
, collationIds
[i
]);
1178 add_exact_object_address(&referenced
, addrs
);
1182 /* Store dependency on operator classes */
1183 for (i
= 0; i
< indexInfo
->ii_NumIndexKeyAttrs
; i
++)
1185 ObjectAddressSet(referenced
, OperatorClassRelationId
, opclassIds
[i
]);
1186 add_exact_object_address(&referenced
, addrs
);
1189 record_object_address_dependencies(&myself
, addrs
, DEPENDENCY_NORMAL
);
1190 free_object_addresses(addrs
);
1192 /* Store dependencies on anything mentioned in index expressions */
1193 if (indexInfo
->ii_Expressions
)
1195 recordDependencyOnSingleRelExpr(&myself
,
1196 (Node
*) indexInfo
->ii_Expressions
,
1199 DEPENDENCY_AUTO
, false);
1202 /* Store dependencies on anything mentioned in predicate */
1203 if (indexInfo
->ii_Predicate
)
1205 recordDependencyOnSingleRelExpr(&myself
,
1206 (Node
*) indexInfo
->ii_Predicate
,
1209 DEPENDENCY_AUTO
, false);
1214 /* Bootstrap mode - assert we weren't asked for constraint support */
1215 Assert((flags
& INDEX_CREATE_ADD_CONSTRAINT
) == 0);
1218 /* Post creation hook for new index */
1219 InvokeObjectPostCreateHookArg(RelationRelationId
,
1220 indexRelationId
, 0, is_internal
);
1223 * Advance the command counter so that we can see the newly-entered
1224 * catalog tuples for the index.
1226 CommandCounterIncrement();
1229 * In bootstrap mode, we have to fill in the index strategy structure with
1230 * information from the catalogs. If we aren't bootstrapping, then the
1231 * relcache entry has already been rebuilt thanks to sinval update during
1232 * CommandCounterIncrement.
1234 if (IsBootstrapProcessingMode())
1235 RelationInitIndexAccessInfo(indexRelation
);
1237 Assert(indexRelation
->rd_indexcxt
!= NULL
);
1239 indexRelation
->rd_index
->indnkeyatts
= indexInfo
->ii_NumIndexKeyAttrs
;
1241 /* Validate opclass-specific options */
1243 for (i
= 0; i
< indexInfo
->ii_NumIndexKeyAttrs
; i
++)
1244 (void) index_opclass_options(indexRelation
, i
+ 1,
1249 * If this is bootstrap (initdb) time, then we don't actually fill in the
1250 * index yet. We'll be creating more indexes and classes later, so we
1251 * delay filling them in until just before we're done with bootstrapping.
1252 * Similarly, if the caller specified to skip the build then filling the
1253 * index is delayed till later (ALTER TABLE can save work in some cases
1254 * with this). Otherwise, we call the AM routine that constructs the
1257 if (IsBootstrapProcessingMode())
1259 index_register(heapRelationId
, indexRelationId
, indexInfo
);
1261 else if ((flags
& INDEX_CREATE_SKIP_BUILD
) != 0)
1264 * Caller is responsible for filling the index later on. However,
1265 * we'd better make sure that the heap relation is correctly marked as
1268 index_update_stats(heapRelation
,
1271 /* Make the above update visible */
1272 CommandCounterIncrement();
1276 index_build(heapRelation
, indexRelation
, indexInfo
, false, true);
1280 * Close the index; but we keep the lock that we acquired above until end
1281 * of transaction. Closing the heap is caller's responsibility.
1283 index_close(indexRelation
, NoLock
);
1285 return indexRelationId
;
1289 * index_concurrently_create_copy
1291 * Create concurrently an index based on the definition of the one provided by
1292 * caller. The index is inserted into catalogs and needs to be built later
1293 * on. This is called during concurrent reindex processing.
1295 * "tablespaceOid" is the tablespace to use for this index.
1298 index_concurrently_create_copy(Relation heapRelation
, Oid oldIndexId
,
1299 Oid tablespaceOid
, const char *newName
)
1301 Relation indexRelation
;
1304 Oid newIndexId
= InvalidOid
;
1305 HeapTuple indexTuple
,
1307 Datum indclassDatum
,
1310 Datum
*opclassOptions
;
1311 oidvector
*indclass
;
1312 int2vector
*indcoloptions
;
1313 NullableDatum
*stattargets
;
1315 List
*indexColNames
= NIL
;
1316 List
*indexExprs
= NIL
;
1317 List
*indexPreds
= NIL
;
1319 indexRelation
= index_open(oldIndexId
, RowExclusiveLock
);
1321 /* The new index needs some information from the old index */
1322 oldInfo
= BuildIndexInfo(indexRelation
);
1325 * Concurrent build of an index with exclusion constraints is not
1328 if (oldInfo
->ii_ExclusionOps
!= NULL
)
1330 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
1331 errmsg("concurrent index creation for exclusion constraints is not supported")));
1333 /* Get the array of class and column options IDs from index info */
1334 indexTuple
= SearchSysCache1(INDEXRELID
, ObjectIdGetDatum(oldIndexId
));
1335 if (!HeapTupleIsValid(indexTuple
))
1336 elog(ERROR
, "cache lookup failed for index %u", oldIndexId
);
1337 indclassDatum
= SysCacheGetAttrNotNull(INDEXRELID
, indexTuple
,
1338 Anum_pg_index_indclass
);
1339 indclass
= (oidvector
*) DatumGetPointer(indclassDatum
);
1341 colOptionDatum
= SysCacheGetAttrNotNull(INDEXRELID
, indexTuple
,
1342 Anum_pg_index_indoption
);
1343 indcoloptions
= (int2vector
*) DatumGetPointer(colOptionDatum
);
1345 /* Fetch reloptions of index if any */
1346 classTuple
= SearchSysCache1(RELOID
, ObjectIdGetDatum(oldIndexId
));
1347 if (!HeapTupleIsValid(classTuple
))
1348 elog(ERROR
, "cache lookup failed for relation %u", oldIndexId
);
1349 reloptionsDatum
= SysCacheGetAttr(RELOID
, classTuple
,
1350 Anum_pg_class_reloptions
, &isnull
);
1353 * Fetch the list of expressions and predicates directly from the
1354 * catalogs. This cannot rely on the information from IndexInfo of the
1355 * old index as these have been flattened for the planner.
1357 if (oldInfo
->ii_Expressions
!= NIL
)
1362 exprDatum
= SysCacheGetAttrNotNull(INDEXRELID
, indexTuple
,
1363 Anum_pg_index_indexprs
);
1364 exprString
= TextDatumGetCString(exprDatum
);
1365 indexExprs
= (List
*) stringToNode(exprString
);
1368 if (oldInfo
->ii_Predicate
!= NIL
)
1373 predDatum
= SysCacheGetAttrNotNull(INDEXRELID
, indexTuple
,
1374 Anum_pg_index_indpred
);
1375 predString
= TextDatumGetCString(predDatum
);
1376 indexPreds
= (List
*) stringToNode(predString
);
1378 /* Also convert to implicit-AND format */
1379 indexPreds
= make_ands_implicit((Expr
*) indexPreds
);
1384 * Build the index information for the new index. Note that rebuild of
1385 * indexes with exclusion constraints is not supported, hence there is no
1386 * need to fill all the ii_Exclusion* fields.
1388 newInfo
= makeIndexInfo(oldInfo
->ii_NumIndexAttrs
,
1389 oldInfo
->ii_NumIndexKeyAttrs
,
1394 oldInfo
->ii_NullsNotDistinct
,
1395 false, /* not ready for inserts */
1397 indexRelation
->rd_indam
->amsummarizing
,
1398 oldInfo
->ii_WithoutOverlaps
);
1401 * Extract the list of column names and the column numbers for the new
1402 * index information. All this information will be used for the index
1405 for (int i
= 0; i
< oldInfo
->ii_NumIndexAttrs
; i
++)
1407 TupleDesc indexTupDesc
= RelationGetDescr(indexRelation
);
1408 Form_pg_attribute att
= TupleDescAttr(indexTupDesc
, i
);
1410 indexColNames
= lappend(indexColNames
, NameStr(att
->attname
));
1411 newInfo
->ii_IndexAttrNumbers
[i
] = oldInfo
->ii_IndexAttrNumbers
[i
];
1414 /* Extract opclass options for each attribute */
1415 opclassOptions
= palloc0(sizeof(Datum
) * newInfo
->ii_NumIndexAttrs
);
1416 for (int i
= 0; i
< newInfo
->ii_NumIndexAttrs
; i
++)
1417 opclassOptions
[i
] = get_attoptions(oldIndexId
, i
+ 1);
1419 /* Extract statistic targets for each attribute */
1420 stattargets
= palloc0_array(NullableDatum
, newInfo
->ii_NumIndexAttrs
);
1421 for (int i
= 0; i
< newInfo
->ii_NumIndexAttrs
; i
++)
1426 tp
= SearchSysCache2(ATTNUM
, ObjectIdGetDatum(oldIndexId
), Int16GetDatum(i
+ 1));
1427 if (!HeapTupleIsValid(tp
))
1428 elog(ERROR
, "cache lookup failed for attribute %d of relation %u",
1430 dat
= SysCacheGetAttr(ATTNUM
, tp
, Anum_pg_attribute_attstattarget
, &isnull
);
1431 ReleaseSysCache(tp
);
1432 stattargets
[i
].value
= dat
;
1433 stattargets
[i
].isnull
= isnull
;
1437 * Now create the new index.
1439 * For a partition index, we adjust the partition dependency later, to
1440 * ensure a consistent state at all times. That is why parentIndexRelid
1443 newIndexId
= index_create(heapRelation
,
1445 InvalidOid
, /* indexRelationId */
1446 InvalidOid
, /* parentIndexRelid */
1447 InvalidOid
, /* parentConstraintId */
1448 InvalidRelFileNumber
, /* relFileNumber */
1451 indexRelation
->rd_rel
->relam
,
1453 indexRelation
->rd_indcollation
,
1456 indcoloptions
->values
,
1459 INDEX_CREATE_SKIP_BUILD
| INDEX_CREATE_CONCURRENT
,
1461 true, /* allow table to be a system catalog? */
1462 false, /* is_internal? */
1465 /* Close the relations used and clean up */
1466 index_close(indexRelation
, NoLock
);
1467 ReleaseSysCache(indexTuple
);
1468 ReleaseSysCache(classTuple
);
1474 * index_concurrently_build
1476 * Build index for a concurrent operation. Low-level locks are taken when
1477 * this operation is performed to prevent only schema changes, but they need
1478 * to be kept until the end of the transaction performing this operation.
1479 * 'indexOid' refers to an index relation OID already created as part of
1480 * previous processing, and 'heapOid' refers to its parent heap relation.
1483 index_concurrently_build(Oid heapRelationId
,
1484 Oid indexRelationId
)
1488 int save_sec_context
;
1490 Relation indexRelation
;
1491 IndexInfo
*indexInfo
;
1493 /* This had better make sure that a snapshot is active */
1494 Assert(ActiveSnapshotSet());
1496 /* Open and lock the parent heap relation */
1497 heapRel
= table_open(heapRelationId
, ShareUpdateExclusiveLock
);
1500 * Switch to the table owner's userid, so that any index functions are run
1501 * as that user. Also lock down security-restricted operations and
1502 * arrange to make GUC variable changes local to this command.
1504 GetUserIdAndSecContext(&save_userid
, &save_sec_context
);
1505 SetUserIdAndSecContext(heapRel
->rd_rel
->relowner
,
1506 save_sec_context
| SECURITY_RESTRICTED_OPERATION
);
1507 save_nestlevel
= NewGUCNestLevel();
1508 RestrictSearchPath();
1510 indexRelation
= index_open(indexRelationId
, RowExclusiveLock
);
1513 * We have to re-build the IndexInfo struct, since it was lost in the
1514 * commit of the transaction where this concurrent index was created at
1515 * the catalog level.
1517 indexInfo
= BuildIndexInfo(indexRelation
);
1518 Assert(!indexInfo
->ii_ReadyForInserts
);
1519 indexInfo
->ii_Concurrent
= true;
1520 indexInfo
->ii_BrokenHotChain
= false;
1522 /* Now build the index */
1523 index_build(heapRel
, indexRelation
, indexInfo
, false, true);
1525 /* Roll back any GUC changes executed by index functions */
1526 AtEOXact_GUC(false, save_nestlevel
);
1528 /* Restore userid and security context */
1529 SetUserIdAndSecContext(save_userid
, save_sec_context
);
1531 /* Close both the relations, but keep the locks */
1532 table_close(heapRel
, NoLock
);
1533 index_close(indexRelation
, NoLock
);
1536 * Update the pg_index row to mark the index as ready for inserts. Once we
1537 * commit this transaction, any new transactions that open the table must
1538 * insert new entries into the index for insertions and non-HOT updates.
1540 index_set_state_flags(indexRelationId
, INDEX_CREATE_SET_READY
);
1544 * index_concurrently_swap
1546 * Swap name, dependencies, and constraints of the old index over to the new
1547 * index, while marking the old index as invalid and the new as valid.
1550 index_concurrently_swap(Oid newIndexId
, Oid oldIndexId
, const char *oldName
)
1556 Relation oldClassRel
,
1558 HeapTuple oldClassTuple
,
1560 Form_pg_class oldClassForm
,
1562 HeapTuple oldIndexTuple
,
1564 Form_pg_index oldIndexForm
,
1567 Oid indexConstraintOid
;
1568 List
*constraintOids
= NIL
;
1572 * Take a necessary lock on the old and new index before swapping them.
1574 oldClassRel
= relation_open(oldIndexId
, ShareUpdateExclusiveLock
);
1575 newClassRel
= relation_open(newIndexId
, ShareUpdateExclusiveLock
);
1577 /* Now swap names and dependencies of those indexes */
1578 pg_class
= table_open(RelationRelationId
, RowExclusiveLock
);
1580 oldClassTuple
= SearchSysCacheCopy1(RELOID
,
1581 ObjectIdGetDatum(oldIndexId
));
1582 if (!HeapTupleIsValid(oldClassTuple
))
1583 elog(ERROR
, "could not find tuple for relation %u", oldIndexId
);
1584 newClassTuple
= SearchSysCacheCopy1(RELOID
,
1585 ObjectIdGetDatum(newIndexId
));
1586 if (!HeapTupleIsValid(newClassTuple
))
1587 elog(ERROR
, "could not find tuple for relation %u", newIndexId
);
1589 oldClassForm
= (Form_pg_class
) GETSTRUCT(oldClassTuple
);
1590 newClassForm
= (Form_pg_class
) GETSTRUCT(newClassTuple
);
1592 /* Swap the names */
1593 namestrcpy(&newClassForm
->relname
, NameStr(oldClassForm
->relname
));
1594 namestrcpy(&oldClassForm
->relname
, oldName
);
1596 /* Swap the partition flags to track inheritance properly */
1597 isPartition
= newClassForm
->relispartition
;
1598 newClassForm
->relispartition
= oldClassForm
->relispartition
;
1599 oldClassForm
->relispartition
= isPartition
;
1601 CatalogTupleUpdate(pg_class
, &oldClassTuple
->t_self
, oldClassTuple
);
1602 CatalogTupleUpdate(pg_class
, &newClassTuple
->t_self
, newClassTuple
);
1604 heap_freetuple(oldClassTuple
);
1605 heap_freetuple(newClassTuple
);
1607 /* Now swap index info */
1608 pg_index
= table_open(IndexRelationId
, RowExclusiveLock
);
1610 oldIndexTuple
= SearchSysCacheCopy1(INDEXRELID
,
1611 ObjectIdGetDatum(oldIndexId
));
1612 if (!HeapTupleIsValid(oldIndexTuple
))
1613 elog(ERROR
, "could not find tuple for relation %u", oldIndexId
);
1614 newIndexTuple
= SearchSysCacheCopy1(INDEXRELID
,
1615 ObjectIdGetDatum(newIndexId
));
1616 if (!HeapTupleIsValid(newIndexTuple
))
1617 elog(ERROR
, "could not find tuple for relation %u", newIndexId
);
1619 oldIndexForm
= (Form_pg_index
) GETSTRUCT(oldIndexTuple
);
1620 newIndexForm
= (Form_pg_index
) GETSTRUCT(newIndexTuple
);
1623 * Copy constraint flags from the old index. This is safe because the old
1624 * index guaranteed uniqueness.
1626 newIndexForm
->indisprimary
= oldIndexForm
->indisprimary
;
1627 oldIndexForm
->indisprimary
= false;
1628 newIndexForm
->indisexclusion
= oldIndexForm
->indisexclusion
;
1629 oldIndexForm
->indisexclusion
= false;
1630 newIndexForm
->indimmediate
= oldIndexForm
->indimmediate
;
1631 oldIndexForm
->indimmediate
= true;
1633 /* Preserve indisreplident in the new index */
1634 newIndexForm
->indisreplident
= oldIndexForm
->indisreplident
;
1636 /* Preserve indisclustered in the new index */
1637 newIndexForm
->indisclustered
= oldIndexForm
->indisclustered
;
1640 * Mark the new index as valid, and the old index as invalid similarly to
1641 * what index_set_state_flags() does.
1643 newIndexForm
->indisvalid
= true;
1644 oldIndexForm
->indisvalid
= false;
1645 oldIndexForm
->indisclustered
= false;
1646 oldIndexForm
->indisreplident
= false;
1648 CatalogTupleUpdate(pg_index
, &oldIndexTuple
->t_self
, oldIndexTuple
);
1649 CatalogTupleUpdate(pg_index
, &newIndexTuple
->t_self
, newIndexTuple
);
1651 heap_freetuple(oldIndexTuple
);
1652 heap_freetuple(newIndexTuple
);
1655 * Move constraints and triggers over to the new index
1658 constraintOids
= get_index_ref_constraints(oldIndexId
);
1660 indexConstraintOid
= get_index_constraint(oldIndexId
);
1662 if (OidIsValid(indexConstraintOid
))
1663 constraintOids
= lappend_oid(constraintOids
, indexConstraintOid
);
1665 pg_constraint
= table_open(ConstraintRelationId
, RowExclusiveLock
);
1666 pg_trigger
= table_open(TriggerRelationId
, RowExclusiveLock
);
1668 foreach(lc
, constraintOids
)
1670 HeapTuple constraintTuple
,
1672 Form_pg_constraint conForm
;
1675 Oid constraintOid
= lfirst_oid(lc
);
1677 /* Move the constraint from the old to the new index */
1678 constraintTuple
= SearchSysCacheCopy1(CONSTROID
,
1679 ObjectIdGetDatum(constraintOid
));
1680 if (!HeapTupleIsValid(constraintTuple
))
1681 elog(ERROR
, "could not find tuple for constraint %u", constraintOid
);
1683 conForm
= ((Form_pg_constraint
) GETSTRUCT(constraintTuple
));
1685 if (conForm
->conindid
== oldIndexId
)
1687 conForm
->conindid
= newIndexId
;
1689 CatalogTupleUpdate(pg_constraint
, &constraintTuple
->t_self
, constraintTuple
);
1692 heap_freetuple(constraintTuple
);
1694 /* Search for trigger records */
1695 ScanKeyInit(&key
[0],
1696 Anum_pg_trigger_tgconstraint
,
1697 BTEqualStrategyNumber
, F_OIDEQ
,
1698 ObjectIdGetDatum(constraintOid
));
1700 scan
= systable_beginscan(pg_trigger
, TriggerConstraintIndexId
, true,
1703 while (HeapTupleIsValid((triggerTuple
= systable_getnext(scan
))))
1705 Form_pg_trigger tgForm
= (Form_pg_trigger
) GETSTRUCT(triggerTuple
);
1707 if (tgForm
->tgconstrindid
!= oldIndexId
)
1710 /* Make a modifiable copy */
1711 triggerTuple
= heap_copytuple(triggerTuple
);
1712 tgForm
= (Form_pg_trigger
) GETSTRUCT(triggerTuple
);
1714 tgForm
->tgconstrindid
= newIndexId
;
1716 CatalogTupleUpdate(pg_trigger
, &triggerTuple
->t_self
, triggerTuple
);
1718 heap_freetuple(triggerTuple
);
1721 systable_endscan(scan
);
1725 * Move comment if any
1728 Relation description
;
1729 ScanKeyData skey
[3];
1732 Datum values
[Natts_pg_description
] = {0};
1733 bool nulls
[Natts_pg_description
] = {0};
1734 bool replaces
[Natts_pg_description
] = {0};
1736 values
[Anum_pg_description_objoid
- 1] = ObjectIdGetDatum(newIndexId
);
1737 replaces
[Anum_pg_description_objoid
- 1] = true;
1739 ScanKeyInit(&skey
[0],
1740 Anum_pg_description_objoid
,
1741 BTEqualStrategyNumber
, F_OIDEQ
,
1742 ObjectIdGetDatum(oldIndexId
));
1743 ScanKeyInit(&skey
[1],
1744 Anum_pg_description_classoid
,
1745 BTEqualStrategyNumber
, F_OIDEQ
,
1746 ObjectIdGetDatum(RelationRelationId
));
1747 ScanKeyInit(&skey
[2],
1748 Anum_pg_description_objsubid
,
1749 BTEqualStrategyNumber
, F_INT4EQ
,
1752 description
= table_open(DescriptionRelationId
, RowExclusiveLock
);
1754 sd
= systable_beginscan(description
, DescriptionObjIndexId
, true,
1757 while ((tuple
= systable_getnext(sd
)) != NULL
)
1759 tuple
= heap_modify_tuple(tuple
, RelationGetDescr(description
),
1760 values
, nulls
, replaces
);
1761 CatalogTupleUpdate(description
, &tuple
->t_self
, tuple
);
1763 break; /* Assume there can be only one match */
1766 systable_endscan(sd
);
1767 table_close(description
, NoLock
);
1771 * Swap inheritance relationship with parent index
1773 if (get_rel_relispartition(oldIndexId
))
1775 List
*ancestors
= get_partition_ancestors(oldIndexId
);
1776 Oid parentIndexRelid
= linitial_oid(ancestors
);
1778 DeleteInheritsTuple(oldIndexId
, parentIndexRelid
, false, NULL
);
1779 StoreSingleInheritance(newIndexId
, parentIndexRelid
, 1);
1781 list_free(ancestors
);
1785 * Swap all dependencies of and on the old index to the new one, and
1786 * vice-versa. Note that a call to CommandCounterIncrement() would cause
1787 * duplicate entries in pg_depend, so this should not be done.
1789 changeDependenciesOf(RelationRelationId
, newIndexId
, oldIndexId
);
1790 changeDependenciesOn(RelationRelationId
, newIndexId
, oldIndexId
);
1792 changeDependenciesOf(RelationRelationId
, oldIndexId
, newIndexId
);
1793 changeDependenciesOn(RelationRelationId
, oldIndexId
, newIndexId
);
1795 /* copy over statistics from old to new index */
1796 pgstat_copy_relation_stats(newClassRel
, oldClassRel
);
1798 /* Copy data of pg_statistic from the old index to the new one */
1799 CopyStatistics(oldIndexId
, newIndexId
);
1801 /* Close relations */
1802 table_close(pg_class
, RowExclusiveLock
);
1803 table_close(pg_index
, RowExclusiveLock
);
1804 table_close(pg_constraint
, RowExclusiveLock
);
1805 table_close(pg_trigger
, RowExclusiveLock
);
1807 /* The lock taken previously is not released until the end of transaction */
1808 relation_close(oldClassRel
, NoLock
);
1809 relation_close(newClassRel
, NoLock
);
1813 * index_concurrently_set_dead
1815 * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1816 * CONCURRENTLY before actually dropping the index. After calling this
1817 * function, the index is seen by all the backends as dead. Low-level locks
1818 * taken here are kept until the end of the transaction calling this function.
1821 index_concurrently_set_dead(Oid heapId
, Oid indexId
)
1823 Relation userHeapRelation
;
1824 Relation userIndexRelation
;
1827 * No more predicate locks will be acquired on this index, and we're about
1828 * to stop doing inserts into the index which could show conflicts with
1829 * existing predicate locks, so now is the time to move them to the heap
1832 userHeapRelation
= table_open(heapId
, ShareUpdateExclusiveLock
);
1833 userIndexRelation
= index_open(indexId
, ShareUpdateExclusiveLock
);
1834 TransferPredicateLocksToHeapRelation(userIndexRelation
);
1837 * Now we are sure that nobody uses the index for queries; they just might
1838 * have it open for updating it. So now we can unset indisready and
1839 * indislive, then wait till nobody could be using it at all anymore.
1841 index_set_state_flags(indexId
, INDEX_DROP_SET_DEAD
);
1844 * Invalidate the relcache for the table, so that after this commit all
1845 * sessions will refresh the table's index list. Forgetting just the
1846 * index's relcache entry is not enough.
1848 CacheInvalidateRelcache(userHeapRelation
);
1851 * Close the relations again, though still holding session lock.
1853 table_close(userHeapRelation
, NoLock
);
1854 index_close(userIndexRelation
, NoLock
);
1858 * index_constraint_create
1860 * Set up a constraint associated with an index. Return the new constraint's
1863 * heapRelation: table owning the index (must be suitably locked by caller)
1864 * indexRelationId: OID of the index
1865 * parentConstraintId: if constraint is on a partition, the OID of the
1866 * constraint in the parent.
1867 * indexInfo: same info executor uses to insert into the index
1868 * constraintName: what it say (generally, should match name of index)
1869 * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1870 * CONSTRAINT_EXCLUSION
1871 * flags: bitmask that can include any combination of these bits:
1872 * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1873 * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1874 * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1875 * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1876 * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1877 * of index on table's columns
1878 * INDEX_CONSTR_CREATE_WITHOUT_OVERLAPS: constraint uses WITHOUT OVERLAPS
1879 * allow_system_table_mods: allow table to be a system catalog
1880 * is_internal: index is constructed due to internal process
1883 index_constraint_create(Relation heapRelation
,
1884 Oid indexRelationId
,
1885 Oid parentConstraintId
,
1886 const IndexInfo
*indexInfo
,
1887 const char *constraintName
,
1888 char constraintType
,
1889 bits16 constr_flags
,
1890 bool allow_system_table_mods
,
1893 Oid namespaceId
= RelationGetNamespace(heapRelation
);
1894 ObjectAddress myself
,
1899 bool mark_as_primary
;
1902 bool is_without_overlaps
;
1905 deferrable
= (constr_flags
& INDEX_CONSTR_CREATE_DEFERRABLE
) != 0;
1906 initdeferred
= (constr_flags
& INDEX_CONSTR_CREATE_INIT_DEFERRED
) != 0;
1907 mark_as_primary
= (constr_flags
& INDEX_CONSTR_CREATE_MARK_AS_PRIMARY
) != 0;
1908 is_without_overlaps
= (constr_flags
& INDEX_CONSTR_CREATE_WITHOUT_OVERLAPS
) != 0;
1910 /* constraint creation support doesn't work while bootstrapping */
1911 Assert(!IsBootstrapProcessingMode());
1913 /* enforce system-table restriction */
1914 if (!allow_system_table_mods
&&
1915 IsSystemRelation(heapRelation
) &&
1916 IsNormalProcessingMode())
1918 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
1919 errmsg("user-defined indexes on system catalog tables are not supported")));
1921 /* primary/unique constraints shouldn't have any expressions */
1922 if (indexInfo
->ii_Expressions
&&
1923 constraintType
!= CONSTRAINT_EXCLUSION
)
1924 elog(ERROR
, "constraints cannot have index expressions");
1927 * If we're manufacturing a constraint for a pre-existing index, we need
1928 * to get rid of the existing auto dependencies for the index (the ones
1929 * that index_create() would have made instead of calling this function).
1931 * Note: this code would not necessarily do the right thing if the index
1932 * has any expressions or predicate, but we'd never be turning such an
1933 * index into a UNIQUE or PRIMARY KEY constraint.
1935 if (constr_flags
& INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS
)
1936 deleteDependencyRecordsForClass(RelationRelationId
, indexRelationId
,
1937 RelationRelationId
, DEPENDENCY_AUTO
);
1939 if (OidIsValid(parentConstraintId
))
1953 * Construct a pg_constraint entry.
1955 conOid
= CreateConstraintEntry(constraintName
,
1962 RelationGetRelid(heapRelation
),
1963 indexInfo
->ii_IndexAttrNumbers
,
1964 indexInfo
->ii_NumIndexKeyAttrs
,
1965 indexInfo
->ii_NumIndexAttrs
,
1966 InvalidOid
, /* no domain */
1967 indexRelationId
, /* index OID */
1968 InvalidOid
, /* no foreign key */
1979 indexInfo
->ii_ExclusionOps
,
1980 NULL
, /* no check constraint */
1985 is_without_overlaps
,
1989 * Register the index as internally dependent on the constraint.
1991 * Note that the constraint has a dependency on the table, so we don't
1992 * need (or want) any direct dependency from the index to the table.
1994 ObjectAddressSet(myself
, ConstraintRelationId
, conOid
);
1995 ObjectAddressSet(idxaddr
, RelationRelationId
, indexRelationId
);
1996 recordDependencyOn(&idxaddr
, &myself
, DEPENDENCY_INTERNAL
);
1999 * Also, if this is a constraint on a partition, give it partition-type
2000 * dependencies on the parent constraint as well as the table.
2002 if (OidIsValid(parentConstraintId
))
2004 ObjectAddress referenced
;
2006 ObjectAddressSet(referenced
, ConstraintRelationId
, parentConstraintId
);
2007 recordDependencyOn(&myself
, &referenced
, DEPENDENCY_PARTITION_PRI
);
2008 ObjectAddressSet(referenced
, RelationRelationId
,
2009 RelationGetRelid(heapRelation
));
2010 recordDependencyOn(&myself
, &referenced
, DEPENDENCY_PARTITION_SEC
);
2014 * If the constraint is deferrable, create the deferred uniqueness
2015 * checking trigger. (The trigger will be given an internal dependency on
2016 * the constraint by CreateTrigger.)
2020 CreateTrigStmt
*trigger
= makeNode(CreateTrigStmt
);
2022 trigger
->replace
= false;
2023 trigger
->isconstraint
= true;
2024 trigger
->trigname
= (constraintType
== CONSTRAINT_PRIMARY
) ?
2025 "PK_ConstraintTrigger" :
2026 "Unique_ConstraintTrigger";
2027 trigger
->relation
= NULL
;
2028 trigger
->funcname
= SystemFuncName("unique_key_recheck");
2029 trigger
->args
= NIL
;
2030 trigger
->row
= true;
2031 trigger
->timing
= TRIGGER_TYPE_AFTER
;
2032 trigger
->events
= TRIGGER_TYPE_INSERT
| TRIGGER_TYPE_UPDATE
;
2033 trigger
->columns
= NIL
;
2034 trigger
->whenClause
= NULL
;
2035 trigger
->transitionRels
= NIL
;
2036 trigger
->deferrable
= true;
2037 trigger
->initdeferred
= initdeferred
;
2038 trigger
->constrrel
= NULL
;
2040 (void) CreateTrigger(trigger
, NULL
, RelationGetRelid(heapRelation
),
2041 InvalidOid
, conOid
, indexRelationId
, InvalidOid
,
2042 InvalidOid
, NULL
, true, false);
2046 * If needed, mark the index as primary and/or deferred in pg_index.
2048 * Note: When making an existing index into a constraint, caller must have
2049 * a table lock that prevents concurrent table updates; otherwise, there
2050 * is a risk that concurrent readers of the table will miss seeing this
2053 if ((constr_flags
& INDEX_CONSTR_CREATE_UPDATE_INDEX
) &&
2054 (mark_as_primary
|| deferrable
))
2057 HeapTuple indexTuple
;
2058 Form_pg_index indexForm
;
2060 bool marked_as_primary
= false;
2062 pg_index
= table_open(IndexRelationId
, RowExclusiveLock
);
2064 indexTuple
= SearchSysCacheCopy1(INDEXRELID
,
2065 ObjectIdGetDatum(indexRelationId
));
2066 if (!HeapTupleIsValid(indexTuple
))
2067 elog(ERROR
, "cache lookup failed for index %u", indexRelationId
);
2068 indexForm
= (Form_pg_index
) GETSTRUCT(indexTuple
);
2070 if (mark_as_primary
&& !indexForm
->indisprimary
)
2072 indexForm
->indisprimary
= true;
2074 marked_as_primary
= true;
2077 if (deferrable
&& indexForm
->indimmediate
)
2079 indexForm
->indimmediate
= false;
2085 CatalogTupleUpdate(pg_index
, &indexTuple
->t_self
, indexTuple
);
2088 * When we mark an existing index as primary, force a relcache
2089 * flush on its parent table, so that all sessions will become
2090 * aware that the table now has a primary key. This is important
2091 * because it affects some replication behaviors.
2093 if (marked_as_primary
)
2094 CacheInvalidateRelcache(heapRelation
);
2096 InvokeObjectPostAlterHookArg(IndexRelationId
, indexRelationId
, 0,
2097 InvalidOid
, is_internal
);
2100 heap_freetuple(indexTuple
);
2101 table_close(pg_index
, RowExclusiveLock
);
2110 * NOTE: this routine should now only be called through performDeletion(),
2111 * else associated dependencies won't be cleaned up.
2113 * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is
2114 * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
2115 * take a lock for CONCURRENTLY processing. That is used as part of REINDEX
2119 index_drop(Oid indexId
, bool concurrent
, bool concurrent_lock_mode
)
2122 Relation userHeapRelation
;
2123 Relation userIndexRelation
;
2124 Relation indexRelation
;
2127 LockRelId heaprelid
,
2129 LOCKTAG heaplocktag
;
2133 * A temporary relation uses a non-concurrent DROP. Other backends can't
2134 * access a temporary relation, so there's no harm in grabbing a stronger
2135 * lock (see comments in RemoveRelations), and a non-concurrent DROP is
2138 Assert(get_rel_persistence(indexId
) != RELPERSISTENCE_TEMP
||
2139 (!concurrent
&& !concurrent_lock_mode
));
2142 * To drop an index safely, we must grab exclusive lock on its parent
2143 * table. Exclusive lock on the index alone is insufficient because
2144 * another backend might be about to execute a query on the parent table.
2145 * If it relies on a previously cached list of index OIDs, then it could
2146 * attempt to access the just-dropped index. We must therefore take a
2147 * table lock strong enough to prevent all queries on the table from
2148 * proceeding until we commit and send out a shared-cache-inval notice
2149 * that will make them update their index lists.
2151 * In the concurrent case we avoid this requirement by disabling index use
2152 * in multiple steps and waiting out any transactions that might be using
2153 * the index, so we don't need exclusive lock on the parent table. Instead
2154 * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2155 * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get
2156 * AccessExclusiveLock on the index below, once we're sure nobody else is
2159 heapId
= IndexGetRelation(indexId
, false);
2160 lockmode
= (concurrent
|| concurrent_lock_mode
) ? ShareUpdateExclusiveLock
: AccessExclusiveLock
;
2161 userHeapRelation
= table_open(heapId
, lockmode
);
2162 userIndexRelation
= index_open(indexId
, lockmode
);
2165 * We might still have open queries using it in our own session, which the
2166 * above locking won't prevent, so test explicitly.
2168 CheckTableNotInUse(userIndexRelation
, "DROP INDEX");
2171 * Drop Index Concurrently is more or less the reverse process of Create
2172 * Index Concurrently.
2174 * First we unset indisvalid so queries starting afterwards don't use the
2175 * index to answer queries anymore. We have to keep indisready = true so
2176 * transactions that are still scanning the index can continue to see
2177 * valid index contents. For instance, if they are using READ COMMITTED
2178 * mode, and another transaction makes changes and commits, they need to
2179 * see those new tuples in the index.
2181 * After all transactions that could possibly have used the index for
2182 * queries end, we can unset indisready and indislive, then wait till
2183 * nobody could be touching it anymore. (Note: we need indislive because
2184 * this state must be distinct from the initial state during CREATE INDEX
2185 * CONCURRENTLY, which has indislive true while indisready and indisvalid
2186 * are false. That's because in that state, transactions must examine the
2187 * index for HOT-safety decisions, while in this state we don't want them
2188 * to open it at all.)
2190 * Since all predicate locks on the index are about to be made invalid, we
2191 * must promote them to predicate locks on the heap. In the
2192 * non-concurrent case we can just do that now. In the concurrent case
2193 * it's a bit trickier. The predicate locks must be moved when there are
2194 * no index scans in progress on the index and no more can subsequently
2195 * start, so that no new predicate locks can be made on the index. Also,
2196 * they must be moved before heap inserts stop maintaining the index, else
2197 * the conflict with the predicate lock on the index gap could be missed
2198 * before the lock on the heap relation is in place to detect a conflict
2199 * based on the heap tuple insert.
2204 * We must commit our transaction in order to make the first pg_index
2205 * state update visible to other sessions. If the DROP machinery has
2206 * already performed any other actions (removal of other objects,
2207 * pg_depend entries, etc), the commit would make those actions
2208 * permanent, which would leave us with inconsistent catalog state if
2209 * we fail partway through the following sequence. Since DROP INDEX
2210 * CONCURRENTLY is restricted to dropping just one index that has no
2211 * dependencies, we should get here before anything's been done ---
2212 * but let's check that to be sure. We can verify that the current
2213 * transaction has not executed any transactional updates by checking
2214 * that no XID has been assigned.
2216 if (GetTopTransactionIdIfAny() != InvalidTransactionId
)
2218 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
2219 errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2222 * Mark index invalid by updating its pg_index entry
2224 index_set_state_flags(indexId
, INDEX_DROP_CLEAR_VALID
);
2227 * Invalidate the relcache for the table, so that after this commit
2228 * all sessions will refresh any cached plans that might reference the
2231 CacheInvalidateRelcache(userHeapRelation
);
2233 /* save lockrelid and locktag for below, then close but keep locks */
2234 heaprelid
= userHeapRelation
->rd_lockInfo
.lockRelId
;
2235 SET_LOCKTAG_RELATION(heaplocktag
, heaprelid
.dbId
, heaprelid
.relId
);
2236 indexrelid
= userIndexRelation
->rd_lockInfo
.lockRelId
;
2238 table_close(userHeapRelation
, NoLock
);
2239 index_close(userIndexRelation
, NoLock
);
2242 * We must commit our current transaction so that the indisvalid
2243 * update becomes visible to other transactions; then start another.
2244 * Note that any previously-built data structures are lost in the
2245 * commit. The only data we keep past here are the relation IDs.
2247 * Before committing, get a session-level lock on the table, to ensure
2248 * that neither it nor the index can be dropped before we finish. This
2249 * cannot block, even if someone else is waiting for access, because
2250 * we already have the same lock within our transaction.
2252 LockRelationIdForSession(&heaprelid
, ShareUpdateExclusiveLock
);
2253 LockRelationIdForSession(&indexrelid
, ShareUpdateExclusiveLock
);
2255 PopActiveSnapshot();
2256 CommitTransactionCommand();
2257 StartTransactionCommand();
2260 * Now we must wait until no running transaction could be using the
2261 * index for a query. Use AccessExclusiveLock here to check for
2262 * running transactions that hold locks of any kind on the table. Note
2263 * we do not need to worry about xacts that open the table for reading
2264 * after this point; they will see the index as invalid when they open
2267 * Note: the reason we use actual lock acquisition here, rather than
2268 * just checking the ProcArray and sleeping, is that deadlock is
2269 * possible if one of the transactions in question is blocked trying
2270 * to acquire an exclusive lock on our table. The lock code will
2271 * detect deadlock and error out properly.
2273 * Note: we report progress through WaitForLockers() unconditionally
2274 * here, even though it will only be used when we're called by REINDEX
2275 * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2277 WaitForLockers(heaplocktag
, AccessExclusiveLock
, true);
2280 * Updating pg_index might involve TOAST table access, so ensure we
2281 * have a valid snapshot.
2283 PushActiveSnapshot(GetTransactionSnapshot());
2285 /* Finish invalidation of index and mark it as dead */
2286 index_concurrently_set_dead(heapId
, indexId
);
2288 PopActiveSnapshot();
2291 * Again, commit the transaction to make the pg_index update visible
2292 * to other sessions.
2294 CommitTransactionCommand();
2295 StartTransactionCommand();
2298 * Wait till every transaction that saw the old index state has
2299 * finished. See above about progress reporting.
2301 WaitForLockers(heaplocktag
, AccessExclusiveLock
, true);
2304 * Re-open relations to allow us to complete our actions.
2306 * At this point, nothing should be accessing the index, but lets
2307 * leave nothing to chance and grab AccessExclusiveLock on the index
2308 * before the physical deletion.
2310 userHeapRelation
= table_open(heapId
, ShareUpdateExclusiveLock
);
2311 userIndexRelation
= index_open(indexId
, AccessExclusiveLock
);
2315 /* Not concurrent, so just transfer predicate locks and we're good */
2316 TransferPredicateLocksToHeapRelation(userIndexRelation
);
2320 * Schedule physical removal of the files (if any)
2322 if (RELKIND_HAS_STORAGE(userIndexRelation
->rd_rel
->relkind
))
2323 RelationDropStorage(userIndexRelation
);
2325 /* ensure that stats are dropped if transaction commits */
2326 pgstat_drop_relation(userIndexRelation
);
2329 * Close and flush the index's relcache entry, to ensure relcache doesn't
2330 * try to rebuild it while we're deleting catalog entries. We keep the
2333 index_close(userIndexRelation
, NoLock
);
2335 RelationForgetRelation(indexId
);
2338 * Updating pg_index might involve TOAST table access, so ensure we have a
2341 PushActiveSnapshot(GetTransactionSnapshot());
2344 * fix INDEX relation, and check for expressional index
2346 indexRelation
= table_open(IndexRelationId
, RowExclusiveLock
);
2348 tuple
= SearchSysCache1(INDEXRELID
, ObjectIdGetDatum(indexId
));
2349 if (!HeapTupleIsValid(tuple
))
2350 elog(ERROR
, "cache lookup failed for index %u", indexId
);
2352 hasexprs
= !heap_attisnull(tuple
, Anum_pg_index_indexprs
,
2353 RelationGetDescr(indexRelation
));
2355 CatalogTupleDelete(indexRelation
, &tuple
->t_self
);
2357 ReleaseSysCache(tuple
);
2358 table_close(indexRelation
, RowExclusiveLock
);
2360 PopActiveSnapshot();
2363 * if it has any expression columns, we might have stored statistics about
2367 RemoveStatistics(indexId
, 0);
2370 * fix ATTRIBUTE relation
2372 DeleteAttributeTuples(indexId
);
2375 * fix RELATION relation
2377 DeleteRelationTuple(indexId
);
2380 * fix INHERITS relation
2382 DeleteInheritsTuple(indexId
, InvalidOid
, false, NULL
);
2385 * We are presently too lazy to attempt to compute the new correct value
2386 * of relhasindex (the next VACUUM will fix it if necessary). So there is
2387 * no need to update the pg_class tuple for the owning relation. But we
2388 * must send out a shared-cache-inval notice on the owning relation to
2389 * ensure other backends update their relcache lists of indexes. (In the
2390 * concurrent case, this is redundant but harmless.)
2392 CacheInvalidateRelcache(userHeapRelation
);
2395 * Close owning rel, but keep lock
2397 table_close(userHeapRelation
, NoLock
);
2400 * Release the session locks before we go.
2404 UnlockRelationIdForSession(&heaprelid
, ShareUpdateExclusiveLock
);
2405 UnlockRelationIdForSession(&indexrelid
, ShareUpdateExclusiveLock
);
2409 /* ----------------------------------------------------------------
2410 * index_build support
2411 * ----------------------------------------------------------------
2416 * Construct an IndexInfo record for an open index
2418 * IndexInfo stores the information about the index that's needed by
2419 * FormIndexDatum, which is used for both index_build() and later insertion
2420 * of individual index tuples. Normally we build an IndexInfo for an index
2421 * just once per command, and then use it for (potentially) many tuples.
2425 BuildIndexInfo(Relation index
)
2428 Form_pg_index indexStruct
= index
->rd_index
;
2432 /* check the number of keys, and copy attr numbers into the IndexInfo */
2433 numAtts
= indexStruct
->indnatts
;
2434 if (numAtts
< 1 || numAtts
> INDEX_MAX_KEYS
)
2435 elog(ERROR
, "invalid indnatts %d for index %u",
2436 numAtts
, RelationGetRelid(index
));
2439 * Create the node, fetching any expressions needed for expressional
2440 * indexes and index predicate if any.
2442 ii
= makeIndexInfo(indexStruct
->indnatts
,
2443 indexStruct
->indnkeyatts
,
2444 index
->rd_rel
->relam
,
2445 RelationGetIndexExpressions(index
),
2446 RelationGetIndexPredicate(index
),
2447 indexStruct
->indisunique
,
2448 indexStruct
->indnullsnotdistinct
,
2449 indexStruct
->indisready
,
2451 index
->rd_indam
->amsummarizing
,
2452 indexStruct
->indisexclusion
&& indexStruct
->indisunique
);
2454 /* fill in attribute numbers */
2455 for (i
= 0; i
< numAtts
; i
++)
2456 ii
->ii_IndexAttrNumbers
[i
] = indexStruct
->indkey
.values
[i
];
2458 /* fetch exclusion constraint info if any */
2459 if (indexStruct
->indisexclusion
)
2461 RelationGetExclusionInfo(index
,
2462 &ii
->ii_ExclusionOps
,
2463 &ii
->ii_ExclusionProcs
,
2464 &ii
->ii_ExclusionStrats
);
2471 * BuildDummyIndexInfo
2472 * Construct a dummy IndexInfo record for an open index
2474 * This differs from the real BuildIndexInfo in that it will never run any
2475 * user-defined code that might exist in index expressions or predicates.
2476 * Instead of the real index expressions, we return null constants that have
2477 * the right types/typmods/collations. Predicates and exclusion clauses are
2478 * just ignored. This is sufficient for the purpose of truncating an index,
2479 * since we will not need to actually evaluate the expressions or predicates;
2480 * the only thing that's likely to be done with the data is construction of
2481 * a tupdesc describing the index's rowtype.
2485 BuildDummyIndexInfo(Relation index
)
2488 Form_pg_index indexStruct
= index
->rd_index
;
2492 /* check the number of keys, and copy attr numbers into the IndexInfo */
2493 numAtts
= indexStruct
->indnatts
;
2494 if (numAtts
< 1 || numAtts
> INDEX_MAX_KEYS
)
2495 elog(ERROR
, "invalid indnatts %d for index %u",
2496 numAtts
, RelationGetRelid(index
));
2499 * Create the node, using dummy index expressions, and pretending there is
2502 ii
= makeIndexInfo(indexStruct
->indnatts
,
2503 indexStruct
->indnkeyatts
,
2504 index
->rd_rel
->relam
,
2505 RelationGetDummyIndexExpressions(index
),
2507 indexStruct
->indisunique
,
2508 indexStruct
->indnullsnotdistinct
,
2509 indexStruct
->indisready
,
2511 index
->rd_indam
->amsummarizing
,
2512 indexStruct
->indisexclusion
&& indexStruct
->indisunique
);
2514 /* fill in attribute numbers */
2515 for (i
= 0; i
< numAtts
; i
++)
2516 ii
->ii_IndexAttrNumbers
[i
] = indexStruct
->indkey
.values
[i
];
2518 /* We ignore the exclusion constraint if any */
2525 * Return whether the properties of two indexes (in different tables)
2526 * indicate that they have the "same" definitions.
2528 * Note: passing collations and opfamilies separately is a kludge. Adding
2529 * them to IndexInfo may result in better coding here and elsewhere.
2531 * Use build_attrmap_by_name(index2, index1) to build the attmap.
2534 CompareIndexInfo(const IndexInfo
*info1
, const IndexInfo
*info2
,
2535 const Oid
*collations1
, const Oid
*collations2
,
2536 const Oid
*opfamilies1
, const Oid
*opfamilies2
,
2537 const AttrMap
*attmap
)
2541 if (info1
->ii_Unique
!= info2
->ii_Unique
)
2544 if (info1
->ii_NullsNotDistinct
!= info2
->ii_NullsNotDistinct
)
2547 /* indexes are only equivalent if they have the same access method */
2548 if (info1
->ii_Am
!= info2
->ii_Am
)
2551 /* and same number of attributes */
2552 if (info1
->ii_NumIndexAttrs
!= info2
->ii_NumIndexAttrs
)
2555 /* and same number of key attributes */
2556 if (info1
->ii_NumIndexKeyAttrs
!= info2
->ii_NumIndexKeyAttrs
)
2560 * and columns match through the attribute map (actual attribute numbers
2561 * might differ!) Note that this checks that index columns that are
2562 * expressions appear in the same positions. We will next compare the
2563 * expressions themselves.
2565 for (i
= 0; i
< info1
->ii_NumIndexAttrs
; i
++)
2567 if (attmap
->maplen
< info2
->ii_IndexAttrNumbers
[i
])
2568 elog(ERROR
, "incorrect attribute map");
2570 /* ignore expressions for now (but check their collation/opfamily) */
2571 if (!(info1
->ii_IndexAttrNumbers
[i
] == InvalidAttrNumber
&&
2572 info2
->ii_IndexAttrNumbers
[i
] == InvalidAttrNumber
))
2574 /* fail if just one index has an expression in this column */
2575 if (info1
->ii_IndexAttrNumbers
[i
] == InvalidAttrNumber
||
2576 info2
->ii_IndexAttrNumbers
[i
] == InvalidAttrNumber
)
2579 /* both are columns, so check for match after mapping */
2580 if (attmap
->attnums
[info2
->ii_IndexAttrNumbers
[i
] - 1] !=
2581 info1
->ii_IndexAttrNumbers
[i
])
2585 /* collation and opfamily are not valid for included columns */
2586 if (i
>= info1
->ii_NumIndexKeyAttrs
)
2589 if (collations1
[i
] != collations2
[i
])
2591 if (opfamilies1
[i
] != opfamilies2
[i
])
2596 * For expression indexes: either both are expression indexes, or neither
2597 * is; if they are, make sure the expressions match.
2599 if ((info1
->ii_Expressions
!= NIL
) != (info2
->ii_Expressions
!= NIL
))
2601 if (info1
->ii_Expressions
!= NIL
)
2603 bool found_whole_row
;
2606 mapped
= map_variable_attnos((Node
*) info2
->ii_Expressions
,
2608 InvalidOid
, &found_whole_row
);
2609 if (found_whole_row
)
2612 * we could throw an error here, but seems out of scope for this
2618 if (!equal(info1
->ii_Expressions
, mapped
))
2622 /* Partial index predicates must be identical, if they exist */
2623 if ((info1
->ii_Predicate
== NULL
) != (info2
->ii_Predicate
== NULL
))
2625 if (info1
->ii_Predicate
!= NULL
)
2627 bool found_whole_row
;
2630 mapped
= map_variable_attnos((Node
*) info2
->ii_Predicate
,
2632 InvalidOid
, &found_whole_row
);
2633 if (found_whole_row
)
2636 * we could throw an error here, but seems out of scope for this
2641 if (!equal(info1
->ii_Predicate
, mapped
))
2645 /* No support currently for comparing exclusion indexes. */
2646 if (info1
->ii_ExclusionOps
!= NULL
|| info2
->ii_ExclusionOps
!= NULL
)
2653 * BuildSpeculativeIndexInfo
2654 * Add extra state to IndexInfo record
2656 * For unique indexes, we usually don't want to add info to the IndexInfo for
2657 * checking uniqueness, since the B-Tree AM handles that directly. However, in
2658 * the case of speculative insertion and conflict detection in logical
2659 * replication, additional support is required.
2661 * Do this processing here rather than in BuildIndexInfo() to not incur the
2662 * overhead in the common non-speculative cases.
2666 BuildSpeculativeIndexInfo(Relation index
, IndexInfo
*ii
)
2671 indnkeyatts
= IndexRelationGetNumberOfKeyAttributes(index
);
2674 * fetch info for checking unique indexes
2676 Assert(ii
->ii_Unique
);
2678 if (index
->rd_rel
->relam
!= BTREE_AM_OID
)
2679 elog(ERROR
, "unexpected non-btree speculative unique index");
2681 ii
->ii_UniqueOps
= (Oid
*) palloc(sizeof(Oid
) * indnkeyatts
);
2682 ii
->ii_UniqueProcs
= (Oid
*) palloc(sizeof(Oid
) * indnkeyatts
);
2683 ii
->ii_UniqueStrats
= (uint16
*) palloc(sizeof(uint16
) * indnkeyatts
);
2686 * We have to look up the operator's strategy number. This provides a
2687 * cross-check that the operator does match the index.
2689 /* We need the func OIDs and strategy numbers too */
2690 for (i
= 0; i
< indnkeyatts
; i
++)
2692 ii
->ii_UniqueStrats
[i
] = BTEqualStrategyNumber
;
2693 ii
->ii_UniqueOps
[i
] =
2694 get_opfamily_member(index
->rd_opfamily
[i
],
2695 index
->rd_opcintype
[i
],
2696 index
->rd_opcintype
[i
],
2697 ii
->ii_UniqueStrats
[i
]);
2698 if (!OidIsValid(ii
->ii_UniqueOps
[i
]))
2699 elog(ERROR
, "missing operator %d(%u,%u) in opfamily %u",
2700 ii
->ii_UniqueStrats
[i
], index
->rd_opcintype
[i
],
2701 index
->rd_opcintype
[i
], index
->rd_opfamily
[i
]);
2702 ii
->ii_UniqueProcs
[i
] = get_opcode(ii
->ii_UniqueOps
[i
]);
2708 * Construct values[] and isnull[] arrays for a new index tuple.
2710 * indexInfo Info about the index
2711 * slot Heap tuple for which we must prepare an index entry
2712 * estate executor state for evaluating any index expressions
2713 * values Array of index Datums (output area)
2714 * isnull Array of is-null indicators (output area)
2716 * When there are no index expressions, estate may be NULL. Otherwise it
2717 * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2718 * context must point to the heap tuple passed in.
2720 * Notice we don't actually call index_form_tuple() here; we just prepare
2721 * its input arrays values[] and isnull[]. This is because the index AM
2722 * may wish to alter the data before storage.
2726 FormIndexDatum(IndexInfo
*indexInfo
,
2727 TupleTableSlot
*slot
,
2732 ListCell
*indexpr_item
;
2735 if (indexInfo
->ii_Expressions
!= NIL
&&
2736 indexInfo
->ii_ExpressionsState
== NIL
)
2738 /* First time through, set up expression evaluation state */
2739 indexInfo
->ii_ExpressionsState
=
2740 ExecPrepareExprList(indexInfo
->ii_Expressions
, estate
);
2741 /* Check caller has set up context correctly */
2742 Assert(GetPerTupleExprContext(estate
)->ecxt_scantuple
== slot
);
2744 indexpr_item
= list_head(indexInfo
->ii_ExpressionsState
);
2746 for (i
= 0; i
< indexInfo
->ii_NumIndexAttrs
; i
++)
2748 int keycol
= indexInfo
->ii_IndexAttrNumbers
[i
];
2753 iDatum
= slot_getsysattr(slot
, keycol
, &isNull
);
2754 else if (keycol
!= 0)
2757 * Plain index column; get the value we need directly from the
2760 iDatum
= slot_getattr(slot
, keycol
, &isNull
);
2765 * Index expression --- need to evaluate it.
2767 if (indexpr_item
== NULL
)
2768 elog(ERROR
, "wrong number of index expressions");
2769 iDatum
= ExecEvalExprSwitchContext((ExprState
*) lfirst(indexpr_item
),
2770 GetPerTupleExprContext(estate
),
2772 indexpr_item
= lnext(indexInfo
->ii_ExpressionsState
, indexpr_item
);
2778 if (indexpr_item
!= NULL
)
2779 elog(ERROR
, "wrong number of index expressions");
2784 * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2786 * This routine updates the pg_class row of either an index or its parent
2787 * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
2788 * to ensure we can do all the necessary work in just one update.
2790 * hasindex: set relhasindex to this value
2791 * reltuples: if >= 0, set reltuples to this value; else no change
2793 * If reltuples >= 0, relpages and relallvisible are also updated (using
2794 * RelationGetNumberOfBlocks() and visibilitymap_count()).
2796 * NOTE: an important side-effect of this operation is that an SI invalidation
2797 * message is sent out to all backends --- including me --- causing relcache
2798 * entries to be flushed or updated with the new data. This must happen even
2799 * if we find that no change is needed in the pg_class row. When updating
2800 * a heap entry, this ensures that other backends find out about the new
2801 * index. When updating an index, it's important because some index AMs
2802 * expect a relcache flush to occur after REINDEX.
2805 index_update_stats(Relation rel
,
2810 BlockNumber relpages
= 0; /* keep compiler quiet */
2811 BlockNumber relallvisible
= 0;
2812 Oid relid
= RelationGetRelid(rel
);
2817 Form_pg_class rd_rel
;
2821 * As a special hack, if we are dealing with an empty table and the
2822 * existing reltuples is -1, we leave that alone. This ensures that
2823 * creating an index as part of CREATE TABLE doesn't cause the table to
2824 * prematurely look like it's been vacuumed. The rd_rel we modify may
2825 * differ from rel->rd_rel due to e.g. commit of concurrent GRANT, but the
2826 * commands that change reltuples take locks conflicting with ours. (Even
2827 * if a command changed reltuples under a weaker lock, this affects only
2828 * statistics for an empty table.)
2830 if (reltuples
== 0 && rel
->rd_rel
->reltuples
< 0)
2834 * Don't update statistics during binary upgrade, because the indexes are
2835 * created before the data is moved into place.
2837 update_stats
= reltuples
>= 0 && !IsBinaryUpgrade
;
2840 * Finish I/O and visibility map buffer locks before
2841 * systable_inplace_update_begin() locks the pg_class buffer. The rd_rel
2842 * we modify may differ from rel->rd_rel due to e.g. commit of concurrent
2843 * GRANT, but no command changes a relkind from non-index to index. (Even
2844 * if one did, relallvisible doesn't break functionality.)
2848 relpages
= RelationGetNumberOfBlocks(rel
);
2850 if (rel
->rd_rel
->relkind
!= RELKIND_INDEX
)
2851 visibilitymap_count(rel
, &relallvisible
, NULL
);
2855 * We always update the pg_class row using a non-transactional,
2856 * overwrite-in-place update. There are several reasons for this:
2858 * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2860 * 2. We could be reindexing pg_class itself, in which case we can't move
2861 * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2862 * not know about all the indexes yet (see reindex_relation).
2864 * 3. Because we execute CREATE INDEX with just share lock on the parent
2865 * rel (to allow concurrent index creations), an ordinary update could
2866 * suffer a tuple-concurrently-updated failure against another CREATE
2867 * INDEX committing at about the same time. We can avoid that by having
2868 * them both do nontransactional updates (we assume they will both be
2869 * trying to change the pg_class row to the same thing, so it doesn't
2870 * matter which goes first).
2872 * It is safe to use a non-transactional update even though our
2873 * transaction could still fail before committing. Setting relhasindex
2874 * true is safe even if there are no indexes (VACUUM will eventually fix
2875 * it). And of course the new relpages and reltuples counts are correct
2876 * regardless. However, we don't want to change relpages (or
2877 * relallvisible) if the caller isn't providing an updated reltuples
2878 * count, because that would bollix the reltuples/relpages ratio which is
2879 * what's really important.
2882 pg_class
= table_open(RelationRelationId
, RowExclusiveLock
);
2884 ScanKeyInit(&key
[0],
2886 BTEqualStrategyNumber
, F_OIDEQ
,
2887 ObjectIdGetDatum(relid
));
2888 systable_inplace_update_begin(pg_class
, ClassOidIndexId
, true, NULL
,
2889 1, key
, &tuple
, &state
);
2891 if (!HeapTupleIsValid(tuple
))
2892 elog(ERROR
, "could not find tuple for relation %u", relid
);
2893 rd_rel
= (Form_pg_class
) GETSTRUCT(tuple
);
2895 /* Should this be a more comprehensive test? */
2896 Assert(rd_rel
->relkind
!= RELKIND_PARTITIONED_INDEX
);
2898 /* Apply required updates, if any, to copied tuple */
2901 if (rd_rel
->relhasindex
!= hasindex
)
2903 rd_rel
->relhasindex
= hasindex
;
2909 if (rd_rel
->relpages
!= (int32
) relpages
)
2911 rd_rel
->relpages
= (int32
) relpages
;
2914 if (rd_rel
->reltuples
!= (float4
) reltuples
)
2916 rd_rel
->reltuples
= (float4
) reltuples
;
2919 if (rd_rel
->relallvisible
!= (int32
) relallvisible
)
2921 rd_rel
->relallvisible
= (int32
) relallvisible
;
2927 * If anything changed, write out the tuple
2931 systable_inplace_update_finish(state
, tuple
);
2932 /* the above sends transactional and immediate cache inval messages */
2936 systable_inplace_update_cancel(state
);
2939 * While we didn't change relhasindex, CREATE INDEX needs a
2940 * transactional inval for when the new index's catalog rows become
2941 * visible. Other CREATE INDEX and REINDEX code happens to also queue
2942 * this inval, but keep this in case rare callers rely on this part of
2945 CacheInvalidateRelcacheByTuple(tuple
);
2948 heap_freetuple(tuple
);
2950 table_close(pg_class
, RowExclusiveLock
);
2955 * index_build - invoke access-method-specific index build procedure
2957 * On entry, the index's catalog entries are valid, and its physical disk
2958 * file has been created but is empty. We call the AM-specific build
2959 * procedure to fill in the index contents. We then update the pg_class
2960 * entries of the index and heap relation as needed, using statistics
2961 * returned by ambuild as well as data passed by the caller.
2963 * isreindex indicates we are recreating a previously-existing index.
2964 * parallel indicates if parallelism may be useful.
2966 * Note: before Postgres 8.2, the passed-in heap and index Relations
2967 * were automatically closed by this routine. This is no longer the case.
2968 * The caller opened 'em, and the caller should close 'em.
2971 index_build(Relation heapRelation
,
2972 Relation indexRelation
,
2973 IndexInfo
*indexInfo
,
2977 IndexBuildResult
*stats
;
2979 int save_sec_context
;
2985 Assert(RelationIsValid(indexRelation
));
2986 Assert(PointerIsValid(indexRelation
->rd_indam
));
2987 Assert(PointerIsValid(indexRelation
->rd_indam
->ambuild
));
2988 Assert(PointerIsValid(indexRelation
->rd_indam
->ambuildempty
));
2991 * Determine worker process details for parallel CREATE INDEX. Currently,
2992 * only btree has support for parallel builds.
2994 * Note that planner considers parallel safety for us.
2996 if (parallel
&& IsNormalProcessingMode() &&
2997 indexRelation
->rd_indam
->amcanbuildparallel
)
2998 indexInfo
->ii_ParallelWorkers
=
2999 plan_create_index_workers(RelationGetRelid(heapRelation
),
3000 RelationGetRelid(indexRelation
));
3002 if (indexInfo
->ii_ParallelWorkers
== 0)
3004 (errmsg_internal("building index \"%s\" on table \"%s\" serially",
3005 RelationGetRelationName(indexRelation
),
3006 RelationGetRelationName(heapRelation
))));
3009 (errmsg_internal("building index \"%s\" on table \"%s\" with request for %d parallel workers",
3010 RelationGetRelationName(indexRelation
),
3011 RelationGetRelationName(heapRelation
),
3012 indexInfo
->ii_ParallelWorkers
)));
3015 * Switch to the table owner's userid, so that any index functions are run
3016 * as that user. Also lock down security-restricted operations and
3017 * arrange to make GUC variable changes local to this command.
3019 GetUserIdAndSecContext(&save_userid
, &save_sec_context
);
3020 SetUserIdAndSecContext(heapRelation
->rd_rel
->relowner
,
3021 save_sec_context
| SECURITY_RESTRICTED_OPERATION
);
3022 save_nestlevel
= NewGUCNestLevel();
3023 RestrictSearchPath();
3025 /* Set up initial progress report status */
3027 const int progress_index
[] = {
3028 PROGRESS_CREATEIDX_PHASE
,
3029 PROGRESS_CREATEIDX_SUBPHASE
,
3030 PROGRESS_CREATEIDX_TUPLES_DONE
,
3031 PROGRESS_CREATEIDX_TUPLES_TOTAL
,
3032 PROGRESS_SCAN_BLOCKS_DONE
,
3033 PROGRESS_SCAN_BLOCKS_TOTAL
3035 const int64 progress_vals
[] = {
3036 PROGRESS_CREATEIDX_PHASE_BUILD
,
3037 PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE
,
3041 pgstat_progress_update_multi_param(6, progress_index
, progress_vals
);
3045 * Call the access method's build procedure
3047 stats
= indexRelation
->rd_indam
->ambuild(heapRelation
, indexRelation
,
3049 Assert(PointerIsValid(stats
));
3052 * If this is an unlogged index, we may need to write out an init fork for
3053 * it -- but we must first check whether one already exists. If, for
3054 * example, an unlogged relation is truncated in the transaction that
3055 * created it, or truncated twice in a subsequent transaction, the
3056 * relfilenumber won't change, and nothing needs to be done here.
3058 if (indexRelation
->rd_rel
->relpersistence
== RELPERSISTENCE_UNLOGGED
&&
3059 !smgrexists(RelationGetSmgr(indexRelation
), INIT_FORKNUM
))
3061 smgrcreate(RelationGetSmgr(indexRelation
), INIT_FORKNUM
, false);
3062 log_smgrcreate(&indexRelation
->rd_locator
, INIT_FORKNUM
);
3063 indexRelation
->rd_indam
->ambuildempty(indexRelation
);
3067 * If we found any potentially broken HOT chains, mark the index as not
3068 * being usable until the current transaction is below the event horizon.
3069 * See src/backend/access/heap/README.HOT for discussion. While it might
3070 * become safe to use the index earlier based on actual cleanup activity
3071 * and other active transactions, the test for that would be much more
3072 * complex and would require some form of blocking, so keep it simple and
3073 * fast by just using the current transaction.
3075 * However, when reindexing an existing index, we should do nothing here.
3076 * Any HOT chains that are broken with respect to the index must predate
3077 * the index's original creation, so there is no need to change the
3078 * index's usability horizon. Moreover, we *must not* try to change the
3079 * index's pg_index entry while reindexing pg_index itself, and this
3080 * optimization nicely prevents that. The more complex rules needed for a
3081 * reindex are handled separately after this function returns.
3083 * We also need not set indcheckxmin during a concurrent index build,
3084 * because we won't set indisvalid true until all transactions that care
3085 * about the broken HOT chains are gone.
3087 * Therefore, this code path can only be taken during non-concurrent
3088 * CREATE INDEX. Thus the fact that heap_update will set the pg_index
3089 * tuple's xmin doesn't matter, because that tuple was created in the
3090 * current transaction anyway. That also means we don't need to worry
3091 * about any concurrent readers of the tuple; no other transaction can see
3094 if (indexInfo
->ii_BrokenHotChain
&&
3096 !indexInfo
->ii_Concurrent
)
3098 Oid indexId
= RelationGetRelid(indexRelation
);
3100 HeapTuple indexTuple
;
3101 Form_pg_index indexForm
;
3103 pg_index
= table_open(IndexRelationId
, RowExclusiveLock
);
3105 indexTuple
= SearchSysCacheCopy1(INDEXRELID
,
3106 ObjectIdGetDatum(indexId
));
3107 if (!HeapTupleIsValid(indexTuple
))
3108 elog(ERROR
, "cache lookup failed for index %u", indexId
);
3109 indexForm
= (Form_pg_index
) GETSTRUCT(indexTuple
);
3111 /* If it's a new index, indcheckxmin shouldn't be set ... */
3112 Assert(!indexForm
->indcheckxmin
);
3114 indexForm
->indcheckxmin
= true;
3115 CatalogTupleUpdate(pg_index
, &indexTuple
->t_self
, indexTuple
);
3117 heap_freetuple(indexTuple
);
3118 table_close(pg_index
, RowExclusiveLock
);
3122 * Update heap and index pg_class rows
3124 index_update_stats(heapRelation
,
3126 stats
->heap_tuples
);
3128 index_update_stats(indexRelation
,
3130 stats
->index_tuples
);
3132 /* Make the updated catalog row versions visible */
3133 CommandCounterIncrement();
3136 * If it's for an exclusion constraint, make a second pass over the heap
3137 * to verify that the constraint is satisfied. We must not do this until
3138 * the index is fully valid. (Broken HOT chains shouldn't matter, though;
3139 * see comments for IndexCheckExclusion.)
3141 if (indexInfo
->ii_ExclusionOps
!= NULL
)
3142 IndexCheckExclusion(heapRelation
, indexRelation
, indexInfo
);
3144 /* Roll back any GUC changes executed by index functions */
3145 AtEOXact_GUC(false, save_nestlevel
);
3147 /* Restore userid and security context */
3148 SetUserIdAndSecContext(save_userid
, save_sec_context
);
3152 * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
3154 * When creating an exclusion constraint, we first build the index normally
3155 * and then rescan the heap to check for conflicts. We assume that we only
3156 * need to validate tuples that are live according to an up-to-date snapshot,
3157 * and that these were correctly indexed even in the presence of broken HOT
3158 * chains. This should be OK since we are holding at least ShareLock on the
3159 * table, meaning there can be no uncommitted updates from other transactions.
3160 * (Note: that wouldn't necessarily work for system catalogs, since many
3161 * operations release write lock early on the system catalogs.)
3164 IndexCheckExclusion(Relation heapRelation
,
3165 Relation indexRelation
,
3166 IndexInfo
*indexInfo
)
3169 Datum values
[INDEX_MAX_KEYS
];
3170 bool isnull
[INDEX_MAX_KEYS
];
3171 ExprState
*predicate
;
3172 TupleTableSlot
*slot
;
3174 ExprContext
*econtext
;
3178 * If we are reindexing the target index, mark it as no longer being
3179 * reindexed, to forestall an Assert in index_beginscan when we try to use
3180 * the index for probes. This is OK because the index is now fully valid.
3182 if (ReindexIsCurrentlyProcessingIndex(RelationGetRelid(indexRelation
)))
3183 ResetReindexProcessing();
3186 * Need an EState for evaluation of index expressions and partial-index
3187 * predicates. Also a slot to hold the current tuple.
3189 estate
= CreateExecutorState();
3190 econtext
= GetPerTupleExprContext(estate
);
3191 slot
= table_slot_create(heapRelation
, NULL
);
3193 /* Arrange for econtext's scan tuple to be the tuple under test */
3194 econtext
->ecxt_scantuple
= slot
;
3196 /* Set up execution state for predicate, if any. */
3197 predicate
= ExecPrepareQual(indexInfo
->ii_Predicate
, estate
);
3200 * Scan all live tuples in the base relation.
3202 snapshot
= RegisterSnapshot(GetLatestSnapshot());
3203 scan
= table_beginscan_strat(heapRelation
, /* relation */
3204 snapshot
, /* snapshot */
3205 0, /* number of keys */
3206 NULL
, /* scan key */
3207 true, /* buffer access strategy OK */
3208 true); /* syncscan OK */
3210 while (table_scan_getnextslot(scan
, ForwardScanDirection
, slot
))
3212 CHECK_FOR_INTERRUPTS();
3215 * In a partial index, ignore tuples that don't satisfy the predicate.
3217 if (predicate
!= NULL
)
3219 if (!ExecQual(predicate
, econtext
))
3224 * Extract index column values, including computing expressions.
3226 FormIndexDatum(indexInfo
,
3233 * Check that this tuple has no conflicts.
3235 check_exclusion_constraint(heapRelation
,
3236 indexRelation
, indexInfo
,
3237 &(slot
->tts_tid
), values
, isnull
,
3240 MemoryContextReset(econtext
->ecxt_per_tuple_memory
);
3243 table_endscan(scan
);
3244 UnregisterSnapshot(snapshot
);
3246 ExecDropSingleTupleTableSlot(slot
);
3248 FreeExecutorState(estate
);
3250 /* These may have been pointing to the now-gone estate */
3251 indexInfo
->ii_ExpressionsState
= NIL
;
3252 indexInfo
->ii_PredicateState
= NULL
;
3256 * validate_index - support code for concurrent index builds
3258 * We do a concurrent index build by first inserting the catalog entry for the
3259 * index via index_create(), marking it not indisready and not indisvalid.
3260 * Then we commit our transaction and start a new one, then we wait for all
3261 * transactions that could have been modifying the table to terminate. Now
3262 * we know that any subsequently-started transactions will see the index and
3263 * honor its constraints on HOT updates; so while existing HOT-chains might
3264 * be broken with respect to the index, no currently live tuple will have an
3265 * incompatible HOT update done to it. We now build the index normally via
3266 * index_build(), while holding a weak lock that allows concurrent
3267 * insert/update/delete. Also, we index only tuples that are valid
3268 * as of the start of the scan (see table_index_build_scan), whereas a normal
3269 * build takes care to include recently-dead tuples. This is OK because
3270 * we won't mark the index valid until all transactions that might be able
3271 * to see those tuples are gone. The reason for doing that is to avoid
3272 * bogus unique-index failures due to concurrent UPDATEs (we might see
3273 * different versions of the same row as being valid when we pass over them,
3274 * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
3275 * does not contain any tuples added to the table while we built the index.
3277 * Next, we mark the index "indisready" (but still not "indisvalid") and
3278 * commit the second transaction and start a third. Again we wait for all
3279 * transactions that could have been modifying the table to terminate. Now
3280 * we know that any subsequently-started transactions will see the index and
3281 * insert their new tuples into it. We then take a new reference snapshot
3282 * which is passed to validate_index(). Any tuples that are valid according
3283 * to this snap, but are not in the index, must be added to the index.
3284 * (Any tuples committed live after the snap will be inserted into the
3285 * index by their originating transaction. Any tuples committed dead before
3286 * the snap need not be indexed, because we will wait out all transactions
3287 * that might care about them before we mark the index valid.)
3289 * validate_index() works by first gathering all the TIDs currently in the
3290 * index, using a bulkdelete callback that just stores the TIDs and doesn't
3291 * ever say "delete it". (This should be faster than a plain indexscan;
3292 * also, not all index AMs support full-index indexscan.) Then we sort the
3293 * TIDs, and finally scan the table doing a "merge join" against the TID list
3294 * to see which tuples are missing from the index. Thus we will ensure that
3295 * all tuples valid according to the reference snapshot are in the index.
3297 * Building a unique index this way is tricky: we might try to insert a
3298 * tuple that is already dead or is in process of being deleted, and we
3299 * mustn't have a uniqueness failure against an updated version of the same
3300 * row. We could try to check the tuple to see if it's already dead and tell
3301 * index_insert() not to do the uniqueness check, but that still leaves us
3302 * with a race condition against an in-progress update. To handle that,
3303 * we expect the index AM to recheck liveness of the to-be-inserted tuple
3304 * before it declares a uniqueness error.
3306 * After completing validate_index(), we wait until all transactions that
3307 * were alive at the time of the reference snapshot are gone; this is
3308 * necessary to be sure there are none left with a transaction snapshot
3309 * older than the reference (and hence possibly able to see tuples we did
3310 * not index). Then we mark the index "indisvalid" and commit. Subsequent
3311 * transactions will be able to use it for queries.
3313 * Doing two full table scans is a brute-force strategy. We could try to be
3314 * cleverer, eg storing new tuples in a special area of the table (perhaps
3315 * making the table append-only by setting use_fsm). However that would
3316 * add yet more locking issues.
3319 validate_index(Oid heapId
, Oid indexId
, Snapshot snapshot
)
3321 Relation heapRelation
,
3323 IndexInfo
*indexInfo
;
3324 IndexVacuumInfo ivinfo
;
3325 ValidateIndexState state
;
3327 int save_sec_context
;
3331 const int progress_index
[] = {
3332 PROGRESS_CREATEIDX_PHASE
,
3333 PROGRESS_CREATEIDX_TUPLES_DONE
,
3334 PROGRESS_CREATEIDX_TUPLES_TOTAL
,
3335 PROGRESS_SCAN_BLOCKS_DONE
,
3336 PROGRESS_SCAN_BLOCKS_TOTAL
3338 const int64 progress_vals
[] = {
3339 PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN
,
3343 pgstat_progress_update_multi_param(5, progress_index
, progress_vals
);
3346 /* Open and lock the parent heap relation */
3347 heapRelation
= table_open(heapId
, ShareUpdateExclusiveLock
);
3350 * Switch to the table owner's userid, so that any index functions are run
3351 * as that user. Also lock down security-restricted operations and
3352 * arrange to make GUC variable changes local to this command.
3354 GetUserIdAndSecContext(&save_userid
, &save_sec_context
);
3355 SetUserIdAndSecContext(heapRelation
->rd_rel
->relowner
,
3356 save_sec_context
| SECURITY_RESTRICTED_OPERATION
);
3357 save_nestlevel
= NewGUCNestLevel();
3358 RestrictSearchPath();
3360 indexRelation
= index_open(indexId
, RowExclusiveLock
);
3363 * Fetch info needed for index_insert. (You might think this should be
3364 * passed in from DefineIndex, but its copy is long gone due to having
3365 * been built in a previous transaction.)
3367 indexInfo
= BuildIndexInfo(indexRelation
);
3369 /* mark build is concurrent just for consistency */
3370 indexInfo
->ii_Concurrent
= true;
3373 * Scan the index and gather up all the TIDs into a tuplesort object.
3375 ivinfo
.index
= indexRelation
;
3376 ivinfo
.heaprel
= heapRelation
;
3377 ivinfo
.analyze_only
= false;
3378 ivinfo
.report_progress
= true;
3379 ivinfo
.estimated_count
= true;
3380 ivinfo
.message_level
= DEBUG2
;
3381 ivinfo
.num_heap_tuples
= heapRelation
->rd_rel
->reltuples
;
3382 ivinfo
.strategy
= NULL
;
3385 * Encode TIDs as int8 values for the sort, rather than directly sorting
3386 * item pointers. This can be significantly faster, primarily because TID
3387 * is a pass-by-reference type on all platforms, whereas int8 is
3388 * pass-by-value on most platforms.
3390 state
.tuplesort
= tuplesort_begin_datum(INT8OID
, Int8LessOperator
,
3392 maintenance_work_mem
,
3393 NULL
, TUPLESORT_NONE
);
3394 state
.htups
= state
.itups
= state
.tups_inserted
= 0;
3396 /* ambulkdelete updates progress metrics */
3397 (void) index_bulk_delete(&ivinfo
, NULL
,
3398 validate_index_callback
, &state
);
3400 /* Execute the sort */
3402 const int progress_index
[] = {
3403 PROGRESS_CREATEIDX_PHASE
,
3404 PROGRESS_SCAN_BLOCKS_DONE
,
3405 PROGRESS_SCAN_BLOCKS_TOTAL
3407 const int64 progress_vals
[] = {
3408 PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT
,
3412 pgstat_progress_update_multi_param(3, progress_index
, progress_vals
);
3414 tuplesort_performsort(state
.tuplesort
);
3417 * Now scan the heap and "merge" it with the index
3419 pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE
,
3420 PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN
);
3421 table_index_validate_scan(heapRelation
,
3427 /* Done with tuplesort object */
3428 tuplesort_end(state
.tuplesort
);
3430 /* Make sure to release resources cached in indexInfo (if needed). */
3431 index_insert_cleanup(indexRelation
, indexInfo
);
3434 "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3435 state
.htups
, state
.itups
, state
.tups_inserted
);
3437 /* Roll back any GUC changes executed by index functions */
3438 AtEOXact_GUC(false, save_nestlevel
);
3440 /* Restore userid and security context */
3441 SetUserIdAndSecContext(save_userid
, save_sec_context
);
3443 /* Close rels, but keep locks */
3444 index_close(indexRelation
, NoLock
);
3445 table_close(heapRelation
, NoLock
);
3449 * validate_index_callback - bulkdelete callback to collect the index TIDs
3452 validate_index_callback(ItemPointer itemptr
, void *opaque
)
3454 ValidateIndexState
*state
= (ValidateIndexState
*) opaque
;
3455 int64 encoded
= itemptr_encode(itemptr
);
3457 tuplesort_putdatum(state
->tuplesort
, Int64GetDatum(encoded
), false);
3459 return false; /* never actually delete anything */
3463 * index_set_state_flags - adjust pg_index state flags
3465 * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3466 * flags that denote the index's state.
3468 * Note that CatalogTupleUpdate() sends a cache invalidation message for the
3469 * tuple, so other sessions will hear about the update as soon as we commit.
3472 index_set_state_flags(Oid indexId
, IndexStateFlagsAction action
)
3475 HeapTuple indexTuple
;
3476 Form_pg_index indexForm
;
3478 /* Open pg_index and fetch a writable copy of the index's tuple */
3479 pg_index
= table_open(IndexRelationId
, RowExclusiveLock
);
3481 indexTuple
= SearchSysCacheCopy1(INDEXRELID
,
3482 ObjectIdGetDatum(indexId
));
3483 if (!HeapTupleIsValid(indexTuple
))
3484 elog(ERROR
, "cache lookup failed for index %u", indexId
);
3485 indexForm
= (Form_pg_index
) GETSTRUCT(indexTuple
);
3487 /* Perform the requested state change on the copy */
3490 case INDEX_CREATE_SET_READY
:
3491 /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3492 Assert(indexForm
->indislive
);
3493 Assert(!indexForm
->indisready
);
3494 Assert(!indexForm
->indisvalid
);
3495 indexForm
->indisready
= true;
3497 case INDEX_CREATE_SET_VALID
:
3498 /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3499 Assert(indexForm
->indislive
);
3500 Assert(indexForm
->indisready
);
3501 Assert(!indexForm
->indisvalid
);
3502 indexForm
->indisvalid
= true;
3504 case INDEX_DROP_CLEAR_VALID
:
3507 * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3509 * If indisready == true we leave it set so the index still gets
3510 * maintained by active transactions. We only need to ensure that
3511 * indisvalid is false. (We don't assert that either is initially
3512 * true, though, since we want to be able to retry a DROP INDEX
3513 * CONCURRENTLY that failed partway through.)
3515 * Note: the CLUSTER logic assumes that indisclustered cannot be
3516 * set on any invalid index, so clear that flag too. For
3517 * cleanliness, also clear indisreplident.
3519 indexForm
->indisvalid
= false;
3520 indexForm
->indisclustered
= false;
3521 indexForm
->indisreplident
= false;
3523 case INDEX_DROP_SET_DEAD
:
3526 * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3528 * We clear both indisready and indislive, because we not only
3529 * want to stop updates, we want to prevent sessions from touching
3532 Assert(!indexForm
->indisvalid
);
3533 Assert(!indexForm
->indisclustered
);
3534 Assert(!indexForm
->indisreplident
);
3535 indexForm
->indisready
= false;
3536 indexForm
->indislive
= false;
3540 /* ... and update it */
3541 CatalogTupleUpdate(pg_index
, &indexTuple
->t_self
, indexTuple
);
3543 table_close(pg_index
, RowExclusiveLock
);
3548 * IndexGetRelation: given an index's relation OID, get the OID of the
3549 * relation it is an index on. Uses the system cache.
3552 IndexGetRelation(Oid indexId
, bool missing_ok
)
3555 Form_pg_index index
;
3558 tuple
= SearchSysCache1(INDEXRELID
, ObjectIdGetDatum(indexId
));
3559 if (!HeapTupleIsValid(tuple
))
3563 elog(ERROR
, "cache lookup failed for index %u", indexId
);
3565 index
= (Form_pg_index
) GETSTRUCT(tuple
);
3566 Assert(index
->indexrelid
== indexId
);
3568 result
= index
->indrelid
;
3569 ReleaseSysCache(tuple
);
3574 * reindex_index - This routine is used to recreate a single index
3577 reindex_index(const ReindexStmt
*stmt
, Oid indexId
,
3578 bool skip_constraint_checks
, char persistence
,
3579 const ReindexParams
*params
)
3585 int save_sec_context
;
3587 IndexInfo
*indexInfo
;
3588 volatile bool skipped_constraint
= false;
3590 bool progress
= ((params
->options
& REINDEXOPT_REPORT_PROGRESS
) != 0);
3591 bool set_tablespace
= false;
3593 pg_rusage_init(&ru0
);
3596 * Open and lock the parent heap relation. ShareLock is sufficient since
3597 * we only need to be sure no schema or data changes are going on.
3599 heapId
= IndexGetRelation(indexId
,
3600 (params
->options
& REINDEXOPT_MISSING_OK
) != 0);
3601 /* if relation is missing, leave */
3602 if (!OidIsValid(heapId
))
3605 if ((params
->options
& REINDEXOPT_MISSING_OK
) != 0)
3606 heapRelation
= try_table_open(heapId
, ShareLock
);
3608 heapRelation
= table_open(heapId
, ShareLock
);
3610 /* if relation is gone, leave */
3615 * Switch to the table owner's userid, so that any index functions are run
3616 * as that user. Also lock down security-restricted operations and
3617 * arrange to make GUC variable changes local to this command.
3619 GetUserIdAndSecContext(&save_userid
, &save_sec_context
);
3620 SetUserIdAndSecContext(heapRelation
->rd_rel
->relowner
,
3621 save_sec_context
| SECURITY_RESTRICTED_OPERATION
);
3622 save_nestlevel
= NewGUCNestLevel();
3623 RestrictSearchPath();
3627 const int progress_cols
[] = {
3628 PROGRESS_CREATEIDX_COMMAND
,
3629 PROGRESS_CREATEIDX_INDEX_OID
3631 const int64 progress_vals
[] = {
3632 PROGRESS_CREATEIDX_COMMAND_REINDEX
,
3636 pgstat_progress_start_command(PROGRESS_COMMAND_CREATE_INDEX
,
3638 pgstat_progress_update_multi_param(2, progress_cols
, progress_vals
);
3642 * Open the target index relation and get an exclusive lock on it, to
3643 * ensure that no one else is touching this particular index.
3645 if ((params
->options
& REINDEXOPT_MISSING_OK
) != 0)
3646 iRel
= try_index_open(indexId
, AccessExclusiveLock
);
3648 iRel
= index_open(indexId
, AccessExclusiveLock
);
3650 /* if index relation is gone, leave */
3653 /* Roll back any GUC changes */
3654 AtEOXact_GUC(false, save_nestlevel
);
3656 /* Restore userid and security context */
3657 SetUserIdAndSecContext(save_userid
, save_sec_context
);
3659 /* Close parent heap relation, but keep locks */
3660 table_close(heapRelation
, NoLock
);
3665 pgstat_progress_update_param(PROGRESS_CREATEIDX_ACCESS_METHOD_OID
,
3666 iRel
->rd_rel
->relam
);
3669 * If a statement is available, telling that this comes from a REINDEX
3670 * command, collect the index for event triggers.
3674 ObjectAddress address
;
3676 ObjectAddressSet(address
, RelationRelationId
, indexId
);
3677 EventTriggerCollectSimpleCommand(address
,
3678 InvalidObjectAddress
,
3683 * Partitioned indexes should never get processed here, as they have no
3686 if (iRel
->rd_rel
->relkind
== RELKIND_PARTITIONED_INDEX
)
3687 elog(ERROR
, "cannot reindex partitioned index \"%s.%s\"",
3688 get_namespace_name(RelationGetNamespace(iRel
)),
3689 RelationGetRelationName(iRel
));
3692 * Don't allow reindex on temp tables of other backends ... their local
3693 * buffer manager is not going to cope.
3695 if (RELATION_IS_OTHER_TEMP(iRel
))
3697 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
3698 errmsg("cannot reindex temporary tables of other sessions")));
3701 * Don't allow reindex of an invalid index on TOAST table. This is a
3702 * leftover from a failed REINDEX CONCURRENTLY, and if rebuilt it would
3703 * not be possible to drop it anymore.
3705 if (IsToastNamespace(RelationGetNamespace(iRel
)) &&
3706 !get_index_isvalid(indexId
))
3708 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
3709 errmsg("cannot reindex invalid index on TOAST table")));
3712 * System relations cannot be moved even if allow_system_table_mods is
3713 * enabled to keep things consistent with the concurrent case where all
3714 * the indexes of a relation are processed in series, including indexes of
3717 * Note that this check is not part of CheckRelationTableSpaceMove() as it
3718 * gets used for ALTER TABLE SET TABLESPACE that could cascade across
3721 if (OidIsValid(params
->tablespaceOid
) &&
3722 IsSystemRelation(iRel
))
3724 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
3725 errmsg("cannot move system relation \"%s\"",
3726 RelationGetRelationName(iRel
))));
3728 /* Check if the tablespace of this index needs to be changed */
3729 if (OidIsValid(params
->tablespaceOid
) &&
3730 CheckRelationTableSpaceMove(iRel
, params
->tablespaceOid
))
3731 set_tablespace
= true;
3734 * Also check for active uses of the index in the current transaction; we
3735 * don't want to reindex underneath an open indexscan.
3737 CheckTableNotInUse(iRel
, "REINDEX INDEX");
3739 /* Set new tablespace, if requested */
3742 /* Update its pg_class row */
3743 SetRelationTableSpace(iRel
, params
->tablespaceOid
, InvalidOid
);
3746 * Schedule unlinking of the old index storage at transaction commit.
3748 RelationDropStorage(iRel
);
3749 RelationAssumeNewRelfilelocator(iRel
);
3751 /* Make sure the reltablespace change is visible */
3752 CommandCounterIncrement();
3756 * All predicate locks on the index are about to be made invalid. Promote
3757 * them to relation locks on the heap.
3759 TransferPredicateLocksToHeapRelation(iRel
);
3761 /* Fetch info needed for index_build */
3762 indexInfo
= BuildIndexInfo(iRel
);
3764 /* If requested, skip checking uniqueness/exclusion constraints */
3765 if (skip_constraint_checks
)
3767 if (indexInfo
->ii_Unique
|| indexInfo
->ii_ExclusionOps
!= NULL
)
3768 skipped_constraint
= true;
3769 indexInfo
->ii_Unique
= false;
3770 indexInfo
->ii_ExclusionOps
= NULL
;
3771 indexInfo
->ii_ExclusionProcs
= NULL
;
3772 indexInfo
->ii_ExclusionStrats
= NULL
;
3775 /* Suppress use of the target index while rebuilding it */
3776 SetReindexProcessing(heapId
, indexId
);
3778 /* Create a new physical relation for the index */
3779 RelationSetNewRelfilenumber(iRel
, persistence
);
3781 /* Initialize the index and rebuild */
3782 /* Note: we do not need to re-establish pkey setting */
3783 index_build(heapRelation
, iRel
, indexInfo
, true, true);
3785 /* Re-allow use of target index */
3786 ResetReindexProcessing();
3789 * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3790 * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3791 * and we didn't skip a uniqueness check, we can now mark it valid. This
3792 * allows REINDEX to be used to clean up in such cases.
3794 * We can also reset indcheckxmin, because we have now done a
3795 * non-concurrent index build, *except* in the case where index_build
3796 * found some still-broken HOT chains. If it did, and we don't have to
3797 * change any of the other flags, we just leave indcheckxmin alone (note
3798 * that index_build won't have changed it, because this is a reindex).
3799 * This is okay and desirable because not updating the tuple leaves the
3800 * index's usability horizon (recorded as the tuple's xmin value) the same
3803 * But, if the index was invalid/not-ready/dead and there were broken HOT
3804 * chains, we had better force indcheckxmin true, because the normal
3805 * argument that the HOT chains couldn't conflict with the index is
3806 * suspect for an invalid index. (A conflict is definitely possible if
3807 * the index was dead. It probably shouldn't happen otherwise, but let's
3808 * be conservative.) In this case advancing the usability horizon is
3811 * Another reason for avoiding unnecessary updates here is that while
3812 * reindexing pg_index itself, we must not try to update tuples in it.
3813 * pg_index's indexes should always have these flags in their clean state,
3814 * so that won't happen.
3816 if (!skipped_constraint
)
3819 HeapTuple indexTuple
;
3820 Form_pg_index indexForm
;
3823 pg_index
= table_open(IndexRelationId
, RowExclusiveLock
);
3825 indexTuple
= SearchSysCacheCopy1(INDEXRELID
,
3826 ObjectIdGetDatum(indexId
));
3827 if (!HeapTupleIsValid(indexTuple
))
3828 elog(ERROR
, "cache lookup failed for index %u", indexId
);
3829 indexForm
= (Form_pg_index
) GETSTRUCT(indexTuple
);
3831 index_bad
= (!indexForm
->indisvalid
||
3832 !indexForm
->indisready
||
3833 !indexForm
->indislive
);
3835 (indexForm
->indcheckxmin
&& !indexInfo
->ii_BrokenHotChain
))
3837 if (!indexInfo
->ii_BrokenHotChain
)
3838 indexForm
->indcheckxmin
= false;
3840 indexForm
->indcheckxmin
= true;
3841 indexForm
->indisvalid
= true;
3842 indexForm
->indisready
= true;
3843 indexForm
->indislive
= true;
3844 CatalogTupleUpdate(pg_index
, &indexTuple
->t_self
, indexTuple
);
3847 * Invalidate the relcache for the table, so that after we commit
3848 * all sessions will refresh the table's index list. This ensures
3849 * that if anyone misses seeing the pg_index row during this
3850 * update, they'll refresh their list before attempting any update
3853 CacheInvalidateRelcache(heapRelation
);
3856 table_close(pg_index
, RowExclusiveLock
);
3859 /* Log what we did */
3860 if ((params
->options
& REINDEXOPT_VERBOSE
) != 0)
3862 (errmsg("index \"%s\" was reindexed",
3863 get_rel_name(indexId
)),
3864 errdetail_internal("%s",
3865 pg_rusage_show(&ru0
))));
3867 /* Roll back any GUC changes executed by index functions */
3868 AtEOXact_GUC(false, save_nestlevel
);
3870 /* Restore userid and security context */
3871 SetUserIdAndSecContext(save_userid
, save_sec_context
);
3873 /* Close rels, but keep locks */
3874 index_close(iRel
, NoLock
);
3875 table_close(heapRelation
, NoLock
);
3878 pgstat_progress_end_command();
3882 * reindex_relation - This routine is used to recreate all indexes
3883 * of a relation (and optionally its toast relation too, if any).
3885 * "flags" is a bitmask that can include any combination of these bits:
3887 * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3889 * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3890 * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3891 * indexes are inconsistent with it. This makes things tricky if the relation
3892 * is a system catalog that we might consult during the reindexing. To deal
3893 * with that case, we mark all of the indexes as pending rebuild so that they
3894 * won't be trusted until rebuilt. The caller is required to call us *without*
3895 * having made the rebuilt table visible by doing CommandCounterIncrement;
3896 * we'll do CCI after having collected the index list. (This way we can still
3897 * use catalog indexes while collecting the list.)
3899 * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3900 * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or
3901 * CLUSTER on a system catalog must omit this flag. REINDEX should be used to
3902 * rebuild an index if constraint inconsistency is suspected. For optimal
3903 * performance, other callers should include the flag only after transforming
3904 * the data in a manner that risks a change in constraint validity.
3906 * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3907 * rebuilt indexes to unlogged.
3909 * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3910 * rebuilt indexes to permanent.
3912 * Returns true if any indexes were rebuilt (including toast table's index
3913 * when relevant). Note that a CommandCounterIncrement will occur after each
3917 reindex_relation(const ReindexStmt
*stmt
, Oid relid
, int flags
,
3918 const ReindexParams
*params
)
3924 bool result
= false;
3929 * Open and lock the relation. ShareLock is sufficient since we only need
3930 * to prevent schema and data changes in it. The lock level used here
3931 * should match ReindexTable().
3933 if ((params
->options
& REINDEXOPT_MISSING_OK
) != 0)
3934 rel
= try_table_open(relid
, ShareLock
);
3936 rel
= table_open(relid
, ShareLock
);
3938 /* if relation is gone, leave */
3943 * Partitioned tables should never get processed here, as they have no
3946 if (rel
->rd_rel
->relkind
== RELKIND_PARTITIONED_TABLE
)
3947 elog(ERROR
, "cannot reindex partitioned table \"%s.%s\"",
3948 get_namespace_name(RelationGetNamespace(rel
)),
3949 RelationGetRelationName(rel
));
3951 toast_relid
= rel
->rd_rel
->reltoastrelid
;
3954 * Get the list of index OIDs for this relation. (We trust the relcache
3955 * to get this with a sequential scan if ignoring system indexes.)
3957 indexIds
= RelationGetIndexList(rel
);
3959 if (flags
& REINDEX_REL_SUPPRESS_INDEX_USE
)
3961 /* Suppress use of all the indexes until they are rebuilt */
3962 SetReindexPending(indexIds
);
3965 * Make the new heap contents visible --- now things might be
3968 CommandCounterIncrement();
3972 * Reindex the toast table, if any, before the main table.
3974 * This helps in cases where a corruption in the toast table's index would
3975 * otherwise error and stop REINDEX TABLE command when it tries to fetch a
3976 * toasted datum. This way. the toast table's index is rebuilt and fixed
3977 * before it is used for reindexing the main table.
3979 * It is critical to call reindex_relation() *after* the call to
3980 * RelationGetIndexList() returning the list of indexes on the relation,
3981 * because reindex_relation() will call CommandCounterIncrement() after
3982 * every reindex_index(). See REINDEX_REL_SUPPRESS_INDEX_USE for more
3985 if ((flags
& REINDEX_REL_PROCESS_TOAST
) && OidIsValid(toast_relid
))
3988 * Note that this should fail if the toast relation is missing, so
3989 * reset REINDEXOPT_MISSING_OK. Even if a new tablespace is set for
3990 * the parent relation, the indexes on its toast table are not moved.
3991 * This rule is enforced by setting tablespaceOid to InvalidOid.
3993 ReindexParams newparams
= *params
;
3995 newparams
.options
&= ~(REINDEXOPT_MISSING_OK
);
3996 newparams
.tablespaceOid
= InvalidOid
;
3997 result
|= reindex_relation(stmt
, toast_relid
, flags
, &newparams
);
4001 * Compute persistence of indexes: same as that of owning rel, unless
4002 * caller specified otherwise.
4004 if (flags
& REINDEX_REL_FORCE_INDEXES_UNLOGGED
)
4005 persistence
= RELPERSISTENCE_UNLOGGED
;
4006 else if (flags
& REINDEX_REL_FORCE_INDEXES_PERMANENT
)
4007 persistence
= RELPERSISTENCE_PERMANENT
;
4009 persistence
= rel
->rd_rel
->relpersistence
;
4011 /* Reindex all the indexes. */
4013 foreach(indexId
, indexIds
)
4015 Oid indexOid
= lfirst_oid(indexId
);
4016 Oid indexNamespaceId
= get_rel_namespace(indexOid
);
4019 * Skip any invalid indexes on a TOAST table. These can only be
4020 * duplicate leftovers from a failed REINDEX CONCURRENTLY, and if
4021 * rebuilt it would not be possible to drop them anymore.
4023 if (IsToastNamespace(indexNamespaceId
) &&
4024 !get_index_isvalid(indexOid
))
4027 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
4028 errmsg("cannot reindex invalid index \"%s.%s\" on TOAST table, skipping",
4029 get_namespace_name(indexNamespaceId
),
4030 get_rel_name(indexOid
))));
4033 * Remove this invalid toast index from the reindex pending list,
4034 * as it is skipped here due to the hard failure that would happen
4035 * in reindex_index(), should we try to process it.
4037 if (flags
& REINDEX_REL_SUPPRESS_INDEX_USE
)
4038 RemoveReindexPending(indexOid
);
4042 reindex_index(stmt
, indexOid
, !(flags
& REINDEX_REL_CHECK_CONSTRAINTS
),
4043 persistence
, params
);
4045 CommandCounterIncrement();
4047 /* Index should no longer be in the pending list */
4048 Assert(!ReindexIsProcessingIndex(indexOid
));
4050 /* Set index rebuild count */
4051 pgstat_progress_update_param(PROGRESS_CLUSTER_INDEX_REBUILD_COUNT
,
4057 * Close rel, but continue to hold the lock.
4059 table_close(rel
, NoLock
);
4061 result
|= (indexIds
!= NIL
);
4067 /* ----------------------------------------------------------------
4068 * System index reindexing support
4070 * When we are busy reindexing a system index, this code provides support
4071 * for preventing catalog lookups from using that index. We also make use
4072 * of this to catch attempted uses of user indexes during reindexing of
4073 * those indexes. This information is propagated to parallel workers;
4074 * attempting to change it during a parallel operation is not permitted.
4075 * ----------------------------------------------------------------
4078 static Oid currentlyReindexedHeap
= InvalidOid
;
4079 static Oid currentlyReindexedIndex
= InvalidOid
;
4080 static List
*pendingReindexedIndexes
= NIL
;
4081 static int reindexingNestLevel
= 0;
4084 * ReindexIsProcessingHeap
4085 * True if heap specified by OID is currently being reindexed.
4088 ReindexIsProcessingHeap(Oid heapOid
)
4090 return heapOid
== currentlyReindexedHeap
;
4094 * ReindexIsCurrentlyProcessingIndex
4095 * True if index specified by OID is currently being reindexed.
4098 ReindexIsCurrentlyProcessingIndex(Oid indexOid
)
4100 return indexOid
== currentlyReindexedIndex
;
4104 * ReindexIsProcessingIndex
4105 * True if index specified by OID is currently being reindexed,
4106 * or should be treated as invalid because it is awaiting reindex.
4109 ReindexIsProcessingIndex(Oid indexOid
)
4111 return indexOid
== currentlyReindexedIndex
||
4112 list_member_oid(pendingReindexedIndexes
, indexOid
);
4116 * SetReindexProcessing
4117 * Set flag that specified heap/index are being reindexed.
4120 SetReindexProcessing(Oid heapOid
, Oid indexOid
)
4122 Assert(OidIsValid(heapOid
) && OidIsValid(indexOid
));
4123 /* Reindexing is not re-entrant. */
4124 if (OidIsValid(currentlyReindexedHeap
))
4125 elog(ERROR
, "cannot reindex while reindexing");
4126 currentlyReindexedHeap
= heapOid
;
4127 currentlyReindexedIndex
= indexOid
;
4128 /* Index is no longer "pending" reindex. */
4129 RemoveReindexPending(indexOid
);
4130 /* This may have been set already, but in case it isn't, do so now. */
4131 reindexingNestLevel
= GetCurrentTransactionNestLevel();
4135 * ResetReindexProcessing
4136 * Unset reindexing status.
4139 ResetReindexProcessing(void)
4141 currentlyReindexedHeap
= InvalidOid
;
4142 currentlyReindexedIndex
= InvalidOid
;
4143 /* reindexingNestLevel remains set till end of (sub)transaction */
4148 * Mark the given indexes as pending reindex.
4150 * NB: we assume that the current memory context stays valid throughout.
4153 SetReindexPending(List
*indexes
)
4155 /* Reindexing is not re-entrant. */
4156 if (pendingReindexedIndexes
)
4157 elog(ERROR
, "cannot reindex while reindexing");
4158 if (IsInParallelMode())
4159 elog(ERROR
, "cannot modify reindex state during a parallel operation");
4160 pendingReindexedIndexes
= list_copy(indexes
);
4161 reindexingNestLevel
= GetCurrentTransactionNestLevel();
4165 * RemoveReindexPending
4166 * Remove the given index from the pending list.
4169 RemoveReindexPending(Oid indexOid
)
4171 if (IsInParallelMode())
4172 elog(ERROR
, "cannot modify reindex state during a parallel operation");
4173 pendingReindexedIndexes
= list_delete_oid(pendingReindexedIndexes
,
4179 * Clear all reindexing state during (sub)transaction abort.
4182 ResetReindexState(int nestLevel
)
4185 * Because reindexing is not re-entrant, we don't need to cope with nested
4186 * reindexing states. We just need to avoid messing up the outer-level
4187 * state in case a subtransaction fails within a REINDEX. So checking the
4188 * current nest level against that of the reindex operation is sufficient.
4190 if (reindexingNestLevel
>= nestLevel
)
4192 currentlyReindexedHeap
= InvalidOid
;
4193 currentlyReindexedIndex
= InvalidOid
;
4196 * We needn't try to release the contents of pendingReindexedIndexes;
4197 * that list should be in a transaction-lifespan context, so it will
4198 * go away automatically.
4200 pendingReindexedIndexes
= NIL
;
4202 reindexingNestLevel
= 0;
4207 * EstimateReindexStateSpace
4208 * Estimate space needed to pass reindex state to parallel workers.
4211 EstimateReindexStateSpace(void)
4213 return offsetof(SerializedReindexState
, pendingReindexedIndexes
)
4214 + mul_size(sizeof(Oid
), list_length(pendingReindexedIndexes
));
4218 * SerializeReindexState
4219 * Serialize reindex state for parallel workers.
4222 SerializeReindexState(Size maxsize
, char *start_address
)
4224 SerializedReindexState
*sistate
= (SerializedReindexState
*) start_address
;
4228 sistate
->currentlyReindexedHeap
= currentlyReindexedHeap
;
4229 sistate
->currentlyReindexedIndex
= currentlyReindexedIndex
;
4230 sistate
->numPendingReindexedIndexes
= list_length(pendingReindexedIndexes
);
4231 foreach(lc
, pendingReindexedIndexes
)
4232 sistate
->pendingReindexedIndexes
[c
++] = lfirst_oid(lc
);
4236 * RestoreReindexState
4237 * Restore reindex state in a parallel worker.
4240 RestoreReindexState(const void *reindexstate
)
4242 const SerializedReindexState
*sistate
= (const SerializedReindexState
*) reindexstate
;
4244 MemoryContext oldcontext
;
4246 currentlyReindexedHeap
= sistate
->currentlyReindexedHeap
;
4247 currentlyReindexedIndex
= sistate
->currentlyReindexedIndex
;
4249 Assert(pendingReindexedIndexes
== NIL
);
4250 oldcontext
= MemoryContextSwitchTo(TopMemoryContext
);
4251 for (c
= 0; c
< sistate
->numPendingReindexedIndexes
; ++c
)
4252 pendingReindexedIndexes
=
4253 lappend_oid(pendingReindexedIndexes
,
4254 sistate
->pendingReindexedIndexes
[c
]);
4255 MemoryContextSwitchTo(oldcontext
);
4257 /* Note the worker has its own transaction nesting level */
4258 reindexingNestLevel
= GetCurrentTransactionNestLevel();