1 /*-------------------------------------------------------------------------
5 * Generic trigger procedures for referential integrity constraint
8 * Note about memory management: the private hashtables kept here live
9 * across query and transaction boundaries, in fact they live as long as
10 * the backend does. This works because the hashtable structures
11 * themselves are allocated by dynahash.c in its permanent DynaHashCxt,
12 * and the SPI plans they point to are saved using SPI_keepplan().
13 * There is not currently any provision for throwing away a no-longer-needed
14 * plan --- consider improving this someday.
17 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
19 * src/backend/utils/adt/ri_triggers.c
21 *-------------------------------------------------------------------------
26 #include "access/htup_details.h"
27 #include "access/sysattr.h"
28 #include "access/table.h"
29 #include "access/tableam.h"
30 #include "access/xact.h"
31 #include "catalog/pg_collation.h"
32 #include "catalog/pg_constraint.h"
33 #include "catalog/pg_proc.h"
34 #include "commands/trigger.h"
35 #include "executor/executor.h"
36 #include "executor/spi.h"
37 #include "lib/ilist.h"
38 #include "miscadmin.h"
39 #include "parser/parse_coerce.h"
40 #include "parser/parse_relation.h"
41 #include "utils/acl.h"
42 #include "utils/builtins.h"
43 #include "utils/datum.h"
44 #include "utils/fmgroids.h"
45 #include "utils/guc.h"
46 #include "utils/inval.h"
47 #include "utils/lsyscache.h"
48 #include "utils/memutils.h"
49 #include "utils/rangetypes.h"
50 #include "utils/rel.h"
51 #include "utils/rls.h"
52 #include "utils/ruleutils.h"
53 #include "utils/snapmgr.h"
54 #include "utils/syscache.h"
60 #define RI_MAX_NUMKEYS INDEX_MAX_KEYS
62 #define RI_INIT_CONSTRAINTHASHSIZE 64
63 #define RI_INIT_QUERYHASHSIZE (RI_INIT_CONSTRAINTHASHSIZE * 4)
65 #define RI_KEYS_ALL_NULL 0
66 #define RI_KEYS_SOME_NULL 1
67 #define RI_KEYS_NONE_NULL 2
69 /* RI query type codes */
70 /* these queries are executed against the PK (referenced) table: */
71 #define RI_PLAN_CHECK_LOOKUPPK 1
72 #define RI_PLAN_CHECK_LOOKUPPK_FROM_PK 2
73 #define RI_PLAN_LAST_ON_PK RI_PLAN_CHECK_LOOKUPPK_FROM_PK
74 /* these queries are executed against the FK (referencing) table: */
75 #define RI_PLAN_CASCADE_ONDELETE 3
76 #define RI_PLAN_CASCADE_ONUPDATE 4
77 #define RI_PLAN_NO_ACTION 5
78 /* For RESTRICT, the same plan can be used for both ON DELETE and ON UPDATE triggers. */
79 #define RI_PLAN_RESTRICT 6
80 #define RI_PLAN_SETNULL_ONDELETE 7
81 #define RI_PLAN_SETNULL_ONUPDATE 8
82 #define RI_PLAN_SETDEFAULT_ONDELETE 9
83 #define RI_PLAN_SETDEFAULT_ONUPDATE 10
85 #define MAX_QUOTED_NAME_LEN (NAMEDATALEN*2+3)
86 #define MAX_QUOTED_REL_NAME_LEN (MAX_QUOTED_NAME_LEN*2)
88 #define RIAttName(rel, attnum) NameStr(*attnumAttName(rel, attnum))
89 #define RIAttType(rel, attnum) attnumTypeId(rel, attnum)
90 #define RIAttCollation(rel, attnum) attnumCollationId(rel, attnum)
92 #define RI_TRIGTYPE_INSERT 1
93 #define RI_TRIGTYPE_UPDATE 2
94 #define RI_TRIGTYPE_DELETE 3
100 * Information extracted from an FK pg_constraint entry. This is cached in
101 * ri_constraint_cache.
103 * Note that pf/pp/ff_eq_oprs may hold the overlaps operator instead of equals
104 * for the PERIOD part of a temporal foreign key.
106 typedef struct RI_ConstraintInfo
108 Oid constraint_id
; /* OID of pg_constraint entry (hash key) */
109 bool valid
; /* successfully initialized? */
110 Oid constraint_root_id
; /* OID of topmost ancestor constraint;
111 * same as constraint_id if not inherited */
112 uint32 oidHashValue
; /* hash value of constraint_id */
113 uint32 rootHashValue
; /* hash value of constraint_root_id */
114 NameData conname
; /* name of the FK constraint */
115 Oid pk_relid
; /* referenced relation */
116 Oid fk_relid
; /* referencing relation */
117 char confupdtype
; /* foreign key's ON UPDATE action */
118 char confdeltype
; /* foreign key's ON DELETE action */
119 int ndelsetcols
; /* number of columns referenced in ON DELETE
121 int16 confdelsetcols
[RI_MAX_NUMKEYS
]; /* attnums of cols to set on
123 char confmatchtype
; /* foreign key's match type */
124 bool hasperiod
; /* if the foreign key uses PERIOD */
125 int nkeys
; /* number of key columns */
126 int16 pk_attnums
[RI_MAX_NUMKEYS
]; /* attnums of referenced cols */
127 int16 fk_attnums
[RI_MAX_NUMKEYS
]; /* attnums of referencing cols */
128 Oid pf_eq_oprs
[RI_MAX_NUMKEYS
]; /* equality operators (PK = FK) */
129 Oid pp_eq_oprs
[RI_MAX_NUMKEYS
]; /* equality operators (PK = PK) */
130 Oid ff_eq_oprs
[RI_MAX_NUMKEYS
]; /* equality operators (FK = FK) */
131 Oid period_contained_by_oper
; /* anyrange <@ anyrange */
132 Oid agged_period_contained_by_oper
; /* fkattr <@ range_agg(pkattr) */
133 Oid period_intersect_oper
; /* anyrange * anyrange */
134 dlist_node valid_link
; /* Link in list of valid entries */
140 * The key identifying a prepared SPI plan in our query hashtable
142 typedef struct RI_QueryKey
144 Oid constr_id
; /* OID of pg_constraint entry */
145 int32 constr_queryno
; /* query type ID, see RI_PLAN_XXX above */
151 typedef struct RI_QueryHashEntry
160 * The key identifying an entry showing how to compare two values
162 typedef struct RI_CompareKey
164 Oid eq_opr
; /* the equality operator to apply */
165 Oid
typeid; /* the data type to apply it to */
169 * RI_CompareHashEntry
171 typedef struct RI_CompareHashEntry
174 bool valid
; /* successfully initialized? */
175 FmgrInfo eq_opr_finfo
; /* call info for equality fn */
176 FmgrInfo cast_func_finfo
; /* in case we must coerce input */
177 } RI_CompareHashEntry
;
183 static HTAB
*ri_constraint_cache
= NULL
;
184 static HTAB
*ri_query_cache
= NULL
;
185 static HTAB
*ri_compare_cache
= NULL
;
186 static dclist_head ri_constraint_cache_valid_list
;
190 * Local function prototypes
192 static bool ri_Check_Pk_Match(Relation pk_rel
, Relation fk_rel
,
193 TupleTableSlot
*oldslot
,
194 const RI_ConstraintInfo
*riinfo
);
195 static Datum
ri_restrict(TriggerData
*trigdata
, bool is_no_action
);
196 static Datum
ri_set(TriggerData
*trigdata
, bool is_set_null
, int tgkind
);
197 static void quoteOneName(char *buffer
, const char *name
);
198 static void quoteRelationName(char *buffer
, Relation rel
);
199 static void ri_GenerateQual(StringInfo buf
,
201 const char *leftop
, Oid leftoptype
,
203 const char *rightop
, Oid rightoptype
);
204 static void ri_GenerateQualCollation(StringInfo buf
, Oid collation
);
205 static int ri_NullCheck(TupleDesc tupDesc
, TupleTableSlot
*slot
,
206 const RI_ConstraintInfo
*riinfo
, bool rel_is_pk
);
207 static void ri_BuildQueryKey(RI_QueryKey
*key
,
208 const RI_ConstraintInfo
*riinfo
,
209 int32 constr_queryno
);
210 static bool ri_KeysEqual(Relation rel
, TupleTableSlot
*oldslot
, TupleTableSlot
*newslot
,
211 const RI_ConstraintInfo
*riinfo
, bool rel_is_pk
);
212 static bool ri_CompareWithCast(Oid eq_opr
, Oid
typeid, Oid collid
,
213 Datum lhs
, Datum rhs
);
215 static void ri_InitHashTables(void);
216 static void InvalidateConstraintCacheCallBack(Datum arg
, int cacheid
, uint32 hashvalue
);
217 static SPIPlanPtr
ri_FetchPreparedPlan(RI_QueryKey
*key
);
218 static void ri_HashPreparedPlan(RI_QueryKey
*key
, SPIPlanPtr plan
);
219 static RI_CompareHashEntry
*ri_HashCompareOp(Oid eq_opr
, Oid
typeid);
221 static void ri_CheckTrigger(FunctionCallInfo fcinfo
, const char *funcname
,
223 static const RI_ConstraintInfo
*ri_FetchConstraintInfo(Trigger
*trigger
,
224 Relation trig_rel
, bool rel_is_pk
);
225 static const RI_ConstraintInfo
*ri_LoadConstraintInfo(Oid constraintOid
);
226 static Oid
get_ri_constraint_root(Oid constrOid
);
227 static SPIPlanPtr
ri_PlanCheck(const char *querystr
, int nargs
, Oid
*argtypes
,
228 RI_QueryKey
*qkey
, Relation fk_rel
, Relation pk_rel
);
229 static bool ri_PerformCheck(const RI_ConstraintInfo
*riinfo
,
230 RI_QueryKey
*qkey
, SPIPlanPtr qplan
,
231 Relation fk_rel
, Relation pk_rel
,
232 TupleTableSlot
*oldslot
, TupleTableSlot
*newslot
,
234 bool detectNewRows
, int expect_OK
);
235 static void ri_ExtractValues(Relation rel
, TupleTableSlot
*slot
,
236 const RI_ConstraintInfo
*riinfo
, bool rel_is_pk
,
237 Datum
*vals
, char *nulls
);
238 static void ri_ReportViolation(const RI_ConstraintInfo
*riinfo
,
239 Relation pk_rel
, Relation fk_rel
,
240 TupleTableSlot
*violatorslot
, TupleDesc tupdesc
,
241 int queryno
, bool is_restrict
, bool partgone
) pg_attribute_noreturn();
247 * Check foreign key existence (combined for INSERT and UPDATE).
250 RI_FKey_check(TriggerData
*trigdata
)
252 const RI_ConstraintInfo
*riinfo
;
255 TupleTableSlot
*newslot
;
259 riinfo
= ri_FetchConstraintInfo(trigdata
->tg_trigger
,
260 trigdata
->tg_relation
, false);
262 if (TRIGGER_FIRED_BY_UPDATE(trigdata
->tg_event
))
263 newslot
= trigdata
->tg_newslot
;
265 newslot
= trigdata
->tg_trigslot
;
268 * We should not even consider checking the row if it is no longer valid,
269 * since it was either deleted (so the deferred check should be skipped)
270 * or updated (in which case only the latest version of the row should be
271 * checked). Test its liveness according to SnapshotSelf. We need pin
272 * and lock on the buffer to call HeapTupleSatisfiesVisibility. Caller
273 * should be holding pin, but not lock.
275 if (!table_tuple_satisfies_snapshot(trigdata
->tg_relation
, newslot
, SnapshotSelf
))
276 return PointerGetDatum(NULL
);
279 * Get the relation descriptors of the FK and PK tables.
281 * pk_rel is opened in RowShareLock mode since that's what our eventual
282 * SELECT FOR KEY SHARE will get on it.
284 fk_rel
= trigdata
->tg_relation
;
285 pk_rel
= table_open(riinfo
->pk_relid
, RowShareLock
);
287 switch (ri_NullCheck(RelationGetDescr(fk_rel
), newslot
, riinfo
, false))
289 case RI_KEYS_ALL_NULL
:
292 * No further check needed - an all-NULL key passes every type of
293 * foreign key constraint.
295 table_close(pk_rel
, RowShareLock
);
296 return PointerGetDatum(NULL
);
298 case RI_KEYS_SOME_NULL
:
301 * This is the only case that differs between the three kinds of
304 switch (riinfo
->confmatchtype
)
306 case FKCONSTR_MATCH_FULL
:
309 * Not allowed - MATCH FULL says either all or none of the
310 * attributes can be NULLs
313 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION
),
314 errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
315 RelationGetRelationName(fk_rel
),
316 NameStr(riinfo
->conname
)),
317 errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
318 errtableconstraint(fk_rel
,
319 NameStr(riinfo
->conname
))));
320 table_close(pk_rel
, RowShareLock
);
321 return PointerGetDatum(NULL
);
323 case FKCONSTR_MATCH_SIMPLE
:
326 * MATCH SIMPLE - if ANY column is null, the key passes
329 table_close(pk_rel
, RowShareLock
);
330 return PointerGetDatum(NULL
);
333 case FKCONSTR_MATCH_PARTIAL
:
336 * MATCH PARTIAL - all non-null columns must match. (not
337 * implemented, can be done by modifying the query below
338 * to only include non-null columns, or by writing a
339 * special version here)
345 case RI_KEYS_NONE_NULL
:
348 * Have a full qualified key - continue below for all three kinds
356 /* Fetch or prepare a saved plan for the real check */
357 ri_BuildQueryKey(&qkey
, riinfo
, RI_PLAN_CHECK_LOOKUPPK
);
359 if ((qplan
= ri_FetchPreparedPlan(&qkey
)) == NULL
)
361 StringInfoData querybuf
;
362 char pkrelname
[MAX_QUOTED_REL_NAME_LEN
];
363 char attname
[MAX_QUOTED_NAME_LEN
];
365 const char *querysep
;
366 Oid queryoids
[RI_MAX_NUMKEYS
];
370 * The query string built is
371 * SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
373 * The type id's for the $ parameters are those of the
374 * corresponding FK attributes.
376 * But for temporal FKs we need to make sure
377 * the FK's range is completely covered.
378 * So we use this query instead:
381 * SELECT pkperiodatt AS r
382 * FROM [ONLY] pktable x
383 * WHERE pkatt1 = $1 [AND ...]
384 * AND pkperiodatt && $n
387 * HAVING $n <@ range_agg(x1.r)
388 * Note if FOR KEY SHARE ever allows GROUP BY and HAVING
389 * we can make this a bit simpler.
392 initStringInfo(&querybuf
);
393 pk_only
= pk_rel
->rd_rel
->relkind
== RELKIND_PARTITIONED_TABLE
?
395 quoteRelationName(pkrelname
, pk_rel
);
396 if (riinfo
->hasperiod
)
398 quoteOneName(attname
,
399 RIAttName(pk_rel
, riinfo
->pk_attnums
[riinfo
->nkeys
- 1]));
401 appendStringInfo(&querybuf
,
402 "SELECT 1 FROM (SELECT %s AS r FROM %s%s x",
403 attname
, pk_only
, pkrelname
);
407 appendStringInfo(&querybuf
, "SELECT 1 FROM %s%s x",
411 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
413 Oid pk_type
= RIAttType(pk_rel
, riinfo
->pk_attnums
[i
]);
414 Oid fk_type
= RIAttType(fk_rel
, riinfo
->fk_attnums
[i
]);
416 quoteOneName(attname
,
417 RIAttName(pk_rel
, riinfo
->pk_attnums
[i
]));
418 sprintf(paramname
, "$%d", i
+ 1);
419 ri_GenerateQual(&querybuf
, querysep
,
421 riinfo
->pf_eq_oprs
[i
],
424 queryoids
[i
] = fk_type
;
426 appendStringInfoString(&querybuf
, " FOR KEY SHARE OF x");
427 if (riinfo
->hasperiod
)
429 Oid fk_type
= RIAttType(fk_rel
, riinfo
->fk_attnums
[riinfo
->nkeys
- 1]);
431 appendStringInfo(&querybuf
, ") x1 HAVING ");
432 sprintf(paramname
, "$%d", riinfo
->nkeys
);
433 ri_GenerateQual(&querybuf
, "",
435 riinfo
->agged_period_contained_by_oper
,
436 "pg_catalog.range_agg", ANYMULTIRANGEOID
);
437 appendStringInfo(&querybuf
, "(x1.r)");
440 /* Prepare and save the plan */
441 qplan
= ri_PlanCheck(querybuf
.data
, riinfo
->nkeys
, queryoids
,
442 &qkey
, fk_rel
, pk_rel
);
446 * Now check that foreign key exists in PK table
448 * XXX detectNewRows must be true when a partitioned table is on the
449 * referenced side. The reason is that our snapshot must be fresh in
450 * order for the hack in find_inheritance_children() to work.
452 ri_PerformCheck(riinfo
, &qkey
, qplan
,
456 pk_rel
->rd_rel
->relkind
== RELKIND_PARTITIONED_TABLE
,
459 if (SPI_finish() != SPI_OK_FINISH
)
460 elog(ERROR
, "SPI_finish failed");
462 table_close(pk_rel
, RowShareLock
);
464 return PointerGetDatum(NULL
);
469 * RI_FKey_check_ins -
471 * Check foreign key existence at insert event on FK table.
474 RI_FKey_check_ins(PG_FUNCTION_ARGS
)
476 /* Check that this is a valid trigger call on the right time and event. */
477 ri_CheckTrigger(fcinfo
, "RI_FKey_check_ins", RI_TRIGTYPE_INSERT
);
479 /* Share code with UPDATE case. */
480 return RI_FKey_check((TriggerData
*) fcinfo
->context
);
485 * RI_FKey_check_upd -
487 * Check foreign key existence at update event on FK table.
490 RI_FKey_check_upd(PG_FUNCTION_ARGS
)
492 /* Check that this is a valid trigger call on the right time and event. */
493 ri_CheckTrigger(fcinfo
, "RI_FKey_check_upd", RI_TRIGTYPE_UPDATE
);
495 /* Share code with INSERT case. */
496 return RI_FKey_check((TriggerData
*) fcinfo
->context
);
503 * Check to see if another PK row has been created that provides the same
504 * key values as the "oldslot" that's been modified or deleted in our trigger
505 * event. Returns true if a match is found in the PK table.
507 * We assume the caller checked that the oldslot contains no NULL key values,
508 * since otherwise a match is impossible.
511 ri_Check_Pk_Match(Relation pk_rel
, Relation fk_rel
,
512 TupleTableSlot
*oldslot
,
513 const RI_ConstraintInfo
*riinfo
)
519 /* Only called for non-null rows */
520 Assert(ri_NullCheck(RelationGetDescr(pk_rel
), oldslot
, riinfo
, true) == RI_KEYS_NONE_NULL
);
525 * Fetch or prepare a saved plan for checking PK table with values coming
528 ri_BuildQueryKey(&qkey
, riinfo
, RI_PLAN_CHECK_LOOKUPPK_FROM_PK
);
530 if ((qplan
= ri_FetchPreparedPlan(&qkey
)) == NULL
)
532 StringInfoData querybuf
;
533 char pkrelname
[MAX_QUOTED_REL_NAME_LEN
];
534 char attname
[MAX_QUOTED_NAME_LEN
];
536 const char *querysep
;
538 Oid queryoids
[RI_MAX_NUMKEYS
];
541 * The query string built is
542 * SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
544 * The type id's for the $ parameters are those of the
545 * PK attributes themselves.
547 * But for temporal FKs we need to make sure
548 * the old PK's range is completely covered.
549 * So we use this query instead:
552 * SELECT pkperiodatt AS r
553 * FROM [ONLY] pktable x
554 * WHERE pkatt1 = $1 [AND ...]
555 * AND pkperiodatt && $n
558 * HAVING $n <@ range_agg(x1.r)
559 * Note if FOR KEY SHARE ever allows GROUP BY and HAVING
560 * we can make this a bit simpler.
563 initStringInfo(&querybuf
);
564 pk_only
= pk_rel
->rd_rel
->relkind
== RELKIND_PARTITIONED_TABLE
?
566 quoteRelationName(pkrelname
, pk_rel
);
567 if (riinfo
->hasperiod
)
569 quoteOneName(attname
, RIAttName(pk_rel
, riinfo
->pk_attnums
[riinfo
->nkeys
- 1]));
571 appendStringInfo(&querybuf
,
572 "SELECT 1 FROM (SELECT %s AS r FROM %s%s x",
573 attname
, pk_only
, pkrelname
);
577 appendStringInfo(&querybuf
, "SELECT 1 FROM %s%s x",
581 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
583 Oid pk_type
= RIAttType(pk_rel
, riinfo
->pk_attnums
[i
]);
585 quoteOneName(attname
,
586 RIAttName(pk_rel
, riinfo
->pk_attnums
[i
]));
587 sprintf(paramname
, "$%d", i
+ 1);
588 ri_GenerateQual(&querybuf
, querysep
,
590 riinfo
->pp_eq_oprs
[i
],
593 queryoids
[i
] = pk_type
;
595 appendStringInfoString(&querybuf
, " FOR KEY SHARE OF x");
596 if (riinfo
->hasperiod
)
598 Oid fk_type
= RIAttType(fk_rel
, riinfo
->fk_attnums
[riinfo
->nkeys
- 1]);
600 appendStringInfo(&querybuf
, ") x1 HAVING ");
601 sprintf(paramname
, "$%d", riinfo
->nkeys
);
602 ri_GenerateQual(&querybuf
, "",
604 riinfo
->agged_period_contained_by_oper
,
605 "pg_catalog.range_agg", ANYMULTIRANGEOID
);
606 appendStringInfo(&querybuf
, "(x1.r)");
609 /* Prepare and save the plan */
610 qplan
= ri_PlanCheck(querybuf
.data
, riinfo
->nkeys
, queryoids
,
611 &qkey
, fk_rel
, pk_rel
);
615 * We have a plan now. Run it.
617 result
= ri_PerformCheck(riinfo
, &qkey
, qplan
,
621 true, /* treat like update */
624 if (SPI_finish() != SPI_OK_FINISH
)
625 elog(ERROR
, "SPI_finish failed");
632 * RI_FKey_noaction_del -
634 * Give an error and roll back the current transaction if the
635 * delete has resulted in a violation of the given referential
636 * integrity constraint.
639 RI_FKey_noaction_del(PG_FUNCTION_ARGS
)
641 /* Check that this is a valid trigger call on the right time and event. */
642 ri_CheckTrigger(fcinfo
, "RI_FKey_noaction_del", RI_TRIGTYPE_DELETE
);
644 /* Share code with RESTRICT/UPDATE cases. */
645 return ri_restrict((TriggerData
*) fcinfo
->context
, true);
649 * RI_FKey_restrict_del -
651 * Restrict delete from PK table to rows unreferenced by foreign key.
653 * The SQL standard intends that this referential action occur exactly when
654 * the delete is performed, rather than after. This appears to be
655 * the only difference between "NO ACTION" and "RESTRICT". In Postgres
656 * we still implement this as an AFTER trigger, but it's non-deferrable.
659 RI_FKey_restrict_del(PG_FUNCTION_ARGS
)
661 /* Check that this is a valid trigger call on the right time and event. */
662 ri_CheckTrigger(fcinfo
, "RI_FKey_restrict_del", RI_TRIGTYPE_DELETE
);
664 /* Share code with NO ACTION/UPDATE cases. */
665 return ri_restrict((TriggerData
*) fcinfo
->context
, false);
669 * RI_FKey_noaction_upd -
671 * Give an error and roll back the current transaction if the
672 * update has resulted in a violation of the given referential
673 * integrity constraint.
676 RI_FKey_noaction_upd(PG_FUNCTION_ARGS
)
678 /* Check that this is a valid trigger call on the right time and event. */
679 ri_CheckTrigger(fcinfo
, "RI_FKey_noaction_upd", RI_TRIGTYPE_UPDATE
);
681 /* Share code with RESTRICT/DELETE cases. */
682 return ri_restrict((TriggerData
*) fcinfo
->context
, true);
686 * RI_FKey_restrict_upd -
688 * Restrict update of PK to rows unreferenced by foreign key.
690 * The SQL standard intends that this referential action occur exactly when
691 * the update is performed, rather than after. This appears to be
692 * the only difference between "NO ACTION" and "RESTRICT". In Postgres
693 * we still implement this as an AFTER trigger, but it's non-deferrable.
696 RI_FKey_restrict_upd(PG_FUNCTION_ARGS
)
698 /* Check that this is a valid trigger call on the right time and event. */
699 ri_CheckTrigger(fcinfo
, "RI_FKey_restrict_upd", RI_TRIGTYPE_UPDATE
);
701 /* Share code with NO ACTION/DELETE cases. */
702 return ri_restrict((TriggerData
*) fcinfo
->context
, false);
708 * Common code for ON DELETE RESTRICT, ON DELETE NO ACTION,
709 * ON UPDATE RESTRICT, and ON UPDATE NO ACTION.
712 ri_restrict(TriggerData
*trigdata
, bool is_no_action
)
714 const RI_ConstraintInfo
*riinfo
;
717 TupleTableSlot
*oldslot
;
721 riinfo
= ri_FetchConstraintInfo(trigdata
->tg_trigger
,
722 trigdata
->tg_relation
, true);
725 * Get the relation descriptors of the FK and PK tables and the old tuple.
727 * fk_rel is opened in RowShareLock mode since that's what our eventual
728 * SELECT FOR KEY SHARE will get on it.
730 fk_rel
= table_open(riinfo
->fk_relid
, RowShareLock
);
731 pk_rel
= trigdata
->tg_relation
;
732 oldslot
= trigdata
->tg_trigslot
;
735 * If another PK row now exists providing the old key values, we should
736 * not do anything. However, this check should only be made in the NO
737 * ACTION case; in RESTRICT cases we don't wish to allow another row to be
740 * If the foreign key has PERIOD, we incorporate looking for replacement
741 * rows in the main SQL query below, so we needn't do it here.
743 if (is_no_action
&& !riinfo
->hasperiod
&&
744 ri_Check_Pk_Match(pk_rel
, fk_rel
, oldslot
, riinfo
))
746 table_close(fk_rel
, RowShareLock
);
747 return PointerGetDatum(NULL
);
753 * Fetch or prepare a saved plan for the restrict lookup (it's the same
754 * query for delete and update cases)
756 ri_BuildQueryKey(&qkey
, riinfo
, is_no_action
? RI_PLAN_NO_ACTION
: RI_PLAN_RESTRICT
);
758 if ((qplan
= ri_FetchPreparedPlan(&qkey
)) == NULL
)
760 StringInfoData querybuf
;
761 char pkrelname
[MAX_QUOTED_REL_NAME_LEN
];
762 char fkrelname
[MAX_QUOTED_REL_NAME_LEN
];
763 char attname
[MAX_QUOTED_NAME_LEN
];
764 char periodattname
[MAX_QUOTED_NAME_LEN
];
766 const char *querysep
;
767 Oid queryoids
[RI_MAX_NUMKEYS
];
771 * The query string built is
772 * SELECT 1 FROM [ONLY] <fktable> x WHERE $1 = fkatt1 [AND ...]
774 * The type id's for the $ parameters are those of the
775 * corresponding PK attributes.
778 initStringInfo(&querybuf
);
779 fk_only
= fk_rel
->rd_rel
->relkind
== RELKIND_PARTITIONED_TABLE
?
781 quoteRelationName(fkrelname
, fk_rel
);
782 appendStringInfo(&querybuf
, "SELECT 1 FROM %s%s x",
785 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
787 Oid pk_type
= RIAttType(pk_rel
, riinfo
->pk_attnums
[i
]);
788 Oid fk_type
= RIAttType(fk_rel
, riinfo
->fk_attnums
[i
]);
790 quoteOneName(attname
,
791 RIAttName(fk_rel
, riinfo
->fk_attnums
[i
]));
792 sprintf(paramname
, "$%d", i
+ 1);
793 ri_GenerateQual(&querybuf
, querysep
,
795 riinfo
->pf_eq_oprs
[i
],
798 queryoids
[i
] = pk_type
;
802 * For temporal foreign keys, a reference could still be valid if the
803 * referenced range didn't change too much. Also if a referencing
804 * range extends past the current PK row, we don't want to check that
805 * part: some other PK row should fulfill it. We only want to check
806 * the part matching the PK record we've changed. Therefore to find
807 * invalid records we do this:
809 * SELECT 1 FROM [ONLY] <fktable> x WHERE $1 = x.fkatt1 [AND ...]
811 * AND $n && x.fkperiod
812 * AND NOT coalesce((x.fkperiod * $n) <@
813 * (SELECT range_agg(r)
814 * FROM (SELECT y.pkperiod r
815 * FROM [ONLY] <pktable> y
816 * WHERE $1 = y.pkatt1 [AND ...] AND $n && y.pkperiod
817 * FOR KEY SHARE OF y) y2), false)
821 * We need the coalesce in case the first subquery returns no rows.
822 * We need the second subquery because FOR KEY SHARE doesn't support
825 if (riinfo
->hasperiod
&& is_no_action
)
827 Oid pk_period_type
= RIAttType(pk_rel
, riinfo
->pk_attnums
[riinfo
->nkeys
- 1]);
828 Oid fk_period_type
= RIAttType(fk_rel
, riinfo
->fk_attnums
[riinfo
->nkeys
- 1]);
829 StringInfoData intersectbuf
;
830 StringInfoData replacementsbuf
;
831 char *pk_only
= pk_rel
->rd_rel
->relkind
== RELKIND_PARTITIONED_TABLE
?
834 quoteOneName(attname
, RIAttName(fk_rel
, riinfo
->fk_attnums
[riinfo
->nkeys
- 1]));
835 sprintf(paramname
, "$%d", riinfo
->nkeys
);
837 appendStringInfoString(&querybuf
, " AND NOT coalesce(");
839 /* Intersect the fk with the old pk range */
840 initStringInfo(&intersectbuf
);
841 appendStringInfoString(&intersectbuf
, "(");
842 ri_GenerateQual(&intersectbuf
, "",
843 attname
, fk_period_type
,
844 riinfo
->period_intersect_oper
,
845 paramname
, pk_period_type
);
846 appendStringInfoString(&intersectbuf
, ")");
848 /* Find the remaining history */
849 initStringInfo(&replacementsbuf
);
850 appendStringInfoString(&replacementsbuf
, "(SELECT pg_catalog.range_agg(r) FROM ");
852 quoteOneName(periodattname
, RIAttName(pk_rel
, riinfo
->pk_attnums
[riinfo
->nkeys
- 1]));
853 quoteRelationName(pkrelname
, pk_rel
);
854 appendStringInfo(&replacementsbuf
, "(SELECT y.%s r FROM %s%s y",
855 periodattname
, pk_only
, pkrelname
);
857 /* Restrict pk rows to what matches */
859 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
861 Oid pk_type
= RIAttType(pk_rel
, riinfo
->pk_attnums
[i
]);
863 quoteOneName(attname
,
864 RIAttName(pk_rel
, riinfo
->pk_attnums
[i
]));
865 sprintf(paramname
, "$%d", i
+ 1);
866 ri_GenerateQual(&replacementsbuf
, querysep
,
868 riinfo
->pp_eq_oprs
[i
],
871 queryoids
[i
] = pk_type
;
873 appendStringInfoString(&replacementsbuf
, " FOR KEY SHARE OF y) y2)");
875 ri_GenerateQual(&querybuf
, "",
876 intersectbuf
.data
, fk_period_type
,
877 riinfo
->agged_period_contained_by_oper
,
878 replacementsbuf
.data
, ANYMULTIRANGEOID
);
879 /* end of coalesce: */
880 appendStringInfoString(&querybuf
, ", false)");
883 appendStringInfoString(&querybuf
, " FOR KEY SHARE OF x");
885 /* Prepare and save the plan */
886 qplan
= ri_PlanCheck(querybuf
.data
, riinfo
->nkeys
, queryoids
,
887 &qkey
, fk_rel
, pk_rel
);
891 * We have a plan now. Run it to check for existing references.
893 ri_PerformCheck(riinfo
, &qkey
, qplan
,
897 true, /* must detect new rows */
900 if (SPI_finish() != SPI_OK_FINISH
)
901 elog(ERROR
, "SPI_finish failed");
903 table_close(fk_rel
, RowShareLock
);
905 return PointerGetDatum(NULL
);
910 * RI_FKey_cascade_del -
912 * Cascaded delete foreign key references at delete event on PK table.
915 RI_FKey_cascade_del(PG_FUNCTION_ARGS
)
917 TriggerData
*trigdata
= (TriggerData
*) fcinfo
->context
;
918 const RI_ConstraintInfo
*riinfo
;
921 TupleTableSlot
*oldslot
;
925 /* Check that this is a valid trigger call on the right time and event. */
926 ri_CheckTrigger(fcinfo
, "RI_FKey_cascade_del", RI_TRIGTYPE_DELETE
);
928 riinfo
= ri_FetchConstraintInfo(trigdata
->tg_trigger
,
929 trigdata
->tg_relation
, true);
932 * Get the relation descriptors of the FK and PK tables and the old tuple.
934 * fk_rel is opened in RowExclusiveLock mode since that's what our
935 * eventual DELETE will get on it.
937 fk_rel
= table_open(riinfo
->fk_relid
, RowExclusiveLock
);
938 pk_rel
= trigdata
->tg_relation
;
939 oldslot
= trigdata
->tg_trigslot
;
943 /* Fetch or prepare a saved plan for the cascaded delete */
944 ri_BuildQueryKey(&qkey
, riinfo
, RI_PLAN_CASCADE_ONDELETE
);
946 if ((qplan
= ri_FetchPreparedPlan(&qkey
)) == NULL
)
948 StringInfoData querybuf
;
949 char fkrelname
[MAX_QUOTED_REL_NAME_LEN
];
950 char attname
[MAX_QUOTED_NAME_LEN
];
952 const char *querysep
;
953 Oid queryoids
[RI_MAX_NUMKEYS
];
957 * The query string built is
958 * DELETE FROM [ONLY] <fktable> WHERE $1 = fkatt1 [AND ...]
959 * The type id's for the $ parameters are those of the
960 * corresponding PK attributes.
963 initStringInfo(&querybuf
);
964 fk_only
= fk_rel
->rd_rel
->relkind
== RELKIND_PARTITIONED_TABLE
?
966 quoteRelationName(fkrelname
, fk_rel
);
967 appendStringInfo(&querybuf
, "DELETE FROM %s%s",
970 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
972 Oid pk_type
= RIAttType(pk_rel
, riinfo
->pk_attnums
[i
]);
973 Oid fk_type
= RIAttType(fk_rel
, riinfo
->fk_attnums
[i
]);
975 quoteOneName(attname
,
976 RIAttName(fk_rel
, riinfo
->fk_attnums
[i
]));
977 sprintf(paramname
, "$%d", i
+ 1);
978 ri_GenerateQual(&querybuf
, querysep
,
980 riinfo
->pf_eq_oprs
[i
],
983 queryoids
[i
] = pk_type
;
986 /* Prepare and save the plan */
987 qplan
= ri_PlanCheck(querybuf
.data
, riinfo
->nkeys
, queryoids
,
988 &qkey
, fk_rel
, pk_rel
);
992 * We have a plan now. Build up the arguments from the key values in the
993 * deleted PK tuple and delete the referencing rows
995 ri_PerformCheck(riinfo
, &qkey
, qplan
,
999 true, /* must detect new rows */
1002 if (SPI_finish() != SPI_OK_FINISH
)
1003 elog(ERROR
, "SPI_finish failed");
1005 table_close(fk_rel
, RowExclusiveLock
);
1007 return PointerGetDatum(NULL
);
1012 * RI_FKey_cascade_upd -
1014 * Cascaded update foreign key references at update event on PK table.
1017 RI_FKey_cascade_upd(PG_FUNCTION_ARGS
)
1019 TriggerData
*trigdata
= (TriggerData
*) fcinfo
->context
;
1020 const RI_ConstraintInfo
*riinfo
;
1023 TupleTableSlot
*newslot
;
1024 TupleTableSlot
*oldslot
;
1028 /* Check that this is a valid trigger call on the right time and event. */
1029 ri_CheckTrigger(fcinfo
, "RI_FKey_cascade_upd", RI_TRIGTYPE_UPDATE
);
1031 riinfo
= ri_FetchConstraintInfo(trigdata
->tg_trigger
,
1032 trigdata
->tg_relation
, true);
1035 * Get the relation descriptors of the FK and PK tables and the new and
1038 * fk_rel is opened in RowExclusiveLock mode since that's what our
1039 * eventual UPDATE will get on it.
1041 fk_rel
= table_open(riinfo
->fk_relid
, RowExclusiveLock
);
1042 pk_rel
= trigdata
->tg_relation
;
1043 newslot
= trigdata
->tg_newslot
;
1044 oldslot
= trigdata
->tg_trigslot
;
1048 /* Fetch or prepare a saved plan for the cascaded update */
1049 ri_BuildQueryKey(&qkey
, riinfo
, RI_PLAN_CASCADE_ONUPDATE
);
1051 if ((qplan
= ri_FetchPreparedPlan(&qkey
)) == NULL
)
1053 StringInfoData querybuf
;
1054 StringInfoData qualbuf
;
1055 char fkrelname
[MAX_QUOTED_REL_NAME_LEN
];
1056 char attname
[MAX_QUOTED_NAME_LEN
];
1058 const char *querysep
;
1059 const char *qualsep
;
1060 Oid queryoids
[RI_MAX_NUMKEYS
* 2];
1061 const char *fk_only
;
1064 * The query string built is
1065 * UPDATE [ONLY] <fktable> SET fkatt1 = $1 [, ...]
1066 * WHERE $n = fkatt1 [AND ...]
1067 * The type id's for the $ parameters are those of the
1068 * corresponding PK attributes. Note that we are assuming
1069 * there is an assignment cast from the PK to the FK type;
1070 * else the parser will fail.
1073 initStringInfo(&querybuf
);
1074 initStringInfo(&qualbuf
);
1075 fk_only
= fk_rel
->rd_rel
->relkind
== RELKIND_PARTITIONED_TABLE
?
1077 quoteRelationName(fkrelname
, fk_rel
);
1078 appendStringInfo(&querybuf
, "UPDATE %s%s SET",
1079 fk_only
, fkrelname
);
1082 for (int i
= 0, j
= riinfo
->nkeys
; i
< riinfo
->nkeys
; i
++, j
++)
1084 Oid pk_type
= RIAttType(pk_rel
, riinfo
->pk_attnums
[i
]);
1085 Oid fk_type
= RIAttType(fk_rel
, riinfo
->fk_attnums
[i
]);
1087 quoteOneName(attname
,
1088 RIAttName(fk_rel
, riinfo
->fk_attnums
[i
]));
1089 appendStringInfo(&querybuf
,
1091 querysep
, attname
, i
+ 1);
1092 sprintf(paramname
, "$%d", j
+ 1);
1093 ri_GenerateQual(&qualbuf
, qualsep
,
1095 riinfo
->pf_eq_oprs
[i
],
1099 queryoids
[i
] = pk_type
;
1100 queryoids
[j
] = pk_type
;
1102 appendBinaryStringInfo(&querybuf
, qualbuf
.data
, qualbuf
.len
);
1104 /* Prepare and save the plan */
1105 qplan
= ri_PlanCheck(querybuf
.data
, riinfo
->nkeys
* 2, queryoids
,
1106 &qkey
, fk_rel
, pk_rel
);
1110 * We have a plan now. Run it to update the existing references.
1112 ri_PerformCheck(riinfo
, &qkey
, qplan
,
1116 true, /* must detect new rows */
1119 if (SPI_finish() != SPI_OK_FINISH
)
1120 elog(ERROR
, "SPI_finish failed");
1122 table_close(fk_rel
, RowExclusiveLock
);
1124 return PointerGetDatum(NULL
);
1129 * RI_FKey_setnull_del -
1131 * Set foreign key references to NULL values at delete event on PK table.
1134 RI_FKey_setnull_del(PG_FUNCTION_ARGS
)
1136 /* Check that this is a valid trigger call on the right time and event. */
1137 ri_CheckTrigger(fcinfo
, "RI_FKey_setnull_del", RI_TRIGTYPE_DELETE
);
1139 /* Share code with UPDATE case */
1140 return ri_set((TriggerData
*) fcinfo
->context
, true, RI_TRIGTYPE_DELETE
);
1144 * RI_FKey_setnull_upd -
1146 * Set foreign key references to NULL at update event on PK table.
1149 RI_FKey_setnull_upd(PG_FUNCTION_ARGS
)
1151 /* Check that this is a valid trigger call on the right time and event. */
1152 ri_CheckTrigger(fcinfo
, "RI_FKey_setnull_upd", RI_TRIGTYPE_UPDATE
);
1154 /* Share code with DELETE case */
1155 return ri_set((TriggerData
*) fcinfo
->context
, true, RI_TRIGTYPE_UPDATE
);
1159 * RI_FKey_setdefault_del -
1161 * Set foreign key references to defaults at delete event on PK table.
1164 RI_FKey_setdefault_del(PG_FUNCTION_ARGS
)
1166 /* Check that this is a valid trigger call on the right time and event. */
1167 ri_CheckTrigger(fcinfo
, "RI_FKey_setdefault_del", RI_TRIGTYPE_DELETE
);
1169 /* Share code with UPDATE case */
1170 return ri_set((TriggerData
*) fcinfo
->context
, false, RI_TRIGTYPE_DELETE
);
1174 * RI_FKey_setdefault_upd -
1176 * Set foreign key references to defaults at update event on PK table.
1179 RI_FKey_setdefault_upd(PG_FUNCTION_ARGS
)
1181 /* Check that this is a valid trigger call on the right time and event. */
1182 ri_CheckTrigger(fcinfo
, "RI_FKey_setdefault_upd", RI_TRIGTYPE_UPDATE
);
1184 /* Share code with DELETE case */
1185 return ri_set((TriggerData
*) fcinfo
->context
, false, RI_TRIGTYPE_UPDATE
);
1191 * Common code for ON DELETE SET NULL, ON DELETE SET DEFAULT, ON UPDATE SET
1192 * NULL, and ON UPDATE SET DEFAULT.
1195 ri_set(TriggerData
*trigdata
, bool is_set_null
, int tgkind
)
1197 const RI_ConstraintInfo
*riinfo
;
1200 TupleTableSlot
*oldslot
;
1205 riinfo
= ri_FetchConstraintInfo(trigdata
->tg_trigger
,
1206 trigdata
->tg_relation
, true);
1209 * Get the relation descriptors of the FK and PK tables and the old tuple.
1211 * fk_rel is opened in RowExclusiveLock mode since that's what our
1212 * eventual UPDATE will get on it.
1214 fk_rel
= table_open(riinfo
->fk_relid
, RowExclusiveLock
);
1215 pk_rel
= trigdata
->tg_relation
;
1216 oldslot
= trigdata
->tg_trigslot
;
1221 * Fetch or prepare a saved plan for the trigger.
1225 case RI_TRIGTYPE_UPDATE
:
1226 queryno
= is_set_null
1227 ? RI_PLAN_SETNULL_ONUPDATE
1228 : RI_PLAN_SETDEFAULT_ONUPDATE
;
1230 case RI_TRIGTYPE_DELETE
:
1231 queryno
= is_set_null
1232 ? RI_PLAN_SETNULL_ONDELETE
1233 : RI_PLAN_SETDEFAULT_ONDELETE
;
1236 elog(ERROR
, "invalid tgkind passed to ri_set");
1239 ri_BuildQueryKey(&qkey
, riinfo
, queryno
);
1241 if ((qplan
= ri_FetchPreparedPlan(&qkey
)) == NULL
)
1243 StringInfoData querybuf
;
1244 char fkrelname
[MAX_QUOTED_REL_NAME_LEN
];
1245 char attname
[MAX_QUOTED_NAME_LEN
];
1247 const char *querysep
;
1248 const char *qualsep
;
1249 Oid queryoids
[RI_MAX_NUMKEYS
];
1250 const char *fk_only
;
1251 int num_cols_to_set
;
1252 const int16
*set_cols
;
1256 case RI_TRIGTYPE_UPDATE
:
1257 num_cols_to_set
= riinfo
->nkeys
;
1258 set_cols
= riinfo
->fk_attnums
;
1260 case RI_TRIGTYPE_DELETE
:
1263 * If confdelsetcols are present, then we only update the
1264 * columns specified in that array, otherwise we update all
1265 * the referencing columns.
1267 if (riinfo
->ndelsetcols
!= 0)
1269 num_cols_to_set
= riinfo
->ndelsetcols
;
1270 set_cols
= riinfo
->confdelsetcols
;
1274 num_cols_to_set
= riinfo
->nkeys
;
1275 set_cols
= riinfo
->fk_attnums
;
1279 elog(ERROR
, "invalid tgkind passed to ri_set");
1283 * The query string built is
1284 * UPDATE [ONLY] <fktable> SET fkatt1 = {NULL|DEFAULT} [, ...]
1285 * WHERE $1 = fkatt1 [AND ...]
1286 * The type id's for the $ parameters are those of the
1287 * corresponding PK attributes.
1290 initStringInfo(&querybuf
);
1291 fk_only
= fk_rel
->rd_rel
->relkind
== RELKIND_PARTITIONED_TABLE
?
1293 quoteRelationName(fkrelname
, fk_rel
);
1294 appendStringInfo(&querybuf
, "UPDATE %s%s SET",
1295 fk_only
, fkrelname
);
1298 * Add assignment clauses
1301 for (int i
= 0; i
< num_cols_to_set
; i
++)
1303 quoteOneName(attname
, RIAttName(fk_rel
, set_cols
[i
]));
1304 appendStringInfo(&querybuf
,
1307 is_set_null
? "NULL" : "DEFAULT");
1315 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
1317 Oid pk_type
= RIAttType(pk_rel
, riinfo
->pk_attnums
[i
]);
1318 Oid fk_type
= RIAttType(fk_rel
, riinfo
->fk_attnums
[i
]);
1320 quoteOneName(attname
,
1321 RIAttName(fk_rel
, riinfo
->fk_attnums
[i
]));
1323 sprintf(paramname
, "$%d", i
+ 1);
1324 ri_GenerateQual(&querybuf
, qualsep
,
1326 riinfo
->pf_eq_oprs
[i
],
1329 queryoids
[i
] = pk_type
;
1332 /* Prepare and save the plan */
1333 qplan
= ri_PlanCheck(querybuf
.data
, riinfo
->nkeys
, queryoids
,
1334 &qkey
, fk_rel
, pk_rel
);
1338 * We have a plan now. Run it to update the existing references.
1340 ri_PerformCheck(riinfo
, &qkey
, qplan
,
1344 true, /* must detect new rows */
1347 if (SPI_finish() != SPI_OK_FINISH
)
1348 elog(ERROR
, "SPI_finish failed");
1350 table_close(fk_rel
, RowExclusiveLock
);
1353 return PointerGetDatum(NULL
);
1357 * If we just deleted or updated the PK row whose key was equal to the
1358 * FK columns' default values, and a referencing row exists in the FK
1359 * table, we would have updated that row to the same values it already
1360 * had --- and RI_FKey_fk_upd_check_required would hence believe no
1361 * check is necessary. So we need to do another lookup now and in
1362 * case a reference still exists, abort the operation. That is
1363 * already implemented in the NO ACTION trigger, so just run it. (This
1364 * recheck is only needed in the SET DEFAULT case, since CASCADE would
1365 * remove such rows in case of a DELETE operation or would change the
1366 * FK key values in case of an UPDATE, while SET NULL is certain to
1367 * result in rows that satisfy the FK constraint.)
1369 return ri_restrict(trigdata
, true);
1375 * RI_FKey_pk_upd_check_required -
1377 * Check if we really need to fire the RI trigger for an update or delete to a PK
1378 * relation. This is called by the AFTER trigger queue manager to see if
1379 * it can skip queuing an instance of an RI trigger. Returns true if the
1380 * trigger must be fired, false if we can prove the constraint will still
1383 * newslot will be NULL if this is called for a delete.
1386 RI_FKey_pk_upd_check_required(Trigger
*trigger
, Relation pk_rel
,
1387 TupleTableSlot
*oldslot
, TupleTableSlot
*newslot
)
1389 const RI_ConstraintInfo
*riinfo
;
1391 riinfo
= ri_FetchConstraintInfo(trigger
, pk_rel
, true);
1394 * If any old key value is NULL, the row could not have been referenced by
1395 * an FK row, so no check is needed.
1397 if (ri_NullCheck(RelationGetDescr(pk_rel
), oldslot
, riinfo
, true) != RI_KEYS_NONE_NULL
)
1400 /* If all old and new key values are equal, no check is needed */
1401 if (newslot
&& ri_KeysEqual(pk_rel
, oldslot
, newslot
, riinfo
, true))
1404 /* Else we need to fire the trigger. */
1409 * RI_FKey_fk_upd_check_required -
1411 * Check if we really need to fire the RI trigger for an update to an FK
1412 * relation. This is called by the AFTER trigger queue manager to see if
1413 * it can skip queuing an instance of an RI trigger. Returns true if the
1414 * trigger must be fired, false if we can prove the constraint will still
1418 RI_FKey_fk_upd_check_required(Trigger
*trigger
, Relation fk_rel
,
1419 TupleTableSlot
*oldslot
, TupleTableSlot
*newslot
)
1421 const RI_ConstraintInfo
*riinfo
;
1425 * AfterTriggerSaveEvent() handles things such that this function is never
1426 * called for partitioned tables.
1428 Assert(fk_rel
->rd_rel
->relkind
!= RELKIND_PARTITIONED_TABLE
);
1430 riinfo
= ri_FetchConstraintInfo(trigger
, fk_rel
, false);
1432 ri_nullcheck
= ri_NullCheck(RelationGetDescr(fk_rel
), newslot
, riinfo
, false);
1435 * If all new key values are NULL, the row satisfies the constraint, so no
1438 if (ri_nullcheck
== RI_KEYS_ALL_NULL
)
1442 * If some new key values are NULL, the behavior depends on the match
1445 else if (ri_nullcheck
== RI_KEYS_SOME_NULL
)
1447 switch (riinfo
->confmatchtype
)
1449 case FKCONSTR_MATCH_SIMPLE
:
1452 * If any new key value is NULL, the row must satisfy the
1453 * constraint, so no check is needed.
1457 case FKCONSTR_MATCH_PARTIAL
:
1460 * Don't know, must run full check.
1464 case FKCONSTR_MATCH_FULL
:
1467 * If some new key values are NULL, the row fails the
1468 * constraint. We must not throw error here, because the row
1469 * might get invalidated before the constraint is to be
1470 * checked, but we should queue the event to apply the check
1478 * Continues here for no new key values are NULL, or we couldn't decide
1483 * If the original row was inserted by our own transaction, we must fire
1484 * the trigger whether or not the keys are equal. This is because our
1485 * UPDATE will invalidate the INSERT so that the INSERT RI trigger will
1486 * not do anything; so we had better do the UPDATE check. (We could skip
1487 * this if we knew the INSERT trigger already fired, but there is no easy
1488 * way to know that.)
1490 if (slot_is_current_xact_tuple(oldslot
))
1493 /* If all old and new key values are equal, no check is needed */
1494 if (ri_KeysEqual(fk_rel
, oldslot
, newslot
, riinfo
, false))
1497 /* Else we need to fire the trigger. */
1502 * RI_Initial_Check -
1504 * Check an entire table for non-matching values using a single query.
1505 * This is not a trigger procedure, but is called during ALTER TABLE
1506 * ADD FOREIGN KEY to validate the initial table contents.
1508 * We expect that the caller has made provision to prevent any problems
1509 * caused by concurrent actions. This could be either by locking rel and
1510 * pkrel at ShareRowExclusiveLock or higher, or by otherwise ensuring
1511 * that triggers implementing the checks are already active.
1512 * Hence, we do not need to lock individual rows for the check.
1514 * If the check fails because the current user doesn't have permissions
1515 * to read both tables, return false to let our caller know that they will
1516 * need to do something else to check the constraint.
1519 RI_Initial_Check(Trigger
*trigger
, Relation fk_rel
, Relation pk_rel
)
1521 const RI_ConstraintInfo
*riinfo
;
1522 StringInfoData querybuf
;
1523 char pkrelname
[MAX_QUOTED_REL_NAME_LEN
];
1524 char fkrelname
[MAX_QUOTED_REL_NAME_LEN
];
1525 char pkattname
[MAX_QUOTED_NAME_LEN
+ 3];
1526 char fkattname
[MAX_QUOTED_NAME_LEN
+ 3];
1528 RTEPermissionInfo
*pk_perminfo
;
1529 RTEPermissionInfo
*fk_perminfo
;
1531 List
*perminfos
= NIL
;
1533 const char *fk_only
;
1534 const char *pk_only
;
1536 char workmembuf
[32];
1540 riinfo
= ri_FetchConstraintInfo(trigger
, fk_rel
, false);
1543 * Check to make sure current user has enough permissions to do the test
1544 * query. (If not, caller can fall back to the trigger method, which
1545 * works because it changes user IDs on the fly.)
1547 * XXX are there any other show-stopper conditions to check?
1549 pk_perminfo
= makeNode(RTEPermissionInfo
);
1550 pk_perminfo
->relid
= RelationGetRelid(pk_rel
);
1551 pk_perminfo
->requiredPerms
= ACL_SELECT
;
1552 perminfos
= lappend(perminfos
, pk_perminfo
);
1553 rte
= makeNode(RangeTblEntry
);
1554 rte
->rtekind
= RTE_RELATION
;
1555 rte
->relid
= RelationGetRelid(pk_rel
);
1556 rte
->relkind
= pk_rel
->rd_rel
->relkind
;
1557 rte
->rellockmode
= AccessShareLock
;
1558 rte
->perminfoindex
= list_length(perminfos
);
1559 rtes
= lappend(rtes
, rte
);
1561 fk_perminfo
= makeNode(RTEPermissionInfo
);
1562 fk_perminfo
->relid
= RelationGetRelid(fk_rel
);
1563 fk_perminfo
->requiredPerms
= ACL_SELECT
;
1564 perminfos
= lappend(perminfos
, fk_perminfo
);
1565 rte
= makeNode(RangeTblEntry
);
1566 rte
->rtekind
= RTE_RELATION
;
1567 rte
->relid
= RelationGetRelid(fk_rel
);
1568 rte
->relkind
= fk_rel
->rd_rel
->relkind
;
1569 rte
->rellockmode
= AccessShareLock
;
1570 rte
->perminfoindex
= list_length(perminfos
);
1571 rtes
= lappend(rtes
, rte
);
1573 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
1577 attno
= riinfo
->pk_attnums
[i
] - FirstLowInvalidHeapAttributeNumber
;
1578 pk_perminfo
->selectedCols
= bms_add_member(pk_perminfo
->selectedCols
, attno
);
1580 attno
= riinfo
->fk_attnums
[i
] - FirstLowInvalidHeapAttributeNumber
;
1581 fk_perminfo
->selectedCols
= bms_add_member(fk_perminfo
->selectedCols
, attno
);
1584 if (!ExecCheckPermissions(rtes
, perminfos
, false))
1588 * Also punt if RLS is enabled on either table unless this role has the
1589 * bypassrls right or is the table owner of the table(s) involved which
1592 if (!has_bypassrls_privilege(GetUserId()) &&
1593 ((pk_rel
->rd_rel
->relrowsecurity
&&
1594 !object_ownercheck(RelationRelationId
, RelationGetRelid(pk_rel
),
1596 (fk_rel
->rd_rel
->relrowsecurity
&&
1597 !object_ownercheck(RelationRelationId
, RelationGetRelid(fk_rel
),
1602 * The query string built is:
1603 * SELECT fk.keycols FROM [ONLY] relname fk
1604 * LEFT OUTER JOIN [ONLY] pkrelname pk
1605 * ON (pk.pkkeycol1=fk.keycol1 [AND ...])
1606 * WHERE pk.pkkeycol1 IS NULL AND
1608 * (fk.keycol1 IS NOT NULL [AND ...])
1610 * (fk.keycol1 IS NOT NULL [OR ...])
1612 * We attach COLLATE clauses to the operators when comparing columns
1613 * that have different collations.
1616 initStringInfo(&querybuf
);
1617 appendStringInfoString(&querybuf
, "SELECT ");
1619 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
1621 quoteOneName(fkattname
,
1622 RIAttName(fk_rel
, riinfo
->fk_attnums
[i
]));
1623 appendStringInfo(&querybuf
, "%sfk.%s", sep
, fkattname
);
1627 quoteRelationName(pkrelname
, pk_rel
);
1628 quoteRelationName(fkrelname
, fk_rel
);
1629 fk_only
= fk_rel
->rd_rel
->relkind
== RELKIND_PARTITIONED_TABLE
?
1631 pk_only
= pk_rel
->rd_rel
->relkind
== RELKIND_PARTITIONED_TABLE
?
1633 appendStringInfo(&querybuf
,
1634 " FROM %s%s fk LEFT OUTER JOIN %s%s pk ON",
1635 fk_only
, fkrelname
, pk_only
, pkrelname
);
1637 strcpy(pkattname
, "pk.");
1638 strcpy(fkattname
, "fk.");
1640 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
1642 Oid pk_type
= RIAttType(pk_rel
, riinfo
->pk_attnums
[i
]);
1643 Oid fk_type
= RIAttType(fk_rel
, riinfo
->fk_attnums
[i
]);
1644 Oid pk_coll
= RIAttCollation(pk_rel
, riinfo
->pk_attnums
[i
]);
1645 Oid fk_coll
= RIAttCollation(fk_rel
, riinfo
->fk_attnums
[i
]);
1647 quoteOneName(pkattname
+ 3,
1648 RIAttName(pk_rel
, riinfo
->pk_attnums
[i
]));
1649 quoteOneName(fkattname
+ 3,
1650 RIAttName(fk_rel
, riinfo
->fk_attnums
[i
]));
1651 ri_GenerateQual(&querybuf
, sep
,
1653 riinfo
->pf_eq_oprs
[i
],
1654 fkattname
, fk_type
);
1655 if (pk_coll
!= fk_coll
)
1656 ri_GenerateQualCollation(&querybuf
, pk_coll
);
1661 * It's sufficient to test any one pk attribute for null to detect a join
1664 quoteOneName(pkattname
, RIAttName(pk_rel
, riinfo
->pk_attnums
[0]));
1665 appendStringInfo(&querybuf
, ") WHERE pk.%s IS NULL AND (", pkattname
);
1668 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
1670 quoteOneName(fkattname
, RIAttName(fk_rel
, riinfo
->fk_attnums
[i
]));
1671 appendStringInfo(&querybuf
,
1672 "%sfk.%s IS NOT NULL",
1674 switch (riinfo
->confmatchtype
)
1676 case FKCONSTR_MATCH_SIMPLE
:
1679 case FKCONSTR_MATCH_FULL
:
1684 appendStringInfoChar(&querybuf
, ')');
1687 * Temporarily increase work_mem so that the check query can be executed
1688 * more efficiently. It seems okay to do this because the query is simple
1689 * enough to not use a multiple of work_mem, and one typically would not
1690 * have many large foreign-key validations happening concurrently. So
1691 * this seems to meet the criteria for being considered a "maintenance"
1692 * operation, and accordingly we use maintenance_work_mem. However, we
1693 * must also set hash_mem_multiplier to 1, since it is surely not okay to
1694 * let that get applied to the maintenance_work_mem value.
1696 * We use the equivalent of a function SET option to allow the setting to
1697 * persist for exactly the duration of the check query. guc.c also takes
1698 * care of undoing the setting on error.
1700 save_nestlevel
= NewGUCNestLevel();
1702 snprintf(workmembuf
, sizeof(workmembuf
), "%d", maintenance_work_mem
);
1703 (void) set_config_option("work_mem", workmembuf
,
1704 PGC_USERSET
, PGC_S_SESSION
,
1705 GUC_ACTION_SAVE
, true, 0, false);
1706 (void) set_config_option("hash_mem_multiplier", "1",
1707 PGC_USERSET
, PGC_S_SESSION
,
1708 GUC_ACTION_SAVE
, true, 0, false);
1713 * Generate the plan. We don't need to cache it, and there are no
1714 * arguments to the plan.
1716 qplan
= SPI_prepare(querybuf
.data
, 0, NULL
);
1719 elog(ERROR
, "SPI_prepare returned %s for %s",
1720 SPI_result_code_string(SPI_result
), querybuf
.data
);
1723 * Run the plan. For safety we force a current snapshot to be used. (In
1724 * transaction-snapshot mode, this arguably violates transaction isolation
1725 * rules, but we really haven't got much choice.) We don't need to
1726 * register the snapshot, because SPI_execute_snapshot will see to it. We
1727 * need at most one tuple returned, so pass limit = 1.
1729 spi_result
= SPI_execute_snapshot(qplan
,
1731 GetLatestSnapshot(),
1736 if (spi_result
!= SPI_OK_SELECT
)
1737 elog(ERROR
, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result
));
1739 /* Did we find a tuple violating the constraint? */
1740 if (SPI_processed
> 0)
1742 TupleTableSlot
*slot
;
1743 HeapTuple tuple
= SPI_tuptable
->vals
[0];
1744 TupleDesc tupdesc
= SPI_tuptable
->tupdesc
;
1745 RI_ConstraintInfo fake_riinfo
;
1747 slot
= MakeSingleTupleTableSlot(tupdesc
, &TTSOpsVirtual
);
1749 heap_deform_tuple(tuple
, tupdesc
,
1750 slot
->tts_values
, slot
->tts_isnull
);
1751 ExecStoreVirtualTuple(slot
);
1754 * The columns to look at in the result tuple are 1..N, not whatever
1755 * they are in the fk_rel. Hack up riinfo so that the subroutines
1756 * called here will behave properly.
1758 * In addition to this, we have to pass the correct tupdesc to
1759 * ri_ReportViolation, overriding its normal habit of using the pk_rel
1760 * or fk_rel's tupdesc.
1762 memcpy(&fake_riinfo
, riinfo
, sizeof(RI_ConstraintInfo
));
1763 for (int i
= 0; i
< fake_riinfo
.nkeys
; i
++)
1764 fake_riinfo
.fk_attnums
[i
] = i
+ 1;
1767 * If it's MATCH FULL, and there are any nulls in the FK keys,
1768 * complain about that rather than the lack of a match. MATCH FULL
1769 * disallows partially-null FK rows.
1771 if (fake_riinfo
.confmatchtype
== FKCONSTR_MATCH_FULL
&&
1772 ri_NullCheck(tupdesc
, slot
, &fake_riinfo
, false) != RI_KEYS_NONE_NULL
)
1774 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION
),
1775 errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
1776 RelationGetRelationName(fk_rel
),
1777 NameStr(fake_riinfo
.conname
)),
1778 errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
1779 errtableconstraint(fk_rel
,
1780 NameStr(fake_riinfo
.conname
))));
1783 * We tell ri_ReportViolation we were doing the RI_PLAN_CHECK_LOOKUPPK
1784 * query, which isn't true, but will cause it to use
1785 * fake_riinfo.fk_attnums as we need.
1787 ri_ReportViolation(&fake_riinfo
,
1790 RI_PLAN_CHECK_LOOKUPPK
, false, false);
1792 ExecDropSingleTupleTableSlot(slot
);
1795 if (SPI_finish() != SPI_OK_FINISH
)
1796 elog(ERROR
, "SPI_finish failed");
1799 * Restore work_mem and hash_mem_multiplier.
1801 AtEOXact_GUC(true, save_nestlevel
);
1807 * RI_PartitionRemove_Check -
1809 * Verify no referencing values exist, when a partition is detached on
1810 * the referenced side of a foreign key constraint.
1813 RI_PartitionRemove_Check(Trigger
*trigger
, Relation fk_rel
, Relation pk_rel
)
1815 const RI_ConstraintInfo
*riinfo
;
1816 StringInfoData querybuf
;
1817 char *constraintDef
;
1818 char pkrelname
[MAX_QUOTED_REL_NAME_LEN
];
1819 char fkrelname
[MAX_QUOTED_REL_NAME_LEN
];
1820 char pkattname
[MAX_QUOTED_NAME_LEN
+ 3];
1821 char fkattname
[MAX_QUOTED_NAME_LEN
+ 3];
1823 const char *fk_only
;
1825 char workmembuf
[32];
1830 riinfo
= ri_FetchConstraintInfo(trigger
, fk_rel
, false);
1833 * We don't check permissions before displaying the error message, on the
1834 * assumption that the user detaching the partition must have enough
1835 * privileges to examine the table contents anyhow.
1839 * The query string built is:
1840 * SELECT fk.keycols FROM [ONLY] relname fk
1842 * ON (pk.pkkeycol1=fk.keycol1 [AND ...])
1843 * WHERE (<partition constraint>) AND
1845 * (fk.keycol1 IS NOT NULL [AND ...])
1847 * (fk.keycol1 IS NOT NULL [OR ...])
1849 * We attach COLLATE clauses to the operators when comparing columns
1850 * that have different collations.
1853 initStringInfo(&querybuf
);
1854 appendStringInfoString(&querybuf
, "SELECT ");
1856 for (i
= 0; i
< riinfo
->nkeys
; i
++)
1858 quoteOneName(fkattname
,
1859 RIAttName(fk_rel
, riinfo
->fk_attnums
[i
]));
1860 appendStringInfo(&querybuf
, "%sfk.%s", sep
, fkattname
);
1864 quoteRelationName(pkrelname
, pk_rel
);
1865 quoteRelationName(fkrelname
, fk_rel
);
1866 fk_only
= fk_rel
->rd_rel
->relkind
== RELKIND_PARTITIONED_TABLE
?
1868 appendStringInfo(&querybuf
,
1869 " FROM %s%s fk JOIN %s pk ON",
1870 fk_only
, fkrelname
, pkrelname
);
1871 strcpy(pkattname
, "pk.");
1872 strcpy(fkattname
, "fk.");
1874 for (i
= 0; i
< riinfo
->nkeys
; i
++)
1876 Oid pk_type
= RIAttType(pk_rel
, riinfo
->pk_attnums
[i
]);
1877 Oid fk_type
= RIAttType(fk_rel
, riinfo
->fk_attnums
[i
]);
1878 Oid pk_coll
= RIAttCollation(pk_rel
, riinfo
->pk_attnums
[i
]);
1879 Oid fk_coll
= RIAttCollation(fk_rel
, riinfo
->fk_attnums
[i
]);
1881 quoteOneName(pkattname
+ 3,
1882 RIAttName(pk_rel
, riinfo
->pk_attnums
[i
]));
1883 quoteOneName(fkattname
+ 3,
1884 RIAttName(fk_rel
, riinfo
->fk_attnums
[i
]));
1885 ri_GenerateQual(&querybuf
, sep
,
1887 riinfo
->pf_eq_oprs
[i
],
1888 fkattname
, fk_type
);
1889 if (pk_coll
!= fk_coll
)
1890 ri_GenerateQualCollation(&querybuf
, pk_coll
);
1895 * Start the WHERE clause with the partition constraint (except if this is
1896 * the default partition and there's no other partition, because the
1897 * partition constraint is the empty string in that case.)
1899 constraintDef
= pg_get_partconstrdef_string(RelationGetRelid(pk_rel
), "pk");
1900 if (constraintDef
&& constraintDef
[0] != '\0')
1901 appendStringInfo(&querybuf
, ") WHERE %s AND (",
1904 appendStringInfoString(&querybuf
, ") WHERE (");
1907 for (i
= 0; i
< riinfo
->nkeys
; i
++)
1909 quoteOneName(fkattname
, RIAttName(fk_rel
, riinfo
->fk_attnums
[i
]));
1910 appendStringInfo(&querybuf
,
1911 "%sfk.%s IS NOT NULL",
1913 switch (riinfo
->confmatchtype
)
1915 case FKCONSTR_MATCH_SIMPLE
:
1918 case FKCONSTR_MATCH_FULL
:
1923 appendStringInfoChar(&querybuf
, ')');
1926 * Temporarily increase work_mem so that the check query can be executed
1927 * more efficiently. It seems okay to do this because the query is simple
1928 * enough to not use a multiple of work_mem, and one typically would not
1929 * have many large foreign-key validations happening concurrently. So
1930 * this seems to meet the criteria for being considered a "maintenance"
1931 * operation, and accordingly we use maintenance_work_mem. However, we
1932 * must also set hash_mem_multiplier to 1, since it is surely not okay to
1933 * let that get applied to the maintenance_work_mem value.
1935 * We use the equivalent of a function SET option to allow the setting to
1936 * persist for exactly the duration of the check query. guc.c also takes
1937 * care of undoing the setting on error.
1939 save_nestlevel
= NewGUCNestLevel();
1941 snprintf(workmembuf
, sizeof(workmembuf
), "%d", maintenance_work_mem
);
1942 (void) set_config_option("work_mem", workmembuf
,
1943 PGC_USERSET
, PGC_S_SESSION
,
1944 GUC_ACTION_SAVE
, true, 0, false);
1945 (void) set_config_option("hash_mem_multiplier", "1",
1946 PGC_USERSET
, PGC_S_SESSION
,
1947 GUC_ACTION_SAVE
, true, 0, false);
1952 * Generate the plan. We don't need to cache it, and there are no
1953 * arguments to the plan.
1955 qplan
= SPI_prepare(querybuf
.data
, 0, NULL
);
1958 elog(ERROR
, "SPI_prepare returned %s for %s",
1959 SPI_result_code_string(SPI_result
), querybuf
.data
);
1962 * Run the plan. For safety we force a current snapshot to be used. (In
1963 * transaction-snapshot mode, this arguably violates transaction isolation
1964 * rules, but we really haven't got much choice.) We don't need to
1965 * register the snapshot, because SPI_execute_snapshot will see to it. We
1966 * need at most one tuple returned, so pass limit = 1.
1968 spi_result
= SPI_execute_snapshot(qplan
,
1970 GetLatestSnapshot(),
1975 if (spi_result
!= SPI_OK_SELECT
)
1976 elog(ERROR
, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result
));
1978 /* Did we find a tuple that would violate the constraint? */
1979 if (SPI_processed
> 0)
1981 TupleTableSlot
*slot
;
1982 HeapTuple tuple
= SPI_tuptable
->vals
[0];
1983 TupleDesc tupdesc
= SPI_tuptable
->tupdesc
;
1984 RI_ConstraintInfo fake_riinfo
;
1986 slot
= MakeSingleTupleTableSlot(tupdesc
, &TTSOpsVirtual
);
1988 heap_deform_tuple(tuple
, tupdesc
,
1989 slot
->tts_values
, slot
->tts_isnull
);
1990 ExecStoreVirtualTuple(slot
);
1993 * The columns to look at in the result tuple are 1..N, not whatever
1994 * they are in the fk_rel. Hack up riinfo so that ri_ReportViolation
1995 * will behave properly.
1997 * In addition to this, we have to pass the correct tupdesc to
1998 * ri_ReportViolation, overriding its normal habit of using the pk_rel
1999 * or fk_rel's tupdesc.
2001 memcpy(&fake_riinfo
, riinfo
, sizeof(RI_ConstraintInfo
));
2002 for (i
= 0; i
< fake_riinfo
.nkeys
; i
++)
2003 fake_riinfo
.pk_attnums
[i
] = i
+ 1;
2005 ri_ReportViolation(&fake_riinfo
, pk_rel
, fk_rel
,
2006 slot
, tupdesc
, 0, false, true);
2009 if (SPI_finish() != SPI_OK_FINISH
)
2010 elog(ERROR
, "SPI_finish failed");
2013 * Restore work_mem and hash_mem_multiplier.
2015 AtEOXact_GUC(true, save_nestlevel
);
2020 * Local functions below
2026 * quoteOneName --- safely quote a single SQL name
2028 * buffer must be MAX_QUOTED_NAME_LEN long (includes room for \0)
2031 quoteOneName(char *buffer
, const char *name
)
2033 /* Rather than trying to be smart, just always quote it. */
2039 *buffer
++ = *name
++;
2046 * quoteRelationName --- safely quote a fully qualified relation name
2048 * buffer must be MAX_QUOTED_REL_NAME_LEN long (includes room for \0)
2051 quoteRelationName(char *buffer
, Relation rel
)
2053 quoteOneName(buffer
, get_namespace_name(RelationGetNamespace(rel
)));
2054 buffer
+= strlen(buffer
);
2056 quoteOneName(buffer
, RelationGetRelationName(rel
));
2060 * ri_GenerateQual --- generate a WHERE clause equating two variables
2062 * This basically appends " sep leftop op rightop" to buf, adding casts
2063 * and schema qualification as needed to ensure that the parser will select
2064 * the operator we specify. leftop and rightop should be parenthesized
2065 * if they aren't variables or parameters.
2068 ri_GenerateQual(StringInfo buf
,
2070 const char *leftop
, Oid leftoptype
,
2072 const char *rightop
, Oid rightoptype
)
2074 appendStringInfo(buf
, " %s ", sep
);
2075 generate_operator_clause(buf
, leftop
, leftoptype
, opoid
,
2076 rightop
, rightoptype
);
2080 * ri_GenerateQualCollation --- add a COLLATE spec to a WHERE clause
2082 * We only have to use this function when directly comparing the referencing
2083 * and referenced columns, if they are of different collations; else the
2084 * parser will fail to resolve the collation to use. We don't need to use
2085 * this function for RI queries that compare a variable to a $n parameter.
2086 * Since parameter symbols always have default collation, the effect will be
2087 * to use the variable's collation.
2089 * Note that we require that the collations of the referencing and the
2090 * referenced column have the same notion of equality: Either they have to
2091 * both be deterministic or else they both have to be the same. (See also
2092 * ATAddForeignKeyConstraint().)
2095 ri_GenerateQualCollation(StringInfo buf
, Oid collation
)
2098 Form_pg_collation colltup
;
2100 char onename
[MAX_QUOTED_NAME_LEN
];
2102 /* Nothing to do if it's a noncollatable data type */
2103 if (!OidIsValid(collation
))
2106 tp
= SearchSysCache1(COLLOID
, ObjectIdGetDatum(collation
));
2107 if (!HeapTupleIsValid(tp
))
2108 elog(ERROR
, "cache lookup failed for collation %u", collation
);
2109 colltup
= (Form_pg_collation
) GETSTRUCT(tp
);
2110 collname
= NameStr(colltup
->collname
);
2113 * We qualify the name always, for simplicity and to ensure the query is
2114 * not search-path-dependent.
2116 quoteOneName(onename
, get_namespace_name(colltup
->collnamespace
));
2117 appendStringInfo(buf
, " COLLATE %s", onename
);
2118 quoteOneName(onename
, collname
);
2119 appendStringInfo(buf
, ".%s", onename
);
2121 ReleaseSysCache(tp
);
2125 * ri_BuildQueryKey -
2127 * Construct a hashtable key for a prepared SPI plan of an FK constraint.
2129 * key: output argument, *key is filled in based on the other arguments
2130 * riinfo: info derived from pg_constraint entry
2131 * constr_queryno: an internal number identifying the query type
2132 * (see RI_PLAN_XXX constants at head of file)
2136 ri_BuildQueryKey(RI_QueryKey
*key
, const RI_ConstraintInfo
*riinfo
,
2137 int32 constr_queryno
)
2140 * Inherited constraints with a common ancestor can share ri_query_cache
2141 * entries for all query types except RI_PLAN_CHECK_LOOKUPPK_FROM_PK.
2142 * Except in that case, the query processes the other table involved in
2143 * the FK constraint (i.e., not the table on which the trigger has been
2144 * fired), and so it will be the same for all members of the inheritance
2145 * tree. So we may use the root constraint's OID in the hash key, rather
2146 * than the constraint's own OID. This avoids creating duplicate SPI
2147 * plans, saving lots of work and memory when there are many partitions
2148 * with similar FK constraints.
2150 * (Note that we must still have a separate RI_ConstraintInfo for each
2151 * constraint, because partitions can have different column orders,
2152 * resulting in different pk_attnums[] or fk_attnums[] array contents.)
2154 * We assume struct RI_QueryKey contains no padding bytes, else we'd need
2155 * to use memset to clear them.
2157 if (constr_queryno
!= RI_PLAN_CHECK_LOOKUPPK_FROM_PK
)
2158 key
->constr_id
= riinfo
->constraint_root_id
;
2160 key
->constr_id
= riinfo
->constraint_id
;
2161 key
->constr_queryno
= constr_queryno
;
2165 * Check that RI trigger function was called in expected context
2168 ri_CheckTrigger(FunctionCallInfo fcinfo
, const char *funcname
, int tgkind
)
2170 TriggerData
*trigdata
= (TriggerData
*) fcinfo
->context
;
2172 if (!CALLED_AS_TRIGGER(fcinfo
))
2174 (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED
),
2175 errmsg("function \"%s\" was not called by trigger manager", funcname
)));
2178 * Check proper event
2180 if (!TRIGGER_FIRED_AFTER(trigdata
->tg_event
) ||
2181 !TRIGGER_FIRED_FOR_ROW(trigdata
->tg_event
))
2183 (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED
),
2184 errmsg("function \"%s\" must be fired AFTER ROW", funcname
)));
2188 case RI_TRIGTYPE_INSERT
:
2189 if (!TRIGGER_FIRED_BY_INSERT(trigdata
->tg_event
))
2191 (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED
),
2192 errmsg("function \"%s\" must be fired for INSERT", funcname
)));
2194 case RI_TRIGTYPE_UPDATE
:
2195 if (!TRIGGER_FIRED_BY_UPDATE(trigdata
->tg_event
))
2197 (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED
),
2198 errmsg("function \"%s\" must be fired for UPDATE", funcname
)));
2200 case RI_TRIGTYPE_DELETE
:
2201 if (!TRIGGER_FIRED_BY_DELETE(trigdata
->tg_event
))
2203 (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED
),
2204 errmsg("function \"%s\" must be fired for DELETE", funcname
)));
2211 * Fetch the RI_ConstraintInfo struct for the trigger's FK constraint.
2213 static const RI_ConstraintInfo
*
2214 ri_FetchConstraintInfo(Trigger
*trigger
, Relation trig_rel
, bool rel_is_pk
)
2216 Oid constraintOid
= trigger
->tgconstraint
;
2217 const RI_ConstraintInfo
*riinfo
;
2220 * Check that the FK constraint's OID is available; it might not be if
2221 * we've been invoked via an ordinary trigger or an old-style "constraint
2224 if (!OidIsValid(constraintOid
))
2226 (errcode(ERRCODE_INVALID_OBJECT_DEFINITION
),
2227 errmsg("no pg_constraint entry for trigger \"%s\" on table \"%s\"",
2228 trigger
->tgname
, RelationGetRelationName(trig_rel
)),
2229 errhint("Remove this referential integrity trigger and its mates, then do ALTER TABLE ADD CONSTRAINT.")));
2231 /* Find or create a hashtable entry for the constraint */
2232 riinfo
= ri_LoadConstraintInfo(constraintOid
);
2234 /* Do some easy cross-checks against the trigger call data */
2237 if (riinfo
->fk_relid
!= trigger
->tgconstrrelid
||
2238 riinfo
->pk_relid
!= RelationGetRelid(trig_rel
))
2239 elog(ERROR
, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
2240 trigger
->tgname
, RelationGetRelationName(trig_rel
));
2244 if (riinfo
->fk_relid
!= RelationGetRelid(trig_rel
) ||
2245 riinfo
->pk_relid
!= trigger
->tgconstrrelid
)
2246 elog(ERROR
, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
2247 trigger
->tgname
, RelationGetRelationName(trig_rel
));
2250 if (riinfo
->confmatchtype
!= FKCONSTR_MATCH_FULL
&&
2251 riinfo
->confmatchtype
!= FKCONSTR_MATCH_PARTIAL
&&
2252 riinfo
->confmatchtype
!= FKCONSTR_MATCH_SIMPLE
)
2253 elog(ERROR
, "unrecognized confmatchtype: %d",
2254 riinfo
->confmatchtype
);
2256 if (riinfo
->confmatchtype
== FKCONSTR_MATCH_PARTIAL
)
2258 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
2259 errmsg("MATCH PARTIAL not yet implemented")));
2265 * Fetch or create the RI_ConstraintInfo struct for an FK constraint.
2267 static const RI_ConstraintInfo
*
2268 ri_LoadConstraintInfo(Oid constraintOid
)
2270 RI_ConstraintInfo
*riinfo
;
2273 Form_pg_constraint conForm
;
2276 * On the first call initialize the hashtable
2278 if (!ri_constraint_cache
)
2279 ri_InitHashTables();
2282 * Find or create a hash entry. If we find a valid one, just return it.
2284 riinfo
= (RI_ConstraintInfo
*) hash_search(ri_constraint_cache
,
2286 HASH_ENTER
, &found
);
2288 riinfo
->valid
= false;
2289 else if (riinfo
->valid
)
2293 * Fetch the pg_constraint row so we can fill in the entry.
2295 tup
= SearchSysCache1(CONSTROID
, ObjectIdGetDatum(constraintOid
));
2296 if (!HeapTupleIsValid(tup
)) /* should not happen */
2297 elog(ERROR
, "cache lookup failed for constraint %u", constraintOid
);
2298 conForm
= (Form_pg_constraint
) GETSTRUCT(tup
);
2300 if (conForm
->contype
!= CONSTRAINT_FOREIGN
) /* should not happen */
2301 elog(ERROR
, "constraint %u is not a foreign key constraint",
2304 /* And extract data */
2305 Assert(riinfo
->constraint_id
== constraintOid
);
2306 if (OidIsValid(conForm
->conparentid
))
2307 riinfo
->constraint_root_id
=
2308 get_ri_constraint_root(conForm
->conparentid
);
2310 riinfo
->constraint_root_id
= constraintOid
;
2311 riinfo
->oidHashValue
= GetSysCacheHashValue1(CONSTROID
,
2312 ObjectIdGetDatum(constraintOid
));
2313 riinfo
->rootHashValue
= GetSysCacheHashValue1(CONSTROID
,
2314 ObjectIdGetDatum(riinfo
->constraint_root_id
));
2315 memcpy(&riinfo
->conname
, &conForm
->conname
, sizeof(NameData
));
2316 riinfo
->pk_relid
= conForm
->confrelid
;
2317 riinfo
->fk_relid
= conForm
->conrelid
;
2318 riinfo
->confupdtype
= conForm
->confupdtype
;
2319 riinfo
->confdeltype
= conForm
->confdeltype
;
2320 riinfo
->confmatchtype
= conForm
->confmatchtype
;
2321 riinfo
->hasperiod
= conForm
->conperiod
;
2323 DeconstructFkConstraintRow(tup
,
2330 &riinfo
->ndelsetcols
,
2331 riinfo
->confdelsetcols
);
2334 * For temporal FKs, get the operators and functions we need. We ask the
2335 * opclass of the PK element for these. This all gets cached (as does the
2336 * generated plan), so there's no performance issue.
2338 if (riinfo
->hasperiod
)
2340 Oid opclass
= get_index_column_opclass(conForm
->conindid
, riinfo
->nkeys
);
2342 FindFKPeriodOpers(opclass
,
2343 &riinfo
->period_contained_by_oper
,
2344 &riinfo
->agged_period_contained_by_oper
,
2345 &riinfo
->period_intersect_oper
);
2348 ReleaseSysCache(tup
);
2351 * For efficient processing of invalidation messages below, we keep a
2352 * doubly-linked count list of all currently valid entries.
2354 dclist_push_tail(&ri_constraint_cache_valid_list
, &riinfo
->valid_link
);
2356 riinfo
->valid
= true;
2362 * get_ri_constraint_root
2363 * Returns the OID of the constraint's root parent
2366 get_ri_constraint_root(Oid constrOid
)
2371 Oid constrParentOid
;
2373 tuple
= SearchSysCache1(CONSTROID
, ObjectIdGetDatum(constrOid
));
2374 if (!HeapTupleIsValid(tuple
))
2375 elog(ERROR
, "cache lookup failed for constraint %u", constrOid
);
2376 constrParentOid
= ((Form_pg_constraint
) GETSTRUCT(tuple
))->conparentid
;
2377 ReleaseSysCache(tuple
);
2378 if (!OidIsValid(constrParentOid
))
2379 break; /* we reached the root constraint */
2380 constrOid
= constrParentOid
;
2386 * Callback for pg_constraint inval events
2388 * While most syscache callbacks just flush all their entries, pg_constraint
2389 * gets enough update traffic that it's probably worth being smarter.
2390 * Invalidate any ri_constraint_cache entry associated with the syscache
2391 * entry with the specified hash value, or all entries if hashvalue == 0.
2393 * Note: at the time a cache invalidation message is processed there may be
2394 * active references to the cache. Because of this we never remove entries
2395 * from the cache, but only mark them invalid, which is harmless to active
2396 * uses. (Any query using an entry should hold a lock sufficient to keep that
2397 * data from changing under it --- but we may get cache flushes anyway.)
2400 InvalidateConstraintCacheCallBack(Datum arg
, int cacheid
, uint32 hashvalue
)
2402 dlist_mutable_iter iter
;
2404 Assert(ri_constraint_cache
!= NULL
);
2407 * If the list of currently valid entries gets excessively large, we mark
2408 * them all invalid so we can empty the list. This arrangement avoids
2409 * O(N^2) behavior in situations where a session touches many foreign keys
2410 * and also does many ALTER TABLEs, such as a restore from pg_dump.
2412 if (dclist_count(&ri_constraint_cache_valid_list
) > 1000)
2413 hashvalue
= 0; /* pretend it's a cache reset */
2415 dclist_foreach_modify(iter
, &ri_constraint_cache_valid_list
)
2417 RI_ConstraintInfo
*riinfo
= dclist_container(RI_ConstraintInfo
,
2418 valid_link
, iter
.cur
);
2421 * We must invalidate not only entries directly matching the given
2422 * hash value, but also child entries, in case the invalidation
2423 * affects a root constraint.
2425 if (hashvalue
== 0 ||
2426 riinfo
->oidHashValue
== hashvalue
||
2427 riinfo
->rootHashValue
== hashvalue
)
2429 riinfo
->valid
= false;
2430 /* Remove invalidated entries from the list, too */
2431 dclist_delete_from(&ri_constraint_cache_valid_list
, iter
.cur
);
2438 * Prepare execution plan for a query to enforce an RI restriction
2441 ri_PlanCheck(const char *querystr
, int nargs
, Oid
*argtypes
,
2442 RI_QueryKey
*qkey
, Relation fk_rel
, Relation pk_rel
)
2447 int save_sec_context
;
2450 * Use the query type code to determine whether the query is run against
2451 * the PK or FK table; we'll do the check as that table's owner
2453 if (qkey
->constr_queryno
<= RI_PLAN_LAST_ON_PK
)
2458 /* Switch to proper UID to perform check as */
2459 GetUserIdAndSecContext(&save_userid
, &save_sec_context
);
2460 SetUserIdAndSecContext(RelationGetForm(query_rel
)->relowner
,
2461 save_sec_context
| SECURITY_LOCAL_USERID_CHANGE
|
2462 SECURITY_NOFORCE_RLS
);
2464 /* Create the plan */
2465 qplan
= SPI_prepare(querystr
, nargs
, argtypes
);
2468 elog(ERROR
, "SPI_prepare returned %s for %s", SPI_result_code_string(SPI_result
), querystr
);
2470 /* Restore UID and security context */
2471 SetUserIdAndSecContext(save_userid
, save_sec_context
);
2474 SPI_keepplan(qplan
);
2475 ri_HashPreparedPlan(qkey
, qplan
);
2481 * Perform a query to enforce an RI restriction
2484 ri_PerformCheck(const RI_ConstraintInfo
*riinfo
,
2485 RI_QueryKey
*qkey
, SPIPlanPtr qplan
,
2486 Relation fk_rel
, Relation pk_rel
,
2487 TupleTableSlot
*oldslot
, TupleTableSlot
*newslot
,
2489 bool detectNewRows
, int expect_OK
)
2494 Snapshot test_snapshot
;
2495 Snapshot crosscheck_snapshot
;
2499 int save_sec_context
;
2500 Datum vals
[RI_MAX_NUMKEYS
* 2];
2501 char nulls
[RI_MAX_NUMKEYS
* 2];
2504 * Use the query type code to determine whether the query is run against
2505 * the PK or FK table; we'll do the check as that table's owner
2507 if (qkey
->constr_queryno
<= RI_PLAN_LAST_ON_PK
)
2513 * The values for the query are taken from the table on which the trigger
2514 * is called - it is normally the other one with respect to query_rel. An
2515 * exception is ri_Check_Pk_Match(), which uses the PK table for both (and
2516 * sets queryno to RI_PLAN_CHECK_LOOKUPPK_FROM_PK). We might eventually
2517 * need some less klugy way to determine this.
2519 if (qkey
->constr_queryno
== RI_PLAN_CHECK_LOOKUPPK
)
2521 source_rel
= fk_rel
;
2522 source_is_pk
= false;
2526 source_rel
= pk_rel
;
2527 source_is_pk
= true;
2530 /* Extract the parameters to be passed into the query */
2533 ri_ExtractValues(source_rel
, newslot
, riinfo
, source_is_pk
,
2536 ri_ExtractValues(source_rel
, oldslot
, riinfo
, source_is_pk
,
2537 vals
+ riinfo
->nkeys
, nulls
+ riinfo
->nkeys
);
2541 ri_ExtractValues(source_rel
, oldslot
, riinfo
, source_is_pk
,
2546 * In READ COMMITTED mode, we just need to use an up-to-date regular
2547 * snapshot, and we will see all rows that could be interesting. But in
2548 * transaction-snapshot mode, we can't change the transaction snapshot. If
2549 * the caller passes detectNewRows == false then it's okay to do the query
2550 * with the transaction snapshot; otherwise we use a current snapshot, and
2551 * tell the executor to error out if it finds any rows under the current
2552 * snapshot that wouldn't be visible per the transaction snapshot. Note
2553 * that SPI_execute_snapshot will register the snapshots, so we don't need
2556 if (IsolationUsesXactSnapshot() && detectNewRows
)
2558 CommandCounterIncrement(); /* be sure all my own work is visible */
2559 test_snapshot
= GetLatestSnapshot();
2560 crosscheck_snapshot
= GetTransactionSnapshot();
2564 /* the default SPI behavior is okay */
2565 test_snapshot
= InvalidSnapshot
;
2566 crosscheck_snapshot
= InvalidSnapshot
;
2570 * If this is a select query (e.g., for a 'no action' or 'restrict'
2571 * trigger), we only need to see if there is a single row in the table,
2572 * matching the key. Otherwise, limit = 0 - because we want the query to
2573 * affect ALL the matching rows.
2575 limit
= (expect_OK
== SPI_OK_SELECT
) ? 1 : 0;
2577 /* Switch to proper UID to perform check as */
2578 GetUserIdAndSecContext(&save_userid
, &save_sec_context
);
2579 SetUserIdAndSecContext(RelationGetForm(query_rel
)->relowner
,
2580 save_sec_context
| SECURITY_LOCAL_USERID_CHANGE
|
2581 SECURITY_NOFORCE_RLS
);
2583 /* Finally we can run the query. */
2584 spi_result
= SPI_execute_snapshot(qplan
,
2586 test_snapshot
, crosscheck_snapshot
,
2587 false, false, limit
);
2589 /* Restore UID and security context */
2590 SetUserIdAndSecContext(save_userid
, save_sec_context
);
2594 elog(ERROR
, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result
));
2596 if (expect_OK
>= 0 && spi_result
!= expect_OK
)
2598 (errcode(ERRCODE_INTERNAL_ERROR
),
2599 errmsg("referential integrity query on \"%s\" from constraint \"%s\" on \"%s\" gave unexpected result",
2600 RelationGetRelationName(pk_rel
),
2601 NameStr(riinfo
->conname
),
2602 RelationGetRelationName(fk_rel
)),
2603 errhint("This is most likely due to a rule having rewritten the query.")));
2605 /* XXX wouldn't it be clearer to do this part at the caller? */
2606 if (qkey
->constr_queryno
!= RI_PLAN_CHECK_LOOKUPPK_FROM_PK
&&
2607 expect_OK
== SPI_OK_SELECT
&&
2608 (SPI_processed
== 0) == (qkey
->constr_queryno
== RI_PLAN_CHECK_LOOKUPPK
))
2609 ri_ReportViolation(riinfo
,
2611 newslot
? newslot
: oldslot
,
2613 qkey
->constr_queryno
, is_restrict
, false);
2615 return SPI_processed
!= 0;
2619 * Extract fields from a tuple into Datum/nulls arrays
2622 ri_ExtractValues(Relation rel
, TupleTableSlot
*slot
,
2623 const RI_ConstraintInfo
*riinfo
, bool rel_is_pk
,
2624 Datum
*vals
, char *nulls
)
2626 const int16
*attnums
;
2630 attnums
= riinfo
->pk_attnums
;
2632 attnums
= riinfo
->fk_attnums
;
2634 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
2636 vals
[i
] = slot_getattr(slot
, attnums
[i
], &isnull
);
2637 nulls
[i
] = isnull
? 'n' : ' ';
2642 * Produce an error report
2644 * If the failed constraint was on insert/update to the FK table,
2645 * we want the key names and values extracted from there, and the error
2646 * message to look like 'key blah is not present in PK'.
2647 * Otherwise, the attr names and values come from the PK table and the
2648 * message looks like 'key blah is still referenced from FK'.
2651 ri_ReportViolation(const RI_ConstraintInfo
*riinfo
,
2652 Relation pk_rel
, Relation fk_rel
,
2653 TupleTableSlot
*violatorslot
, TupleDesc tupdesc
,
2654 int queryno
, bool is_restrict
, bool partgone
)
2656 StringInfoData key_names
;
2657 StringInfoData key_values
;
2659 const int16
*attnums
;
2661 AclResult aclresult
;
2662 bool has_perm
= true;
2665 * Determine which relation to complain about. If tupdesc wasn't passed
2666 * by caller, assume the violator tuple came from there.
2668 onfk
= (queryno
== RI_PLAN_CHECK_LOOKUPPK
);
2671 attnums
= riinfo
->fk_attnums
;
2672 rel_oid
= fk_rel
->rd_id
;
2673 if (tupdesc
== NULL
)
2674 tupdesc
= fk_rel
->rd_att
;
2678 attnums
= riinfo
->pk_attnums
;
2679 rel_oid
= pk_rel
->rd_id
;
2680 if (tupdesc
== NULL
)
2681 tupdesc
= pk_rel
->rd_att
;
2685 * Check permissions- if the user does not have access to view the data in
2686 * any of the key columns then we don't include the errdetail() below.
2688 * Check if RLS is enabled on the relation first. If so, we don't return
2689 * any specifics to avoid leaking data.
2691 * Check table-level permissions next and, failing that, column-level
2694 * When a partition at the referenced side is being detached/dropped, we
2695 * needn't check, since the user must be the table owner anyway.
2699 else if (check_enable_rls(rel_oid
, InvalidOid
, true) != RLS_ENABLED
)
2701 aclresult
= pg_class_aclcheck(rel_oid
, GetUserId(), ACL_SELECT
);
2702 if (aclresult
!= ACLCHECK_OK
)
2704 /* Try for column-level permissions */
2705 for (int idx
= 0; idx
< riinfo
->nkeys
; idx
++)
2707 aclresult
= pg_attribute_aclcheck(rel_oid
, attnums
[idx
],
2711 /* No access to the key */
2712 if (aclresult
!= ACLCHECK_OK
)
2725 /* Get printable versions of the keys involved */
2726 initStringInfo(&key_names
);
2727 initStringInfo(&key_values
);
2728 for (int idx
= 0; idx
< riinfo
->nkeys
; idx
++)
2730 int fnum
= attnums
[idx
];
2731 Form_pg_attribute att
= TupleDescAttr(tupdesc
, fnum
- 1);
2737 name
= NameStr(att
->attname
);
2739 datum
= slot_getattr(violatorslot
, fnum
, &isnull
);
2745 getTypeOutputInfo(att
->atttypid
, &foutoid
, &typisvarlena
);
2746 val
= OidOutputFunctionCall(foutoid
, datum
);
2753 appendStringInfoString(&key_names
, ", ");
2754 appendStringInfoString(&key_values
, ", ");
2756 appendStringInfoString(&key_names
, name
);
2757 appendStringInfoString(&key_values
, val
);
2763 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION
),
2764 errmsg("removing partition \"%s\" violates foreign key constraint \"%s\"",
2765 RelationGetRelationName(pk_rel
),
2766 NameStr(riinfo
->conname
)),
2767 errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
2768 key_names
.data
, key_values
.data
,
2769 RelationGetRelationName(fk_rel
)),
2770 errtableconstraint(fk_rel
, NameStr(riinfo
->conname
))));
2773 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION
),
2774 errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
2775 RelationGetRelationName(fk_rel
),
2776 NameStr(riinfo
->conname
)),
2778 errdetail("Key (%s)=(%s) is not present in table \"%s\".",
2779 key_names
.data
, key_values
.data
,
2780 RelationGetRelationName(pk_rel
)) :
2781 errdetail("Key is not present in table \"%s\".",
2782 RelationGetRelationName(pk_rel
)),
2783 errtableconstraint(fk_rel
, NameStr(riinfo
->conname
))));
2784 else if (is_restrict
)
2786 (errcode(ERRCODE_RESTRICT_VIOLATION
),
2787 errmsg("update or delete on table \"%s\" violates RESTRICT setting of foreign key constraint \"%s\" on table \"%s\"",
2788 RelationGetRelationName(pk_rel
),
2789 NameStr(riinfo
->conname
),
2790 RelationGetRelationName(fk_rel
)),
2792 errdetail("Key (%s)=(%s) is referenced from table \"%s\".",
2793 key_names
.data
, key_values
.data
,
2794 RelationGetRelationName(fk_rel
)) :
2795 errdetail("Key is referenced from table \"%s\".",
2796 RelationGetRelationName(fk_rel
)),
2797 errtableconstraint(fk_rel
, NameStr(riinfo
->conname
))));
2800 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION
),
2801 errmsg("update or delete on table \"%s\" violates foreign key constraint \"%s\" on table \"%s\"",
2802 RelationGetRelationName(pk_rel
),
2803 NameStr(riinfo
->conname
),
2804 RelationGetRelationName(fk_rel
)),
2806 errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
2807 key_names
.data
, key_values
.data
,
2808 RelationGetRelationName(fk_rel
)) :
2809 errdetail("Key is still referenced from table \"%s\".",
2810 RelationGetRelationName(fk_rel
)),
2811 errtableconstraint(fk_rel
, NameStr(riinfo
->conname
))));
2818 * Determine the NULL state of all key values in a tuple
2820 * Returns one of RI_KEYS_ALL_NULL, RI_KEYS_NONE_NULL or RI_KEYS_SOME_NULL.
2823 ri_NullCheck(TupleDesc tupDesc
,
2824 TupleTableSlot
*slot
,
2825 const RI_ConstraintInfo
*riinfo
, bool rel_is_pk
)
2827 const int16
*attnums
;
2828 bool allnull
= true;
2829 bool nonenull
= true;
2832 attnums
= riinfo
->pk_attnums
;
2834 attnums
= riinfo
->fk_attnums
;
2836 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
2838 if (slot_attisnull(slot
, attnums
[i
]))
2845 return RI_KEYS_ALL_NULL
;
2848 return RI_KEYS_NONE_NULL
;
2850 return RI_KEYS_SOME_NULL
;
2855 * ri_InitHashTables -
2857 * Initialize our internal hash tables.
2860 ri_InitHashTables(void)
2864 ctl
.keysize
= sizeof(Oid
);
2865 ctl
.entrysize
= sizeof(RI_ConstraintInfo
);
2866 ri_constraint_cache
= hash_create("RI constraint cache",
2867 RI_INIT_CONSTRAINTHASHSIZE
,
2868 &ctl
, HASH_ELEM
| HASH_BLOBS
);
2870 /* Arrange to flush cache on pg_constraint changes */
2871 CacheRegisterSyscacheCallback(CONSTROID
,
2872 InvalidateConstraintCacheCallBack
,
2875 ctl
.keysize
= sizeof(RI_QueryKey
);
2876 ctl
.entrysize
= sizeof(RI_QueryHashEntry
);
2877 ri_query_cache
= hash_create("RI query cache",
2878 RI_INIT_QUERYHASHSIZE
,
2879 &ctl
, HASH_ELEM
| HASH_BLOBS
);
2881 ctl
.keysize
= sizeof(RI_CompareKey
);
2882 ctl
.entrysize
= sizeof(RI_CompareHashEntry
);
2883 ri_compare_cache
= hash_create("RI compare cache",
2884 RI_INIT_QUERYHASHSIZE
,
2885 &ctl
, HASH_ELEM
| HASH_BLOBS
);
2890 * ri_FetchPreparedPlan -
2892 * Lookup for a query key in our private hash table of prepared
2893 * and saved SPI execution plans. Return the plan if found or NULL.
2896 ri_FetchPreparedPlan(RI_QueryKey
*key
)
2898 RI_QueryHashEntry
*entry
;
2902 * On the first call initialize the hashtable
2904 if (!ri_query_cache
)
2905 ri_InitHashTables();
2908 * Lookup for the key
2910 entry
= (RI_QueryHashEntry
*) hash_search(ri_query_cache
,
2917 * Check whether the plan is still valid. If it isn't, we don't want to
2918 * simply rely on plancache.c to regenerate it; rather we should start
2919 * from scratch and rebuild the query text too. This is to cover cases
2920 * such as table/column renames. We depend on the plancache machinery to
2921 * detect possible invalidations, though.
2923 * CAUTION: this check is only trustworthy if the caller has already
2924 * locked both FK and PK rels.
2927 if (plan
&& SPI_plan_is_valid(plan
))
2931 * Otherwise we might as well flush the cached plan now, to free a little
2932 * memory space before we make a new one.
2943 * ri_HashPreparedPlan -
2945 * Add another plan to our private SPI query plan hashtable.
2948 ri_HashPreparedPlan(RI_QueryKey
*key
, SPIPlanPtr plan
)
2950 RI_QueryHashEntry
*entry
;
2954 * On the first call initialize the hashtable
2956 if (!ri_query_cache
)
2957 ri_InitHashTables();
2960 * Add the new plan. We might be overwriting an entry previously found
2961 * invalid by ri_FetchPreparedPlan.
2963 entry
= (RI_QueryHashEntry
*) hash_search(ri_query_cache
,
2965 HASH_ENTER
, &found
);
2966 Assert(!found
|| entry
->plan
== NULL
);
2974 * Check if all key values in OLD and NEW are "equivalent":
2975 * For normal FKs we check for equality.
2976 * For temporal FKs we check that the PK side is a superset of its old value,
2977 * or the FK side is a subset of its old value.
2979 * Note: at some point we might wish to redefine this as checking for
2980 * "IS NOT DISTINCT" rather than "=", that is, allow two nulls to be
2981 * considered equal. Currently there is no need since all callers have
2982 * previously found at least one of the rows to contain no nulls.
2985 ri_KeysEqual(Relation rel
, TupleTableSlot
*oldslot
, TupleTableSlot
*newslot
,
2986 const RI_ConstraintInfo
*riinfo
, bool rel_is_pk
)
2988 const int16
*attnums
;
2991 attnums
= riinfo
->pk_attnums
;
2993 attnums
= riinfo
->fk_attnums
;
2995 /* XXX: could be worthwhile to fetch all necessary attrs at once */
2996 for (int i
= 0; i
< riinfo
->nkeys
; i
++)
3003 * Get one attribute's oldvalue. If it is NULL - they're not equal.
3005 oldvalue
= slot_getattr(oldslot
, attnums
[i
], &isnull
);
3010 * Get one attribute's newvalue. If it is NULL - they're not equal.
3012 newvalue
= slot_getattr(newslot
, attnums
[i
], &isnull
);
3019 * If we are looking at the PK table, then do a bytewise
3020 * comparison. We must propagate PK changes if the value is
3021 * changed to one that "looks" different but would compare as
3022 * equal using the equality operator. This only makes a
3023 * difference for ON UPDATE CASCADE, but for consistency we treat
3024 * all changes to the PK the same.
3026 CompactAttribute
*att
= TupleDescCompactAttr(oldslot
->tts_tupleDescriptor
, attnums
[i
] - 1);
3028 if (!datum_image_eq(oldvalue
, newvalue
, att
->attbyval
, att
->attlen
))
3036 * When comparing the PERIOD columns we can skip the check
3037 * whenever the referencing column stayed equal or shrank, so test
3038 * with the contained-by operator instead.
3040 if (riinfo
->hasperiod
&& i
== riinfo
->nkeys
- 1)
3041 eq_opr
= riinfo
->period_contained_by_oper
;
3043 eq_opr
= riinfo
->ff_eq_oprs
[i
];
3046 * For the FK table, compare with the appropriate equality
3047 * operator. Changes that compare equal will still satisfy the
3048 * constraint after the update.
3050 if (!ri_CompareWithCast(eq_opr
, RIAttType(rel
, attnums
[i
]), RIAttCollation(rel
, attnums
[i
]),
3051 newvalue
, oldvalue
))
3061 * ri_CompareWithCast -
3063 * Call the appropriate comparison operator for two values.
3064 * Normally this is equality, but for the PERIOD part of foreign keys
3065 * it is ContainedBy, so the order of lhs vs rhs is significant.
3066 * See below for how the collation is applied.
3068 * NB: we have already checked that neither value is null.
3071 ri_CompareWithCast(Oid eq_opr
, Oid
typeid, Oid collid
,
3072 Datum lhs
, Datum rhs
)
3074 RI_CompareHashEntry
*entry
= ri_HashCompareOp(eq_opr
, typeid);
3076 /* Do we need to cast the values? */
3077 if (OidIsValid(entry
->cast_func_finfo
.fn_oid
))
3079 lhs
= FunctionCall3(&entry
->cast_func_finfo
,
3081 Int32GetDatum(-1), /* typmod */
3082 BoolGetDatum(false)); /* implicit coercion */
3083 rhs
= FunctionCall3(&entry
->cast_func_finfo
,
3085 Int32GetDatum(-1), /* typmod */
3086 BoolGetDatum(false)); /* implicit coercion */
3090 * Apply the comparison operator.
3092 * Note: This function is part of a call stack that determines whether an
3093 * update to a row is significant enough that it needs checking or action
3094 * on the other side of a foreign-key constraint. Therefore, the
3095 * comparison here would need to be done with the collation of the *other*
3096 * table. For simplicity (e.g., we might not even have the other table
3097 * open), we'll use our own collation. This is fine because we require
3098 * that both collations have the same notion of equality (either they are
3099 * both deterministic or else they are both the same).
3101 * With range/multirangetypes, the collation of the base type is stored as
3102 * part of the rangetype (pg_range.rngcollation), and always used, so
3103 * there is no danger of inconsistency even using a non-equals operator.
3104 * But if we support arbitrary types with PERIOD, we should perhaps just
3105 * always force a re-check.
3107 return DatumGetBool(FunctionCall2Coll(&entry
->eq_opr_finfo
, collid
, lhs
, rhs
));
3111 * ri_HashCompareOp -
3113 * See if we know how to compare two values, and create a new hash entry
3116 static RI_CompareHashEntry
*
3117 ri_HashCompareOp(Oid eq_opr
, Oid
typeid)
3120 RI_CompareHashEntry
*entry
;
3124 * On the first call initialize the hashtable
3126 if (!ri_compare_cache
)
3127 ri_InitHashTables();
3130 * Find or create a hash entry. Note we're assuming RI_CompareKey
3131 * contains no struct padding.
3133 key
.eq_opr
= eq_opr
;
3134 key
.typeid = typeid;
3135 entry
= (RI_CompareHashEntry
*) hash_search(ri_compare_cache
,
3137 HASH_ENTER
, &found
);
3139 entry
->valid
= false;
3142 * If not already initialized, do so. Since we'll keep this hash entry
3143 * for the life of the backend, put any subsidiary info for the function
3144 * cache structs into TopMemoryContext.
3151 CoercionPathType pathtype
;
3153 /* We always need to know how to call the equality operator */
3154 fmgr_info_cxt(get_opcode(eq_opr
), &entry
->eq_opr_finfo
,
3158 * If we chose to use a cast from FK to PK type, we may have to apply
3159 * the cast function to get to the operator's input type.
3161 * XXX eventually it would be good to support array-coercion cases
3162 * here and in ri_CompareWithCast(). At the moment there is no point
3163 * because cases involving nonidentical array types will be rejected
3164 * at constraint creation time.
3166 * XXX perhaps also consider supporting CoerceViaIO? No need at the
3167 * moment since that will never be generated for implicit coercions.
3169 op_input_types(eq_opr
, &lefttype
, &righttype
);
3170 Assert(lefttype
== righttype
);
3171 if (typeid == lefttype
)
3172 castfunc
= InvalidOid
; /* simplest case */
3175 pathtype
= find_coercion_pathway(lefttype
, typeid,
3178 if (pathtype
!= COERCION_PATH_FUNC
&&
3179 pathtype
!= COERCION_PATH_RELABELTYPE
)
3182 * The declared input type of the eq_opr might be a
3183 * polymorphic type such as ANYARRAY or ANYENUM, or other
3184 * special cases such as RECORD; find_coercion_pathway
3185 * currently doesn't subsume these special cases.
3187 if (!IsBinaryCoercible(typeid, lefttype
))
3188 elog(ERROR
, "no conversion function from %s to %s",
3189 format_type_be(typeid),
3190 format_type_be(lefttype
));
3193 if (OidIsValid(castfunc
))
3194 fmgr_info_cxt(castfunc
, &entry
->cast_func_finfo
,
3197 entry
->cast_func_finfo
.fn_oid
= InvalidOid
;
3198 entry
->valid
= true;
3206 * Given a trigger function OID, determine whether it is an RI trigger,
3207 * and if so whether it is attached to PK or FK relation.
3210 RI_FKey_trigger_type(Oid tgfoid
)
3214 case F_RI_FKEY_CASCADE_DEL
:
3215 case F_RI_FKEY_CASCADE_UPD
:
3216 case F_RI_FKEY_RESTRICT_DEL
:
3217 case F_RI_FKEY_RESTRICT_UPD
:
3218 case F_RI_FKEY_SETNULL_DEL
:
3219 case F_RI_FKEY_SETNULL_UPD
:
3220 case F_RI_FKEY_SETDEFAULT_DEL
:
3221 case F_RI_FKEY_SETDEFAULT_UPD
:
3222 case F_RI_FKEY_NOACTION_DEL
:
3223 case F_RI_FKEY_NOACTION_UPD
:
3224 return RI_TRIGGER_PK
;
3226 case F_RI_FKEY_CHECK_INS
:
3227 case F_RI_FKEY_CHECK_UPD
:
3228 return RI_TRIGGER_FK
;
3231 return RI_TRIGGER_NONE
;