Allow non-btree speculative insertion indexes
[pgsql.git] / src / backend / regex / regc_nfa.c
blobacd2286defd509c356124b7e593ed3bda4a08cfd
1 /*
2 * NFA utilities.
3 * This file is #included by regcomp.c.
5 * Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
7 * Development of this software was funded, in part, by Cray Research Inc.,
8 * UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
9 * Corporation, none of whom are responsible for the results. The author
10 * thanks all of them.
12 * Redistribution and use in source and binary forms -- with or without
13 * modification -- are permitted for any purpose, provided that
14 * redistributions in source form retain this entire copyright notice and
15 * indicate the origin and nature of any modifications.
17 * I'd appreciate being given credit for this package in the documentation
18 * of software which uses it, but that is not a requirement.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
21 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 * HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
29 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * src/backend/regex/regc_nfa.c
34 * One or two things that technically ought to be in here
35 * are actually in color.c, thanks to some incestuous relationships in
36 * the color chains.
39 #define NISERR() VISERR(nfa->v)
40 #define NERR(e) VERR(nfa->v, (e))
44 * newnfa - set up an NFA
46 static struct nfa * /* the NFA, or NULL */
47 newnfa(struct vars *v,
48 struct colormap *cm,
49 struct nfa *parent) /* NULL if primary NFA */
51 struct nfa *nfa;
53 nfa = (struct nfa *) MALLOC(sizeof(struct nfa));
54 if (nfa == NULL)
56 ERR(REG_ESPACE);
57 return NULL;
60 /* Make the NFA minimally valid, so freenfa() will behave sanely */
61 nfa->states = NULL;
62 nfa->slast = NULL;
63 nfa->freestates = NULL;
64 nfa->freearcs = NULL;
65 nfa->lastsb = NULL;
66 nfa->lastab = NULL;
67 nfa->lastsbused = 0;
68 nfa->lastabused = 0;
69 nfa->nstates = 0;
70 nfa->cm = cm;
71 nfa->v = v;
72 nfa->bos[0] = nfa->bos[1] = COLORLESS;
73 nfa->eos[0] = nfa->eos[1] = COLORLESS;
74 nfa->flags = 0;
75 nfa->minmatchall = nfa->maxmatchall = -1;
76 nfa->parent = parent; /* Precedes newfstate so parent is valid. */
78 /* Create required infrastructure */
79 nfa->post = newfstate(nfa, '@'); /* number 0 */
80 nfa->pre = newfstate(nfa, '>'); /* number 1 */
81 nfa->init = newstate(nfa); /* may become invalid later */
82 nfa->final = newstate(nfa);
83 if (ISERR())
85 freenfa(nfa);
86 return NULL;
88 rainbow(nfa, nfa->cm, PLAIN, COLORLESS, nfa->pre, nfa->init);
89 newarc(nfa, '^', 1, nfa->pre, nfa->init);
90 newarc(nfa, '^', 0, nfa->pre, nfa->init);
91 rainbow(nfa, nfa->cm, PLAIN, COLORLESS, nfa->final, nfa->post);
92 newarc(nfa, '$', 1, nfa->final, nfa->post);
93 newarc(nfa, '$', 0, nfa->final, nfa->post);
95 if (ISERR())
97 freenfa(nfa);
98 return NULL;
100 return nfa;
104 * freenfa - free an entire NFA
106 static void
107 freenfa(struct nfa *nfa)
109 struct statebatch *sb;
110 struct statebatch *sbnext;
111 struct arcbatch *ab;
112 struct arcbatch *abnext;
114 for (sb = nfa->lastsb; sb != NULL; sb = sbnext)
116 sbnext = sb->next;
117 nfa->v->spaceused -= STATEBATCHSIZE(sb->nstates);
118 FREE(sb);
120 nfa->lastsb = NULL;
121 for (ab = nfa->lastab; ab != NULL; ab = abnext)
123 abnext = ab->next;
124 nfa->v->spaceused -= ARCBATCHSIZE(ab->narcs);
125 FREE(ab);
127 nfa->lastab = NULL;
129 nfa->nstates = -1;
130 FREE(nfa);
134 * newstate - allocate an NFA state, with zero flag value
136 static struct state * /* NULL on error */
137 newstate(struct nfa *nfa)
139 struct state *s;
142 * This is a handy place to check for operation cancel during regex
143 * compilation, since no code path will go very long without making a new
144 * state or arc.
146 INTERRUPT(nfa->v->re);
148 /* first, recycle anything that's on the freelist */
149 if (nfa->freestates != NULL)
151 s = nfa->freestates;
152 nfa->freestates = s->next;
154 /* otherwise, is there anything left in the last statebatch? */
155 else if (nfa->lastsb != NULL && nfa->lastsbused < nfa->lastsb->nstates)
157 s = &nfa->lastsb->s[nfa->lastsbused++];
159 /* otherwise, need to allocate a new statebatch */
160 else
162 struct statebatch *newSb;
163 size_t nstates;
165 if (nfa->v->spaceused >= REG_MAX_COMPILE_SPACE)
167 NERR(REG_ETOOBIG);
168 return NULL;
170 nstates = (nfa->lastsb != NULL) ? nfa->lastsb->nstates * 2 : FIRSTSBSIZE;
171 if (nstates > MAXSBSIZE)
172 nstates = MAXSBSIZE;
173 newSb = (struct statebatch *) MALLOC(STATEBATCHSIZE(nstates));
174 if (newSb == NULL)
176 NERR(REG_ESPACE);
177 return NULL;
179 nfa->v->spaceused += STATEBATCHSIZE(nstates);
180 newSb->nstates = nstates;
181 newSb->next = nfa->lastsb;
182 nfa->lastsb = newSb;
183 nfa->lastsbused = 1;
184 s = &newSb->s[0];
187 assert(nfa->nstates >= 0);
188 s->no = nfa->nstates++;
189 s->flag = 0;
190 if (nfa->states == NULL)
191 nfa->states = s;
192 s->nins = 0;
193 s->ins = NULL;
194 s->nouts = 0;
195 s->outs = NULL;
196 s->tmp = NULL;
197 s->next = NULL;
198 if (nfa->slast != NULL)
200 assert(nfa->slast->next == NULL);
201 nfa->slast->next = s;
203 s->prev = nfa->slast;
204 nfa->slast = s;
205 return s;
209 * newfstate - allocate an NFA state with a specified flag value
211 static struct state * /* NULL on error */
212 newfstate(struct nfa *nfa, int flag)
214 struct state *s;
216 s = newstate(nfa);
217 if (s != NULL)
218 s->flag = (char) flag;
219 return s;
223 * dropstate - delete a state's inarcs and outarcs and free it
225 static void
226 dropstate(struct nfa *nfa,
227 struct state *s)
229 struct arc *a;
231 while ((a = s->ins) != NULL)
232 freearc(nfa, a);
233 while ((a = s->outs) != NULL)
234 freearc(nfa, a);
235 freestate(nfa, s);
239 * freestate - free a state, which has no in-arcs or out-arcs
241 static void
242 freestate(struct nfa *nfa,
243 struct state *s)
245 assert(s != NULL);
246 assert(s->nins == 0 && s->nouts == 0);
248 s->no = FREESTATE;
249 s->flag = 0;
250 if (s->next != NULL)
251 s->next->prev = s->prev;
252 else
254 assert(s == nfa->slast);
255 nfa->slast = s->prev;
257 if (s->prev != NULL)
258 s->prev->next = s->next;
259 else
261 assert(s == nfa->states);
262 nfa->states = s->next;
264 s->prev = NULL;
265 s->next = nfa->freestates; /* don't delete it, put it on the free list */
266 nfa->freestates = s;
270 * newarc - set up a new arc within an NFA
272 * This function checks to make sure that no duplicate arcs are created.
273 * In general we never want duplicates.
275 * However: in principle, a RAINBOW arc is redundant with any plain arc
276 * (unless that arc is for a pseudocolor). But we don't try to recognize
277 * that redundancy, either here or in allied operations such as moveins().
278 * The pseudocolor consideration makes that more costly than it seems worth.
280 static void
281 newarc(struct nfa *nfa,
282 int t,
283 color co,
284 struct state *from,
285 struct state *to)
287 struct arc *a;
289 assert(from != NULL && to != NULL);
292 * This is a handy place to check for operation cancel during regex
293 * compilation, since no code path will go very long without making a new
294 * state or arc.
296 INTERRUPT(nfa->v->re);
298 /* check for duplicate arc, using whichever chain is shorter */
299 if (from->nouts <= to->nins)
301 for (a = from->outs; a != NULL; a = a->outchain)
302 if (a->to == to && a->co == co && a->type == t)
303 return;
305 else
307 for (a = to->ins; a != NULL; a = a->inchain)
308 if (a->from == from && a->co == co && a->type == t)
309 return;
312 /* no dup, so create the arc */
313 createarc(nfa, t, co, from, to);
317 * createarc - create a new arc within an NFA
319 * This function must *only* be used after verifying that there is no existing
320 * identical arc (same type/color/from/to).
322 static void
323 createarc(struct nfa *nfa,
324 int t,
325 color co,
326 struct state *from,
327 struct state *to)
329 struct arc *a;
331 a = allocarc(nfa);
332 if (NISERR())
333 return;
334 assert(a != NULL);
336 a->type = t;
337 a->co = co;
338 a->to = to;
339 a->from = from;
342 * Put the new arc on the beginning, not the end, of the chains; it's
343 * simpler here, and freearc() is the same cost either way. See also the
344 * logic in moveins() and its cohorts, as well as fixempties().
346 a->inchain = to->ins;
347 a->inchainRev = NULL;
348 if (to->ins)
349 to->ins->inchainRev = a;
350 to->ins = a;
351 a->outchain = from->outs;
352 a->outchainRev = NULL;
353 if (from->outs)
354 from->outs->outchainRev = a;
355 from->outs = a;
357 from->nouts++;
358 to->nins++;
360 if (COLORED(a) && nfa->parent == NULL)
361 colorchain(nfa->cm, a);
365 * allocarc - allocate a new arc within an NFA
367 static struct arc * /* NULL for failure */
368 allocarc(struct nfa *nfa)
370 struct arc *a;
372 /* first, recycle anything that's on the freelist */
373 if (nfa->freearcs != NULL)
375 a = nfa->freearcs;
376 nfa->freearcs = a->freechain;
378 /* otherwise, is there anything left in the last arcbatch? */
379 else if (nfa->lastab != NULL && nfa->lastabused < nfa->lastab->narcs)
381 a = &nfa->lastab->a[nfa->lastabused++];
383 /* otherwise, need to allocate a new arcbatch */
384 else
386 struct arcbatch *newAb;
387 size_t narcs;
389 if (nfa->v->spaceused >= REG_MAX_COMPILE_SPACE)
391 NERR(REG_ETOOBIG);
392 return NULL;
394 narcs = (nfa->lastab != NULL) ? nfa->lastab->narcs * 2 : FIRSTABSIZE;
395 if (narcs > MAXABSIZE)
396 narcs = MAXABSIZE;
397 newAb = (struct arcbatch *) MALLOC(ARCBATCHSIZE(narcs));
398 if (newAb == NULL)
400 NERR(REG_ESPACE);
401 return NULL;
403 nfa->v->spaceused += ARCBATCHSIZE(narcs);
404 newAb->narcs = narcs;
405 newAb->next = nfa->lastab;
406 nfa->lastab = newAb;
407 nfa->lastabused = 1;
408 a = &newAb->a[0];
411 return a;
415 * freearc - free an arc
417 static void
418 freearc(struct nfa *nfa,
419 struct arc *victim)
421 struct state *from = victim->from;
422 struct state *to = victim->to;
423 struct arc *predecessor;
425 assert(victim->type != 0);
427 /* take it off color chain if necessary */
428 if (COLORED(victim) && nfa->parent == NULL)
429 uncolorchain(nfa->cm, victim);
431 /* take it off source's out-chain */
432 assert(from != NULL);
433 predecessor = victim->outchainRev;
434 if (predecessor == NULL)
436 assert(from->outs == victim);
437 from->outs = victim->outchain;
439 else
441 assert(predecessor->outchain == victim);
442 predecessor->outchain = victim->outchain;
444 if (victim->outchain != NULL)
446 assert(victim->outchain->outchainRev == victim);
447 victim->outchain->outchainRev = predecessor;
449 from->nouts--;
451 /* take it off target's in-chain */
452 assert(to != NULL);
453 predecessor = victim->inchainRev;
454 if (predecessor == NULL)
456 assert(to->ins == victim);
457 to->ins = victim->inchain;
459 else
461 assert(predecessor->inchain == victim);
462 predecessor->inchain = victim->inchain;
464 if (victim->inchain != NULL)
466 assert(victim->inchain->inchainRev == victim);
467 victim->inchain->inchainRev = predecessor;
469 to->nins--;
471 /* clean up and place on NFA's free list */
472 victim->type = 0;
473 victim->from = NULL; /* precautions... */
474 victim->to = NULL;
475 victim->inchain = NULL;
476 victim->inchainRev = NULL;
477 victim->outchain = NULL;
478 victim->outchainRev = NULL;
479 victim->freechain = nfa->freearcs;
480 nfa->freearcs = victim;
484 * changearcsource - flip an arc to have a different from state
486 * Caller must have verified that there is no pre-existing duplicate arc.
488 static void
489 changearcsource(struct arc *a, struct state *newfrom)
491 struct state *oldfrom = a->from;
492 struct arc *predecessor;
494 assert(oldfrom != newfrom);
496 /* take it off old source's out-chain */
497 assert(oldfrom != NULL);
498 predecessor = a->outchainRev;
499 if (predecessor == NULL)
501 assert(oldfrom->outs == a);
502 oldfrom->outs = a->outchain;
504 else
506 assert(predecessor->outchain == a);
507 predecessor->outchain = a->outchain;
509 if (a->outchain != NULL)
511 assert(a->outchain->outchainRev == a);
512 a->outchain->outchainRev = predecessor;
514 oldfrom->nouts--;
516 a->from = newfrom;
518 /* prepend it to new source's out-chain */
519 a->outchain = newfrom->outs;
520 a->outchainRev = NULL;
521 if (newfrom->outs)
522 newfrom->outs->outchainRev = a;
523 newfrom->outs = a;
524 newfrom->nouts++;
528 * changearctarget - flip an arc to have a different to state
530 * Caller must have verified that there is no pre-existing duplicate arc.
532 static void
533 changearctarget(struct arc *a, struct state *newto)
535 struct state *oldto = a->to;
536 struct arc *predecessor;
538 assert(oldto != newto);
540 /* take it off old target's in-chain */
541 assert(oldto != NULL);
542 predecessor = a->inchainRev;
543 if (predecessor == NULL)
545 assert(oldto->ins == a);
546 oldto->ins = a->inchain;
548 else
550 assert(predecessor->inchain == a);
551 predecessor->inchain = a->inchain;
553 if (a->inchain != NULL)
555 assert(a->inchain->inchainRev == a);
556 a->inchain->inchainRev = predecessor;
558 oldto->nins--;
560 a->to = newto;
562 /* prepend it to new target's in-chain */
563 a->inchain = newto->ins;
564 a->inchainRev = NULL;
565 if (newto->ins)
566 newto->ins->inchainRev = a;
567 newto->ins = a;
568 newto->nins++;
572 * hasnonemptyout - Does state have a non-EMPTY out arc?
574 static int
575 hasnonemptyout(struct state *s)
577 struct arc *a;
579 for (a = s->outs; a != NULL; a = a->outchain)
581 if (a->type != EMPTY)
582 return 1;
584 return 0;
588 * findarc - find arc, if any, from given source with given type and color
589 * If there is more than one such arc, the result is random.
591 static struct arc *
592 findarc(struct state *s,
593 int type,
594 color co)
596 struct arc *a;
598 for (a = s->outs; a != NULL; a = a->outchain)
599 if (a->type == type && a->co == co)
600 return a;
601 return NULL;
605 * cparc - allocate a new arc within an NFA, copying details from old one
607 static void
608 cparc(struct nfa *nfa,
609 struct arc *oa,
610 struct state *from,
611 struct state *to)
613 newarc(nfa, oa->type, oa->co, from, to);
617 * sortins - sort the in arcs of a state by from/color/type
619 static void
620 sortins(struct nfa *nfa,
621 struct state *s)
623 struct arc **sortarray;
624 struct arc *a;
625 int n = s->nins;
626 int i;
628 if (n <= 1)
629 return; /* nothing to do */
630 /* make an array of arc pointers ... */
631 sortarray = (struct arc **) MALLOC(n * sizeof(struct arc *));
632 if (sortarray == NULL)
634 NERR(REG_ESPACE);
635 return;
637 i = 0;
638 for (a = s->ins; a != NULL; a = a->inchain)
639 sortarray[i++] = a;
640 assert(i == n);
641 /* ... sort the array */
642 qsort(sortarray, n, sizeof(struct arc *), sortins_cmp);
643 /* ... and rebuild arc list in order */
644 /* it seems worth special-casing first and last items to simplify loop */
645 a = sortarray[0];
646 s->ins = a;
647 a->inchain = sortarray[1];
648 a->inchainRev = NULL;
649 for (i = 1; i < n - 1; i++)
651 a = sortarray[i];
652 a->inchain = sortarray[i + 1];
653 a->inchainRev = sortarray[i - 1];
655 a = sortarray[i];
656 a->inchain = NULL;
657 a->inchainRev = sortarray[i - 1];
658 FREE(sortarray);
661 static int
662 sortins_cmp(const void *a, const void *b)
664 const struct arc *aa = *((const struct arc *const *) a);
665 const struct arc *bb = *((const struct arc *const *) b);
667 /* we check the fields in the order they are most likely to be different */
668 if (aa->from->no < bb->from->no)
669 return -1;
670 if (aa->from->no > bb->from->no)
671 return 1;
672 if (aa->co < bb->co)
673 return -1;
674 if (aa->co > bb->co)
675 return 1;
676 if (aa->type < bb->type)
677 return -1;
678 if (aa->type > bb->type)
679 return 1;
680 return 0;
684 * sortouts - sort the out arcs of a state by to/color/type
686 static void
687 sortouts(struct nfa *nfa,
688 struct state *s)
690 struct arc **sortarray;
691 struct arc *a;
692 int n = s->nouts;
693 int i;
695 if (n <= 1)
696 return; /* nothing to do */
697 /* make an array of arc pointers ... */
698 sortarray = (struct arc **) MALLOC(n * sizeof(struct arc *));
699 if (sortarray == NULL)
701 NERR(REG_ESPACE);
702 return;
704 i = 0;
705 for (a = s->outs; a != NULL; a = a->outchain)
706 sortarray[i++] = a;
707 assert(i == n);
708 /* ... sort the array */
709 qsort(sortarray, n, sizeof(struct arc *), sortouts_cmp);
710 /* ... and rebuild arc list in order */
711 /* it seems worth special-casing first and last items to simplify loop */
712 a = sortarray[0];
713 s->outs = a;
714 a->outchain = sortarray[1];
715 a->outchainRev = NULL;
716 for (i = 1; i < n - 1; i++)
718 a = sortarray[i];
719 a->outchain = sortarray[i + 1];
720 a->outchainRev = sortarray[i - 1];
722 a = sortarray[i];
723 a->outchain = NULL;
724 a->outchainRev = sortarray[i - 1];
725 FREE(sortarray);
728 static int
729 sortouts_cmp(const void *a, const void *b)
731 const struct arc *aa = *((const struct arc *const *) a);
732 const struct arc *bb = *((const struct arc *const *) b);
734 /* we check the fields in the order they are most likely to be different */
735 if (aa->to->no < bb->to->no)
736 return -1;
737 if (aa->to->no > bb->to->no)
738 return 1;
739 if (aa->co < bb->co)
740 return -1;
741 if (aa->co > bb->co)
742 return 1;
743 if (aa->type < bb->type)
744 return -1;
745 if (aa->type > bb->type)
746 return 1;
747 return 0;
751 * Common decision logic about whether to use arc-by-arc operations or
752 * sort/merge. If there's just a few source arcs we cannot recoup the
753 * cost of sorting the destination arc list, no matter how large it is.
754 * Otherwise, limit the number of arc-by-arc comparisons to about 1000
755 * (a somewhat arbitrary choice, but the breakeven point would probably
756 * be machine dependent anyway).
758 #define BULK_ARC_OP_USE_SORT(nsrcarcs, ndestarcs) \
759 ((nsrcarcs) < 4 ? 0 : ((nsrcarcs) > 32 || (ndestarcs) > 32))
762 * moveins - move all in arcs of a state to another state
764 * You might think this could be done better by just updating the
765 * existing arcs, and you would be right if it weren't for the need
766 * for duplicate suppression, which makes it easier to just make new
767 * ones to exploit the suppression built into newarc.
769 * However, if we have a whole lot of arcs to deal with, retail duplicate
770 * checks become too slow. In that case we proceed by sorting and merging
771 * the arc lists, and then we can indeed just update the arcs in-place.
773 * On the other hand, it's also true that this is frequently called with
774 * a brand-new newState that has no existing in-arcs. In that case,
775 * de-duplication is unnecessary, so we can just blindly move all the arcs.
777 static void
778 moveins(struct nfa *nfa,
779 struct state *oldState,
780 struct state *newState)
782 assert(oldState != newState);
784 if (newState->nins == 0)
786 /* No need for de-duplication */
787 struct arc *a;
789 while ((a = oldState->ins) != NULL)
791 createarc(nfa, a->type, a->co, a->from, newState);
792 freearc(nfa, a);
795 else if (!BULK_ARC_OP_USE_SORT(oldState->nins, newState->nins))
797 /* With not too many arcs, just do them one at a time */
798 struct arc *a;
800 while ((a = oldState->ins) != NULL)
802 cparc(nfa, a, a->from, newState);
803 freearc(nfa, a);
806 else
809 * With many arcs, use a sort-merge approach. Note changearctarget()
810 * will put the arc onto the front of newState's chain, so it does not
811 * break our walk through the sorted part of the chain.
813 struct arc *oa;
814 struct arc *na;
817 * Because we bypass newarc() in this code path, we'd better include a
818 * cancel check.
820 INTERRUPT(nfa->v->re);
822 sortins(nfa, oldState);
823 sortins(nfa, newState);
824 if (NISERR())
825 return; /* might have failed to sort */
826 oa = oldState->ins;
827 na = newState->ins;
828 while (oa != NULL && na != NULL)
830 struct arc *a = oa;
832 switch (sortins_cmp(&oa, &na))
834 case -1:
835 /* newState does not have anything matching oa */
836 oa = oa->inchain;
839 * Rather than doing createarc+freearc, we can just unlink
840 * and relink the existing arc struct.
842 changearctarget(a, newState);
843 break;
844 case 0:
845 /* match, advance in both lists */
846 oa = oa->inchain;
847 na = na->inchain;
848 /* ... and drop duplicate arc from oldState */
849 freearc(nfa, a);
850 break;
851 case +1:
852 /* advance only na; oa might have a match later */
853 na = na->inchain;
854 break;
855 default:
856 assert(NOTREACHED);
859 while (oa != NULL)
861 /* newState does not have anything matching oa */
862 struct arc *a = oa;
864 oa = oa->inchain;
865 changearctarget(a, newState);
869 assert(oldState->nins == 0);
870 assert(oldState->ins == NULL);
874 * copyins - copy in arcs of a state to another state
876 * The comments for moveins() apply here as well. However, in current
877 * usage, this is *only* called with brand-new target states, so that
878 * only the "no need for de-duplication" code path is ever reached.
879 * We keep the rest #ifdef'd out in case it's needed in the future.
881 static void
882 copyins(struct nfa *nfa,
883 struct state *oldState,
884 struct state *newState)
886 assert(oldState != newState);
887 assert(newState->nins == 0); /* see comment above */
889 if (newState->nins == 0)
891 /* No need for de-duplication */
892 struct arc *a;
894 for (a = oldState->ins; a != NULL; a = a->inchain)
895 createarc(nfa, a->type, a->co, a->from, newState);
897 #ifdef NOT_USED /* see comment above */
898 else if (!BULK_ARC_OP_USE_SORT(oldState->nins, newState->nins))
900 /* With not too many arcs, just do them one at a time */
901 struct arc *a;
903 for (a = oldState->ins; a != NULL; a = a->inchain)
904 cparc(nfa, a, a->from, newState);
906 else
909 * With many arcs, use a sort-merge approach. Note that createarc()
910 * will put new arcs onto the front of newState's chain, so it does
911 * not break our walk through the sorted part of the chain.
913 struct arc *oa;
914 struct arc *na;
917 * Because we bypass newarc() in this code path, we'd better include a
918 * cancel check.
920 INTERRUPT(nfa->v->re);
922 sortins(nfa, oldState);
923 sortins(nfa, newState);
924 if (NISERR())
925 return; /* might have failed to sort */
926 oa = oldState->ins;
927 na = newState->ins;
928 while (oa != NULL && na != NULL)
930 struct arc *a = oa;
932 switch (sortins_cmp(&oa, &na))
934 case -1:
935 /* newState does not have anything matching oa */
936 oa = oa->inchain;
937 createarc(nfa, a->type, a->co, a->from, newState);
938 break;
939 case 0:
940 /* match, advance in both lists */
941 oa = oa->inchain;
942 na = na->inchain;
943 break;
944 case +1:
945 /* advance only na; oa might have a match later */
946 na = na->inchain;
947 break;
948 default:
949 assert(NOTREACHED);
952 while (oa != NULL)
954 /* newState does not have anything matching oa */
955 struct arc *a = oa;
957 oa = oa->inchain;
958 createarc(nfa, a->type, a->co, a->from, newState);
961 #endif /* NOT_USED */
965 * mergeins - merge a list of inarcs into a state
967 * This is much like copyins, but the source arcs are listed in an array,
968 * and are not guaranteed unique. It's okay to clobber the array contents.
970 static void
971 mergeins(struct nfa *nfa,
972 struct state *s,
973 struct arc **arcarray,
974 int arccount)
976 struct arc *na;
977 int i;
978 int j;
980 if (arccount <= 0)
981 return;
984 * Because we bypass newarc() in this code path, we'd better include a
985 * cancel check.
987 INTERRUPT(nfa->v->re);
989 /* Sort existing inarcs as well as proposed new ones */
990 sortins(nfa, s);
991 if (NISERR())
992 return; /* might have failed to sort */
994 qsort(arcarray, arccount, sizeof(struct arc *), sortins_cmp);
997 * arcarray very likely includes dups, so we must eliminate them. (This
998 * could be folded into the next loop, but it's not worth the trouble.)
1000 j = 0;
1001 for (i = 1; i < arccount; i++)
1003 switch (sortins_cmp(&arcarray[j], &arcarray[i]))
1005 case -1:
1006 /* non-dup */
1007 arcarray[++j] = arcarray[i];
1008 break;
1009 case 0:
1010 /* dup */
1011 break;
1012 default:
1013 /* trouble */
1014 assert(NOTREACHED);
1017 arccount = j + 1;
1020 * Now merge into s' inchain. Note that createarc() will put new arcs
1021 * onto the front of s's chain, so it does not break our walk through the
1022 * sorted part of the chain.
1024 i = 0;
1025 na = s->ins;
1026 while (i < arccount && na != NULL)
1028 struct arc *a = arcarray[i];
1030 switch (sortins_cmp(&a, &na))
1032 case -1:
1033 /* s does not have anything matching a */
1034 createarc(nfa, a->type, a->co, a->from, s);
1035 i++;
1036 break;
1037 case 0:
1038 /* match, advance in both lists */
1039 i++;
1040 na = na->inchain;
1041 break;
1042 case +1:
1043 /* advance only na; array might have a match later */
1044 na = na->inchain;
1045 break;
1046 default:
1047 assert(NOTREACHED);
1050 while (i < arccount)
1052 /* s does not have anything matching a */
1053 struct arc *a = arcarray[i];
1055 createarc(nfa, a->type, a->co, a->from, s);
1056 i++;
1061 * moveouts - move all out arcs of a state to another state
1063 * See comments for moveins()
1065 static void
1066 moveouts(struct nfa *nfa,
1067 struct state *oldState,
1068 struct state *newState)
1070 assert(oldState != newState);
1072 if (newState->nouts == 0)
1074 /* No need for de-duplication */
1075 struct arc *a;
1077 while ((a = oldState->outs) != NULL)
1079 createarc(nfa, a->type, a->co, newState, a->to);
1080 freearc(nfa, a);
1083 else if (!BULK_ARC_OP_USE_SORT(oldState->nouts, newState->nouts))
1085 /* With not too many arcs, just do them one at a time */
1086 struct arc *a;
1088 while ((a = oldState->outs) != NULL)
1090 cparc(nfa, a, newState, a->to);
1091 freearc(nfa, a);
1094 else
1097 * With many arcs, use a sort-merge approach. Note changearcsource()
1098 * will put the arc onto the front of newState's chain, so it does not
1099 * break our walk through the sorted part of the chain.
1101 struct arc *oa;
1102 struct arc *na;
1105 * Because we bypass newarc() in this code path, we'd better include a
1106 * cancel check.
1108 INTERRUPT(nfa->v->re);
1110 sortouts(nfa, oldState);
1111 sortouts(nfa, newState);
1112 if (NISERR())
1113 return; /* might have failed to sort */
1114 oa = oldState->outs;
1115 na = newState->outs;
1116 while (oa != NULL && na != NULL)
1118 struct arc *a = oa;
1120 switch (sortouts_cmp(&oa, &na))
1122 case -1:
1123 /* newState does not have anything matching oa */
1124 oa = oa->outchain;
1127 * Rather than doing createarc+freearc, we can just unlink
1128 * and relink the existing arc struct.
1130 changearcsource(a, newState);
1131 break;
1132 case 0:
1133 /* match, advance in both lists */
1134 oa = oa->outchain;
1135 na = na->outchain;
1136 /* ... and drop duplicate arc from oldState */
1137 freearc(nfa, a);
1138 break;
1139 case +1:
1140 /* advance only na; oa might have a match later */
1141 na = na->outchain;
1142 break;
1143 default:
1144 assert(NOTREACHED);
1147 while (oa != NULL)
1149 /* newState does not have anything matching oa */
1150 struct arc *a = oa;
1152 oa = oa->outchain;
1153 changearcsource(a, newState);
1157 assert(oldState->nouts == 0);
1158 assert(oldState->outs == NULL);
1162 * copyouts - copy out arcs of a state to another state
1164 * See comments for copyins()
1166 static void
1167 copyouts(struct nfa *nfa,
1168 struct state *oldState,
1169 struct state *newState)
1171 assert(oldState != newState);
1172 assert(newState->nouts == 0); /* see comment above */
1174 if (newState->nouts == 0)
1176 /* No need for de-duplication */
1177 struct arc *a;
1179 for (a = oldState->outs; a != NULL; a = a->outchain)
1180 createarc(nfa, a->type, a->co, newState, a->to);
1182 #ifdef NOT_USED /* see comment above */
1183 else if (!BULK_ARC_OP_USE_SORT(oldState->nouts, newState->nouts))
1185 /* With not too many arcs, just do them one at a time */
1186 struct arc *a;
1188 for (a = oldState->outs; a != NULL; a = a->outchain)
1189 cparc(nfa, a, newState, a->to);
1191 else
1194 * With many arcs, use a sort-merge approach. Note that createarc()
1195 * will put new arcs onto the front of newState's chain, so it does
1196 * not break our walk through the sorted part of the chain.
1198 struct arc *oa;
1199 struct arc *na;
1202 * Because we bypass newarc() in this code path, we'd better include a
1203 * cancel check.
1205 INTERRUPT(nfa->v->re);
1207 sortouts(nfa, oldState);
1208 sortouts(nfa, newState);
1209 if (NISERR())
1210 return; /* might have failed to sort */
1211 oa = oldState->outs;
1212 na = newState->outs;
1213 while (oa != NULL && na != NULL)
1215 struct arc *a = oa;
1217 switch (sortouts_cmp(&oa, &na))
1219 case -1:
1220 /* newState does not have anything matching oa */
1221 oa = oa->outchain;
1222 createarc(nfa, a->type, a->co, newState, a->to);
1223 break;
1224 case 0:
1225 /* match, advance in both lists */
1226 oa = oa->outchain;
1227 na = na->outchain;
1228 break;
1229 case +1:
1230 /* advance only na; oa might have a match later */
1231 na = na->outchain;
1232 break;
1233 default:
1234 assert(NOTREACHED);
1237 while (oa != NULL)
1239 /* newState does not have anything matching oa */
1240 struct arc *a = oa;
1242 oa = oa->outchain;
1243 createarc(nfa, a->type, a->co, newState, a->to);
1246 #endif /* NOT_USED */
1250 * cloneouts - copy out arcs of a state to another state pair, modifying type
1252 * This is only used to convert PLAIN arcs to AHEAD/BEHIND arcs, which share
1253 * the same interpretation of "co". It wouldn't be sensible with LACONs.
1255 static void
1256 cloneouts(struct nfa *nfa,
1257 struct state *old,
1258 struct state *from,
1259 struct state *to,
1260 int type)
1262 struct arc *a;
1264 assert(old != from);
1265 assert(type == AHEAD || type == BEHIND);
1267 for (a = old->outs; a != NULL; a = a->outchain)
1269 assert(a->type == PLAIN);
1270 newarc(nfa, type, a->co, from, to);
1275 * delsub - delete a sub-NFA, updating subre pointers if necessary
1277 * This uses a recursive traversal of the sub-NFA, marking already-seen
1278 * states using their tmp pointer.
1280 static void
1281 delsub(struct nfa *nfa,
1282 struct state *lp, /* the sub-NFA goes from here... */
1283 struct state *rp) /* ...to here, *not* inclusive */
1285 assert(lp != rp);
1287 rp->tmp = rp; /* mark end */
1289 deltraverse(nfa, lp, lp);
1290 if (NISERR())
1291 return; /* asserts might not hold after failure */
1292 assert(lp->nouts == 0 && rp->nins == 0); /* did the job */
1293 assert(lp->no != FREESTATE && rp->no != FREESTATE); /* no more */
1295 rp->tmp = NULL; /* unmark end */
1296 lp->tmp = NULL; /* and begin, marked by deltraverse */
1300 * deltraverse - the recursive heart of delsub
1301 * This routine's basic job is to destroy all out-arcs of the state.
1303 static void
1304 deltraverse(struct nfa *nfa,
1305 struct state *leftend,
1306 struct state *s)
1308 struct arc *a;
1309 struct state *to;
1311 /* Since this is recursive, it could be driven to stack overflow */
1312 if (STACK_TOO_DEEP(nfa->v->re))
1314 NERR(REG_ETOOBIG);
1315 return;
1318 if (s->nouts == 0)
1319 return; /* nothing to do */
1320 if (s->tmp != NULL)
1321 return; /* already in progress */
1323 s->tmp = s; /* mark as in progress */
1325 while ((a = s->outs) != NULL)
1327 to = a->to;
1328 deltraverse(nfa, leftend, to);
1329 if (NISERR())
1330 return; /* asserts might not hold after failure */
1331 assert(to->nouts == 0 || to->tmp != NULL);
1332 freearc(nfa, a);
1333 if (to->nins == 0 && to->tmp == NULL)
1335 assert(to->nouts == 0);
1336 freestate(nfa, to);
1340 assert(s->no != FREESTATE); /* we're still here */
1341 assert(s == leftend || s->nins != 0); /* and still reachable */
1342 assert(s->nouts == 0); /* but have no outarcs */
1344 s->tmp = NULL; /* we're done here */
1348 * dupnfa - duplicate sub-NFA
1350 * Another recursive traversal, this time using tmp to point to duplicates
1351 * as well as mark already-seen states. (You knew there was a reason why
1352 * it's a state pointer, didn't you? :-))
1354 static void
1355 dupnfa(struct nfa *nfa,
1356 struct state *start, /* duplicate of subNFA starting here */
1357 struct state *stop, /* and stopping here */
1358 struct state *from, /* stringing duplicate from here */
1359 struct state *to) /* to here */
1361 if (start == stop)
1363 newarc(nfa, EMPTY, 0, from, to);
1364 return;
1367 stop->tmp = to;
1368 duptraverse(nfa, start, from);
1369 /* done, except for clearing out the tmp pointers */
1371 stop->tmp = NULL;
1372 cleartraverse(nfa, start);
1376 * duptraverse - recursive heart of dupnfa
1378 static void
1379 duptraverse(struct nfa *nfa,
1380 struct state *s,
1381 struct state *stmp) /* s's duplicate, or NULL */
1383 struct arc *a;
1385 /* Since this is recursive, it could be driven to stack overflow */
1386 if (STACK_TOO_DEEP(nfa->v->re))
1388 NERR(REG_ETOOBIG);
1389 return;
1392 if (s->tmp != NULL)
1393 return; /* already done */
1395 s->tmp = (stmp == NULL) ? newstate(nfa) : stmp;
1396 if (s->tmp == NULL)
1398 assert(NISERR());
1399 return;
1402 for (a = s->outs; a != NULL && !NISERR(); a = a->outchain)
1404 duptraverse(nfa, a->to, (struct state *) NULL);
1405 if (NISERR())
1406 break;
1407 assert(a->to->tmp != NULL);
1408 cparc(nfa, a, s->tmp, a->to->tmp);
1413 * removeconstraints - remove any constraints in an NFA
1415 * Constraint arcs are replaced by empty arcs, essentially treating all
1416 * constraints as automatically satisfied.
1418 static void
1419 removeconstraints(struct nfa *nfa,
1420 struct state *start, /* process subNFA starting here */
1421 struct state *stop) /* and stopping here */
1423 if (start == stop)
1424 return;
1426 stop->tmp = stop;
1427 removetraverse(nfa, start);
1428 /* done, except for clearing out the tmp pointers */
1430 stop->tmp = NULL;
1431 cleartraverse(nfa, start);
1435 * removetraverse - recursive heart of removeconstraints
1437 static void
1438 removetraverse(struct nfa *nfa,
1439 struct state *s)
1441 struct arc *a;
1442 struct arc *oa;
1444 /* Since this is recursive, it could be driven to stack overflow */
1445 if (STACK_TOO_DEEP(nfa->v->re))
1447 NERR(REG_ETOOBIG);
1448 return;
1451 if (s->tmp != NULL)
1452 return; /* already done */
1454 s->tmp = s;
1455 for (a = s->outs; a != NULL && !NISERR(); a = oa)
1457 removetraverse(nfa, a->to);
1458 if (NISERR())
1459 break;
1460 oa = a->outchain;
1461 switch (a->type)
1463 case PLAIN:
1464 case EMPTY:
1465 case CANTMATCH:
1466 /* nothing to do */
1467 break;
1468 case AHEAD:
1469 case BEHIND:
1470 case '^':
1471 case '$':
1472 case LACON:
1473 /* replace it */
1474 newarc(nfa, EMPTY, 0, s, a->to);
1475 freearc(nfa, a);
1476 break;
1477 default:
1478 NERR(REG_ASSERT);
1479 break;
1485 * cleartraverse - recursive cleanup for algorithms that leave tmp ptrs set
1487 static void
1488 cleartraverse(struct nfa *nfa,
1489 struct state *s)
1491 struct arc *a;
1493 /* Since this is recursive, it could be driven to stack overflow */
1494 if (STACK_TOO_DEEP(nfa->v->re))
1496 NERR(REG_ETOOBIG);
1497 return;
1500 if (s->tmp == NULL)
1501 return;
1502 s->tmp = NULL;
1504 for (a = s->outs; a != NULL; a = a->outchain)
1505 cleartraverse(nfa, a->to);
1509 * single_color_transition - does getting from s1 to s2 cross one PLAIN arc?
1511 * If traversing from s1 to s2 requires a single PLAIN match (possibly of any
1512 * of a set of colors), return a state whose outarc list contains only PLAIN
1513 * arcs of those color(s). Otherwise return NULL.
1515 * This is used before optimizing the NFA, so there may be EMPTY arcs, which
1516 * we should ignore; the possibility of an EMPTY is why the result state could
1517 * be different from s1.
1519 * It's worth troubling to handle multiple parallel PLAIN arcs here because a
1520 * bracket construct such as [abc] might yield either one or several parallel
1521 * PLAIN arcs depending on earlier atoms in the expression. We'd rather that
1522 * that implementation detail not create user-visible performance differences.
1524 static struct state *
1525 single_color_transition(struct state *s1, struct state *s2)
1527 struct arc *a;
1529 /* Ignore leading EMPTY arc, if any */
1530 if (s1->nouts == 1 && s1->outs->type == EMPTY)
1531 s1 = s1->outs->to;
1532 /* Likewise for any trailing EMPTY arc */
1533 if (s2->nins == 1 && s2->ins->type == EMPTY)
1534 s2 = s2->ins->from;
1535 /* Perhaps we could have a single-state loop in between, if so reject */
1536 if (s1 == s2)
1537 return NULL;
1538 /* s1 must have at least one outarc... */
1539 if (s1->outs == NULL)
1540 return NULL;
1541 /* ... and they must all be PLAIN arcs to s2 */
1542 for (a = s1->outs; a != NULL; a = a->outchain)
1544 if (a->type != PLAIN || a->to != s2)
1545 return NULL;
1547 /* OK, return s1 as the possessor of the relevant outarcs */
1548 return s1;
1552 * specialcolors - fill in special colors for an NFA
1554 static void
1555 specialcolors(struct nfa *nfa)
1557 /* false colors for BOS, BOL, EOS, EOL */
1558 if (nfa->parent == NULL)
1560 nfa->bos[0] = pseudocolor(nfa->cm);
1561 nfa->bos[1] = pseudocolor(nfa->cm);
1562 nfa->eos[0] = pseudocolor(nfa->cm);
1563 nfa->eos[1] = pseudocolor(nfa->cm);
1565 else
1567 assert(nfa->parent->bos[0] != COLORLESS);
1568 nfa->bos[0] = nfa->parent->bos[0];
1569 assert(nfa->parent->bos[1] != COLORLESS);
1570 nfa->bos[1] = nfa->parent->bos[1];
1571 assert(nfa->parent->eos[0] != COLORLESS);
1572 nfa->eos[0] = nfa->parent->eos[0];
1573 assert(nfa->parent->eos[1] != COLORLESS);
1574 nfa->eos[1] = nfa->parent->eos[1];
1579 * optimize - optimize an NFA
1581 * The main goal of this function is not so much "optimization" (though it
1582 * does try to get rid of useless NFA states) as reducing the NFA to a form
1583 * the regex executor can handle. The executor, and indeed the cNFA format
1584 * that is its input, can only handle PLAIN and LACON arcs. The output of
1585 * the regex parser also includes EMPTY (do-nothing) arcs, as well as
1586 * ^, $, AHEAD, and BEHIND constraint arcs, which we must get rid of here.
1587 * We first get rid of EMPTY arcs and then deal with the constraint arcs.
1588 * The hardest part of either job is to get rid of circular loops of the
1589 * target arc type. We would have to do that in any case, though, as such a
1590 * loop would otherwise allow the executor to cycle through the loop endlessly
1591 * without making any progress in the input string.
1593 static long /* re_info bits */
1594 optimize(struct nfa *nfa,
1595 FILE *f) /* for debug output; NULL none */
1597 #ifdef REG_DEBUG
1598 int verbose = (f != NULL) ? 1 : 0;
1600 if (verbose)
1601 fprintf(f, "\ninitial cleanup:\n");
1602 #endif
1603 /* If we have any CANTMATCH arcs, drop them; but this is uncommon */
1604 if (nfa->flags & HASCANTMATCH)
1606 removecantmatch(nfa);
1607 nfa->flags &= ~HASCANTMATCH;
1609 cleanup(nfa); /* may simplify situation */
1610 #ifdef REG_DEBUG
1611 if (verbose)
1612 dumpnfa(nfa, f);
1613 if (verbose)
1614 fprintf(f, "\nempties:\n");
1615 #endif
1616 fixempties(nfa, f); /* get rid of EMPTY arcs */
1617 #ifdef REG_DEBUG
1618 if (verbose)
1619 fprintf(f, "\nconstraints:\n");
1620 #endif
1621 fixconstraintloops(nfa, f); /* get rid of constraint loops */
1622 pullback(nfa, f); /* pull back constraints backward */
1623 pushfwd(nfa, f); /* push fwd constraints forward */
1624 #ifdef REG_DEBUG
1625 if (verbose)
1626 fprintf(f, "\nfinal cleanup:\n");
1627 #endif
1628 cleanup(nfa); /* final tidying */
1629 #ifdef REG_DEBUG
1630 if (verbose)
1631 dumpnfa(nfa, f);
1632 #endif
1633 return analyze(nfa); /* and analysis */
1637 * pullback - pull back constraints backward to eliminate them
1639 static void
1640 pullback(struct nfa *nfa,
1641 FILE *f) /* for debug output; NULL none */
1643 struct state *s;
1644 struct state *nexts;
1645 struct arc *a;
1646 struct arc *nexta;
1647 struct state *intermediates;
1648 int progress;
1650 /* find and pull until there are no more */
1653 progress = 0;
1654 for (s = nfa->states; s != NULL && !NISERR(); s = nexts)
1656 nexts = s->next;
1657 intermediates = NULL;
1658 for (a = s->outs; a != NULL && !NISERR(); a = nexta)
1660 nexta = a->outchain;
1661 if (a->type == '^' || a->type == BEHIND)
1662 if (pull(nfa, a, &intermediates))
1663 progress = 1;
1665 /* clear tmp fields of intermediate states created here */
1666 while (intermediates != NULL)
1668 struct state *ns = intermediates->tmp;
1670 intermediates->tmp = NULL;
1671 intermediates = ns;
1673 /* if s is now useless, get rid of it */
1674 if ((s->nins == 0 || s->nouts == 0) && !s->flag)
1675 dropstate(nfa, s);
1677 if (progress && f != NULL)
1678 dumpnfa(nfa, f);
1679 } while (progress && !NISERR());
1680 if (NISERR())
1681 return;
1684 * Any ^ constraints we were able to pull to the start state can now be
1685 * replaced by PLAIN arcs referencing the BOS or BOL colors. There should
1686 * be no other ^ or BEHIND arcs left in the NFA, though we do not check
1687 * that here (compact() will fail if so).
1689 for (a = nfa->pre->outs; a != NULL; a = nexta)
1691 nexta = a->outchain;
1692 if (a->type == '^')
1694 assert(a->co == 0 || a->co == 1);
1695 newarc(nfa, PLAIN, nfa->bos[a->co], a->from, a->to);
1696 freearc(nfa, a);
1702 * pull - pull a back constraint backward past its source state
1704 * Returns 1 if successful (which it always is unless the source is the
1705 * start state or we have an internal error), 0 if nothing happened.
1707 * A significant property of this function is that it deletes no pre-existing
1708 * states, and no outarcs of the constraint's from state other than the given
1709 * constraint arc. This makes the loops in pullback() safe, at the cost that
1710 * we may leave useless states behind. Therefore, we leave it to pullback()
1711 * to delete such states.
1713 * If the from state has multiple back-constraint outarcs, and/or multiple
1714 * compatible constraint inarcs, we only need to create one new intermediate
1715 * state per combination of predecessor and successor states. *intermediates
1716 * points to a list of such intermediate states for this from state (chained
1717 * through their tmp fields).
1719 static int
1720 pull(struct nfa *nfa,
1721 struct arc *con,
1722 struct state **intermediates)
1724 struct state *from = con->from;
1725 struct state *to = con->to;
1726 struct arc *a;
1727 struct arc *nexta;
1728 struct state *s;
1730 assert(from != to); /* should have gotten rid of this earlier */
1731 if (from->flag) /* can't pull back beyond start */
1732 return 0;
1733 if (from->nins == 0)
1734 { /* unreachable */
1735 freearc(nfa, con);
1736 return 1;
1740 * First, clone from state if necessary to avoid other outarcs. This may
1741 * seem wasteful, but it simplifies the logic, and we'll get rid of the
1742 * clone state again at the bottom.
1744 if (from->nouts > 1)
1746 s = newstate(nfa);
1747 if (NISERR())
1748 return 0;
1749 copyins(nfa, from, s); /* duplicate inarcs */
1750 cparc(nfa, con, s, to); /* move constraint arc */
1751 freearc(nfa, con);
1752 if (NISERR())
1753 return 0;
1754 from = s;
1755 con = from->outs;
1757 assert(from->nouts == 1);
1759 /* propagate the constraint into the from state's inarcs */
1760 for (a = from->ins; a != NULL && !NISERR(); a = nexta)
1762 nexta = a->inchain;
1763 switch (combine(nfa, con, a))
1765 case INCOMPATIBLE: /* destroy the arc */
1766 freearc(nfa, a);
1767 break;
1768 case SATISFIED: /* no action needed */
1769 break;
1770 case COMPATIBLE: /* swap the two arcs, more or less */
1771 /* need an intermediate state, but might have one already */
1772 for (s = *intermediates; s != NULL; s = s->tmp)
1774 assert(s->nins > 0 && s->nouts > 0);
1775 if (s->ins->from == a->from && s->outs->to == to)
1776 break;
1778 if (s == NULL)
1780 s = newstate(nfa);
1781 if (NISERR())
1782 return 0;
1783 s->tmp = *intermediates;
1784 *intermediates = s;
1786 cparc(nfa, con, a->from, s);
1787 cparc(nfa, a, s, to);
1788 freearc(nfa, a);
1789 break;
1790 case REPLACEARC: /* replace arc's color */
1791 newarc(nfa, a->type, con->co, a->from, to);
1792 freearc(nfa, a);
1793 break;
1794 default:
1795 assert(NOTREACHED);
1796 break;
1800 /* remaining inarcs, if any, incorporate the constraint */
1801 moveins(nfa, from, to);
1802 freearc(nfa, con);
1803 /* from state is now useless, but we leave it to pullback() to clean up */
1804 return 1;
1808 * pushfwd - push forward constraints forward to eliminate them
1810 static void
1811 pushfwd(struct nfa *nfa,
1812 FILE *f) /* for debug output; NULL none */
1814 struct state *s;
1815 struct state *nexts;
1816 struct arc *a;
1817 struct arc *nexta;
1818 struct state *intermediates;
1819 int progress;
1821 /* find and push until there are no more */
1824 progress = 0;
1825 for (s = nfa->states; s != NULL && !NISERR(); s = nexts)
1827 nexts = s->next;
1828 intermediates = NULL;
1829 for (a = s->ins; a != NULL && !NISERR(); a = nexta)
1831 nexta = a->inchain;
1832 if (a->type == '$' || a->type == AHEAD)
1833 if (push(nfa, a, &intermediates))
1834 progress = 1;
1836 /* clear tmp fields of intermediate states created here */
1837 while (intermediates != NULL)
1839 struct state *ns = intermediates->tmp;
1841 intermediates->tmp = NULL;
1842 intermediates = ns;
1844 /* if s is now useless, get rid of it */
1845 if ((s->nins == 0 || s->nouts == 0) && !s->flag)
1846 dropstate(nfa, s);
1848 if (progress && f != NULL)
1849 dumpnfa(nfa, f);
1850 } while (progress && !NISERR());
1851 if (NISERR())
1852 return;
1855 * Any $ constraints we were able to push to the post state can now be
1856 * replaced by PLAIN arcs referencing the EOS or EOL colors. There should
1857 * be no other $ or AHEAD arcs left in the NFA, though we do not check
1858 * that here (compact() will fail if so).
1860 for (a = nfa->post->ins; a != NULL; a = nexta)
1862 nexta = a->inchain;
1863 if (a->type == '$')
1865 assert(a->co == 0 || a->co == 1);
1866 newarc(nfa, PLAIN, nfa->eos[a->co], a->from, a->to);
1867 freearc(nfa, a);
1873 * push - push a forward constraint forward past its destination state
1875 * Returns 1 if successful (which it always is unless the destination is the
1876 * post state or we have an internal error), 0 if nothing happened.
1878 * A significant property of this function is that it deletes no pre-existing
1879 * states, and no inarcs of the constraint's to state other than the given
1880 * constraint arc. This makes the loops in pushfwd() safe, at the cost that
1881 * we may leave useless states behind. Therefore, we leave it to pushfwd()
1882 * to delete such states.
1884 * If the to state has multiple forward-constraint inarcs, and/or multiple
1885 * compatible constraint outarcs, we only need to create one new intermediate
1886 * state per combination of predecessor and successor states. *intermediates
1887 * points to a list of such intermediate states for this to state (chained
1888 * through their tmp fields).
1890 static int
1891 push(struct nfa *nfa,
1892 struct arc *con,
1893 struct state **intermediates)
1895 struct state *from = con->from;
1896 struct state *to = con->to;
1897 struct arc *a;
1898 struct arc *nexta;
1899 struct state *s;
1901 assert(to != from); /* should have gotten rid of this earlier */
1902 if (to->flag) /* can't push forward beyond end */
1903 return 0;
1904 if (to->nouts == 0)
1905 { /* dead end */
1906 freearc(nfa, con);
1907 return 1;
1911 * First, clone to state if necessary to avoid other inarcs. This may
1912 * seem wasteful, but it simplifies the logic, and we'll get rid of the
1913 * clone state again at the bottom.
1915 if (to->nins > 1)
1917 s = newstate(nfa);
1918 if (NISERR())
1919 return 0;
1920 copyouts(nfa, to, s); /* duplicate outarcs */
1921 cparc(nfa, con, from, s); /* move constraint arc */
1922 freearc(nfa, con);
1923 if (NISERR())
1924 return 0;
1925 to = s;
1926 con = to->ins;
1928 assert(to->nins == 1);
1930 /* propagate the constraint into the to state's outarcs */
1931 for (a = to->outs; a != NULL && !NISERR(); a = nexta)
1933 nexta = a->outchain;
1934 switch (combine(nfa, con, a))
1936 case INCOMPATIBLE: /* destroy the arc */
1937 freearc(nfa, a);
1938 break;
1939 case SATISFIED: /* no action needed */
1940 break;
1941 case COMPATIBLE: /* swap the two arcs, more or less */
1942 /* need an intermediate state, but might have one already */
1943 for (s = *intermediates; s != NULL; s = s->tmp)
1945 assert(s->nins > 0 && s->nouts > 0);
1946 if (s->ins->from == from && s->outs->to == a->to)
1947 break;
1949 if (s == NULL)
1951 s = newstate(nfa);
1952 if (NISERR())
1953 return 0;
1954 s->tmp = *intermediates;
1955 *intermediates = s;
1957 cparc(nfa, con, s, a->to);
1958 cparc(nfa, a, from, s);
1959 freearc(nfa, a);
1960 break;
1961 case REPLACEARC: /* replace arc's color */
1962 newarc(nfa, a->type, con->co, from, a->to);
1963 freearc(nfa, a);
1964 break;
1965 default:
1966 assert(NOTREACHED);
1967 break;
1971 /* remaining outarcs, if any, incorporate the constraint */
1972 moveouts(nfa, to, from);
1973 freearc(nfa, con);
1974 /* to state is now useless, but we leave it to pushfwd() to clean up */
1975 return 1;
1979 * combine - constraint lands on an arc, what happens?
1981 * #def INCOMPATIBLE 1 // destroys arc
1982 * #def SATISFIED 2 // constraint satisfied
1983 * #def COMPATIBLE 3 // compatible but not satisfied yet
1984 * #def REPLACEARC 4 // replace arc's color with constraint color
1986 static int
1987 combine(struct nfa *nfa,
1988 struct arc *con,
1989 struct arc *a)
1991 #define CA(ct,at) (((ct)<<CHAR_BIT) | (at))
1993 switch (CA(con->type, a->type))
1995 case CA('^', PLAIN): /* newlines are handled separately */
1996 case CA('$', PLAIN):
1997 return INCOMPATIBLE;
1998 break;
1999 case CA(AHEAD, PLAIN): /* color constraints meet colors */
2000 case CA(BEHIND, PLAIN):
2001 if (con->co == a->co)
2002 return SATISFIED;
2003 if (con->co == RAINBOW)
2005 /* con is satisfied unless arc's color is a pseudocolor */
2006 if (!(nfa->cm->cd[a->co].flags & PSEUDO))
2007 return SATISFIED;
2009 else if (a->co == RAINBOW)
2011 /* con is incompatible if it's for a pseudocolor */
2012 /* (this is hypothetical; we make no such constraints today) */
2013 if (nfa->cm->cd[con->co].flags & PSEUDO)
2014 return INCOMPATIBLE;
2015 /* otherwise, constraint constrains arc to be only its color */
2016 return REPLACEARC;
2018 return INCOMPATIBLE;
2019 break;
2020 case CA('^', '^'): /* collision, similar constraints */
2021 case CA('$', '$'):
2022 if (con->co == a->co) /* true duplication */
2023 return SATISFIED;
2024 return INCOMPATIBLE;
2025 break;
2026 case CA(AHEAD, AHEAD): /* collision, similar constraints */
2027 case CA(BEHIND, BEHIND):
2028 if (con->co == a->co) /* true duplication */
2029 return SATISFIED;
2030 if (con->co == RAINBOW)
2032 /* con is satisfied unless arc's color is a pseudocolor */
2033 if (!(nfa->cm->cd[a->co].flags & PSEUDO))
2034 return SATISFIED;
2036 else if (a->co == RAINBOW)
2038 /* con is incompatible if it's for a pseudocolor */
2039 /* (this is hypothetical; we make no such constraints today) */
2040 if (nfa->cm->cd[con->co].flags & PSEUDO)
2041 return INCOMPATIBLE;
2042 /* otherwise, constraint constrains arc to be only its color */
2043 return REPLACEARC;
2045 return INCOMPATIBLE;
2046 break;
2047 case CA('^', BEHIND): /* collision, dissimilar constraints */
2048 case CA(BEHIND, '^'):
2049 case CA('$', AHEAD):
2050 case CA(AHEAD, '$'):
2051 return INCOMPATIBLE;
2052 break;
2053 case CA('^', '$'): /* constraints passing each other */
2054 case CA('^', AHEAD):
2055 case CA(BEHIND, '$'):
2056 case CA(BEHIND, AHEAD):
2057 case CA('$', '^'):
2058 case CA('$', BEHIND):
2059 case CA(AHEAD, '^'):
2060 case CA(AHEAD, BEHIND):
2061 case CA('^', LACON):
2062 case CA(BEHIND, LACON):
2063 case CA('$', LACON):
2064 case CA(AHEAD, LACON):
2065 return COMPATIBLE;
2066 break;
2068 assert(NOTREACHED);
2069 return INCOMPATIBLE; /* for benefit of blind compilers */
2073 * fixempties - get rid of EMPTY arcs
2075 static void
2076 fixempties(struct nfa *nfa,
2077 FILE *f) /* for debug output; NULL none */
2079 struct state *s;
2080 struct state *s2;
2081 struct state *nexts;
2082 struct arc *a;
2083 struct arc *nexta;
2084 int totalinarcs;
2085 struct arc **inarcsorig;
2086 struct arc **arcarray;
2087 int arccount;
2088 int prevnins;
2089 int nskip;
2092 * First, get rid of any states whose sole out-arc is an EMPTY, since
2093 * they're basically just aliases for their successor. The parsing
2094 * algorithm creates enough of these that it's worth special-casing this.
2096 for (s = nfa->states; s != NULL && !NISERR(); s = nexts)
2098 nexts = s->next;
2099 if (s->flag || s->nouts != 1)
2100 continue;
2101 a = s->outs;
2102 assert(a != NULL && a->outchain == NULL);
2103 if (a->type != EMPTY)
2104 continue;
2105 if (s != a->to)
2106 moveins(nfa, s, a->to);
2107 dropstate(nfa, s);
2111 * Similarly, get rid of any state with a single EMPTY in-arc, by folding
2112 * it into its predecessor.
2114 for (s = nfa->states; s != NULL && !NISERR(); s = nexts)
2116 nexts = s->next;
2117 /* while we're at it, ensure tmp fields are clear for next step */
2118 assert(s->tmp == NULL);
2119 if (s->flag || s->nins != 1)
2120 continue;
2121 a = s->ins;
2122 assert(a != NULL && a->inchain == NULL);
2123 if (a->type != EMPTY)
2124 continue;
2125 if (s != a->from)
2126 moveouts(nfa, s, a->from);
2127 dropstate(nfa, s);
2130 if (NISERR())
2131 return;
2134 * For each remaining NFA state, find all other states from which it is
2135 * reachable by a chain of one or more EMPTY arcs. Then generate new arcs
2136 * that eliminate the need for each such chain.
2138 * We could replace a chain of EMPTY arcs that leads from a "from" state
2139 * to a "to" state either by pushing non-EMPTY arcs forward (linking
2140 * directly from "from"'s predecessors to "to") or by pulling them back
2141 * (linking directly from "from" to "to"'s successors). We choose to
2142 * always do the former; this choice is somewhat arbitrary, but the
2143 * approach below requires that we uniformly do one or the other.
2145 * Suppose we have a chain of N successive EMPTY arcs (where N can easily
2146 * approach the size of the NFA). All of the intermediate states must
2147 * have additional inarcs and outarcs, else they'd have been removed by
2148 * the steps above. Assuming their inarcs are mostly not empties, we will
2149 * add O(N^2) arcs to the NFA, since a non-EMPTY inarc leading to any one
2150 * state in the chain must be duplicated to lead to all its successor
2151 * states as well. So there is no hope of doing less than O(N^2) work;
2152 * however, we should endeavor to keep the big-O cost from being even
2153 * worse than that, which it can easily become without care. In
2154 * particular, suppose we were to copy all S1's inarcs forward to S2, and
2155 * then also to S3, and then later we consider pushing S2's inarcs forward
2156 * to S3. If we include the arcs already copied from S1 in that, we'd be
2157 * doing O(N^3) work. (The duplicate-arc elimination built into newarc()
2158 * and its cohorts would get rid of the extra arcs, but not without cost.)
2160 * We can avoid this cost by treating only arcs that existed at the start
2161 * of this phase as candidates to be pushed forward. To identify those,
2162 * we remember the first inarc each state had to start with. We rely on
2163 * the fact that newarc() and friends put new arcs on the front of their
2164 * to-states' inchains, and that this phase never deletes arcs, so that
2165 * the original arcs must be the last arcs in their to-states' inchains.
2167 * So the process here is that, for each state in the NFA, we gather up
2168 * all non-EMPTY inarcs of states that can reach the target state via
2169 * EMPTY arcs. We then sort, de-duplicate, and merge these arcs into the
2170 * target state's inchain. (We can safely use sort-merge for this as long
2171 * as we update each state's original-arcs pointer after we add arcs to
2172 * it; the sort step of mergeins probably changed the order of the old
2173 * arcs.)
2175 * Another refinement worth making is that, because we only add non-EMPTY
2176 * arcs during this phase, and all added arcs have the same from-state as
2177 * the non-EMPTY arc they were cloned from, we know ahead of time that any
2178 * states having only EMPTY outarcs will be useless for lack of outarcs
2179 * after we drop the EMPTY arcs. (They cannot gain non-EMPTY outarcs if
2180 * they had none to start with.) So we need not bother to update the
2181 * inchains of such states at all.
2184 /* Remember the states' first original inarcs */
2185 /* ... and while at it, count how many old inarcs there are altogether */
2186 inarcsorig = (struct arc **) MALLOC(nfa->nstates * sizeof(struct arc *));
2187 if (inarcsorig == NULL)
2189 NERR(REG_ESPACE);
2190 return;
2192 totalinarcs = 0;
2193 for (s = nfa->states; s != NULL; s = s->next)
2195 inarcsorig[s->no] = s->ins;
2196 totalinarcs += s->nins;
2200 * Create a workspace for accumulating the inarcs to be added to the
2201 * current target state. totalinarcs is probably a considerable
2202 * overestimate of the space needed, but the NFA is unlikely to be large
2203 * enough at this point to make it worth being smarter.
2205 arcarray = (struct arc **) MALLOC(totalinarcs * sizeof(struct arc *));
2206 if (arcarray == NULL)
2208 NERR(REG_ESPACE);
2209 FREE(inarcsorig);
2210 return;
2213 /* And iterate over the target states */
2214 for (s = nfa->states; s != NULL && !NISERR(); s = s->next)
2216 /* Ignore target states without non-EMPTY outarcs, per note above */
2217 if (!s->flag && !hasnonemptyout(s))
2218 continue;
2220 /* Find predecessor states and accumulate their original inarcs */
2221 arccount = 0;
2222 for (s2 = emptyreachable(nfa, s, s, inarcsorig); s2 != s; s2 = nexts)
2224 /* Add s2's original inarcs to arcarray[], but ignore empties */
2225 for (a = inarcsorig[s2->no]; a != NULL; a = a->inchain)
2227 if (a->type != EMPTY)
2228 arcarray[arccount++] = a;
2231 /* Reset the tmp fields as we walk back */
2232 nexts = s2->tmp;
2233 s2->tmp = NULL;
2235 s->tmp = NULL;
2236 assert(arccount <= totalinarcs);
2238 /* Remember how many original inarcs this state has */
2239 prevnins = s->nins;
2241 /* Add non-duplicate inarcs to target state */
2242 mergeins(nfa, s, arcarray, arccount);
2244 /* Now we must update the state's inarcsorig pointer */
2245 nskip = s->nins - prevnins;
2246 a = s->ins;
2247 while (nskip-- > 0)
2248 a = a->inchain;
2249 inarcsorig[s->no] = a;
2252 FREE(arcarray);
2253 FREE(inarcsorig);
2255 if (NISERR())
2256 return;
2259 * Now remove all the EMPTY arcs, since we don't need them anymore.
2261 for (s = nfa->states; s != NULL; s = s->next)
2263 for (a = s->outs; a != NULL; a = nexta)
2265 nexta = a->outchain;
2266 if (a->type == EMPTY)
2267 freearc(nfa, a);
2272 * And remove any states that have become useless. (This cleanup is not
2273 * very thorough, and would be even less so if we tried to combine it with
2274 * the previous step; but cleanup() will take care of anything we miss.)
2276 for (s = nfa->states; s != NULL; s = nexts)
2278 nexts = s->next;
2279 if ((s->nins == 0 || s->nouts == 0) && !s->flag)
2280 dropstate(nfa, s);
2283 if (f != NULL)
2284 dumpnfa(nfa, f);
2288 * emptyreachable - recursively find all states that can reach s by EMPTY arcs
2290 * The return value is the last such state found. Its tmp field links back
2291 * to the next-to-last such state, and so on back to s, so that all these
2292 * states can be located without searching the whole NFA.
2294 * Since this is only used in fixempties(), we pass in the inarcsorig[] array
2295 * maintained by that function. This lets us skip over all new inarcs, which
2296 * are certainly not EMPTY arcs.
2298 * The maximum recursion depth here is equal to the length of the longest
2299 * loop-free chain of EMPTY arcs, which is surely no more than the size of
2300 * the NFA ... but that could still be enough to cause trouble.
2302 static struct state *
2303 emptyreachable(struct nfa *nfa,
2304 struct state *s,
2305 struct state *lastfound,
2306 struct arc **inarcsorig)
2308 struct arc *a;
2310 /* Since this is recursive, it could be driven to stack overflow */
2311 if (STACK_TOO_DEEP(nfa->v->re))
2313 NERR(REG_ETOOBIG);
2314 return lastfound;
2317 s->tmp = lastfound;
2318 lastfound = s;
2319 for (a = inarcsorig[s->no]; a != NULL; a = a->inchain)
2321 if (a->type == EMPTY && a->from->tmp == NULL)
2322 lastfound = emptyreachable(nfa, a->from, lastfound, inarcsorig);
2324 return lastfound;
2328 * isconstraintarc - detect whether an arc is of a constraint type
2330 static inline int
2331 isconstraintarc(struct arc *a)
2333 switch (a->type)
2335 case '^':
2336 case '$':
2337 case BEHIND:
2338 case AHEAD:
2339 case LACON:
2340 return 1;
2342 return 0;
2346 * hasconstraintout - does state have a constraint out arc?
2348 static int
2349 hasconstraintout(struct state *s)
2351 struct arc *a;
2353 for (a = s->outs; a != NULL; a = a->outchain)
2355 if (isconstraintarc(a))
2356 return 1;
2358 return 0;
2362 * fixconstraintloops - get rid of loops containing only constraint arcs
2364 * A loop of states that contains only constraint arcs is useless, since
2365 * passing around the loop represents no forward progress. Moreover, it
2366 * would cause infinite looping in pullback/pushfwd, so we need to get rid
2367 * of such loops before doing that.
2369 static void
2370 fixconstraintloops(struct nfa *nfa,
2371 FILE *f) /* for debug output; NULL none */
2373 struct state *s;
2374 struct state *nexts;
2375 struct arc *a;
2376 struct arc *nexta;
2377 int hasconstraints;
2380 * In the trivial case of a state that loops to itself, we can just drop
2381 * the constraint arc altogether. This is worth special-casing because
2382 * such loops are far more common than loops containing multiple states.
2383 * While we're at it, note whether any constraint arcs survive.
2385 hasconstraints = 0;
2386 for (s = nfa->states; s != NULL && !NISERR(); s = nexts)
2388 nexts = s->next;
2389 /* while we're at it, ensure tmp fields are clear for next step */
2390 assert(s->tmp == NULL);
2391 for (a = s->outs; a != NULL && !NISERR(); a = nexta)
2393 nexta = a->outchain;
2394 if (isconstraintarc(a))
2396 if (a->to == s)
2397 freearc(nfa, a);
2398 else
2399 hasconstraints = 1;
2402 /* If we removed all the outarcs, the state is useless. */
2403 if (s->nouts == 0 && !s->flag)
2404 dropstate(nfa, s);
2407 /* Nothing to do if no remaining constraint arcs */
2408 if (NISERR() || !hasconstraints)
2409 return;
2412 * Starting from each remaining NFA state, search outwards for a
2413 * constraint loop. If we find a loop, break the loop, then start the
2414 * search over. (We could possibly retain some state from the first scan,
2415 * but it would complicate things greatly, and multi-state constraint
2416 * loops are rare enough that it's not worth optimizing the case.)
2418 restart:
2419 for (s = nfa->states; s != NULL && !NISERR(); s = s->next)
2421 if (findconstraintloop(nfa, s))
2422 goto restart;
2425 if (NISERR())
2426 return;
2429 * Now remove any states that have become useless. (This cleanup is not
2430 * very thorough, and would be even less so if we tried to combine it with
2431 * the previous step; but cleanup() will take care of anything we miss.)
2433 * Because findconstraintloop intentionally doesn't reset all tmp fields,
2434 * we have to clear them after it's done. This is a convenient place to
2435 * do that, too.
2437 for (s = nfa->states; s != NULL; s = nexts)
2439 nexts = s->next;
2440 s->tmp = NULL;
2441 if ((s->nins == 0 || s->nouts == 0) && !s->flag)
2442 dropstate(nfa, s);
2445 if (f != NULL)
2446 dumpnfa(nfa, f);
2450 * findconstraintloop - recursively find a loop of constraint arcs
2452 * If we find a loop, break it by calling breakconstraintloop(), then
2453 * return 1; otherwise return 0.
2455 * State tmp fields are guaranteed all NULL on a success return, because
2456 * breakconstraintloop does that. After a failure return, any state that
2457 * is known not to be part of a loop is marked with s->tmp == s; this allows
2458 * us not to have to re-prove that fact on later calls. (This convention is
2459 * workable because we already eliminated single-state loops.)
2461 * Note that the found loop doesn't necessarily include the first state we
2462 * are called on. Any loop reachable from that state will do.
2464 * The maximum recursion depth here is one more than the length of the longest
2465 * loop-free chain of constraint arcs, which is surely no more than the size
2466 * of the NFA ... but that could still be enough to cause trouble.
2468 static int
2469 findconstraintloop(struct nfa *nfa, struct state *s)
2471 struct arc *a;
2473 /* Since this is recursive, it could be driven to stack overflow */
2474 if (STACK_TOO_DEEP(nfa->v->re))
2476 NERR(REG_ETOOBIG);
2477 return 1; /* to exit as quickly as possible */
2480 if (s->tmp != NULL)
2482 /* Already proven uninteresting? */
2483 if (s->tmp == s)
2484 return 0;
2485 /* Found a loop involving s */
2486 breakconstraintloop(nfa, s);
2487 /* The tmp fields have been cleaned up by breakconstraintloop */
2488 return 1;
2490 for (a = s->outs; a != NULL; a = a->outchain)
2492 if (isconstraintarc(a))
2494 struct state *sto = a->to;
2496 assert(sto != s);
2497 s->tmp = sto;
2498 if (findconstraintloop(nfa, sto))
2499 return 1;
2504 * If we get here, no constraint loop exists leading out from s. Mark it
2505 * with s->tmp == s so we need not rediscover that fact again later.
2507 s->tmp = s;
2508 return 0;
2512 * breakconstraintloop - break a loop of constraint arcs
2514 * sinitial is any one member state of the loop. Each loop member's tmp
2515 * field links to its successor within the loop. (Note that this function
2516 * will reset all the tmp fields to NULL.)
2518 * We can break the loop by, for any one state S1 in the loop, cloning its
2519 * loop successor state S2 (and possibly following states), and then moving
2520 * all S1->S2 constraint arcs to point to the cloned S2. The cloned S2 should
2521 * copy any non-constraint outarcs of S2. Constraint outarcs should be
2522 * dropped if they point back to S1, else they need to be copied as arcs to
2523 * similarly cloned states S3, S4, etc. In general, each cloned state copies
2524 * non-constraint outarcs, drops constraint outarcs that would lead to itself
2525 * or any earlier cloned state, and sends other constraint outarcs to newly
2526 * cloned states. No cloned state will have any inarcs that aren't constraint
2527 * arcs or do not lead from S1 or earlier-cloned states. It's okay to drop
2528 * constraint back-arcs since they would not take us to any state we've not
2529 * already been in; therefore, no new constraint loop is created. In this way
2530 * we generate a modified NFA that can still represent every useful state
2531 * sequence, but not sequences that represent state loops with no consumption
2532 * of input data. Note that the set of cloned states will certainly include
2533 * all of the loop member states other than S1, and it may also include
2534 * non-loop states that are reachable from S2 via constraint arcs. This is
2535 * important because there is no guarantee that findconstraintloop found a
2536 * maximal loop (and searching for one would be NP-hard, so don't try).
2537 * Frequently the "non-loop states" are actually part of a larger loop that
2538 * we didn't notice, and indeed there may be several overlapping loops.
2539 * This technique ensures convergence in such cases, while considering only
2540 * the originally-found loop does not.
2542 * If there is only one S1->S2 constraint arc, then that constraint is
2543 * certainly satisfied when we enter any of the clone states. This means that
2544 * in the common case where many of the constraint arcs are identically
2545 * labeled, we can merge together clone states linked by a similarly-labeled
2546 * constraint: if we can get to the first one we can certainly get to the
2547 * second, so there's no need to distinguish. This greatly reduces the number
2548 * of new states needed, so we preferentially break the given loop at a state
2549 * pair where this is true.
2551 * Furthermore, it's fairly common to find that a cloned successor state has
2552 * no outarcs, especially if we're a bit aggressive about removing unnecessary
2553 * outarcs. If that happens, then there is simply not any interesting state
2554 * that can be reached through the predecessor's loop arcs, which means we can
2555 * break the loop just by removing those loop arcs, with no new states added.
2557 static void
2558 breakconstraintloop(struct nfa *nfa, struct state *sinitial)
2560 struct state *s;
2561 struct state *shead;
2562 struct state *stail;
2563 struct state *sclone;
2564 struct state *nexts;
2565 struct arc *refarc;
2566 struct arc *a;
2567 struct arc *nexta;
2570 * Start by identifying which loop step we want to break at.
2571 * Preferentially this is one with only one constraint arc. (XXX are
2572 * there any other secondary heuristics we want to use here?) Set refarc
2573 * to point to the selected lone constraint arc, if there is one.
2575 refarc = NULL;
2576 s = sinitial;
2579 nexts = s->tmp;
2580 assert(nexts != s); /* should not see any one-element loops */
2581 if (refarc == NULL)
2583 int narcs = 0;
2585 for (a = s->outs; a != NULL; a = a->outchain)
2587 if (a->to == nexts && isconstraintarc(a))
2589 refarc = a;
2590 narcs++;
2593 assert(narcs > 0);
2594 if (narcs > 1)
2595 refarc = NULL; /* multiple constraint arcs here, no good */
2597 s = nexts;
2598 } while (s != sinitial);
2600 if (refarc)
2602 /* break at the refarc */
2603 shead = refarc->from;
2604 stail = refarc->to;
2605 assert(stail == shead->tmp);
2607 else
2609 /* for lack of a better idea, break after sinitial */
2610 shead = sinitial;
2611 stail = sinitial->tmp;
2615 * Reset the tmp fields so that we can use them for local storage in
2616 * clonesuccessorstates. (findconstraintloop won't mind, since it's just
2617 * going to abandon its search anyway.)
2619 for (s = nfa->states; s != NULL; s = s->next)
2620 s->tmp = NULL;
2623 * Recursively build clone state(s) as needed.
2625 sclone = newstate(nfa);
2626 if (sclone == NULL)
2628 assert(NISERR());
2629 return;
2632 clonesuccessorstates(nfa, stail, sclone, shead, refarc,
2633 NULL, NULL, nfa->nstates);
2635 if (NISERR())
2636 return;
2639 * It's possible that sclone has no outarcs at all, in which case it's
2640 * useless. (We don't try extremely hard to get rid of useless states
2641 * here, but this is an easy and fairly common case.)
2643 if (sclone->nouts == 0)
2645 freestate(nfa, sclone);
2646 sclone = NULL;
2650 * Move shead's constraint-loop arcs to point to sclone, or just drop them
2651 * if we discovered we don't need sclone.
2653 for (a = shead->outs; a != NULL; a = nexta)
2655 nexta = a->outchain;
2656 if (a->to == stail && isconstraintarc(a))
2658 if (sclone)
2659 cparc(nfa, a, shead, sclone);
2660 freearc(nfa, a);
2661 if (NISERR())
2662 break;
2668 * clonesuccessorstates - create a tree of constraint-arc successor states
2670 * ssource is the state to be cloned, and sclone is the state to copy its
2671 * outarcs into. sclone's inarcs, if any, should already be set up.
2673 * spredecessor is the original predecessor state that we are trying to build
2674 * successors for (it may not be the immediate predecessor of ssource).
2675 * refarc, if not NULL, is the original constraint arc that is known to have
2676 * been traversed out of spredecessor to reach the successor(s).
2678 * For each cloned successor state, we transiently create a "donemap" that is
2679 * a boolean array showing which source states we've already visited for this
2680 * clone state. This prevents infinite recursion as well as useless repeat
2681 * visits to the same state subtree (which can add up fast, since typical NFAs
2682 * have multiple redundant arc pathways). Each donemap is a char array
2683 * indexed by state number. The donemaps are all of the same size "nstates",
2684 * which is nfa->nstates as of the start of the recursion. This is enough to
2685 * have entries for all pre-existing states, but *not* entries for clone
2686 * states created during the recursion. That's okay since we have no need to
2687 * mark those.
2689 * curdonemap is NULL when recursing to a new sclone state, or sclone's
2690 * donemap when we are recursing without having created a new state (which we
2691 * do when we decide we can merge a successor state into the current clone
2692 * state). outerdonemap is NULL at the top level and otherwise the parent
2693 * clone state's donemap.
2695 * The successor states we create and fill here form a strict tree structure,
2696 * with each state having exactly one predecessor, except that the toplevel
2697 * state has no inarcs as yet (breakconstraintloop will add its inarcs from
2698 * spredecessor after we're done). Thus, we can examine sclone's inarcs back
2699 * to the root, plus refarc if any, to identify the set of constraints already
2700 * known valid at the current point. This allows us to avoid generating extra
2701 * successor states.
2703 static void
2704 clonesuccessorstates(struct nfa *nfa,
2705 struct state *ssource,
2706 struct state *sclone,
2707 struct state *spredecessor,
2708 struct arc *refarc,
2709 char *curdonemap,
2710 char *outerdonemap,
2711 int nstates)
2713 char *donemap;
2714 struct arc *a;
2716 /* Since this is recursive, it could be driven to stack overflow */
2717 if (STACK_TOO_DEEP(nfa->v->re))
2719 NERR(REG_ETOOBIG);
2720 return;
2723 /* If this state hasn't already got a donemap, create one */
2724 donemap = curdonemap;
2725 if (donemap == NULL)
2727 donemap = (char *) MALLOC(nstates * sizeof(char));
2728 if (donemap == NULL)
2730 NERR(REG_ESPACE);
2731 return;
2734 if (outerdonemap != NULL)
2737 * Not at outermost recursion level, so copy the outer level's
2738 * donemap; this ensures that we see states in process of being
2739 * visited at outer levels, or already merged into predecessor
2740 * states, as ones we shouldn't traverse back to.
2742 memcpy(donemap, outerdonemap, nstates * sizeof(char));
2744 else
2746 /* At outermost level, only spredecessor is off-limits */
2747 memset(donemap, 0, nstates * sizeof(char));
2748 assert(spredecessor->no < nstates);
2749 donemap[spredecessor->no] = 1;
2753 /* Mark ssource as visited in the donemap */
2754 assert(ssource->no < nstates);
2755 assert(donemap[ssource->no] == 0);
2756 donemap[ssource->no] = 1;
2759 * We proceed by first cloning all of ssource's outarcs, creating new
2760 * clone states as needed but not doing more with them than that. Then in
2761 * a second pass, recurse to process the child clone states. This allows
2762 * us to have only one child clone state per reachable source state, even
2763 * when there are multiple outarcs leading to the same state. Also, when
2764 * we do visit a child state, its set of inarcs is known exactly, which
2765 * makes it safe to apply the constraint-is-already-checked optimization.
2766 * Also, this ensures that we've merged all the states we can into the
2767 * current clone before we recurse to any children, thus possibly saving
2768 * them from making extra images of those states.
2770 * While this function runs, child clone states of the current state are
2771 * marked by setting their tmp fields to point to the original state they
2772 * were cloned from. This makes it possible to detect multiple outarcs
2773 * leading to the same state, and also makes it easy to distinguish clone
2774 * states from original states (which will have tmp == NULL).
2776 for (a = ssource->outs; a != NULL && !NISERR(); a = a->outchain)
2778 struct state *sto = a->to;
2781 * We do not consider cloning successor states that have no constraint
2782 * outarcs; just link to them as-is. They cannot be part of a
2783 * constraint loop so there is no need to make copies. In particular,
2784 * this rule keeps us from trying to clone the post state, which would
2785 * be a bad idea.
2787 if (isconstraintarc(a) && hasconstraintout(sto))
2789 struct state *prevclone;
2790 int canmerge;
2791 struct arc *a2;
2794 * Back-link constraint arcs must not be followed. Nor is there a
2795 * need to revisit states previously merged into this clone.
2797 assert(sto->no < nstates);
2798 if (donemap[sto->no] != 0)
2799 continue;
2802 * Check whether we already have a child clone state for this
2803 * source state.
2805 prevclone = NULL;
2806 for (a2 = sclone->outs; a2 != NULL; a2 = a2->outchain)
2808 if (a2->to->tmp == sto)
2810 prevclone = a2->to;
2811 break;
2816 * If this arc is labeled the same as refarc, or the same as any
2817 * arc we must have traversed to get to sclone, then no additional
2818 * constraints need to be met to get to sto, so we should just
2819 * merge its outarcs into sclone.
2821 if (refarc && a->type == refarc->type && a->co == refarc->co)
2822 canmerge = 1;
2823 else
2825 struct state *s;
2827 canmerge = 0;
2828 for (s = sclone; s->ins; s = s->ins->from)
2830 if (s->nins == 1 &&
2831 a->type == s->ins->type && a->co == s->ins->co)
2833 canmerge = 1;
2834 break;
2839 if (canmerge)
2842 * We can merge into sclone. If we previously made a child
2843 * clone state, drop it; there's no need to visit it. (This
2844 * can happen if ssource has multiple pathways to sto, and we
2845 * only just now found one that is provably a no-op.)
2847 if (prevclone)
2848 dropstate(nfa, prevclone); /* kills our outarc, too */
2850 /* Recurse to merge sto's outarcs into sclone */
2851 clonesuccessorstates(nfa,
2852 sto,
2853 sclone,
2854 spredecessor,
2855 refarc,
2856 donemap,
2857 outerdonemap,
2858 nstates);
2859 /* sto should now be marked as previously visited */
2860 assert(NISERR() || donemap[sto->no] == 1);
2862 else if (prevclone)
2865 * We already have a clone state for this successor, so just
2866 * make another arc to it.
2868 cparc(nfa, a, sclone, prevclone);
2870 else
2873 * We need to create a new successor clone state.
2875 struct state *stoclone;
2877 stoclone = newstate(nfa);
2878 if (stoclone == NULL)
2880 assert(NISERR());
2881 break;
2883 /* Mark it as to what it's a clone of */
2884 stoclone->tmp = sto;
2885 /* ... and add the outarc leading to it */
2886 cparc(nfa, a, sclone, stoclone);
2889 else
2892 * Non-constraint outarcs just get copied to sclone, as do outarcs
2893 * leading to states with no constraint outarc.
2895 cparc(nfa, a, sclone, sto);
2900 * If we are at outer level for this clone state, recurse to all its child
2901 * clone states, clearing their tmp fields as we go. (If we're not
2902 * outermost for sclone, leave this to be done by the outer call level.)
2903 * Note that if we have multiple outarcs leading to the same clone state,
2904 * it will only be recursed-to once.
2906 if (curdonemap == NULL)
2908 for (a = sclone->outs; a != NULL && !NISERR(); a = a->outchain)
2910 struct state *stoclone = a->to;
2911 struct state *sto = stoclone->tmp;
2913 if (sto != NULL)
2915 stoclone->tmp = NULL;
2916 clonesuccessorstates(nfa,
2917 sto,
2918 stoclone,
2919 spredecessor,
2920 refarc,
2921 NULL,
2922 donemap,
2923 nstates);
2927 /* Don't forget to free sclone's donemap when done with it */
2928 FREE(donemap);
2933 * removecantmatch - remove CANTMATCH arcs, which are no longer useful
2934 * once we are done with the parsing phase. (We need them only to
2935 * preserve connectedness of NFA subgraphs during parsing.)
2937 static void
2938 removecantmatch(struct nfa *nfa)
2940 struct state *s;
2942 for (s = nfa->states; s != NULL; s = s->next)
2944 struct arc *a;
2945 struct arc *nexta;
2947 for (a = s->outs; a != NULL; a = nexta)
2949 nexta = a->outchain;
2950 if (a->type == CANTMATCH)
2952 freearc(nfa, a);
2953 if (NISERR())
2954 return;
2961 * cleanup - clean up NFA after optimizations
2963 static void
2964 cleanup(struct nfa *nfa)
2966 struct state *s;
2967 struct state *nexts;
2968 int n;
2970 if (NISERR())
2971 return;
2973 /* clear out unreachable or dead-end states */
2974 /* use pre to mark reachable, then post to mark can-reach-post */
2975 markreachable(nfa, nfa->pre, (struct state *) NULL, nfa->pre);
2976 markcanreach(nfa, nfa->post, nfa->pre, nfa->post);
2977 for (s = nfa->states; s != NULL && !NISERR(); s = nexts)
2979 nexts = s->next;
2980 if (s->tmp != nfa->post && !s->flag)
2981 dropstate(nfa, s);
2983 assert(NISERR() || nfa->post->nins == 0 || nfa->post->tmp == nfa->post);
2984 cleartraverse(nfa, nfa->pre);
2985 assert(NISERR() || nfa->post->nins == 0 || nfa->post->tmp == NULL);
2986 /* the nins==0 (final unreachable) case will be caught later */
2988 /* renumber surviving states */
2989 n = 0;
2990 for (s = nfa->states; s != NULL; s = s->next)
2991 s->no = n++;
2992 nfa->nstates = n;
2996 * markreachable - recursive marking of reachable states
2998 static void
2999 markreachable(struct nfa *nfa,
3000 struct state *s,
3001 struct state *okay, /* consider only states with this mark */
3002 struct state *mark) /* the value to mark with */
3004 struct arc *a;
3006 /* Since this is recursive, it could be driven to stack overflow */
3007 if (STACK_TOO_DEEP(nfa->v->re))
3009 NERR(REG_ETOOBIG);
3010 return;
3013 if (s->tmp != okay)
3014 return;
3015 s->tmp = mark;
3017 for (a = s->outs; a != NULL; a = a->outchain)
3018 markreachable(nfa, a->to, okay, mark);
3022 * markcanreach - recursive marking of states which can reach here
3024 static void
3025 markcanreach(struct nfa *nfa,
3026 struct state *s,
3027 struct state *okay, /* consider only states with this mark */
3028 struct state *mark) /* the value to mark with */
3030 struct arc *a;
3032 /* Since this is recursive, it could be driven to stack overflow */
3033 if (STACK_TOO_DEEP(nfa->v->re))
3035 NERR(REG_ETOOBIG);
3036 return;
3039 if (s->tmp != okay)
3040 return;
3041 s->tmp = mark;
3043 for (a = s->ins; a != NULL; a = a->inchain)
3044 markcanreach(nfa, a->from, okay, mark);
3048 * analyze - ascertain potentially-useful facts about an optimized NFA
3050 static long /* re_info bits to be ORed in */
3051 analyze(struct nfa *nfa)
3053 struct arc *a;
3054 struct arc *aa;
3056 if (NISERR())
3057 return 0;
3059 /* Detect whether NFA can't match anything */
3060 if (nfa->pre->outs == NULL)
3061 return REG_UIMPOSSIBLE;
3063 /* Detect whether NFA matches all strings (possibly with length bounds) */
3064 checkmatchall(nfa);
3066 /* Detect whether NFA can possibly match a zero-length string */
3067 for (a = nfa->pre->outs; a != NULL; a = a->outchain)
3068 for (aa = a->to->outs; aa != NULL; aa = aa->outchain)
3069 if (aa->to == nfa->post)
3070 return REG_UEMPTYMATCH;
3071 return 0;
3075 * checkmatchall - does the NFA represent no more than a string length test?
3077 * If so, set nfa->minmatchall and nfa->maxmatchall correctly (they are -1
3078 * to begin with) and set the MATCHALL bit in nfa->flags.
3080 * To succeed, we require all arcs to be PLAIN RAINBOW arcs, except for those
3081 * for pseudocolors (i.e., BOS/BOL/EOS/EOL). We must be able to reach the
3082 * post state via RAINBOW arcs, and if there are any loops in the graph, they
3083 * must be loop-to-self arcs, ensuring that each loop iteration consumes
3084 * exactly one character. (Longer loops are problematic because they create
3085 * non-consecutive possible match lengths; we have no good way to represent
3086 * that situation for lengths beyond the DUPINF limit.)
3088 * Pseudocolor arcs complicate things a little. We know that they can only
3089 * appear as pre-state outarcs (for BOS/BOL) or post-state inarcs (for
3090 * EOS/EOL). There, they must exactly replicate the parallel RAINBOW arcs,
3091 * e.g. if the pre state has one RAINBOW outarc to state 2, it must have BOS
3092 * and BOL outarcs to state 2, and no others. Missing or extra pseudocolor
3093 * arcs can occur, meaning that the NFA involves some constraint on the
3094 * adjacent characters, which makes it not a matchall NFA.
3096 static void
3097 checkmatchall(struct nfa *nfa)
3099 bool **haspaths;
3100 struct state *s;
3101 int i;
3104 * If there are too many states, don't bother trying to detect matchall.
3105 * This limit serves to bound the time and memory we could consume below.
3106 * Note that even if the graph is all-RAINBOW, if there are significantly
3107 * more than DUPINF states then it's likely that there are paths of length
3108 * more than DUPINF, which would force us to fail anyhow. In practice,
3109 * plausible ways of writing a matchall regex with maximum finite path
3110 * length K tend not to have very many more than K states.
3112 if (nfa->nstates > DUPINF * 2)
3113 return;
3116 * First, scan all the states to verify that only RAINBOW arcs appear,
3117 * plus pseudocolor arcs adjacent to the pre and post states. This lets
3118 * us quickly eliminate most cases that aren't matchall NFAs.
3120 for (s = nfa->states; s != NULL; s = s->next)
3122 struct arc *a;
3124 for (a = s->outs; a != NULL; a = a->outchain)
3126 if (a->type != PLAIN)
3127 return; /* any LACONs make it non-matchall */
3128 if (a->co != RAINBOW)
3130 if (nfa->cm->cd[a->co].flags & PSEUDO)
3133 * Pseudocolor arc: verify it's in a valid place (this
3134 * seems quite unlikely to fail, but let's be sure).
3136 if (s == nfa->pre &&
3137 (a->co == nfa->bos[0] || a->co == nfa->bos[1]))
3138 /* okay BOS/BOL arc */ ;
3139 else if (a->to == nfa->post &&
3140 (a->co == nfa->eos[0] || a->co == nfa->eos[1]))
3141 /* okay EOS/EOL arc */ ;
3142 else
3143 return; /* unexpected pseudocolor arc */
3144 /* We'll check these arcs some more below. */
3146 else
3147 return; /* any other color makes it non-matchall */
3150 /* Also, assert that the tmp fields are available for use. */
3151 assert(s->tmp == NULL);
3155 * The next cheapest check we can make is to verify that the BOS/BOL
3156 * outarcs of the pre state reach the same states as its RAINBOW outarcs.
3157 * If they don't, the NFA expresses some constraints on the character
3158 * before the matched string, making it non-matchall. Likewise, the
3159 * EOS/EOL inarcs of the post state must match its RAINBOW inarcs.
3161 if (!check_out_colors_match(nfa->pre, RAINBOW, nfa->bos[0]) ||
3162 !check_out_colors_match(nfa->pre, RAINBOW, nfa->bos[1]) ||
3163 !check_in_colors_match(nfa->post, RAINBOW, nfa->eos[0]) ||
3164 !check_in_colors_match(nfa->post, RAINBOW, nfa->eos[1]))
3165 return;
3168 * Initialize an array of path-length arrays, in which
3169 * checkmatchall_recurse will return per-state results. This lets us
3170 * memo-ize the recursive search and avoid exponential time consumption.
3172 haspaths = (bool **) MALLOC(nfa->nstates * sizeof(bool *));
3173 if (haspaths == NULL)
3174 return; /* fail quietly */
3175 memset(haspaths, 0, nfa->nstates * sizeof(bool *));
3178 * Recursively search the graph for all-RAINBOW paths to the "post" state,
3179 * starting at the "pre" state, and computing the lengths of the paths.
3180 * (Given the preceding checks, there should be at least one such path.
3181 * However we could get back a false result anyway, in case there are
3182 * multi-state loops, paths exceeding DUPINF+1 length, or non-algorithmic
3183 * failures such as ENOMEM.)
3185 if (checkmatchall_recurse(nfa, nfa->pre, haspaths))
3187 /* The useful result is the path length array for the pre state */
3188 bool *haspath = haspaths[nfa->pre->no];
3189 int minmatch,
3190 maxmatch,
3191 morematch;
3193 assert(haspath != NULL);
3196 * haspath[] now represents the set of possible path lengths; but we
3197 * want to reduce that to a min and max value, because it doesn't seem
3198 * worth complicating regexec.c to deal with nonconsecutive possible
3199 * match lengths. Find min and max of first run of lengths, then
3200 * verify there are no nonconsecutive lengths.
3202 for (minmatch = 0; minmatch <= DUPINF + 1; minmatch++)
3204 if (haspath[minmatch])
3205 break;
3207 assert(minmatch <= DUPINF + 1); /* else checkmatchall_recurse lied */
3208 for (maxmatch = minmatch; maxmatch < DUPINF + 1; maxmatch++)
3210 if (!haspath[maxmatch + 1])
3211 break;
3213 for (morematch = maxmatch + 1; morematch <= DUPINF + 1; morematch++)
3215 if (haspath[morematch])
3217 haspath = NULL; /* fail, there are nonconsecutive lengths */
3218 break;
3222 if (haspath != NULL)
3225 * Success, so record the info. Here we have a fine point: the
3226 * path length from the pre state includes the pre-to-initial
3227 * transition, so it's one more than the actually matched string
3228 * length. (We avoided counting the final-to-post transition
3229 * within checkmatchall_recurse, but not this one.) This is why
3230 * checkmatchall_recurse allows one more level of path length than
3231 * might seem necessary. This decrement also takes care of
3232 * converting checkmatchall_recurse's definition of "infinity" as
3233 * "DUPINF+1" to our normal representation as "DUPINF".
3235 assert(minmatch > 0); /* else pre and post states were adjacent */
3236 nfa->minmatchall = minmatch - 1;
3237 nfa->maxmatchall = maxmatch - 1;
3238 nfa->flags |= MATCHALL;
3242 /* Clean up */
3243 for (i = 0; i < nfa->nstates; i++)
3245 if (haspaths[i] != NULL)
3246 FREE(haspaths[i]);
3248 FREE(haspaths);
3252 * checkmatchall_recurse - recursive search for checkmatchall
3254 * s is the state to be examined in this recursion level.
3255 * haspaths[] is an array of per-state exit path length arrays.
3257 * We return true if the search was performed successfully, false if
3258 * we had to fail because of multi-state loops or other internal reasons.
3259 * (Because "dead" states that can't reach the post state have been
3260 * eliminated, and we already verified that only RAINBOW and matching
3261 * pseudocolor arcs exist, every state should have RAINBOW path(s) to
3262 * the post state. Hence we take a false result from recursive calls
3263 * as meaning that we'd better fail altogether, not just that that
3264 * particular state can't reach the post state.)
3266 * On success, we store a malloc'd result array in haspaths[s->no],
3267 * showing the possible path lengths from s to the post state.
3268 * Each state's haspath[] array is of length DUPINF+2. The entries from
3269 * k = 0 to DUPINF are true if there is an all-RAINBOW path of length k
3270 * from this state to the string end. haspath[DUPINF+1] is true if all
3271 * path lengths >= DUPINF+1 are possible. (Situations that cannot be
3272 * represented under these rules cause failure.)
3274 * checkmatchall is responsible for eventually freeing the haspath[] arrays.
3276 static bool
3277 checkmatchall_recurse(struct nfa *nfa, struct state *s, bool **haspaths)
3279 bool result = false;
3280 bool foundloop = false;
3281 bool *haspath;
3282 struct arc *a;
3285 * Since this is recursive, it could be driven to stack overflow. But we
3286 * need not treat that as a hard failure; just deem the NFA non-matchall.
3288 if (STACK_TOO_DEEP(nfa->v->re))
3289 return false;
3291 /* In case the search takes a long time, check for cancel */
3292 INTERRUPT(nfa->v->re);
3294 /* Create a haspath array for this state */
3295 haspath = (bool *) MALLOC((DUPINF + 2) * sizeof(bool));
3296 if (haspath == NULL)
3297 return false; /* again, treat as non-matchall */
3298 memset(haspath, 0, (DUPINF + 2) * sizeof(bool));
3300 /* Mark this state as being visited */
3301 assert(s->tmp == NULL);
3302 s->tmp = s;
3304 for (a = s->outs; a != NULL; a = a->outchain)
3306 if (a->co != RAINBOW)
3307 continue; /* ignore pseudocolor arcs */
3308 if (a->to == nfa->post)
3310 /* We found an all-RAINBOW path to the post state */
3311 result = true;
3314 * Mark this state as being zero steps away from the string end
3315 * (the transition to the post state isn't counted).
3317 haspath[0] = true;
3319 else if (a->to == s)
3321 /* We found a cycle of length 1, which we'll deal with below. */
3322 foundloop = true;
3324 else if (a->to->tmp != NULL)
3326 /* It's busy, so we found a cycle of length > 1, so fail. */
3327 result = false;
3328 break;
3330 else
3332 /* Consider paths forward through this to-state. */
3333 bool *nexthaspath;
3334 int i;
3336 /* If to-state was not already visited, recurse */
3337 if (haspaths[a->to->no] == NULL)
3339 result = checkmatchall_recurse(nfa, a->to, haspaths);
3340 /* Fail if any recursive path fails */
3341 if (!result)
3342 break;
3344 else
3346 /* The previous visit must have found path(s) to the end */
3347 result = true;
3349 assert(a->to->tmp == NULL);
3350 nexthaspath = haspaths[a->to->no];
3351 assert(nexthaspath != NULL);
3354 * Now, for every path of length i from a->to to the string end,
3355 * there is a path of length i + 1 from s to the string end.
3357 if (nexthaspath[DUPINF] != nexthaspath[DUPINF + 1])
3360 * a->to has a path of length exactly DUPINF, but not longer;
3361 * or it has paths of all lengths > DUPINF but not one of
3362 * exactly that length. In either case, we cannot represent
3363 * the possible path lengths from s correctly, so fail.
3365 result = false;
3366 break;
3368 /* Merge knowledge of these path lengths into what we have */
3369 for (i = 0; i < DUPINF; i++)
3370 haspath[i + 1] |= nexthaspath[i];
3371 /* Infinity + 1 is still infinity */
3372 haspath[DUPINF + 1] |= nexthaspath[DUPINF + 1];
3376 if (result && foundloop)
3379 * If there is a length-1 loop at this state, then find the shortest
3380 * known path length to the end. The loop means that every larger
3381 * path length is possible, too. (It doesn't matter whether any of
3382 * the longer lengths were already known possible.)
3384 int i;
3386 for (i = 0; i <= DUPINF; i++)
3388 if (haspath[i])
3389 break;
3391 for (i++; i <= DUPINF + 1; i++)
3392 haspath[i] = true;
3395 /* Report out the completed path length map */
3396 assert(s->no < nfa->nstates);
3397 assert(haspaths[s->no] == NULL);
3398 haspaths[s->no] = haspath;
3400 /* Mark state no longer busy */
3401 s->tmp = NULL;
3403 return result;
3407 * check_out_colors_match - subroutine for checkmatchall
3409 * Check whether the set of states reachable from s by arcs of color co1
3410 * is equivalent to the set reachable by arcs of color co2.
3411 * checkmatchall already verified that all of the NFA's arcs are PLAIN,
3412 * so we need not examine arc types here.
3414 static bool
3415 check_out_colors_match(struct state *s, color co1, color co2)
3417 bool result = true;
3418 struct arc *a;
3421 * To do this in linear time, we assume that the NFA contains no duplicate
3422 * arcs. Run through the out-arcs, marking states reachable by arcs of
3423 * color co1. Run through again, un-marking states reachable by arcs of
3424 * color co2; if we see a not-marked state, we know this co2 arc is
3425 * unmatched. Then run through again, checking for still-marked states,
3426 * and in any case leaving all the tmp fields reset to NULL.
3428 for (a = s->outs; a != NULL; a = a->outchain)
3430 if (a->co == co1)
3432 assert(a->to->tmp == NULL);
3433 a->to->tmp = a->to;
3436 for (a = s->outs; a != NULL; a = a->outchain)
3438 if (a->co == co2)
3440 if (a->to->tmp != NULL)
3441 a->to->tmp = NULL;
3442 else
3443 result = false; /* unmatched co2 arc */
3446 for (a = s->outs; a != NULL; a = a->outchain)
3448 if (a->co == co1)
3450 if (a->to->tmp != NULL)
3452 result = false; /* unmatched co1 arc */
3453 a->to->tmp = NULL;
3457 return result;
3461 * check_in_colors_match - subroutine for checkmatchall
3463 * Check whether the set of states that can reach s by arcs of color co1
3464 * is equivalent to the set that can reach s by arcs of color co2.
3465 * checkmatchall already verified that all of the NFA's arcs are PLAIN,
3466 * so we need not examine arc types here.
3468 static bool
3469 check_in_colors_match(struct state *s, color co1, color co2)
3471 bool result = true;
3472 struct arc *a;
3475 * Identical algorithm to check_out_colors_match, except examine the
3476 * from-states of s' inarcs.
3478 for (a = s->ins; a != NULL; a = a->inchain)
3480 if (a->co == co1)
3482 assert(a->from->tmp == NULL);
3483 a->from->tmp = a->from;
3486 for (a = s->ins; a != NULL; a = a->inchain)
3488 if (a->co == co2)
3490 if (a->from->tmp != NULL)
3491 a->from->tmp = NULL;
3492 else
3493 result = false; /* unmatched co2 arc */
3496 for (a = s->ins; a != NULL; a = a->inchain)
3498 if (a->co == co1)
3500 if (a->from->tmp != NULL)
3502 result = false; /* unmatched co1 arc */
3503 a->from->tmp = NULL;
3507 return result;
3511 * compact - construct the compact representation of an NFA
3513 static void
3514 compact(struct nfa *nfa,
3515 struct cnfa *cnfa)
3517 struct state *s;
3518 struct arc *a;
3519 size_t nstates;
3520 size_t narcs;
3521 struct carc *ca;
3522 struct carc *first;
3524 assert(!NISERR());
3526 nstates = 0;
3527 narcs = 0;
3528 for (s = nfa->states; s != NULL; s = s->next)
3530 nstates++;
3531 narcs += s->nouts + 1; /* need one extra for endmarker */
3534 cnfa->stflags = (char *) MALLOC(nstates * sizeof(char));
3535 cnfa->states = (struct carc **) MALLOC(nstates * sizeof(struct carc *));
3536 cnfa->arcs = (struct carc *) MALLOC(narcs * sizeof(struct carc));
3537 if (cnfa->stflags == NULL || cnfa->states == NULL || cnfa->arcs == NULL)
3539 if (cnfa->stflags != NULL)
3540 FREE(cnfa->stflags);
3541 if (cnfa->states != NULL)
3542 FREE(cnfa->states);
3543 if (cnfa->arcs != NULL)
3544 FREE(cnfa->arcs);
3545 NERR(REG_ESPACE);
3546 return;
3548 cnfa->nstates = nstates;
3549 cnfa->pre = nfa->pre->no;
3550 cnfa->post = nfa->post->no;
3551 cnfa->bos[0] = nfa->bos[0];
3552 cnfa->bos[1] = nfa->bos[1];
3553 cnfa->eos[0] = nfa->eos[0];
3554 cnfa->eos[1] = nfa->eos[1];
3555 cnfa->ncolors = maxcolor(nfa->cm) + 1;
3556 cnfa->flags = nfa->flags;
3557 cnfa->minmatchall = nfa->minmatchall;
3558 cnfa->maxmatchall = nfa->maxmatchall;
3560 ca = cnfa->arcs;
3561 for (s = nfa->states; s != NULL; s = s->next)
3563 assert((size_t) s->no < nstates);
3564 cnfa->stflags[s->no] = 0;
3565 cnfa->states[s->no] = ca;
3566 first = ca;
3567 for (a = s->outs; a != NULL; a = a->outchain)
3568 switch (a->type)
3570 case PLAIN:
3571 ca->co = a->co;
3572 ca->to = a->to->no;
3573 ca++;
3574 break;
3575 case LACON:
3576 assert(s->no != cnfa->pre);
3577 assert(a->co >= 0);
3578 ca->co = (color) (cnfa->ncolors + a->co);
3579 ca->to = a->to->no;
3580 ca++;
3581 cnfa->flags |= HASLACONS;
3582 break;
3583 default:
3584 NERR(REG_ASSERT);
3585 return;
3587 carcsort(first, ca - first);
3588 ca->co = COLORLESS;
3589 ca->to = 0;
3590 ca++;
3592 assert(ca == &cnfa->arcs[narcs]);
3593 assert(cnfa->nstates != 0);
3595 /* mark no-progress states */
3596 for (a = nfa->pre->outs; a != NULL; a = a->outchain)
3597 cnfa->stflags[a->to->no] = CNFA_NOPROGRESS;
3598 cnfa->stflags[nfa->pre->no] = CNFA_NOPROGRESS;
3602 * carcsort - sort compacted-NFA arcs by color
3604 static void
3605 carcsort(struct carc *first, size_t n)
3607 if (n > 1)
3608 qsort(first, n, sizeof(struct carc), carc_cmp);
3611 static int
3612 carc_cmp(const void *a, const void *b)
3614 const struct carc *aa = (const struct carc *) a;
3615 const struct carc *bb = (const struct carc *) b;
3617 if (aa->co < bb->co)
3618 return -1;
3619 if (aa->co > bb->co)
3620 return +1;
3621 if (aa->to < bb->to)
3622 return -1;
3623 if (aa->to > bb->to)
3624 return +1;
3625 /* This is unreached, since there should be no duplicate arcs now: */
3626 return 0;
3630 * freecnfa - free a compacted NFA
3632 static void
3633 freecnfa(struct cnfa *cnfa)
3635 assert(!NULLCNFA(*cnfa)); /* not empty already */
3636 FREE(cnfa->stflags);
3637 FREE(cnfa->states);
3638 FREE(cnfa->arcs);
3639 ZAPCNFA(*cnfa);
3643 * dumpnfa - dump an NFA in human-readable form
3645 static void
3646 dumpnfa(struct nfa *nfa,
3647 FILE *f)
3649 #ifdef REG_DEBUG
3650 struct state *s;
3651 int nstates = 0;
3652 int narcs = 0;
3654 fprintf(f, "pre %d, post %d", nfa->pre->no, nfa->post->no);
3655 if (nfa->bos[0] != COLORLESS)
3656 fprintf(f, ", bos [%ld]", (long) nfa->bos[0]);
3657 if (nfa->bos[1] != COLORLESS)
3658 fprintf(f, ", bol [%ld]", (long) nfa->bos[1]);
3659 if (nfa->eos[0] != COLORLESS)
3660 fprintf(f, ", eos [%ld]", (long) nfa->eos[0]);
3661 if (nfa->eos[1] != COLORLESS)
3662 fprintf(f, ", eol [%ld]", (long) nfa->eos[1]);
3663 if (nfa->flags & HASLACONS)
3664 fprintf(f, ", haslacons");
3665 if (nfa->flags & HASCANTMATCH)
3666 fprintf(f, ", hascantmatch");
3667 if (nfa->flags & MATCHALL)
3669 fprintf(f, ", minmatchall %d", nfa->minmatchall);
3670 if (nfa->maxmatchall == DUPINF)
3671 fprintf(f, ", maxmatchall inf");
3672 else
3673 fprintf(f, ", maxmatchall %d", nfa->maxmatchall);
3675 fprintf(f, "\n");
3676 for (s = nfa->states; s != NULL; s = s->next)
3678 dumpstate(s, f);
3679 nstates++;
3680 narcs += s->nouts;
3682 fprintf(f, "total of %d states, %d arcs\n", nstates, narcs);
3683 if (nfa->parent == NULL)
3684 dumpcolors(nfa->cm, f);
3685 fflush(f);
3686 #endif
3689 #ifdef REG_DEBUG /* subordinates of dumpnfa */
3692 * dumpstate - dump an NFA state in human-readable form
3694 static void
3695 dumpstate(struct state *s,
3696 FILE *f)
3698 struct arc *a;
3700 fprintf(f, "%d%s%c", s->no, (s->tmp != NULL) ? "T" : "",
3701 (s->flag) ? s->flag : '.');
3702 if (s->prev != NULL && s->prev->next != s)
3703 fprintf(f, "\tstate chain bad\n");
3704 if (s->nouts == 0)
3705 fprintf(f, "\tno out arcs\n");
3706 else
3707 dumparcs(s, f);
3708 for (a = s->ins; a != NULL; a = a->inchain)
3710 if (a->to != s)
3711 fprintf(f, "\tlink from %d to %d on %d's in-chain\n",
3712 a->from->no, a->to->no, s->no);
3714 fflush(f);
3718 * dumparcs - dump out-arcs in human-readable form
3720 static void
3721 dumparcs(struct state *s,
3722 FILE *f)
3724 int pos;
3725 struct arc *a;
3727 /* printing oldest arcs first is usually clearer */
3728 a = s->outs;
3729 assert(a != NULL);
3730 while (a->outchain != NULL)
3731 a = a->outchain;
3732 pos = 1;
3735 dumparc(a, s, f);
3736 if (pos == 5)
3738 fprintf(f, "\n");
3739 pos = 1;
3741 else
3742 pos++;
3743 a = a->outchainRev;
3744 } while (a != NULL);
3745 if (pos != 1)
3746 fprintf(f, "\n");
3750 * dumparc - dump one outarc in readable form, including prefixing tab
3752 static void
3753 dumparc(struct arc *a,
3754 struct state *s,
3755 FILE *f)
3757 struct arc *aa;
3759 fprintf(f, "\t");
3760 switch (a->type)
3762 case PLAIN:
3763 if (a->co == RAINBOW)
3764 fprintf(f, "[*]");
3765 else
3766 fprintf(f, "[%ld]", (long) a->co);
3767 break;
3768 case AHEAD:
3769 if (a->co == RAINBOW)
3770 fprintf(f, ">*>");
3771 else
3772 fprintf(f, ">%ld>", (long) a->co);
3773 break;
3774 case BEHIND:
3775 if (a->co == RAINBOW)
3776 fprintf(f, "<*<");
3777 else
3778 fprintf(f, "<%ld<", (long) a->co);
3779 break;
3780 case LACON:
3781 fprintf(f, ":%ld:", (long) a->co);
3782 break;
3783 case '^':
3784 case '$':
3785 fprintf(f, "%c%d", a->type, (int) a->co);
3786 break;
3787 case EMPTY:
3788 break;
3789 case CANTMATCH:
3790 fprintf(f, "X");
3791 break;
3792 default:
3793 fprintf(f, "0x%x/0%lo", a->type, (long) a->co);
3794 break;
3796 if (a->from != s)
3797 fprintf(f, "?%d?", a->from->no);
3798 for (aa = a->from->outs; aa != NULL; aa = aa->outchain)
3799 if (aa == a)
3800 break; /* NOTE BREAK OUT */
3801 if (aa == NULL)
3802 fprintf(f, "?!?"); /* missing from out-chain */
3803 fprintf(f, "->");
3804 if (a->to == NULL)
3806 fprintf(f, "NULL");
3807 return;
3809 fprintf(f, "%d", a->to->no);
3810 for (aa = a->to->ins; aa != NULL; aa = aa->inchain)
3811 if (aa == a)
3812 break; /* NOTE BREAK OUT */
3813 if (aa == NULL)
3814 fprintf(f, "?!?"); /* missing from in-chain */
3816 #endif /* REG_DEBUG */
3819 * dumpcnfa - dump a compacted NFA in human-readable form
3821 #ifdef REG_DEBUG
3822 static void
3823 dumpcnfa(struct cnfa *cnfa,
3824 FILE *f)
3826 int st;
3828 fprintf(f, "pre %d, post %d", cnfa->pre, cnfa->post);
3829 if (cnfa->bos[0] != COLORLESS)
3830 fprintf(f, ", bos [%ld]", (long) cnfa->bos[0]);
3831 if (cnfa->bos[1] != COLORLESS)
3832 fprintf(f, ", bol [%ld]", (long) cnfa->bos[1]);
3833 if (cnfa->eos[0] != COLORLESS)
3834 fprintf(f, ", eos [%ld]", (long) cnfa->eos[0]);
3835 if (cnfa->eos[1] != COLORLESS)
3836 fprintf(f, ", eol [%ld]", (long) cnfa->eos[1]);
3837 if (cnfa->flags & HASLACONS)
3838 fprintf(f, ", haslacons");
3839 if (cnfa->flags & MATCHALL)
3841 fprintf(f, ", minmatchall %d", cnfa->minmatchall);
3842 if (cnfa->maxmatchall == DUPINF)
3843 fprintf(f, ", maxmatchall inf");
3844 else
3845 fprintf(f, ", maxmatchall %d", cnfa->maxmatchall);
3847 fprintf(f, "\n");
3848 for (st = 0; st < cnfa->nstates; st++)
3849 dumpcstate(st, cnfa, f);
3850 fflush(f);
3852 #endif
3854 #ifdef REG_DEBUG /* subordinates of dumpcnfa */
3857 * dumpcstate - dump a compacted-NFA state in human-readable form
3859 static void
3860 dumpcstate(int st,
3861 struct cnfa *cnfa,
3862 FILE *f)
3864 struct carc *ca;
3865 int pos;
3867 fprintf(f, "%d%s", st, (cnfa->stflags[st] & CNFA_NOPROGRESS) ? ":" : ".");
3868 pos = 1;
3869 for (ca = cnfa->states[st]; ca->co != COLORLESS; ca++)
3871 if (ca->co == RAINBOW)
3872 fprintf(f, "\t[*]->%d", ca->to);
3873 else if (ca->co < cnfa->ncolors)
3874 fprintf(f, "\t[%ld]->%d", (long) ca->co, ca->to);
3875 else
3876 fprintf(f, "\t:%ld:->%d", (long) (ca->co - cnfa->ncolors), ca->to);
3877 if (pos == 5)
3879 fprintf(f, "\n");
3880 pos = 1;
3882 else
3883 pos++;
3885 if (ca == cnfa->states[st] || pos != 1)
3886 fprintf(f, "\n");
3887 fflush(f);
3890 #endif /* REG_DEBUG */