Cache NO ACTION foreign keys separately from RESTRICT foreign keys
[pgsql.git] / src / backend / utils / adt / array_selfuncs.c
bloba69a84c2aee33e069a6a9d0965be5778fc19b105
1 /*-------------------------------------------------------------------------
3 * array_selfuncs.c
4 * Functions for selectivity estimation of array operators
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
10 * IDENTIFICATION
11 * src/backend/utils/adt/array_selfuncs.c
13 *-------------------------------------------------------------------------
15 #include "postgres.h"
17 #include <math.h>
19 #include "access/htup_details.h"
20 #include "catalog/pg_operator.h"
21 #include "catalog/pg_statistic.h"
22 #include "utils/array.h"
23 #include "utils/fmgrprotos.h"
24 #include "utils/lsyscache.h"
25 #include "utils/selfuncs.h"
26 #include "utils/typcache.h"
29 /* Default selectivity constant for "@>" and "<@" operators */
30 #define DEFAULT_CONTAIN_SEL 0.005
32 /* Default selectivity constant for "&&" operator */
33 #define DEFAULT_OVERLAP_SEL 0.01
35 /* Default selectivity for given operator */
36 #define DEFAULT_SEL(operator) \
37 ((operator) == OID_ARRAY_OVERLAP_OP ? \
38 DEFAULT_OVERLAP_SEL : DEFAULT_CONTAIN_SEL)
40 static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval,
41 Oid elemtype, Oid operator);
42 static Selectivity mcelem_array_selec(ArrayType *array,
43 TypeCacheEntry *typentry,
44 Datum *mcelem, int nmcelem,
45 float4 *numbers, int nnumbers,
46 float4 *hist, int nhist,
47 Oid operator);
48 static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem,
49 float4 *numbers, int nnumbers,
50 Datum *array_data, int nitems,
51 Oid operator, TypeCacheEntry *typentry);
52 static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem,
53 float4 *numbers, int nnumbers,
54 Datum *array_data, int nitems,
55 float4 *hist, int nhist,
56 Oid operator, TypeCacheEntry *typentry);
57 static float *calc_hist(const float4 *hist, int nhist, int n);
58 static float *calc_distr(const float *p, int n, int m, float rest);
59 static int floor_log2(uint32 n);
60 static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value,
61 int *index, TypeCacheEntry *typentry);
62 static int element_compare(const void *key1, const void *key2, void *arg);
63 static int float_compare_desc(const void *key1, const void *key2);
67 * scalararraysel_containment
68 * Estimate selectivity of ScalarArrayOpExpr via array containment.
70 * If we have const =/<> ANY/ALL (array_var) then we can estimate the
71 * selectivity as though this were an array containment operator,
72 * array_var op ARRAY[const].
74 * scalararraysel() has already verified that the ScalarArrayOpExpr's operator
75 * is the array element type's default equality or inequality operator, and
76 * has aggressively simplified both inputs to constants.
78 * Returns selectivity (0..1), or -1 if we fail to estimate selectivity.
80 Selectivity
81 scalararraysel_containment(PlannerInfo *root,
82 Node *leftop, Node *rightop,
83 Oid elemtype, bool isEquality, bool useOr,
84 int varRelid)
86 Selectivity selec;
87 VariableStatData vardata;
88 Datum constval;
89 TypeCacheEntry *typentry;
90 FmgrInfo *cmpfunc;
93 * rightop must be a variable, else punt.
95 examine_variable(root, rightop, varRelid, &vardata);
96 if (!vardata.rel)
98 ReleaseVariableStats(vardata);
99 return -1.0;
103 * leftop must be a constant, else punt.
105 if (!IsA(leftop, Const))
107 ReleaseVariableStats(vardata);
108 return -1.0;
110 if (((Const *) leftop)->constisnull)
112 /* qual can't succeed if null on left */
113 ReleaseVariableStats(vardata);
114 return (Selectivity) 0.0;
116 constval = ((Const *) leftop)->constvalue;
118 /* Get element type's default comparison function */
119 typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
120 if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
122 ReleaseVariableStats(vardata);
123 return -1.0;
125 cmpfunc = &typentry->cmp_proc_finfo;
128 * If the operator is <>, swap ANY/ALL, then invert the result later.
130 if (!isEquality)
131 useOr = !useOr;
133 /* Get array element stats for var, if available */
134 if (HeapTupleIsValid(vardata.statsTuple) &&
135 statistic_proc_security_check(&vardata, cmpfunc->fn_oid))
137 Form_pg_statistic stats;
138 AttStatsSlot sslot;
139 AttStatsSlot hslot;
141 stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
143 /* MCELEM will be an array of same type as element */
144 if (get_attstatsslot(&sslot, vardata.statsTuple,
145 STATISTIC_KIND_MCELEM, InvalidOid,
146 ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
148 /* For ALL case, also get histogram of distinct-element counts */
149 if (useOr ||
150 !get_attstatsslot(&hslot, vardata.statsTuple,
151 STATISTIC_KIND_DECHIST, InvalidOid,
152 ATTSTATSSLOT_NUMBERS))
153 memset(&hslot, 0, sizeof(hslot));
156 * For = ANY, estimate as var @> ARRAY[const].
158 * For = ALL, estimate as var <@ ARRAY[const].
160 if (useOr)
161 selec = mcelem_array_contain_overlap_selec(sslot.values,
162 sslot.nvalues,
163 sslot.numbers,
164 sslot.nnumbers,
165 &constval, 1,
166 OID_ARRAY_CONTAINS_OP,
167 typentry);
168 else
169 selec = mcelem_array_contained_selec(sslot.values,
170 sslot.nvalues,
171 sslot.numbers,
172 sslot.nnumbers,
173 &constval, 1,
174 hslot.numbers,
175 hslot.nnumbers,
176 OID_ARRAY_CONTAINED_OP,
177 typentry);
179 free_attstatsslot(&hslot);
180 free_attstatsslot(&sslot);
182 else
184 /* No most-common-elements info, so do without */
185 if (useOr)
186 selec = mcelem_array_contain_overlap_selec(NULL, 0,
187 NULL, 0,
188 &constval, 1,
189 OID_ARRAY_CONTAINS_OP,
190 typentry);
191 else
192 selec = mcelem_array_contained_selec(NULL, 0,
193 NULL, 0,
194 &constval, 1,
195 NULL, 0,
196 OID_ARRAY_CONTAINED_OP,
197 typentry);
201 * MCE stats count only non-null rows, so adjust for null rows.
203 selec *= (1.0 - stats->stanullfrac);
205 else
207 /* No stats at all, so do without */
208 if (useOr)
209 selec = mcelem_array_contain_overlap_selec(NULL, 0,
210 NULL, 0,
211 &constval, 1,
212 OID_ARRAY_CONTAINS_OP,
213 typentry);
214 else
215 selec = mcelem_array_contained_selec(NULL, 0,
216 NULL, 0,
217 &constval, 1,
218 NULL, 0,
219 OID_ARRAY_CONTAINED_OP,
220 typentry);
221 /* we assume no nulls here, so no stanullfrac correction */
224 ReleaseVariableStats(vardata);
227 * If the operator is <>, invert the results.
229 if (!isEquality)
230 selec = 1.0 - selec;
232 CLAMP_PROBABILITY(selec);
234 return selec;
238 * arraycontsel -- restriction selectivity for array @>, &&, <@ operators
240 Datum
241 arraycontsel(PG_FUNCTION_ARGS)
243 PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
244 Oid operator = PG_GETARG_OID(1);
245 List *args = (List *) PG_GETARG_POINTER(2);
246 int varRelid = PG_GETARG_INT32(3);
247 VariableStatData vardata;
248 Node *other;
249 bool varonleft;
250 Selectivity selec;
251 Oid element_typeid;
254 * If expression is not (variable op something) or (something op
255 * variable), then punt and return a default estimate.
257 if (!get_restriction_variable(root, args, varRelid,
258 &vardata, &other, &varonleft))
259 PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
262 * Can't do anything useful if the something is not a constant, either.
264 if (!IsA(other, Const))
266 ReleaseVariableStats(vardata);
267 PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
271 * The "&&", "@>" and "<@" operators are strict, so we can cope with a
272 * NULL constant right away.
274 if (((Const *) other)->constisnull)
276 ReleaseVariableStats(vardata);
277 PG_RETURN_FLOAT8(0.0);
281 * If var is on the right, commute the operator, so that we can assume the
282 * var is on the left in what follows.
284 if (!varonleft)
286 if (operator == OID_ARRAY_CONTAINS_OP)
287 operator = OID_ARRAY_CONTAINED_OP;
288 else if (operator == OID_ARRAY_CONTAINED_OP)
289 operator = OID_ARRAY_CONTAINS_OP;
293 * OK, there's a Var and a Const we're dealing with here. We need the
294 * Const to be an array with same element type as column, else we can't do
295 * anything useful. (Such cases will likely fail at runtime, but here
296 * we'd rather just return a default estimate.)
298 element_typeid = get_base_element_type(((Const *) other)->consttype);
299 if (element_typeid != InvalidOid &&
300 element_typeid == get_base_element_type(vardata.vartype))
302 selec = calc_arraycontsel(&vardata, ((Const *) other)->constvalue,
303 element_typeid, operator);
305 else
307 selec = DEFAULT_SEL(operator);
310 ReleaseVariableStats(vardata);
312 CLAMP_PROBABILITY(selec);
314 PG_RETURN_FLOAT8((float8) selec);
318 * arraycontjoinsel -- join selectivity for array @>, &&, <@ operators
320 Datum
321 arraycontjoinsel(PG_FUNCTION_ARGS)
323 /* For the moment this is just a stub */
324 Oid operator = PG_GETARG_OID(1);
326 PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
330 * Calculate selectivity for "arraycolumn @> const", "arraycolumn && const"
331 * or "arraycolumn <@ const" based on the statistics
333 * This function is mainly responsible for extracting the pg_statistic data
334 * to be used; we then pass the problem on to mcelem_array_selec().
336 static Selectivity
337 calc_arraycontsel(VariableStatData *vardata, Datum constval,
338 Oid elemtype, Oid operator)
340 Selectivity selec;
341 TypeCacheEntry *typentry;
342 FmgrInfo *cmpfunc;
343 ArrayType *array;
345 /* Get element type's default comparison function */
346 typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
347 if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
348 return DEFAULT_SEL(operator);
349 cmpfunc = &typentry->cmp_proc_finfo;
352 * The caller made sure the const is an array with same element type, so
353 * get it now
355 array = DatumGetArrayTypeP(constval);
357 if (HeapTupleIsValid(vardata->statsTuple) &&
358 statistic_proc_security_check(vardata, cmpfunc->fn_oid))
360 Form_pg_statistic stats;
361 AttStatsSlot sslot;
362 AttStatsSlot hslot;
364 stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
366 /* MCELEM will be an array of same type as column */
367 if (get_attstatsslot(&sslot, vardata->statsTuple,
368 STATISTIC_KIND_MCELEM, InvalidOid,
369 ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
372 * For "array <@ const" case we also need histogram of distinct
373 * element counts.
375 if (operator != OID_ARRAY_CONTAINED_OP ||
376 !get_attstatsslot(&hslot, vardata->statsTuple,
377 STATISTIC_KIND_DECHIST, InvalidOid,
378 ATTSTATSSLOT_NUMBERS))
379 memset(&hslot, 0, sizeof(hslot));
381 /* Use the most-common-elements slot for the array Var. */
382 selec = mcelem_array_selec(array, typentry,
383 sslot.values, sslot.nvalues,
384 sslot.numbers, sslot.nnumbers,
385 hslot.numbers, hslot.nnumbers,
386 operator);
388 free_attstatsslot(&hslot);
389 free_attstatsslot(&sslot);
391 else
393 /* No most-common-elements info, so do without */
394 selec = mcelem_array_selec(array, typentry,
395 NULL, 0, NULL, 0, NULL, 0,
396 operator);
400 * MCE stats count only non-null rows, so adjust for null rows.
402 selec *= (1.0 - stats->stanullfrac);
404 else
406 /* No stats at all, so do without */
407 selec = mcelem_array_selec(array, typentry,
408 NULL, 0, NULL, 0, NULL, 0,
409 operator);
410 /* we assume no nulls here, so no stanullfrac correction */
413 /* If constant was toasted, release the copy we made */
414 if (PointerGetDatum(array) != constval)
415 pfree(array);
417 return selec;
421 * Array selectivity estimation based on most common elements statistics
423 * This function just deconstructs and sorts the array constant's contents,
424 * and then passes the problem on to mcelem_array_contain_overlap_selec or
425 * mcelem_array_contained_selec depending on the operator.
427 static Selectivity
428 mcelem_array_selec(ArrayType *array, TypeCacheEntry *typentry,
429 Datum *mcelem, int nmcelem,
430 float4 *numbers, int nnumbers,
431 float4 *hist, int nhist,
432 Oid operator)
434 Selectivity selec;
435 int num_elems;
436 Datum *elem_values;
437 bool *elem_nulls;
438 bool null_present;
439 int nonnull_nitems;
440 int i;
443 * Prepare constant array data for sorting. Sorting lets us find unique
444 * elements and efficiently merge with the MCELEM array.
446 deconstruct_array(array,
447 typentry->type_id,
448 typentry->typlen,
449 typentry->typbyval,
450 typentry->typalign,
451 &elem_values, &elem_nulls, &num_elems);
453 /* Collapse out any null elements */
454 nonnull_nitems = 0;
455 null_present = false;
456 for (i = 0; i < num_elems; i++)
458 if (elem_nulls[i])
459 null_present = true;
460 else
461 elem_values[nonnull_nitems++] = elem_values[i];
465 * Query "column @> '{anything, null}'" matches nothing. For the other
466 * two operators, presence of a null in the constant can be ignored.
468 if (null_present && operator == OID_ARRAY_CONTAINS_OP)
470 pfree(elem_values);
471 pfree(elem_nulls);
472 return (Selectivity) 0.0;
475 /* Sort extracted elements using their default comparison function. */
476 qsort_arg(elem_values, nonnull_nitems, sizeof(Datum),
477 element_compare, typentry);
479 /* Separate cases according to operator */
480 if (operator == OID_ARRAY_CONTAINS_OP || operator == OID_ARRAY_OVERLAP_OP)
481 selec = mcelem_array_contain_overlap_selec(mcelem, nmcelem,
482 numbers, nnumbers,
483 elem_values, nonnull_nitems,
484 operator, typentry);
485 else if (operator == OID_ARRAY_CONTAINED_OP)
486 selec = mcelem_array_contained_selec(mcelem, nmcelem,
487 numbers, nnumbers,
488 elem_values, nonnull_nitems,
489 hist, nhist,
490 operator, typentry);
491 else
493 elog(ERROR, "arraycontsel called for unrecognized operator %u",
494 operator);
495 selec = 0.0; /* keep compiler quiet */
498 pfree(elem_values);
499 pfree(elem_nulls);
500 return selec;
504 * Estimate selectivity of "column @> const" and "column && const" based on
505 * most common element statistics. This estimation assumes element
506 * occurrences are independent.
508 * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
509 * the array column's MCELEM statistics slot, or are NULL/0 if stats are
510 * not available. array_data (of length nitems) is the constant's elements.
512 * Both the mcelem and array_data arrays are assumed presorted according
513 * to the element type's cmpfunc. Null elements are not present.
515 * TODO: this estimate probably could be improved by using the distinct
516 * elements count histogram. For example, excepting the special case of
517 * "column @> '{}'", we can multiply the calculated selectivity by the
518 * fraction of nonempty arrays in the column.
520 static Selectivity
521 mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem,
522 float4 *numbers, int nnumbers,
523 Datum *array_data, int nitems,
524 Oid operator, TypeCacheEntry *typentry)
526 Selectivity selec,
527 elem_selec;
528 int mcelem_index,
530 bool use_bsearch;
531 float4 minfreq;
534 * There should be three more Numbers than Values, because the last three
535 * cells should hold minimal and maximal frequency among the non-null
536 * elements, and then the frequency of null elements. Ignore the Numbers
537 * if not right.
539 if (nnumbers != nmcelem + 3)
541 numbers = NULL;
542 nnumbers = 0;
545 if (numbers)
547 /* Grab the lowest observed frequency */
548 minfreq = numbers[nmcelem];
550 else
552 /* Without statistics make some default assumptions */
553 minfreq = 2 * (float4) DEFAULT_CONTAIN_SEL;
556 /* Decide whether it is faster to use binary search or not. */
557 if (nitems * floor_log2((uint32) nmcelem) < nmcelem + nitems)
558 use_bsearch = true;
559 else
560 use_bsearch = false;
562 if (operator == OID_ARRAY_CONTAINS_OP)
565 * Initial selectivity for "column @> const" query is 1.0, and it will
566 * be decreased with each element of constant array.
568 selec = 1.0;
570 else
573 * Initial selectivity for "column && const" query is 0.0, and it will
574 * be increased with each element of constant array.
576 selec = 0.0;
579 /* Scan mcelem and array in parallel. */
580 mcelem_index = 0;
581 for (i = 0; i < nitems; i++)
583 bool match = false;
585 /* Ignore any duplicates in the array data. */
586 if (i > 0 &&
587 element_compare(&array_data[i - 1], &array_data[i], typentry) == 0)
588 continue;
590 /* Find the smallest MCELEM >= this array item. */
591 if (use_bsearch)
593 match = find_next_mcelem(mcelem, nmcelem, array_data[i],
594 &mcelem_index, typentry);
596 else
598 while (mcelem_index < nmcelem)
600 int cmp = element_compare(&mcelem[mcelem_index],
601 &array_data[i],
602 typentry);
604 if (cmp < 0)
605 mcelem_index++;
606 else
608 if (cmp == 0)
609 match = true; /* mcelem is found */
610 break;
615 if (match && numbers)
617 /* MCELEM matches the array item; use its frequency. */
618 elem_selec = numbers[mcelem_index];
619 mcelem_index++;
621 else
624 * The element is not in MCELEM. Punt, but assume that the
625 * selectivity cannot be more than minfreq / 2.
627 elem_selec = Min(DEFAULT_CONTAIN_SEL, minfreq / 2);
631 * Update overall selectivity using the current element's selectivity
632 * and an assumption of element occurrence independence.
634 if (operator == OID_ARRAY_CONTAINS_OP)
635 selec *= elem_selec;
636 else
637 selec = selec + elem_selec - selec * elem_selec;
639 /* Clamp intermediate results to stay sane despite roundoff error */
640 CLAMP_PROBABILITY(selec);
643 return selec;
647 * Estimate selectivity of "column <@ const" based on most common element
648 * statistics.
650 * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
651 * the array column's MCELEM statistics slot, or are NULL/0 if stats are
652 * not available. array_data (of length nitems) is the constant's elements.
653 * hist (of length nhist) is from the array column's DECHIST statistics slot,
654 * or is NULL/0 if those stats are not available.
656 * Both the mcelem and array_data arrays are assumed presorted according
657 * to the element type's cmpfunc. Null elements are not present.
659 * Independent element occurrence would imply a particular distribution of
660 * distinct element counts among matching rows. Real data usually falsifies
661 * that assumption. For example, in a set of 11-element integer arrays having
662 * elements in the range [0..10], element occurrences are typically not
663 * independent. If they were, a sufficiently-large set would include all
664 * distinct element counts 0 through 11. We correct for this using the
665 * histogram of distinct element counts.
667 * In the "column @> const" and "column && const" cases, we usually have a
668 * "const" with low number of elements (otherwise we have selectivity close
669 * to 0 or 1 respectively). That's why the effect of dependence related
670 * to distinct element count distribution is negligible there. In the
671 * "column <@ const" case, number of elements is usually high (otherwise we
672 * have selectivity close to 0). That's why we should do a correction with
673 * the array distinct element count distribution here.
675 * Using the histogram of distinct element counts produces a different
676 * distribution law than independent occurrences of elements. This
677 * distribution law can be described as follows:
679 * P(o1, o2, ..., on) = f1^o1 * (1 - f1)^(1 - o1) * f2^o2 *
680 * (1 - f2)^(1 - o2) * ... * fn^on * (1 - fn)^(1 - on) * hist[m] / ind[m]
682 * where:
683 * o1, o2, ..., on - occurrences of elements 1, 2, ..., n
684 * (1 - occurrence, 0 - no occurrence) in row
685 * f1, f2, ..., fn - frequencies of elements 1, 2, ..., n
686 * (scalar values in [0..1]) according to collected statistics
687 * m = o1 + o2 + ... + on = total number of distinct elements in row
688 * hist[m] - histogram data for occurrence of m elements.
689 * ind[m] - probability of m occurrences from n events assuming their
690 * probabilities to be equal to frequencies of array elements.
692 * ind[m] = sum(f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * (1 - f2)^(1 - o2) *
693 * ... * fn^on * (1 - fn)^(1 - on), o1, o2, ..., on) | o1 + o2 + .. on = m
695 static Selectivity
696 mcelem_array_contained_selec(Datum *mcelem, int nmcelem,
697 float4 *numbers, int nnumbers,
698 Datum *array_data, int nitems,
699 float4 *hist, int nhist,
700 Oid operator, TypeCacheEntry *typentry)
702 int mcelem_index,
704 unique_nitems = 0;
705 float selec,
706 minfreq,
707 nullelem_freq;
708 float *dist,
709 *mcelem_dist,
710 *hist_part;
711 float avg_count,
712 mult,
713 rest;
714 float *elem_selec;
717 * There should be three more Numbers than Values in the MCELEM slot,
718 * because the last three cells should hold minimal and maximal frequency
719 * among the non-null elements, and then the frequency of null elements.
720 * Punt if not right, because we can't do much without the element freqs.
722 if (numbers == NULL || nnumbers != nmcelem + 3)
723 return DEFAULT_CONTAIN_SEL;
725 /* Can't do much without a count histogram, either */
726 if (hist == NULL || nhist < 3)
727 return DEFAULT_CONTAIN_SEL;
730 * Grab some of the summary statistics that compute_array_stats() stores:
731 * lowest frequency, frequency of null elements, and average distinct
732 * element count.
734 minfreq = numbers[nmcelem];
735 nullelem_freq = numbers[nmcelem + 2];
736 avg_count = hist[nhist - 1];
739 * "rest" will be the sum of the frequencies of all elements not
740 * represented in MCELEM. The average distinct element count is the sum
741 * of the frequencies of *all* elements. Begin with that; we will proceed
742 * to subtract the MCELEM frequencies.
744 rest = avg_count;
747 * mult is a multiplier representing estimate of probability that each
748 * mcelem that is not present in constant doesn't occur.
750 mult = 1.0f;
753 * elem_selec is array of estimated frequencies for elements in the
754 * constant.
756 elem_selec = (float *) palloc(sizeof(float) * nitems);
758 /* Scan mcelem and array in parallel. */
759 mcelem_index = 0;
760 for (i = 0; i < nitems; i++)
762 bool match = false;
764 /* Ignore any duplicates in the array data. */
765 if (i > 0 &&
766 element_compare(&array_data[i - 1], &array_data[i], typentry) == 0)
767 continue;
770 * Iterate over MCELEM until we find an entry greater than or equal to
771 * this element of the constant. Update "rest" and "mult" for mcelem
772 * entries skipped over.
774 while (mcelem_index < nmcelem)
776 int cmp = element_compare(&mcelem[mcelem_index],
777 &array_data[i],
778 typentry);
780 if (cmp < 0)
782 mult *= (1.0f - numbers[mcelem_index]);
783 rest -= numbers[mcelem_index];
784 mcelem_index++;
786 else
788 if (cmp == 0)
789 match = true; /* mcelem is found */
790 break;
794 if (match)
796 /* MCELEM matches the array item. */
797 elem_selec[unique_nitems] = numbers[mcelem_index];
798 /* "rest" is decremented for all mcelems, matched or not */
799 rest -= numbers[mcelem_index];
800 mcelem_index++;
802 else
805 * The element is not in MCELEM. Punt, but assume that the
806 * selectivity cannot be more than minfreq / 2.
808 elem_selec[unique_nitems] = Min(DEFAULT_CONTAIN_SEL,
809 minfreq / 2);
812 unique_nitems++;
816 * If we handled all constant elements without exhausting the MCELEM
817 * array, finish walking it to complete calculation of "rest" and "mult".
819 while (mcelem_index < nmcelem)
821 mult *= (1.0f - numbers[mcelem_index]);
822 rest -= numbers[mcelem_index];
823 mcelem_index++;
827 * The presence of many distinct rare elements materially decreases
828 * selectivity. Use the Poisson distribution to estimate the probability
829 * of a column value having zero occurrences of such elements. See above
830 * for the definition of "rest".
832 mult *= exp(-rest);
834 /*----------
835 * Using the distinct element count histogram requires
836 * O(unique_nitems * (nmcelem + unique_nitems))
837 * operations. Beyond a certain computational cost threshold, it's
838 * reasonable to sacrifice accuracy for decreased planning time. We limit
839 * the number of operations to EFFORT * nmcelem; since nmcelem is limited
840 * by the column's statistics target, the work done is user-controllable.
842 * If the number of operations would be too large, we can reduce it
843 * without losing all accuracy by reducing unique_nitems and considering
844 * only the most-common elements of the constant array. To make the
845 * results exactly match what we would have gotten with only those
846 * elements to start with, we'd have to remove any discarded elements'
847 * frequencies from "mult", but since this is only an approximation
848 * anyway, we don't bother with that. Therefore it's sufficient to qsort
849 * elem_selec[] and take the largest elements. (They will no longer match
850 * up with the elements of array_data[], but we don't care.)
851 *----------
853 #define EFFORT 100
855 if ((nmcelem + unique_nitems) > 0 &&
856 unique_nitems > EFFORT * nmcelem / (nmcelem + unique_nitems))
859 * Use the quadratic formula to solve for largest allowable N. We
860 * have A = 1, B = nmcelem, C = - EFFORT * nmcelem.
862 double b = (double) nmcelem;
863 int n;
865 n = (int) ((sqrt(b * b + 4 * EFFORT * b) - b) / 2);
867 /* Sort, then take just the first n elements */
868 qsort(elem_selec, unique_nitems, sizeof(float),
869 float_compare_desc);
870 unique_nitems = n;
874 * Calculate probabilities of each distinct element count for both mcelems
875 * and constant elements. At this point, assume independent element
876 * occurrence.
878 dist = calc_distr(elem_selec, unique_nitems, unique_nitems, 0.0f);
879 mcelem_dist = calc_distr(numbers, nmcelem, unique_nitems, rest);
881 /* ignore hist[nhist-1], which is the average not a histogram member */
882 hist_part = calc_hist(hist, nhist - 1, unique_nitems);
884 selec = 0.0f;
885 for (i = 0; i <= unique_nitems; i++)
888 * mult * dist[i] / mcelem_dist[i] gives us probability of qual
889 * matching from assumption of independent element occurrence with the
890 * condition that distinct element count = i.
892 if (mcelem_dist[i] > 0)
893 selec += hist_part[i] * mult * dist[i] / mcelem_dist[i];
896 pfree(dist);
897 pfree(mcelem_dist);
898 pfree(hist_part);
899 pfree(elem_selec);
901 /* Take into account occurrence of NULL element. */
902 selec *= (1.0f - nullelem_freq);
904 CLAMP_PROBABILITY(selec);
906 return selec;
910 * Calculate the first n distinct element count probabilities from a
911 * histogram of distinct element counts.
913 * Returns a palloc'd array of n+1 entries, with array[k] being the
914 * probability of element count k, k in [0..n].
916 * We assume that a histogram box with bounds a and b gives 1 / ((b - a + 1) *
917 * (nhist - 1)) probability to each value in (a,b) and an additional half of
918 * that to a and b themselves.
920 static float *
921 calc_hist(const float4 *hist, int nhist, int n)
923 float *hist_part;
924 int k,
925 i = 0;
926 float prev_interval = 0,
927 next_interval;
928 float frac;
930 hist_part = (float *) palloc((n + 1) * sizeof(float));
933 * frac is a probability contribution for each interval between histogram
934 * values. We have nhist - 1 intervals, so contribution of each one will
935 * be 1 / (nhist - 1).
937 frac = 1.0f / ((float) (nhist - 1));
939 for (k = 0; k <= n; k++)
941 int count = 0;
944 * Count the histogram boundaries equal to k. (Although the histogram
945 * should theoretically contain only exact integers, entries are
946 * floats so there could be roundoff error in large values. Treat any
947 * fractional value as equal to the next larger k.)
949 while (i < nhist && hist[i] <= k)
951 count++;
952 i++;
955 if (count > 0)
957 /* k is an exact bound for at least one histogram box. */
958 float val;
960 /* Find length between current histogram value and the next one */
961 if (i < nhist)
962 next_interval = hist[i] - hist[i - 1];
963 else
964 next_interval = 0;
967 * count - 1 histogram boxes contain k exclusively. They
968 * contribute a total of (count - 1) * frac probability. Also
969 * factor in the partial histogram boxes on either side.
971 val = (float) (count - 1);
972 if (next_interval > 0)
973 val += 0.5f / next_interval;
974 if (prev_interval > 0)
975 val += 0.5f / prev_interval;
976 hist_part[k] = frac * val;
978 prev_interval = next_interval;
980 else
982 /* k does not appear as an exact histogram bound. */
983 if (prev_interval > 0)
984 hist_part[k] = frac / prev_interval;
985 else
986 hist_part[k] = 0.0f;
990 return hist_part;
994 * Consider n independent events with probabilities p[]. This function
995 * calculates probabilities of exact k of events occurrence for k in [0..m].
996 * Returns a palloc'd array of size m+1.
998 * "rest" is the sum of the probabilities of all low-probability events not
999 * included in p.
1001 * Imagine matrix M of size (n + 1) x (m + 1). Element M[i,j] denotes the
1002 * probability that exactly j of first i events occur. Obviously M[0,0] = 1.
1003 * For any constant j, each increment of i increases the probability iff the
1004 * event occurs. So, by the law of total probability:
1005 * M[i,j] = M[i - 1, j] * (1 - p[i]) + M[i - 1, j - 1] * p[i]
1006 * for i > 0, j > 0.
1007 * M[i,0] = M[i - 1, 0] * (1 - p[i]) for i > 0.
1009 static float *
1010 calc_distr(const float *p, int n, int m, float rest)
1012 float *row,
1013 *prev_row,
1014 *tmp;
1015 int i,
1019 * Since we return only the last row of the matrix and need only the
1020 * current and previous row for calculations, allocate two rows.
1022 row = (float *) palloc((m + 1) * sizeof(float));
1023 prev_row = (float *) palloc((m + 1) * sizeof(float));
1025 /* M[0,0] = 1 */
1026 row[0] = 1.0f;
1027 for (i = 1; i <= n; i++)
1029 float t = p[i - 1];
1031 /* Swap rows */
1032 tmp = row;
1033 row = prev_row;
1034 prev_row = tmp;
1036 /* Calculate next row */
1037 for (j = 0; j <= i && j <= m; j++)
1039 float val = 0.0f;
1041 if (j < i)
1042 val += prev_row[j] * (1.0f - t);
1043 if (j > 0)
1044 val += prev_row[j - 1] * t;
1045 row[j] = val;
1050 * The presence of many distinct rare (not in "p") elements materially
1051 * decreases selectivity. Model their collective occurrence with the
1052 * Poisson distribution.
1054 if (rest > DEFAULT_CONTAIN_SEL)
1056 float t;
1058 /* Swap rows */
1059 tmp = row;
1060 row = prev_row;
1061 prev_row = tmp;
1063 for (i = 0; i <= m; i++)
1064 row[i] = 0.0f;
1066 /* Value of Poisson distribution for 0 occurrences */
1067 t = exp(-rest);
1070 * Calculate convolution of previously computed distribution and the
1071 * Poisson distribution.
1073 for (i = 0; i <= m; i++)
1075 for (j = 0; j <= m - i; j++)
1076 row[j + i] += prev_row[j] * t;
1078 /* Get Poisson distribution value for (i + 1) occurrences */
1079 t *= rest / (float) (i + 1);
1083 pfree(prev_row);
1084 return row;
1087 /* Fast function for floor value of 2 based logarithm calculation. */
1088 static int
1089 floor_log2(uint32 n)
1091 int logval = 0;
1093 if (n == 0)
1094 return -1;
1095 if (n >= (1 << 16))
1097 n >>= 16;
1098 logval += 16;
1100 if (n >= (1 << 8))
1102 n >>= 8;
1103 logval += 8;
1105 if (n >= (1 << 4))
1107 n >>= 4;
1108 logval += 4;
1110 if (n >= (1 << 2))
1112 n >>= 2;
1113 logval += 2;
1115 if (n >= (1 << 1))
1117 logval += 1;
1119 return logval;
1123 * find_next_mcelem binary-searches a most common elements array, starting
1124 * from *index, for the first member >= value. It saves the position of the
1125 * match into *index and returns true if it's an exact match. (Note: we
1126 * assume the mcelem elements are distinct so there can't be more than one
1127 * exact match.)
1129 static bool
1130 find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index,
1131 TypeCacheEntry *typentry)
1133 int l = *index,
1134 r = nmcelem - 1,
1136 res;
1138 while (l <= r)
1140 i = (l + r) / 2;
1141 res = element_compare(&mcelem[i], &value, typentry);
1142 if (res == 0)
1144 *index = i;
1145 return true;
1147 else if (res < 0)
1148 l = i + 1;
1149 else
1150 r = i - 1;
1152 *index = l;
1153 return false;
1157 * Comparison function for elements.
1159 * We use the element type's default btree opclass, and its default collation
1160 * if the type is collation-sensitive.
1162 * XXX consider using SortSupport infrastructure
1164 static int
1165 element_compare(const void *key1, const void *key2, void *arg)
1167 Datum d1 = *((const Datum *) key1);
1168 Datum d2 = *((const Datum *) key2);
1169 TypeCacheEntry *typentry = (TypeCacheEntry *) arg;
1170 FmgrInfo *cmpfunc = &typentry->cmp_proc_finfo;
1171 Datum c;
1173 c = FunctionCall2Coll(cmpfunc, typentry->typcollation, d1, d2);
1174 return DatumGetInt32(c);
1178 * Comparison function for sorting floats into descending order.
1180 static int
1181 float_compare_desc(const void *key1, const void *key2)
1183 float d1 = *((const float *) key1);
1184 float d2 = *((const float *) key2);
1186 if (d1 > d2)
1187 return -1;
1188 else if (d1 < d2)
1189 return 1;
1190 else
1191 return 0;