Refactor ExecScan() to allow inlining of its core logic
[pgsql.git] / src / backend / statistics / README.dependencies
blob6c446bde2748c159306fcf8e07be82034c86ca80
1 Soft functional dependencies
2 ============================
4 Functional dependencies are a concept well described in relational theory,
5 particularly in the definition of normalization and "normal forms". Wikipedia
6 has a nice definition of a functional dependency [1]:
8     In a given table, an attribute Y is said to have a functional dependency
9     on a set of attributes X (written X -> Y) if and only if each X value is
10     associated with precisely one Y value. For example, in an "Employee"
11     table that includes the attributes "Employee ID" and "Employee Date of
12     Birth", the functional dependency
14         {Employee ID} -> {Employee Date of Birth}
16     would hold. It follows from the previous two sentences that each
17     {Employee ID} is associated with precisely one {Employee Date of Birth}.
19     [1] https://en.wikipedia.org/wiki/Functional_dependency
21 In practical terms, functional dependencies mean that a value in one column
22 determines values in some other column. Consider for example this trivial
23 table with two integer columns:
25     CREATE TABLE t (a INT, b INT)
26         AS SELECT i, i/10 FROM generate_series(1,100000) s(i);
28 Clearly, knowledge of the value in column 'a' is sufficient to determine the
29 value in column 'b', as it's simply (a/10). A more practical example may be
30 addresses, where the knowledge of a ZIP code (usually) determines city. Larger
31 cities may have multiple ZIP codes, so the dependency can't be reversed.
33 Many datasets might be normalized not to contain such dependencies, but often
34 it's not practical for various reasons. In some cases, it's actually a conscious
35 design choice to model the dataset in a denormalized way, either because of
36 performance or to make querying easier.
39 Soft dependencies
40 -----------------
42 Real-world data sets often contain data errors, either because of data entry
43 mistakes (user mistyping the ZIP code) or perhaps issues in generating the
44 data (e.g. a ZIP code mistakenly assigned to two cities in different states).
46 A strict implementation would either ignore dependencies in such cases,
47 rendering the approach mostly useless even for slightly noisy data sets, or
48 result in sudden changes in behavior depending on minor differences between
49 samples provided to ANALYZE.
51 For this reason, extended statistics implement "soft" functional dependencies,
52 associating each functional dependency with a degree of validity (a number
53 between 0 and 1). This degree is then used to combine selectivities in a
54 smooth manner.
57 Mining dependencies (ANALYZE)
58 -----------------------------
60 The current algorithm is fairly simple - generate all possible functional
61 dependencies, and for each one count the number of rows consistent with it.
62 Then use the fraction of rows (supporting/total) as the degree.
64 To count the rows consistent with the dependency (a => b):
66  (a) Sort the data lexicographically, i.e. first by 'a' then 'b'.
68  (b) For each group of rows with the same 'a' value, count the number of
69      distinct values in 'b'.
71  (c) If there's a single distinct value in 'b', the rows are consistent with
72      the functional dependency, otherwise they contradict it.
75 Clause reduction (planner/optimizer)
76 ------------------------------------
78 Applying the functional dependencies is fairly simple: given a list of
79 equality clauses, we compute selectivities of each clause and then use the
80 degree to combine them using this formula
82     P(a=?,b=?) = P(a=?) * (d + (1-d) * P(b=?))
84 Where 'd' is the degree of functional dependency (a => b).
86 With more than two equality clauses, this process happens recursively. For
87 example for (a,b,c) we first use (a,b => c) to break the computation into
89     P(a=?,b=?,c=?) = P(a=?,b=?) * (e + (1-e) * P(c=?))
91 where 'e' is the degree of functional dependency (a,b => c); then we can
92 apply (a=>b) the same way on P(a=?,b=?).
95 Consistency of clauses
96 ----------------------
98 Functional dependencies only express general dependencies between columns,
99 without referencing particular values. This assumes that the equality clauses
100 are in fact consistent with the functional dependency, i.e. that given a
101 dependency (a=>b), the value in (b=?) clause is the value determined by (a=?).
102 If that's not the case, the clauses are "inconsistent" with the functional
103 dependency and the result will be over-estimation.
105 This may happen, for example, when using conditions on the ZIP code and city
106 name with mismatching values (ZIP code for a different city), etc. In such a
107 case, the result set will be empty, but we'll estimate the selectivity using
108 the ZIP code condition.
110 In this case, the default estimation based on AVIA principle happens to work
111 better, but mostly by chance.
113 This issue is the price for the simplicity of functional dependencies. If the
114 application frequently constructs queries with clauses inconsistent with
115 functional dependencies present in the data, the best solution is not to
116 use functional dependencies, but one of the more complex types of statistics.