Support PG_UNICODE_FAST locale in the builtin collation provider.
[pgsql.git] / src / backend / storage / freespace / fsmpage.c
blob66a5c80b5a6c6cfc2b2946e21afcd8b1876478a9
1 /*-------------------------------------------------------------------------
3 * fsmpage.c
4 * routines to search and manipulate one FSM page.
7 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
10 * IDENTIFICATION
11 * src/backend/storage/freespace/fsmpage.c
13 * NOTES:
15 * The public functions in this file form an API that hides the internal
16 * structure of a FSM page. This allows freespace.c to treat each FSM page
17 * as a black box with SlotsPerPage "slots". fsm_set_avail() and
18 * fsm_get_avail() let you get/set the value of a slot, and
19 * fsm_search_avail() lets you search for a slot with value >= X.
21 *-------------------------------------------------------------------------
23 #include "postgres.h"
25 #include "storage/bufmgr.h"
26 #include "storage/fsm_internals.h"
28 /* Macros to navigate the tree within a page. Root has index zero. */
29 #define leftchild(x) (2 * (x) + 1)
30 #define rightchild(x) (2 * (x) + 2)
31 #define parentof(x) (((x) - 1) / 2)
34 * Find right neighbor of x, wrapping around within the level
36 static int
37 rightneighbor(int x)
40 * Move right. This might wrap around, stepping to the leftmost node at
41 * the next level.
43 x++;
46 * Check if we stepped to the leftmost node at next level, and correct if
47 * so. The leftmost nodes at each level are numbered x = 2^level - 1, so
48 * check if (x + 1) is a power of two, using a standard
49 * twos-complement-arithmetic trick.
51 if (((x + 1) & x) == 0)
52 x = parentof(x);
54 return x;
58 * Sets the value of a slot on page. Returns true if the page was modified.
60 * The caller must hold an exclusive lock on the page.
62 bool
63 fsm_set_avail(Page page, int slot, uint8 value)
65 int nodeno = NonLeafNodesPerPage + slot;
66 FSMPage fsmpage = (FSMPage) PageGetContents(page);
67 uint8 oldvalue;
69 Assert(slot < LeafNodesPerPage);
71 oldvalue = fsmpage->fp_nodes[nodeno];
73 /* If the value hasn't changed, we don't need to do anything */
74 if (oldvalue == value && value <= fsmpage->fp_nodes[0])
75 return false;
77 fsmpage->fp_nodes[nodeno] = value;
80 * Propagate up, until we hit the root or a node that doesn't need to be
81 * updated.
85 uint8 newvalue = 0;
86 int lchild;
87 int rchild;
89 nodeno = parentof(nodeno);
90 lchild = leftchild(nodeno);
91 rchild = lchild + 1;
93 newvalue = fsmpage->fp_nodes[lchild];
94 if (rchild < NodesPerPage)
95 newvalue = Max(newvalue,
96 fsmpage->fp_nodes[rchild]);
98 oldvalue = fsmpage->fp_nodes[nodeno];
99 if (oldvalue == newvalue)
100 break;
102 fsmpage->fp_nodes[nodeno] = newvalue;
103 } while (nodeno > 0);
106 * sanity check: if the new value is (still) higher than the value at the
107 * top, the tree is corrupt. If so, rebuild.
109 if (value > fsmpage->fp_nodes[0])
110 fsm_rebuild_page(page);
112 return true;
116 * Returns the value of given slot on page.
118 * Since this is just a read-only access of a single byte, the page doesn't
119 * need to be locked.
121 uint8
122 fsm_get_avail(Page page, int slot)
124 FSMPage fsmpage = (FSMPage) PageGetContents(page);
126 Assert(slot < LeafNodesPerPage);
128 return fsmpage->fp_nodes[NonLeafNodesPerPage + slot];
132 * Returns the value at the root of a page.
134 * Since this is just a read-only access of a single byte, the page doesn't
135 * need to be locked.
137 uint8
138 fsm_get_max_avail(Page page)
140 FSMPage fsmpage = (FSMPage) PageGetContents(page);
142 return fsmpage->fp_nodes[0];
146 * Searches for a slot with category at least minvalue.
147 * Returns slot number, or -1 if none found.
149 * The caller must hold at least a shared lock on the page, and this
150 * function can unlock and lock the page again in exclusive mode if it
151 * needs to be updated. exclusive_lock_held should be set to true if the
152 * caller is already holding an exclusive lock, to avoid extra work.
154 * If advancenext is false, fp_next_slot is set to point to the returned
155 * slot, and if it's true, to the slot after the returned slot.
158 fsm_search_avail(Buffer buf, uint8 minvalue, bool advancenext,
159 bool exclusive_lock_held)
161 Page page = BufferGetPage(buf);
162 FSMPage fsmpage = (FSMPage) PageGetContents(page);
163 int nodeno;
164 int target;
165 uint16 slot;
167 restart:
170 * Check the root first, and exit quickly if there's no leaf with enough
171 * free space
173 if (fsmpage->fp_nodes[0] < minvalue)
174 return -1;
177 * Start search using fp_next_slot. It's just a hint, so check that it's
178 * sane. (This also handles wrapping around when the prior call returned
179 * the last slot on the page.)
181 target = fsmpage->fp_next_slot;
182 if (target < 0 || target >= LeafNodesPerPage)
183 target = 0;
184 target += NonLeafNodesPerPage;
186 /*----------
187 * Start the search from the target slot. At every step, move one
188 * node to the right, then climb up to the parent. Stop when we reach
189 * a node with enough free space (as we must, since the root has enough
190 * space).
192 * The idea is to gradually expand our "search triangle", that is, all
193 * nodes covered by the current node, and to be sure we search to the
194 * right from the start point. At the first step, only the target slot
195 * is examined. When we move up from a left child to its parent, we are
196 * adding the right-hand subtree of that parent to the search triangle.
197 * When we move right then up from a right child, we are dropping the
198 * current search triangle (which we know doesn't contain any suitable
199 * page) and instead looking at the next-larger-size triangle to its
200 * right. So we never look left from our original start point, and at
201 * each step the size of the search triangle doubles, ensuring it takes
202 * only log2(N) work to search N pages.
204 * The "move right" operation will wrap around if it hits the right edge
205 * of the tree, so the behavior is still good if we start near the right.
206 * Note also that the move-and-climb behavior ensures that we can't end
207 * up on one of the missing nodes at the right of the leaf level.
209 * For example, consider this tree:
212 * 7 6
213 * 5 7 6 5
214 * 4 5 5 7 2 6 5 2
217 * Assume that the target node is the node indicated by the letter T,
218 * and we're searching for a node with value of 6 or higher. The search
219 * begins at T. At the first iteration, we move to the right, then to the
220 * parent, arriving at the rightmost 5. At the second iteration, we move
221 * to the right, wrapping around, then climb up, arriving at the 7 on the
222 * third level. 7 satisfies our search, so we descend down to the bottom,
223 * following the path of sevens. This is in fact the first suitable page
224 * to the right of (allowing for wraparound) our start point.
225 *----------
227 nodeno = target;
228 while (nodeno > 0)
230 if (fsmpage->fp_nodes[nodeno] >= minvalue)
231 break;
234 * Move to the right, wrapping around on same level if necessary, then
235 * climb up.
237 nodeno = parentof(rightneighbor(nodeno));
241 * We're now at a node with enough free space, somewhere in the middle of
242 * the tree. Descend to the bottom, following a path with enough free
243 * space, preferring to move left if there's a choice.
245 while (nodeno < NonLeafNodesPerPage)
247 int childnodeno = leftchild(nodeno);
249 if (childnodeno < NodesPerPage &&
250 fsmpage->fp_nodes[childnodeno] >= minvalue)
252 nodeno = childnodeno;
253 continue;
255 childnodeno++; /* point to right child */
256 if (childnodeno < NodesPerPage &&
257 fsmpage->fp_nodes[childnodeno] >= minvalue)
259 nodeno = childnodeno;
261 else
264 * Oops. The parent node promised that either left or right child
265 * has enough space, but neither actually did. This can happen in
266 * case of a "torn page", IOW if we crashed earlier while writing
267 * the page to disk, and only part of the page made it to disk.
269 * Fix the corruption and restart.
271 RelFileLocator rlocator;
272 ForkNumber forknum;
273 BlockNumber blknum;
275 BufferGetTag(buf, &rlocator, &forknum, &blknum);
276 elog(DEBUG1, "fixing corrupt FSM block %u, relation %u/%u/%u",
277 blknum, rlocator.spcOid, rlocator.dbOid, rlocator.relNumber);
279 /* make sure we hold an exclusive lock */
280 if (!exclusive_lock_held)
282 LockBuffer(buf, BUFFER_LOCK_UNLOCK);
283 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
284 exclusive_lock_held = true;
286 fsm_rebuild_page(page);
287 MarkBufferDirtyHint(buf, false);
288 goto restart;
292 /* We're now at the bottom level, at a node with enough space. */
293 slot = nodeno - NonLeafNodesPerPage;
296 * Update the next-target pointer. Note that we do this even if we're only
297 * holding a shared lock, on the grounds that it's better to use a shared
298 * lock and get a garbled next pointer every now and then, than take the
299 * concurrency hit of an exclusive lock.
301 * Wrap-around is handled at the beginning of this function.
303 fsmpage->fp_next_slot = slot + (advancenext ? 1 : 0);
305 return slot;
309 * Sets the available space to zero for all slots numbered >= nslots.
310 * Returns true if the page was modified.
312 bool
313 fsm_truncate_avail(Page page, int nslots)
315 FSMPage fsmpage = (FSMPage) PageGetContents(page);
316 uint8 *ptr;
317 bool changed = false;
319 Assert(nslots >= 0 && nslots < LeafNodesPerPage);
321 /* Clear all truncated leaf nodes */
322 ptr = &fsmpage->fp_nodes[NonLeafNodesPerPage + nslots];
323 for (; ptr < &fsmpage->fp_nodes[NodesPerPage]; ptr++)
325 if (*ptr != 0)
326 changed = true;
327 *ptr = 0;
330 /* Fix upper nodes. */
331 if (changed)
332 fsm_rebuild_page(page);
334 return changed;
338 * Reconstructs the upper levels of a page. Returns true if the page
339 * was modified.
341 bool
342 fsm_rebuild_page(Page page)
344 FSMPage fsmpage = (FSMPage) PageGetContents(page);
345 bool changed = false;
346 int nodeno;
349 * Start from the lowest non-leaf level, at last node, working our way
350 * backwards, through all non-leaf nodes at all levels, up to the root.
352 for (nodeno = NonLeafNodesPerPage - 1; nodeno >= 0; nodeno--)
354 int lchild = leftchild(nodeno);
355 int rchild = lchild + 1;
356 uint8 newvalue = 0;
358 /* The first few nodes we examine might have zero or one child. */
359 if (lchild < NodesPerPage)
360 newvalue = fsmpage->fp_nodes[lchild];
362 if (rchild < NodesPerPage)
363 newvalue = Max(newvalue,
364 fsmpage->fp_nodes[rchild]);
366 if (fsmpage->fp_nodes[nodeno] != newvalue)
368 fsmpage->fp_nodes[nodeno] = newvalue;
369 changed = true;
373 return changed;