1 /*-------------------------------------------------------------------------
4 * Selectivity functions and index cost estimation functions for
5 * standard operators and index access methods.
7 * Selectivity routines are registered in the pg_operator catalog
8 * in the "oprrest" and "oprjoin" attributes.
10 * Index cost functions are located via the index AM's API struct,
11 * which is obtained from the handler function registered in pg_am.
13 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
14 * Portions Copyright (c) 1994, Regents of the University of California
18 * src/backend/utils/adt/selfuncs.c
20 *-------------------------------------------------------------------------
24 * Operator selectivity estimation functions are called to estimate the
25 * selectivity of WHERE clauses whose top-level operator is their operator.
26 * We divide the problem into two cases:
27 * Restriction clause estimation: the clause involves vars of just
29 * Join clause estimation: the clause involves vars of multiple rels.
30 * Join selectivity estimation is far more difficult and usually less accurate
31 * than restriction estimation.
33 * When dealing with the inner scan of a nestloop join, we consider the
34 * join's joinclauses as restriction clauses for the inner relation, and
35 * treat vars of the outer relation as parameters (a/k/a constants of unknown
36 * values). So, restriction estimators need to be able to accept an argument
37 * telling which relation is to be treated as the variable.
39 * The call convention for a restriction estimator (oprrest function) is
41 * Selectivity oprrest (PlannerInfo *root,
46 * root: general information about the query (rtable and RelOptInfo lists
47 * are particularly important for the estimator).
48 * operator: OID of the specific operator in question.
49 * args: argument list from the operator clause.
50 * varRelid: if not zero, the relid (rtable index) of the relation to
51 * be treated as the variable relation. May be zero if the args list
52 * is known to contain vars of only one relation.
54 * This is represented at the SQL level (in pg_proc) as
56 * float8 oprrest (internal, oid, internal, int4);
58 * The result is a selectivity, that is, a fraction (0 to 1) of the rows
59 * of the relation that are expected to produce a TRUE result for the
62 * The call convention for a join estimator (oprjoin function) is similar
63 * except that varRelid is not needed, and instead join information is
66 * Selectivity oprjoin (PlannerInfo *root,
70 * SpecialJoinInfo *sjinfo);
72 * float8 oprjoin (internal, oid, internal, int2, internal);
74 * (Before Postgres 8.4, join estimators had only the first four of these
75 * parameters. That signature is still allowed, but deprecated.) The
76 * relationship between jointype and sjinfo is explained in the comments for
77 * clause_selectivity() --- the short version is that jointype is usually
78 * best ignored in favor of examining sjinfo.
80 * Join selectivity for regular inner and outer joins is defined as the
81 * fraction (0 to 1) of the cross product of the relations that is expected
82 * to produce a TRUE result for the given operator. For both semi and anti
83 * joins, however, the selectivity is defined as the fraction of the left-hand
84 * side relation's rows that are expected to have a match (ie, at least one
85 * row with a TRUE result) in the right-hand side.
87 * For both oprrest and oprjoin functions, the operator's input collation OID
88 * (if any) is passed using the standard fmgr mechanism, so that the estimator
89 * function can fetch it with PG_GET_COLLATION(). Note, however, that all
90 * statistics in pg_statistic are currently built using the relevant column's
100 #include "access/brin.h"
101 #include "access/brin_page.h"
102 #include "access/gin.h"
103 #include "access/table.h"
104 #include "access/tableam.h"
105 #include "access/visibilitymap.h"
106 #include "catalog/pg_am.h"
107 #include "catalog/pg_collation.h"
108 #include "catalog/pg_operator.h"
109 #include "catalog/pg_statistic.h"
110 #include "catalog/pg_statistic_ext.h"
111 #include "executor/nodeAgg.h"
112 #include "miscadmin.h"
113 #include "nodes/makefuncs.h"
114 #include "nodes/nodeFuncs.h"
115 #include "optimizer/clauses.h"
116 #include "optimizer/cost.h"
117 #include "optimizer/optimizer.h"
118 #include "optimizer/pathnode.h"
119 #include "optimizer/paths.h"
120 #include "optimizer/plancat.h"
121 #include "parser/parse_clause.h"
122 #include "parser/parse_relation.h"
123 #include "parser/parsetree.h"
124 #include "statistics/statistics.h"
125 #include "storage/bufmgr.h"
126 #include "utils/acl.h"
127 #include "utils/array.h"
128 #include "utils/builtins.h"
129 #include "utils/date.h"
130 #include "utils/datum.h"
131 #include "utils/fmgroids.h"
132 #include "utils/index_selfuncs.h"
133 #include "utils/lsyscache.h"
134 #include "utils/memutils.h"
135 #include "utils/pg_locale.h"
136 #include "utils/rel.h"
137 #include "utils/selfuncs.h"
138 #include "utils/snapmgr.h"
139 #include "utils/spccache.h"
140 #include "utils/syscache.h"
141 #include "utils/timestamp.h"
142 #include "utils/typcache.h"
144 #define DEFAULT_PAGE_CPU_MULTIPLIER 50.0
146 /* Hooks for plugins to get control when we ask for stats */
147 get_relation_stats_hook_type get_relation_stats_hook
= NULL
;
148 get_index_stats_hook_type get_index_stats_hook
= NULL
;
150 static double eqsel_internal(PG_FUNCTION_ARGS
, bool negate
);
151 static double eqjoinsel_inner(Oid opfuncoid
, Oid collation
,
152 VariableStatData
*vardata1
, VariableStatData
*vardata2
,
153 double nd1
, double nd2
,
154 bool isdefault1
, bool isdefault2
,
155 AttStatsSlot
*sslot1
, AttStatsSlot
*sslot2
,
156 Form_pg_statistic stats1
, Form_pg_statistic stats2
,
157 bool have_mcvs1
, bool have_mcvs2
);
158 static double eqjoinsel_semi(Oid opfuncoid
, Oid collation
,
159 VariableStatData
*vardata1
, VariableStatData
*vardata2
,
160 double nd1
, double nd2
,
161 bool isdefault1
, bool isdefault2
,
162 AttStatsSlot
*sslot1
, AttStatsSlot
*sslot2
,
163 Form_pg_statistic stats1
, Form_pg_statistic stats2
,
164 bool have_mcvs1
, bool have_mcvs2
,
165 RelOptInfo
*inner_rel
);
166 static bool estimate_multivariate_ndistinct(PlannerInfo
*root
,
167 RelOptInfo
*rel
, List
**varinfos
, double *ndistinct
);
168 static bool convert_to_scalar(Datum value
, Oid valuetypid
, Oid collid
,
170 Datum lobound
, Datum hibound
, Oid boundstypid
,
171 double *scaledlobound
, double *scaledhibound
);
172 static double convert_numeric_to_scalar(Datum value
, Oid typid
, bool *failure
);
173 static void convert_string_to_scalar(char *value
,
176 double *scaledlobound
,
178 double *scaledhibound
);
179 static void convert_bytea_to_scalar(Datum value
,
182 double *scaledlobound
,
184 double *scaledhibound
);
185 static double convert_one_string_to_scalar(char *value
,
186 int rangelo
, int rangehi
);
187 static double convert_one_bytea_to_scalar(unsigned char *value
, int valuelen
,
188 int rangelo
, int rangehi
);
189 static char *convert_string_datum(Datum value
, Oid typid
, Oid collid
,
191 static double convert_timevalue_to_scalar(Datum value
, Oid typid
,
193 static void examine_simple_variable(PlannerInfo
*root
, Var
*var
,
194 VariableStatData
*vardata
);
195 static bool get_variable_range(PlannerInfo
*root
, VariableStatData
*vardata
,
196 Oid sortop
, Oid collation
,
197 Datum
*min
, Datum
*max
);
198 static void get_stats_slot_range(AttStatsSlot
*sslot
,
199 Oid opfuncoid
, FmgrInfo
*opproc
,
200 Oid collation
, int16 typLen
, bool typByVal
,
201 Datum
*min
, Datum
*max
, bool *p_have_data
);
202 static bool get_actual_variable_range(PlannerInfo
*root
,
203 VariableStatData
*vardata
,
204 Oid sortop
, Oid collation
,
205 Datum
*min
, Datum
*max
);
206 static bool get_actual_variable_endpoint(Relation heapRel
,
208 ScanDirection indexscandir
,
212 TupleTableSlot
*tableslot
,
213 MemoryContext outercontext
,
214 Datum
*endpointDatum
);
215 static RelOptInfo
*find_join_input_rel(PlannerInfo
*root
, Relids relids
);
219 * eqsel - Selectivity of "=" for any data types.
221 * Note: this routine is also used to estimate selectivity for some
222 * operators that are not "=" but have comparable selectivity behavior,
223 * such as "~=" (geometric approximate-match). Even for "=", we must
224 * keep in mind that the left and right datatypes may differ.
227 eqsel(PG_FUNCTION_ARGS
)
229 PG_RETURN_FLOAT8((float8
) eqsel_internal(fcinfo
, false));
233 * Common code for eqsel() and neqsel()
236 eqsel_internal(PG_FUNCTION_ARGS
, bool negate
)
238 PlannerInfo
*root
= (PlannerInfo
*) PG_GETARG_POINTER(0);
239 Oid
operator = PG_GETARG_OID(1);
240 List
*args
= (List
*) PG_GETARG_POINTER(2);
241 int varRelid
= PG_GETARG_INT32(3);
242 Oid collation
= PG_GET_COLLATION();
243 VariableStatData vardata
;
249 * When asked about <>, we do the estimation using the corresponding =
250 * operator, then convert to <> via "1.0 - eq_selectivity - nullfrac".
254 operator = get_negator(operator);
255 if (!OidIsValid(operator))
257 /* Use default selectivity (should we raise an error instead?) */
258 return 1.0 - DEFAULT_EQ_SEL
;
263 * If expression is not variable = something or something = variable, then
264 * punt and return a default estimate.
266 if (!get_restriction_variable(root
, args
, varRelid
,
267 &vardata
, &other
, &varonleft
))
268 return negate
? (1.0 - DEFAULT_EQ_SEL
) : DEFAULT_EQ_SEL
;
271 * We can do a lot better if the something is a constant. (Note: the
272 * Const might result from estimation rather than being a simple constant
275 if (IsA(other
, Const
))
276 selec
= var_eq_const(&vardata
, operator, collation
,
277 ((Const
*) other
)->constvalue
,
278 ((Const
*) other
)->constisnull
,
281 selec
= var_eq_non_const(&vardata
, operator, collation
, other
,
284 ReleaseVariableStats(vardata
);
290 * var_eq_const --- eqsel for var = const case
292 * This is exported so that some other estimation functions can use it.
295 var_eq_const(VariableStatData
*vardata
, Oid oproid
, Oid collation
,
296 Datum constval
, bool constisnull
,
297 bool varonleft
, bool negate
)
300 double nullfrac
= 0.0;
305 * If the constant is NULL, assume operator is strict and return zero, ie,
306 * operator will never return TRUE. (It's zero even for a negator op.)
312 * Grab the nullfrac for use below. Note we allow use of nullfrac
313 * regardless of security check.
315 if (HeapTupleIsValid(vardata
->statsTuple
))
317 Form_pg_statistic stats
;
319 stats
= (Form_pg_statistic
) GETSTRUCT(vardata
->statsTuple
);
320 nullfrac
= stats
->stanullfrac
;
324 * If we matched the var to a unique index or DISTINCT clause, assume
325 * there is exactly one match regardless of anything else. (This is
326 * slightly bogus, since the index or clause's equality operator might be
327 * different from ours, but it's much more likely to be right than
328 * ignoring the information.)
330 if (vardata
->isunique
&& vardata
->rel
&& vardata
->rel
->tuples
>= 1.0)
332 selec
= 1.0 / vardata
->rel
->tuples
;
334 else if (HeapTupleIsValid(vardata
->statsTuple
) &&
335 statistic_proc_security_check(vardata
,
336 (opfuncoid
= get_opcode(oproid
))))
343 * Is the constant "=" to any of the column's most common values?
344 * (Although the given operator may not really be "=", we will assume
345 * that seeing whether it returns TRUE is an appropriate test. If you
346 * don't like this, maybe you shouldn't be using eqsel for your
349 if (get_attstatsslot(&sslot
, vardata
->statsTuple
,
350 STATISTIC_KIND_MCV
, InvalidOid
,
351 ATTSTATSSLOT_VALUES
| ATTSTATSSLOT_NUMBERS
))
353 LOCAL_FCINFO(fcinfo
, 2);
356 fmgr_info(opfuncoid
, &eqproc
);
359 * Save a few cycles by setting up the fcinfo struct just once.
360 * Using FunctionCallInvoke directly also avoids failure if the
361 * eqproc returns NULL, though really equality functions should
364 InitFunctionCallInfoData(*fcinfo
, &eqproc
, 2, collation
,
366 fcinfo
->args
[0].isnull
= false;
367 fcinfo
->args
[1].isnull
= false;
368 /* be careful to apply operator right way 'round */
370 fcinfo
->args
[1].value
= constval
;
372 fcinfo
->args
[0].value
= constval
;
374 for (i
= 0; i
< sslot
.nvalues
; i
++)
379 fcinfo
->args
[0].value
= sslot
.values
[i
];
381 fcinfo
->args
[1].value
= sslot
.values
[i
];
382 fcinfo
->isnull
= false;
383 fresult
= FunctionCallInvoke(fcinfo
);
384 if (!fcinfo
->isnull
&& DatumGetBool(fresult
))
393 /* no most-common-value info available */
394 i
= 0; /* keep compiler quiet */
400 * Constant is "=" to this common value. We know selectivity
401 * exactly (or as exactly as ANALYZE could calculate it, anyway).
403 selec
= sslot
.numbers
[i
];
408 * Comparison is against a constant that is neither NULL nor any
409 * of the common values. Its selectivity cannot be more than
412 double sumcommon
= 0.0;
413 double otherdistinct
;
415 for (i
= 0; i
< sslot
.nnumbers
; i
++)
416 sumcommon
+= sslot
.numbers
[i
];
417 selec
= 1.0 - sumcommon
- nullfrac
;
418 CLAMP_PROBABILITY(selec
);
421 * and in fact it's probably a good deal less. We approximate that
422 * all the not-common values share this remaining fraction
423 * equally, so we divide by the number of other distinct values.
425 otherdistinct
= get_variable_numdistinct(vardata
, &isdefault
) -
427 if (otherdistinct
> 1)
428 selec
/= otherdistinct
;
431 * Another cross-check: selectivity shouldn't be estimated as more
432 * than the least common "most common value".
434 if (sslot
.nnumbers
> 0 && selec
> sslot
.numbers
[sslot
.nnumbers
- 1])
435 selec
= sslot
.numbers
[sslot
.nnumbers
- 1];
438 free_attstatsslot(&sslot
);
443 * No ANALYZE stats available, so make a guess using estimated number
444 * of distinct values and assuming they are equally common. (The guess
445 * is unlikely to be very good, but we do know a few special cases.)
447 selec
= 1.0 / get_variable_numdistinct(vardata
, &isdefault
);
450 /* now adjust if we wanted <> rather than = */
452 selec
= 1.0 - selec
- nullfrac
;
454 /* result should be in range, but make sure... */
455 CLAMP_PROBABILITY(selec
);
461 * var_eq_non_const --- eqsel for var = something-other-than-const case
463 * This is exported so that some other estimation functions can use it.
466 var_eq_non_const(VariableStatData
*vardata
, Oid oproid
, Oid collation
,
468 bool varonleft
, bool negate
)
471 double nullfrac
= 0.0;
475 * Grab the nullfrac for use below.
477 if (HeapTupleIsValid(vardata
->statsTuple
))
479 Form_pg_statistic stats
;
481 stats
= (Form_pg_statistic
) GETSTRUCT(vardata
->statsTuple
);
482 nullfrac
= stats
->stanullfrac
;
486 * If we matched the var to a unique index or DISTINCT clause, assume
487 * there is exactly one match regardless of anything else. (This is
488 * slightly bogus, since the index or clause's equality operator might be
489 * different from ours, but it's much more likely to be right than
490 * ignoring the information.)
492 if (vardata
->isunique
&& vardata
->rel
&& vardata
->rel
->tuples
>= 1.0)
494 selec
= 1.0 / vardata
->rel
->tuples
;
496 else if (HeapTupleIsValid(vardata
->statsTuple
))
502 * Search is for a value that we do not know a priori, but we will
503 * assume it is not NULL. Estimate the selectivity as non-null
504 * fraction divided by number of distinct values, so that we get a
505 * result averaged over all possible values whether common or
506 * uncommon. (Essentially, we are assuming that the not-yet-known
507 * comparison value is equally likely to be any of the possible
508 * values, regardless of their frequency in the table. Is that a good
511 selec
= 1.0 - nullfrac
;
512 ndistinct
= get_variable_numdistinct(vardata
, &isdefault
);
517 * Cross-check: selectivity should never be estimated as more than the
518 * most common value's.
520 if (get_attstatsslot(&sslot
, vardata
->statsTuple
,
521 STATISTIC_KIND_MCV
, InvalidOid
,
522 ATTSTATSSLOT_NUMBERS
))
524 if (sslot
.nnumbers
> 0 && selec
> sslot
.numbers
[0])
525 selec
= sslot
.numbers
[0];
526 free_attstatsslot(&sslot
);
532 * No ANALYZE stats available, so make a guess using estimated number
533 * of distinct values and assuming they are equally common. (The guess
534 * is unlikely to be very good, but we do know a few special cases.)
536 selec
= 1.0 / get_variable_numdistinct(vardata
, &isdefault
);
539 /* now adjust if we wanted <> rather than = */
541 selec
= 1.0 - selec
- nullfrac
;
543 /* result should be in range, but make sure... */
544 CLAMP_PROBABILITY(selec
);
550 * neqsel - Selectivity of "!=" for any data types.
552 * This routine is also used for some operators that are not "!="
553 * but have comparable selectivity behavior. See above comments
557 neqsel(PG_FUNCTION_ARGS
)
559 PG_RETURN_FLOAT8((float8
) eqsel_internal(fcinfo
, true));
563 * scalarineqsel - Selectivity of "<", "<=", ">", ">=" for scalars.
565 * This is the guts of scalarltsel/scalarlesel/scalargtsel/scalargesel.
566 * The isgt and iseq flags distinguish which of the four cases apply.
568 * The caller has commuted the clause, if necessary, so that we can treat
569 * the variable as being on the left. The caller must also make sure that
570 * the other side of the clause is a non-null Const, and dissect that into
571 * a value and datatype. (This definition simplifies some callers that
572 * want to estimate against a computed value instead of a Const node.)
574 * This routine works for any datatype (or pair of datatypes) known to
575 * convert_to_scalar(). If it is applied to some other datatype,
576 * it will return an approximate estimate based on assuming that the constant
577 * value falls in the middle of the bin identified by binary search.
580 scalarineqsel(PlannerInfo
*root
, Oid
operator, bool isgt
, bool iseq
,
582 VariableStatData
*vardata
, Datum constval
, Oid consttype
)
584 Form_pg_statistic stats
;
591 if (!HeapTupleIsValid(vardata
->statsTuple
))
594 * No stats are available. Typically this means we have to fall back
595 * on the default estimate; but if the variable is CTID then we can
596 * make an estimate based on comparing the constant to the table size.
598 if (vardata
->var
&& IsA(vardata
->var
, Var
) &&
599 ((Var
*) vardata
->var
)->varattno
== SelfItemPointerAttributeNumber
)
606 * If the relation's empty, we're going to include all of it.
607 * (This is mostly to avoid divide-by-zero below.)
609 if (vardata
->rel
->pages
== 0)
612 itemptr
= (ItemPointer
) DatumGetPointer(constval
);
613 block
= ItemPointerGetBlockNumberNoCheck(itemptr
);
616 * Determine the average number of tuples per page (density).
618 * Since the last page will, on average, be only half full, we can
619 * estimate it to have half as many tuples as earlier pages. So
620 * give it half the weight of a regular page.
622 density
= vardata
->rel
->tuples
/ (vardata
->rel
->pages
- 0.5);
624 /* If target is the last page, use half the density. */
625 if (block
>= vardata
->rel
->pages
- 1)
629 * Using the average tuples per page, calculate how far into the
630 * page the itemptr is likely to be and adjust block accordingly,
631 * by adding that fraction of a whole block (but never more than a
632 * whole block, no matter how high the itemptr's offset is). Here
633 * we are ignoring the possibility of dead-tuple line pointers,
634 * which is fairly bogus, but we lack the info to do better.
638 OffsetNumber offset
= ItemPointerGetOffsetNumberNoCheck(itemptr
);
640 block
+= Min(offset
/ density
, 1.0);
644 * Convert relative block number to selectivity. Again, the last
645 * page has only half weight.
647 selec
= block
/ (vardata
->rel
->pages
- 0.5);
650 * The calculation so far gave us a selectivity for the "<=" case.
651 * We'll have one fewer tuple for "<" and one additional tuple for
652 * ">=", the latter of which we'll reverse the selectivity for
653 * below, so we can simply subtract one tuple for both cases. The
654 * cases that need this adjustment can be identified by iseq being
657 if (iseq
== isgt
&& vardata
->rel
->tuples
>= 1.0)
658 selec
-= (1.0 / vardata
->rel
->tuples
);
660 /* Finally, reverse the selectivity for the ">", ">=" cases. */
664 CLAMP_PROBABILITY(selec
);
668 /* no stats available, so default result */
669 return DEFAULT_INEQ_SEL
;
671 stats
= (Form_pg_statistic
) GETSTRUCT(vardata
->statsTuple
);
673 fmgr_info(get_opcode(operator), &opproc
);
676 * If we have most-common-values info, add up the fractions of the MCV
677 * entries that satisfy MCV OP CONST. These fractions contribute directly
678 * to the result selectivity. Also add up the total fraction represented
681 mcv_selec
= mcv_selectivity(vardata
, &opproc
, collation
, constval
, true,
685 * If there is a histogram, determine which bin the constant falls in, and
686 * compute the resulting contribution to selectivity.
688 hist_selec
= ineq_histogram_selectivity(root
, vardata
,
689 operator, &opproc
, isgt
, iseq
,
691 constval
, consttype
);
694 * Now merge the results from the MCV and histogram calculations,
695 * realizing that the histogram covers only the non-null values that are
698 selec
= 1.0 - stats
->stanullfrac
- sumcommon
;
700 if (hist_selec
>= 0.0)
705 * If no histogram but there are values not accounted for by MCV,
706 * arbitrarily assume half of them will match.
713 /* result should be in range, but make sure... */
714 CLAMP_PROBABILITY(selec
);
720 * mcv_selectivity - Examine the MCV list for selectivity estimates
722 * Determine the fraction of the variable's MCV population that satisfies
723 * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft. Also
724 * compute the fraction of the total column population represented by the MCV
725 * list. This code will work for any boolean-returning predicate operator.
727 * The function result is the MCV selectivity, and the fraction of the
728 * total population is returned into *sumcommonp. Zeroes are returned
729 * if there is no MCV list.
732 mcv_selectivity(VariableStatData
*vardata
, FmgrInfo
*opproc
, Oid collation
,
733 Datum constval
, bool varonleft
,
744 if (HeapTupleIsValid(vardata
->statsTuple
) &&
745 statistic_proc_security_check(vardata
, opproc
->fn_oid
) &&
746 get_attstatsslot(&sslot
, vardata
->statsTuple
,
747 STATISTIC_KIND_MCV
, InvalidOid
,
748 ATTSTATSSLOT_VALUES
| ATTSTATSSLOT_NUMBERS
))
750 LOCAL_FCINFO(fcinfo
, 2);
753 * We invoke the opproc "by hand" so that we won't fail on NULL
754 * results. Such cases won't arise for normal comparison functions,
755 * but generic_restriction_selectivity could perhaps be used with
756 * operators that can return NULL. A small side benefit is to not
757 * need to re-initialize the fcinfo struct from scratch each time.
759 InitFunctionCallInfoData(*fcinfo
, opproc
, 2, collation
,
761 fcinfo
->args
[0].isnull
= false;
762 fcinfo
->args
[1].isnull
= false;
763 /* be careful to apply operator right way 'round */
765 fcinfo
->args
[1].value
= constval
;
767 fcinfo
->args
[0].value
= constval
;
769 for (i
= 0; i
< sslot
.nvalues
; i
++)
774 fcinfo
->args
[0].value
= sslot
.values
[i
];
776 fcinfo
->args
[1].value
= sslot
.values
[i
];
777 fcinfo
->isnull
= false;
778 fresult
= FunctionCallInvoke(fcinfo
);
779 if (!fcinfo
->isnull
&& DatumGetBool(fresult
))
780 mcv_selec
+= sslot
.numbers
[i
];
781 sumcommon
+= sslot
.numbers
[i
];
783 free_attstatsslot(&sslot
);
786 *sumcommonp
= sumcommon
;
791 * histogram_selectivity - Examine the histogram for selectivity estimates
793 * Determine the fraction of the variable's histogram entries that satisfy
794 * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft.
796 * This code will work for any boolean-returning predicate operator, whether
797 * or not it has anything to do with the histogram sort operator. We are
798 * essentially using the histogram just as a representative sample. However,
799 * small histograms are unlikely to be all that representative, so the caller
800 * should be prepared to fall back on some other estimation approach when the
801 * histogram is missing or very small. It may also be prudent to combine this
802 * approach with another one when the histogram is small.
804 * If the actual histogram size is not at least min_hist_size, we won't bother
805 * to do the calculation at all. Also, if the n_skip parameter is > 0, we
806 * ignore the first and last n_skip histogram elements, on the grounds that
807 * they are outliers and hence not very representative. Typical values for
808 * these parameters are 10 and 1.
810 * The function result is the selectivity, or -1 if there is no histogram
811 * or it's smaller than min_hist_size.
813 * The output parameter *hist_size receives the actual histogram size,
814 * or zero if no histogram. Callers may use this number to decide how
815 * much faith to put in the function result.
817 * Note that the result disregards both the most-common-values (if any) and
818 * null entries. The caller is expected to combine this result with
819 * statistics for those portions of the column population. It may also be
820 * prudent to clamp the result range, ie, disbelieve exact 0 or 1 outputs.
823 histogram_selectivity(VariableStatData
*vardata
,
824 FmgrInfo
*opproc
, Oid collation
,
825 Datum constval
, bool varonleft
,
826 int min_hist_size
, int n_skip
,
832 /* check sanity of parameters */
834 Assert(min_hist_size
> 2 * n_skip
);
836 if (HeapTupleIsValid(vardata
->statsTuple
) &&
837 statistic_proc_security_check(vardata
, opproc
->fn_oid
) &&
838 get_attstatsslot(&sslot
, vardata
->statsTuple
,
839 STATISTIC_KIND_HISTOGRAM
, InvalidOid
,
840 ATTSTATSSLOT_VALUES
))
842 *hist_size
= sslot
.nvalues
;
843 if (sslot
.nvalues
>= min_hist_size
)
845 LOCAL_FCINFO(fcinfo
, 2);
850 * We invoke the opproc "by hand" so that we won't fail on NULL
851 * results. Such cases won't arise for normal comparison
852 * functions, but generic_restriction_selectivity could perhaps be
853 * used with operators that can return NULL. A small side benefit
854 * is to not need to re-initialize the fcinfo struct from scratch
857 InitFunctionCallInfoData(*fcinfo
, opproc
, 2, collation
,
859 fcinfo
->args
[0].isnull
= false;
860 fcinfo
->args
[1].isnull
= false;
861 /* be careful to apply operator right way 'round */
863 fcinfo
->args
[1].value
= constval
;
865 fcinfo
->args
[0].value
= constval
;
867 for (i
= n_skip
; i
< sslot
.nvalues
- n_skip
; i
++)
872 fcinfo
->args
[0].value
= sslot
.values
[i
];
874 fcinfo
->args
[1].value
= sslot
.values
[i
];
875 fcinfo
->isnull
= false;
876 fresult
= FunctionCallInvoke(fcinfo
);
877 if (!fcinfo
->isnull
&& DatumGetBool(fresult
))
880 result
= ((double) nmatch
) / ((double) (sslot
.nvalues
- 2 * n_skip
));
884 free_attstatsslot(&sslot
);
896 * generic_restriction_selectivity - Selectivity for almost anything
898 * This function estimates selectivity for operators that we don't have any
899 * special knowledge about, but are on data types that we collect standard
900 * MCV and/or histogram statistics for. (Additional assumptions are that
901 * the operator is strict and immutable, or at least stable.)
903 * If we have "VAR OP CONST" or "CONST OP VAR", selectivity is estimated by
904 * applying the operator to each element of the column's MCV and/or histogram
905 * stats, and merging the results using the assumption that the histogram is
906 * a reasonable random sample of the column's non-MCV population. Note that
907 * if the operator's semantics are related to the histogram ordering, this
908 * might not be such a great assumption; other functions such as
909 * scalarineqsel() are probably a better match in such cases.
911 * Otherwise, fall back to the default selectivity provided by the caller.
914 generic_restriction_selectivity(PlannerInfo
*root
, Oid oproid
, Oid collation
,
915 List
*args
, int varRelid
,
916 double default_selectivity
)
919 VariableStatData vardata
;
924 * If expression is not variable OP something or something OP variable,
925 * then punt and return the default estimate.
927 if (!get_restriction_variable(root
, args
, varRelid
,
928 &vardata
, &other
, &varonleft
))
929 return default_selectivity
;
932 * If the something is a NULL constant, assume operator is strict and
933 * return zero, ie, operator will never return TRUE.
935 if (IsA(other
, Const
) &&
936 ((Const
*) other
)->constisnull
)
938 ReleaseVariableStats(vardata
);
942 if (IsA(other
, Const
))
944 /* Variable is being compared to a known non-null constant */
945 Datum constval
= ((Const
*) other
)->constvalue
;
952 fmgr_info(get_opcode(oproid
), &opproc
);
955 * Calculate the selectivity for the column's most common values.
957 mcvsel
= mcv_selectivity(&vardata
, &opproc
, collation
,
962 * If the histogram is large enough, see what fraction of it matches
963 * the query, and assume that's representative of the non-MCV
964 * population. Otherwise use the default selectivity for the non-MCV
967 selec
= histogram_selectivity(&vardata
, &opproc
, collation
,
972 /* Nope, fall back on default */
973 selec
= default_selectivity
;
975 else if (hist_size
< 100)
978 * For histogram sizes from 10 to 100, we combine the histogram
979 * and default selectivities, putting increasingly more trust in
980 * the histogram for larger sizes.
982 double hist_weight
= hist_size
/ 100.0;
984 selec
= selec
* hist_weight
+
985 default_selectivity
* (1.0 - hist_weight
);
988 /* In any case, don't believe extremely small or large estimates. */
991 else if (selec
> 0.9999)
994 /* Don't forget to account for nulls. */
995 if (HeapTupleIsValid(vardata
.statsTuple
))
996 nullfrac
= ((Form_pg_statistic
) GETSTRUCT(vardata
.statsTuple
))->stanullfrac
;
1001 * Now merge the results from the MCV and histogram calculations,
1002 * realizing that the histogram covers only the non-null values that
1003 * are not listed in MCV.
1005 selec
*= 1.0 - nullfrac
- mcvsum
;
1010 /* Comparison value is not constant, so we can't do anything */
1011 selec
= default_selectivity
;
1014 ReleaseVariableStats(vardata
);
1016 /* result should be in range, but make sure... */
1017 CLAMP_PROBABILITY(selec
);
1023 * ineq_histogram_selectivity - Examine the histogram for scalarineqsel
1025 * Determine the fraction of the variable's histogram population that
1026 * satisfies the inequality condition, ie, VAR < (or <=, >, >=) CONST.
1027 * The isgt and iseq flags distinguish which of the four cases apply.
1029 * While opproc could be looked up from the operator OID, common callers
1030 * also need to call it separately, so we make the caller pass both.
1032 * Returns -1 if there is no histogram (valid results will always be >= 0).
1034 * Note that the result disregards both the most-common-values (if any) and
1035 * null entries. The caller is expected to combine this result with
1036 * statistics for those portions of the column population.
1038 * This is exported so that some other estimation functions can use it.
1041 ineq_histogram_selectivity(PlannerInfo
*root
,
1042 VariableStatData
*vardata
,
1043 Oid opoid
, FmgrInfo
*opproc
, bool isgt
, bool iseq
,
1045 Datum constval
, Oid consttype
)
1053 * Someday, ANALYZE might store more than one histogram per rel/att,
1054 * corresponding to more than one possible sort ordering defined for the
1055 * column type. Right now, we know there is only one, so just grab it and
1056 * see if it matches the query.
1058 * Note that we can't use opoid as search argument; the staop appearing in
1059 * pg_statistic will be for the relevant '<' operator, but what we have
1060 * might be some other inequality operator such as '>='. (Even if opoid
1061 * is a '<' operator, it could be cross-type.) Hence we must use
1062 * comparison_ops_are_compatible() to see if the operators match.
1064 if (HeapTupleIsValid(vardata
->statsTuple
) &&
1065 statistic_proc_security_check(vardata
, opproc
->fn_oid
) &&
1066 get_attstatsslot(&sslot
, vardata
->statsTuple
,
1067 STATISTIC_KIND_HISTOGRAM
, InvalidOid
,
1068 ATTSTATSSLOT_VALUES
))
1070 if (sslot
.nvalues
> 1 &&
1071 sslot
.stacoll
== collation
&&
1072 comparison_ops_are_compatible(sslot
.staop
, opoid
))
1075 * Use binary search to find the desired location, namely the
1076 * right end of the histogram bin containing the comparison value,
1077 * which is the leftmost entry for which the comparison operator
1078 * succeeds (if isgt) or fails (if !isgt).
1080 * In this loop, we pay no attention to whether the operator iseq
1081 * or not; that detail will be mopped up below. (We cannot tell,
1082 * anyway, whether the operator thinks the values are equal.)
1084 * If the binary search accesses the first or last histogram
1085 * entry, we try to replace that endpoint with the true column min
1086 * or max as found by get_actual_variable_range(). This
1087 * ameliorates misestimates when the min or max is moving as a
1088 * result of changes since the last ANALYZE. Note that this could
1089 * result in effectively including MCVs into the histogram that
1090 * weren't there before, but we don't try to correct for that.
1093 int lobound
= 0; /* first possible slot to search */
1094 int hibound
= sslot
.nvalues
; /* last+1 slot to search */
1095 bool have_end
= false;
1098 * If there are only two histogram entries, we'll want up-to-date
1099 * values for both. (If there are more than two, we need at most
1100 * one of them to be updated, so we deal with that within the
1103 if (sslot
.nvalues
== 2)
1104 have_end
= get_actual_variable_range(root
,
1111 while (lobound
< hibound
)
1113 int probe
= (lobound
+ hibound
) / 2;
1117 * If we find ourselves about to compare to the first or last
1118 * histogram entry, first try to replace it with the actual
1119 * current min or max (unless we already did so above).
1121 if (probe
== 0 && sslot
.nvalues
> 2)
1122 have_end
= get_actual_variable_range(root
,
1128 else if (probe
== sslot
.nvalues
- 1 && sslot
.nvalues
> 2)
1129 have_end
= get_actual_variable_range(root
,
1134 &sslot
.values
[probe
]);
1136 ltcmp
= DatumGetBool(FunctionCall2Coll(opproc
,
1138 sslot
.values
[probe
],
1143 lobound
= probe
+ 1;
1151 * Constant is below lower histogram boundary. More
1152 * precisely, we have found that no entry in the histogram
1153 * satisfies the inequality clause (if !isgt) or they all do
1154 * (if isgt). We estimate that that's true of the entire
1155 * table, so set histfrac to 0.0 (which we'll flip to 1.0
1160 else if (lobound
>= sslot
.nvalues
)
1163 * Inverse case: constant is above upper histogram boundary.
1169 /* We have values[i-1] <= constant <= values[i]. */
1171 double eq_selec
= 0;
1178 * In the cases where we'll need it below, obtain an estimate
1179 * of the selectivity of "x = constval". We use a calculation
1180 * similar to what var_eq_const() does for a non-MCV constant,
1181 * ie, estimate that all distinct non-MCV values occur equally
1182 * often. But multiplication by "1.0 - sumcommon - nullfrac"
1183 * will be done by our caller, so we shouldn't do that here.
1184 * Therefore we can't try to clamp the estimate by reference
1185 * to the least common MCV; the result would be too small.
1187 * Note: since this is effectively assuming that constval
1188 * isn't an MCV, it's logically dubious if constval in fact is
1189 * one. But we have to apply *some* correction for equality,
1190 * and anyway we cannot tell if constval is an MCV, since we
1191 * don't have a suitable equality operator at hand.
1193 if (i
== 1 || isgt
== iseq
)
1195 double otherdistinct
;
1197 AttStatsSlot mcvslot
;
1199 /* Get estimated number of distinct values */
1200 otherdistinct
= get_variable_numdistinct(vardata
,
1203 /* Subtract off the number of known MCVs */
1204 if (get_attstatsslot(&mcvslot
, vardata
->statsTuple
,
1205 STATISTIC_KIND_MCV
, InvalidOid
,
1206 ATTSTATSSLOT_NUMBERS
))
1208 otherdistinct
-= mcvslot
.nnumbers
;
1209 free_attstatsslot(&mcvslot
);
1212 /* If result doesn't seem sane, leave eq_selec at 0 */
1213 if (otherdistinct
> 1)
1214 eq_selec
= 1.0 / otherdistinct
;
1218 * Convert the constant and the two nearest bin boundary
1219 * values to a uniform comparison scale, and do a linear
1220 * interpolation within this bin.
1222 if (convert_to_scalar(constval
, consttype
, collation
,
1224 sslot
.values
[i
- 1], sslot
.values
[i
],
1230 /* cope if bin boundaries appear identical */
1233 else if (val
<= low
)
1235 else if (val
>= high
)
1239 binfrac
= (val
- low
) / (high
- low
);
1242 * Watch out for the possibility that we got a NaN or
1243 * Infinity from the division. This can happen
1244 * despite the previous checks, if for example "low"
1247 if (isnan(binfrac
) ||
1248 binfrac
< 0.0 || binfrac
> 1.0)
1255 * Ideally we'd produce an error here, on the grounds that
1256 * the given operator shouldn't have scalarXXsel
1257 * registered as its selectivity func unless we can deal
1258 * with its operand types. But currently, all manner of
1259 * stuff is invoking scalarXXsel, so give a default
1260 * estimate until that can be fixed.
1266 * Now, compute the overall selectivity across the values
1267 * represented by the histogram. We have i-1 full bins and
1268 * binfrac partial bin below the constant.
1270 histfrac
= (double) (i
- 1) + binfrac
;
1271 histfrac
/= (double) (sslot
.nvalues
- 1);
1274 * At this point, histfrac is an estimate of the fraction of
1275 * the population represented by the histogram that satisfies
1276 * "x <= constval". Somewhat remarkably, this statement is
1277 * true regardless of which operator we were doing the probes
1278 * with, so long as convert_to_scalar() delivers reasonable
1279 * results. If the probe constant is equal to some histogram
1280 * entry, we would have considered the bin to the left of that
1281 * entry if probing with "<" or ">=", or the bin to the right
1282 * if probing with "<=" or ">"; but binfrac would have come
1283 * out as 1.0 in the first case and 0.0 in the second, leading
1284 * to the same histfrac in either case. For probe constants
1285 * between histogram entries, we find the same bin and get the
1286 * same estimate with any operator.
1288 * The fact that the estimate corresponds to "x <= constval"
1289 * and not "x < constval" is because of the way that ANALYZE
1290 * constructs the histogram: each entry is, effectively, the
1291 * rightmost value in its sample bucket. So selectivity
1292 * values that are exact multiples of 1/(histogram_size-1)
1293 * should be understood as estimates including a histogram
1294 * entry plus everything to its left.
1296 * However, that breaks down for the first histogram entry,
1297 * which necessarily is the leftmost value in its sample
1298 * bucket. That means the first histogram bin is slightly
1299 * narrower than the rest, by an amount equal to eq_selec.
1300 * Another way to say that is that we want "x <= leftmost" to
1301 * be estimated as eq_selec not zero. So, if we're dealing
1302 * with the first bin (i==1), rescale to make that true while
1303 * adjusting the rest of that bin linearly.
1306 histfrac
+= eq_selec
* (1.0 - binfrac
);
1309 * "x <= constval" is good if we want an estimate for "<=" or
1310 * ">", but if we are estimating for "<" or ">=", we now need
1311 * to decrease the estimate by eq_selec.
1314 histfrac
-= eq_selec
;
1318 * Now the estimate is finished for "<" and "<=" cases. If we are
1319 * estimating for ">" or ">=", flip it.
1321 hist_selec
= isgt
? (1.0 - histfrac
) : histfrac
;
1324 * The histogram boundaries are only approximate to begin with,
1325 * and may well be out of date anyway. Therefore, don't believe
1326 * extremely small or large selectivity estimates --- unless we
1327 * got actual current endpoint values from the table, in which
1328 * case just do the usual sanity clamp. Somewhat arbitrarily, we
1329 * set the cutoff for other cases at a hundredth of the histogram
1333 CLAMP_PROBABILITY(hist_selec
);
1336 double cutoff
= 0.01 / (double) (sslot
.nvalues
- 1);
1338 if (hist_selec
< cutoff
)
1339 hist_selec
= cutoff
;
1340 else if (hist_selec
> 1.0 - cutoff
)
1341 hist_selec
= 1.0 - cutoff
;
1344 else if (sslot
.nvalues
> 1)
1347 * If we get here, we have a histogram but it's not sorted the way
1348 * we want. Do a brute-force search to see how many of the
1349 * entries satisfy the comparison condition, and take that
1350 * fraction as our estimate. (This is identical to the inner loop
1351 * of histogram_selectivity; maybe share code?)
1353 LOCAL_FCINFO(fcinfo
, 2);
1356 InitFunctionCallInfoData(*fcinfo
, opproc
, 2, collation
,
1358 fcinfo
->args
[0].isnull
= false;
1359 fcinfo
->args
[1].isnull
= false;
1360 fcinfo
->args
[1].value
= constval
;
1361 for (int i
= 0; i
< sslot
.nvalues
; i
++)
1365 fcinfo
->args
[0].value
= sslot
.values
[i
];
1366 fcinfo
->isnull
= false;
1367 fresult
= FunctionCallInvoke(fcinfo
);
1368 if (!fcinfo
->isnull
&& DatumGetBool(fresult
))
1371 hist_selec
= ((double) nmatch
) / ((double) sslot
.nvalues
);
1374 * As above, clamp to a hundredth of the histogram resolution.
1375 * This case is surely even less trustworthy than the normal one,
1376 * so we shouldn't believe exact 0 or 1 selectivity. (Maybe the
1377 * clamp should be more restrictive in this case?)
1380 double cutoff
= 0.01 / (double) (sslot
.nvalues
- 1);
1382 if (hist_selec
< cutoff
)
1383 hist_selec
= cutoff
;
1384 else if (hist_selec
> 1.0 - cutoff
)
1385 hist_selec
= 1.0 - cutoff
;
1389 free_attstatsslot(&sslot
);
1396 * Common wrapper function for the selectivity estimators that simply
1397 * invoke scalarineqsel().
1400 scalarineqsel_wrapper(PG_FUNCTION_ARGS
, bool isgt
, bool iseq
)
1402 PlannerInfo
*root
= (PlannerInfo
*) PG_GETARG_POINTER(0);
1403 Oid
operator = PG_GETARG_OID(1);
1404 List
*args
= (List
*) PG_GETARG_POINTER(2);
1405 int varRelid
= PG_GETARG_INT32(3);
1406 Oid collation
= PG_GET_COLLATION();
1407 VariableStatData vardata
;
1415 * If expression is not variable op something or something op variable,
1416 * then punt and return a default estimate.
1418 if (!get_restriction_variable(root
, args
, varRelid
,
1419 &vardata
, &other
, &varonleft
))
1420 PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL
);
1423 * Can't do anything useful if the something is not a constant, either.
1425 if (!IsA(other
, Const
))
1427 ReleaseVariableStats(vardata
);
1428 PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL
);
1432 * If the constant is NULL, assume operator is strict and return zero, ie,
1433 * operator will never return TRUE.
1435 if (((Const
*) other
)->constisnull
)
1437 ReleaseVariableStats(vardata
);
1438 PG_RETURN_FLOAT8(0.0);
1440 constval
= ((Const
*) other
)->constvalue
;
1441 consttype
= ((Const
*) other
)->consttype
;
1444 * Force the var to be on the left to simplify logic in scalarineqsel.
1448 operator = get_commutator(operator);
1451 /* Use default selectivity (should we raise an error instead?) */
1452 ReleaseVariableStats(vardata
);
1453 PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL
);
1458 /* The rest of the work is done by scalarineqsel(). */
1459 selec
= scalarineqsel(root
, operator, isgt
, iseq
, collation
,
1460 &vardata
, constval
, consttype
);
1462 ReleaseVariableStats(vardata
);
1464 PG_RETURN_FLOAT8((float8
) selec
);
1468 * scalarltsel - Selectivity of "<" for scalars.
1471 scalarltsel(PG_FUNCTION_ARGS
)
1473 return scalarineqsel_wrapper(fcinfo
, false, false);
1477 * scalarlesel - Selectivity of "<=" for scalars.
1480 scalarlesel(PG_FUNCTION_ARGS
)
1482 return scalarineqsel_wrapper(fcinfo
, false, true);
1486 * scalargtsel - Selectivity of ">" for scalars.
1489 scalargtsel(PG_FUNCTION_ARGS
)
1491 return scalarineqsel_wrapper(fcinfo
, true, false);
1495 * scalargesel - Selectivity of ">=" for scalars.
1498 scalargesel(PG_FUNCTION_ARGS
)
1500 return scalarineqsel_wrapper(fcinfo
, true, true);
1504 * boolvarsel - Selectivity of Boolean variable.
1506 * This can actually be called on any boolean-valued expression. If it
1507 * involves only Vars of the specified relation, and if there are statistics
1508 * about the Var or expression (the latter is possible if it's indexed) then
1509 * we'll produce a real estimate; otherwise it's just a default.
1512 boolvarsel(PlannerInfo
*root
, Node
*arg
, int varRelid
)
1514 VariableStatData vardata
;
1517 examine_variable(root
, arg
, varRelid
, &vardata
);
1518 if (HeapTupleIsValid(vardata
.statsTuple
))
1521 * A boolean variable V is equivalent to the clause V = 't', so we
1522 * compute the selectivity as if that is what we have.
1524 selec
= var_eq_const(&vardata
, BooleanEqualOperator
, InvalidOid
,
1525 BoolGetDatum(true), false, true, false);
1529 /* Otherwise, the default estimate is 0.5 */
1532 ReleaseVariableStats(vardata
);
1537 * booltestsel - Selectivity of BooleanTest Node.
1540 booltestsel(PlannerInfo
*root
, BoolTestType booltesttype
, Node
*arg
,
1541 int varRelid
, JoinType jointype
, SpecialJoinInfo
*sjinfo
)
1543 VariableStatData vardata
;
1546 examine_variable(root
, arg
, varRelid
, &vardata
);
1548 if (HeapTupleIsValid(vardata
.statsTuple
))
1550 Form_pg_statistic stats
;
1554 stats
= (Form_pg_statistic
) GETSTRUCT(vardata
.statsTuple
);
1555 freq_null
= stats
->stanullfrac
;
1557 if (get_attstatsslot(&sslot
, vardata
.statsTuple
,
1558 STATISTIC_KIND_MCV
, InvalidOid
,
1559 ATTSTATSSLOT_VALUES
| ATTSTATSSLOT_NUMBERS
)
1560 && sslot
.nnumbers
> 0)
1566 * Get first MCV frequency and derive frequency for true.
1568 if (DatumGetBool(sslot
.values
[0]))
1569 freq_true
= sslot
.numbers
[0];
1571 freq_true
= 1.0 - sslot
.numbers
[0] - freq_null
;
1574 * Next derive frequency for false. Then use these as appropriate
1575 * to derive frequency for each case.
1577 freq_false
= 1.0 - freq_true
- freq_null
;
1579 switch (booltesttype
)
1582 /* select only NULL values */
1585 case IS_NOT_UNKNOWN
:
1586 /* select non-NULL values */
1587 selec
= 1.0 - freq_null
;
1590 /* select only TRUE values */
1594 /* select non-TRUE values */
1595 selec
= 1.0 - freq_true
;
1598 /* select only FALSE values */
1602 /* select non-FALSE values */
1603 selec
= 1.0 - freq_false
;
1606 elog(ERROR
, "unrecognized booltesttype: %d",
1607 (int) booltesttype
);
1608 selec
= 0.0; /* Keep compiler quiet */
1612 free_attstatsslot(&sslot
);
1617 * No most-common-value info available. Still have null fraction
1618 * information, so use it for IS [NOT] UNKNOWN. Otherwise adjust
1619 * for null fraction and assume a 50-50 split of TRUE and FALSE.
1621 switch (booltesttype
)
1624 /* select only NULL values */
1627 case IS_NOT_UNKNOWN
:
1628 /* select non-NULL values */
1629 selec
= 1.0 - freq_null
;
1633 /* Assume we select half of the non-NULL values */
1634 selec
= (1.0 - freq_null
) / 2.0;
1638 /* Assume we select NULLs plus half of the non-NULLs */
1639 /* equiv. to freq_null + (1.0 - freq_null) / 2.0 */
1640 selec
= (freq_null
+ 1.0) / 2.0;
1643 elog(ERROR
, "unrecognized booltesttype: %d",
1644 (int) booltesttype
);
1645 selec
= 0.0; /* Keep compiler quiet */
1653 * If we can't get variable statistics for the argument, perhaps
1654 * clause_selectivity can do something with it. We ignore the
1655 * possibility of a NULL value when using clause_selectivity, and just
1656 * assume the value is either TRUE or FALSE.
1658 switch (booltesttype
)
1661 selec
= DEFAULT_UNK_SEL
;
1663 case IS_NOT_UNKNOWN
:
1664 selec
= DEFAULT_NOT_UNK_SEL
;
1668 selec
= (double) clause_selectivity(root
, arg
,
1674 selec
= 1.0 - (double) clause_selectivity(root
, arg
,
1679 elog(ERROR
, "unrecognized booltesttype: %d",
1680 (int) booltesttype
);
1681 selec
= 0.0; /* Keep compiler quiet */
1686 ReleaseVariableStats(vardata
);
1688 /* result should be in range, but make sure... */
1689 CLAMP_PROBABILITY(selec
);
1691 return (Selectivity
) selec
;
1695 * nulltestsel - Selectivity of NullTest Node.
1698 nulltestsel(PlannerInfo
*root
, NullTestType nulltesttype
, Node
*arg
,
1699 int varRelid
, JoinType jointype
, SpecialJoinInfo
*sjinfo
)
1701 VariableStatData vardata
;
1704 examine_variable(root
, arg
, varRelid
, &vardata
);
1706 if (HeapTupleIsValid(vardata
.statsTuple
))
1708 Form_pg_statistic stats
;
1711 stats
= (Form_pg_statistic
) GETSTRUCT(vardata
.statsTuple
);
1712 freq_null
= stats
->stanullfrac
;
1714 switch (nulltesttype
)
1719 * Use freq_null directly.
1726 * Select not unknown (not null) values. Calculate from
1729 selec
= 1.0 - freq_null
;
1732 elog(ERROR
, "unrecognized nulltesttype: %d",
1733 (int) nulltesttype
);
1734 return (Selectivity
) 0; /* keep compiler quiet */
1737 else if (vardata
.var
&& IsA(vardata
.var
, Var
) &&
1738 ((Var
*) vardata
.var
)->varattno
< 0)
1741 * There are no stats for system columns, but we know they are never
1744 selec
= (nulltesttype
== IS_NULL
) ? 0.0 : 1.0;
1749 * No ANALYZE stats available, so make a guess
1751 switch (nulltesttype
)
1754 selec
= DEFAULT_UNK_SEL
;
1757 selec
= DEFAULT_NOT_UNK_SEL
;
1760 elog(ERROR
, "unrecognized nulltesttype: %d",
1761 (int) nulltesttype
);
1762 return (Selectivity
) 0; /* keep compiler quiet */
1766 ReleaseVariableStats(vardata
);
1768 /* result should be in range, but make sure... */
1769 CLAMP_PROBABILITY(selec
);
1771 return (Selectivity
) selec
;
1775 * strip_array_coercion - strip binary-compatible relabeling from an array expr
1777 * For array values, the parser normally generates ArrayCoerceExpr conversions,
1778 * but it seems possible that RelabelType might show up. Also, the planner
1779 * is not currently tense about collapsing stacked ArrayCoerceExpr nodes,
1780 * so we need to be ready to deal with more than one level.
1783 strip_array_coercion(Node
*node
)
1787 if (node
&& IsA(node
, ArrayCoerceExpr
))
1789 ArrayCoerceExpr
*acoerce
= (ArrayCoerceExpr
*) node
;
1792 * If the per-element expression is just a RelabelType on top of
1793 * CaseTestExpr, then we know it's a binary-compatible relabeling.
1795 if (IsA(acoerce
->elemexpr
, RelabelType
) &&
1796 IsA(((RelabelType
*) acoerce
->elemexpr
)->arg
, CaseTestExpr
))
1797 node
= (Node
*) acoerce
->arg
;
1801 else if (node
&& IsA(node
, RelabelType
))
1803 /* We don't really expect this case, but may as well cope */
1804 node
= (Node
*) ((RelabelType
*) node
)->arg
;
1813 * scalararraysel - Selectivity of ScalarArrayOpExpr Node.
1816 scalararraysel(PlannerInfo
*root
,
1817 ScalarArrayOpExpr
*clause
,
1818 bool is_join_clause
,
1821 SpecialJoinInfo
*sjinfo
)
1823 Oid
operator = clause
->opno
;
1824 bool useOr
= clause
->useOr
;
1825 bool isEquality
= false;
1826 bool isInequality
= false;
1829 Oid nominal_element_type
;
1830 Oid nominal_element_collation
;
1831 TypeCacheEntry
*typentry
;
1832 RegProcedure oprsel
;
1833 FmgrInfo oprselproc
;
1835 Selectivity s1disjoint
;
1837 /* First, deconstruct the expression */
1838 Assert(list_length(clause
->args
) == 2);
1839 leftop
= (Node
*) linitial(clause
->args
);
1840 rightop
= (Node
*) lsecond(clause
->args
);
1842 /* aggressively reduce both sides to constants */
1843 leftop
= estimate_expression_value(root
, leftop
);
1844 rightop
= estimate_expression_value(root
, rightop
);
1846 /* get nominal (after relabeling) element type of rightop */
1847 nominal_element_type
= get_base_element_type(exprType(rightop
));
1848 if (!OidIsValid(nominal_element_type
))
1849 return (Selectivity
) 0.5; /* probably shouldn't happen */
1850 /* get nominal collation, too, for generating constants */
1851 nominal_element_collation
= exprCollation(rightop
);
1853 /* look through any binary-compatible relabeling of rightop */
1854 rightop
= strip_array_coercion(rightop
);
1857 * Detect whether the operator is the default equality or inequality
1858 * operator of the array element type.
1860 typentry
= lookup_type_cache(nominal_element_type
, TYPECACHE_EQ_OPR
);
1861 if (OidIsValid(typentry
->eq_opr
))
1863 if (operator == typentry
->eq_opr
)
1865 else if (get_negator(operator) == typentry
->eq_opr
)
1866 isInequality
= true;
1870 * If it is equality or inequality, we might be able to estimate this as a
1871 * form of array containment; for instance "const = ANY(column)" can be
1872 * treated as "ARRAY[const] <@ column". scalararraysel_containment tries
1873 * that, and returns the selectivity estimate if successful, or -1 if not.
1875 if ((isEquality
|| isInequality
) && !is_join_clause
)
1877 s1
= scalararraysel_containment(root
, leftop
, rightop
,
1878 nominal_element_type
,
1879 isEquality
, useOr
, varRelid
);
1885 * Look up the underlying operator's selectivity estimator. Punt if it
1889 oprsel
= get_oprjoin(operator);
1891 oprsel
= get_oprrest(operator);
1893 return (Selectivity
) 0.5;
1894 fmgr_info(oprsel
, &oprselproc
);
1897 * In the array-containment check above, we must only believe that an
1898 * operator is equality or inequality if it is the default btree equality
1899 * operator (or its negator) for the element type, since those are the
1900 * operators that array containment will use. But in what follows, we can
1901 * be a little laxer, and also believe that any operators using eqsel() or
1902 * neqsel() as selectivity estimator act like equality or inequality.
1904 if (oprsel
== F_EQSEL
|| oprsel
== F_EQJOINSEL
)
1906 else if (oprsel
== F_NEQSEL
|| oprsel
== F_NEQJOINSEL
)
1907 isInequality
= true;
1910 * We consider three cases:
1912 * 1. rightop is an Array constant: deconstruct the array, apply the
1913 * operator's selectivity function for each array element, and merge the
1914 * results in the same way that clausesel.c does for AND/OR combinations.
1916 * 2. rightop is an ARRAY[] construct: apply the operator's selectivity
1917 * function for each element of the ARRAY[] construct, and merge.
1919 * 3. otherwise, make a guess ...
1921 if (rightop
&& IsA(rightop
, Const
))
1923 Datum arraydatum
= ((Const
*) rightop
)->constvalue
;
1924 bool arrayisnull
= ((Const
*) rightop
)->constisnull
;
1925 ArrayType
*arrayval
;
1934 if (arrayisnull
) /* qual can't succeed if null array */
1935 return (Selectivity
) 0.0;
1936 arrayval
= DatumGetArrayTypeP(arraydatum
);
1937 get_typlenbyvalalign(ARR_ELEMTYPE(arrayval
),
1938 &elmlen
, &elmbyval
, &elmalign
);
1939 deconstruct_array(arrayval
,
1940 ARR_ELEMTYPE(arrayval
),
1941 elmlen
, elmbyval
, elmalign
,
1942 &elem_values
, &elem_nulls
, &num_elems
);
1945 * For generic operators, we assume the probability of success is
1946 * independent for each array element. But for "= ANY" or "<> ALL",
1947 * if the array elements are distinct (which'd typically be the case)
1948 * then the probabilities are disjoint, and we should just sum them.
1950 * If we were being really tense we would try to confirm that the
1951 * elements are all distinct, but that would be expensive and it
1952 * doesn't seem to be worth the cycles; it would amount to penalizing
1953 * well-written queries in favor of poorly-written ones. However, we
1954 * do protect ourselves a little bit by checking whether the
1955 * disjointness assumption leads to an impossible (out of range)
1956 * probability; if so, we fall back to the normal calculation.
1958 s1
= s1disjoint
= (useOr
? 0.0 : 1.0);
1960 for (i
= 0; i
< num_elems
; i
++)
1965 args
= list_make2(leftop
,
1966 makeConst(nominal_element_type
,
1968 nominal_element_collation
,
1974 s2
= DatumGetFloat8(FunctionCall5Coll(&oprselproc
,
1975 clause
->inputcollid
,
1976 PointerGetDatum(root
),
1977 ObjectIdGetDatum(operator),
1978 PointerGetDatum(args
),
1979 Int16GetDatum(jointype
),
1980 PointerGetDatum(sjinfo
)));
1982 s2
= DatumGetFloat8(FunctionCall4Coll(&oprselproc
,
1983 clause
->inputcollid
,
1984 PointerGetDatum(root
),
1985 ObjectIdGetDatum(operator),
1986 PointerGetDatum(args
),
1987 Int32GetDatum(varRelid
)));
1991 s1
= s1
+ s2
- s1
* s2
;
1999 s1disjoint
+= s2
- 1.0;
2003 /* accept disjoint-probability estimate if in range */
2004 if ((useOr
? isEquality
: isInequality
) &&
2005 s1disjoint
>= 0.0 && s1disjoint
<= 1.0)
2008 else if (rightop
&& IsA(rightop
, ArrayExpr
) &&
2009 !((ArrayExpr
*) rightop
)->multidims
)
2011 ArrayExpr
*arrayexpr
= (ArrayExpr
*) rightop
;
2016 get_typlenbyval(arrayexpr
->element_typeid
,
2017 &elmlen
, &elmbyval
);
2020 * We use the assumption of disjoint probabilities here too, although
2021 * the odds of equal array elements are rather higher if the elements
2022 * are not all constants (which they won't be, else constant folding
2023 * would have reduced the ArrayExpr to a Const). In this path it's
2024 * critical to have the sanity check on the s1disjoint estimate.
2026 s1
= s1disjoint
= (useOr
? 0.0 : 1.0);
2028 foreach(l
, arrayexpr
->elements
)
2030 Node
*elem
= (Node
*) lfirst(l
);
2035 * Theoretically, if elem isn't of nominal_element_type we should
2036 * insert a RelabelType, but it seems unlikely that any operator
2037 * estimation function would really care ...
2039 args
= list_make2(leftop
, elem
);
2041 s2
= DatumGetFloat8(FunctionCall5Coll(&oprselproc
,
2042 clause
->inputcollid
,
2043 PointerGetDatum(root
),
2044 ObjectIdGetDatum(operator),
2045 PointerGetDatum(args
),
2046 Int16GetDatum(jointype
),
2047 PointerGetDatum(sjinfo
)));
2049 s2
= DatumGetFloat8(FunctionCall4Coll(&oprselproc
,
2050 clause
->inputcollid
,
2051 PointerGetDatum(root
),
2052 ObjectIdGetDatum(operator),
2053 PointerGetDatum(args
),
2054 Int32GetDatum(varRelid
)));
2058 s1
= s1
+ s2
- s1
* s2
;
2066 s1disjoint
+= s2
- 1.0;
2070 /* accept disjoint-probability estimate if in range */
2071 if ((useOr
? isEquality
: isInequality
) &&
2072 s1disjoint
>= 0.0 && s1disjoint
<= 1.0)
2077 CaseTestExpr
*dummyexpr
;
2083 * We need a dummy rightop to pass to the operator selectivity
2084 * routine. It can be pretty much anything that doesn't look like a
2085 * constant; CaseTestExpr is a convenient choice.
2087 dummyexpr
= makeNode(CaseTestExpr
);
2088 dummyexpr
->typeId
= nominal_element_type
;
2089 dummyexpr
->typeMod
= -1;
2090 dummyexpr
->collation
= clause
->inputcollid
;
2091 args
= list_make2(leftop
, dummyexpr
);
2093 s2
= DatumGetFloat8(FunctionCall5Coll(&oprselproc
,
2094 clause
->inputcollid
,
2095 PointerGetDatum(root
),
2096 ObjectIdGetDatum(operator),
2097 PointerGetDatum(args
),
2098 Int16GetDatum(jointype
),
2099 PointerGetDatum(sjinfo
)));
2101 s2
= DatumGetFloat8(FunctionCall4Coll(&oprselproc
,
2102 clause
->inputcollid
,
2103 PointerGetDatum(root
),
2104 ObjectIdGetDatum(operator),
2105 PointerGetDatum(args
),
2106 Int32GetDatum(varRelid
)));
2107 s1
= useOr
? 0.0 : 1.0;
2110 * Arbitrarily assume 10 elements in the eventual array value (see
2111 * also estimate_array_length). We don't risk an assumption of
2112 * disjoint probabilities here.
2114 for (i
= 0; i
< 10; i
++)
2117 s1
= s1
+ s2
- s1
* s2
;
2123 /* result should be in range, but make sure... */
2124 CLAMP_PROBABILITY(s1
);
2130 * Estimate number of elements in the array yielded by an expression.
2132 * Note: the result is integral, but we use "double" to avoid overflow
2133 * concerns. Most callers will use it in double-type expressions anyway.
2135 * Note: in some code paths root can be passed as NULL, resulting in
2136 * slightly worse estimates.
2139 estimate_array_length(PlannerInfo
*root
, Node
*arrayexpr
)
2141 /* look through any binary-compatible relabeling of arrayexpr */
2142 arrayexpr
= strip_array_coercion(arrayexpr
);
2144 if (arrayexpr
&& IsA(arrayexpr
, Const
))
2146 Datum arraydatum
= ((Const
*) arrayexpr
)->constvalue
;
2147 bool arrayisnull
= ((Const
*) arrayexpr
)->constisnull
;
2148 ArrayType
*arrayval
;
2152 arrayval
= DatumGetArrayTypeP(arraydatum
);
2153 return ArrayGetNItems(ARR_NDIM(arrayval
), ARR_DIMS(arrayval
));
2155 else if (arrayexpr
&& IsA(arrayexpr
, ArrayExpr
) &&
2156 !((ArrayExpr
*) arrayexpr
)->multidims
)
2158 return list_length(((ArrayExpr
*) arrayexpr
)->elements
);
2160 else if (arrayexpr
&& root
)
2162 /* See if we can find any statistics about it */
2163 VariableStatData vardata
;
2167 examine_variable(root
, arrayexpr
, 0, &vardata
);
2168 if (HeapTupleIsValid(vardata
.statsTuple
))
2171 * Found stats, so use the average element count, which is stored
2172 * in the last stanumbers element of the DECHIST statistics.
2173 * Actually that is the average count of *distinct* elements;
2174 * perhaps we should scale it up somewhat?
2176 if (get_attstatsslot(&sslot
, vardata
.statsTuple
,
2177 STATISTIC_KIND_DECHIST
, InvalidOid
,
2178 ATTSTATSSLOT_NUMBERS
))
2180 if (sslot
.nnumbers
> 0)
2181 nelem
= clamp_row_est(sslot
.numbers
[sslot
.nnumbers
- 1]);
2182 free_attstatsslot(&sslot
);
2185 ReleaseVariableStats(vardata
);
2191 /* Else use a default guess --- this should match scalararraysel */
2196 * rowcomparesel - Selectivity of RowCompareExpr Node.
2198 * We estimate RowCompare selectivity by considering just the first (high
2199 * order) columns, which makes it equivalent to an ordinary OpExpr. While
2200 * this estimate could be refined by considering additional columns, it
2201 * seems unlikely that we could do a lot better without multi-column
2205 rowcomparesel(PlannerInfo
*root
,
2206 RowCompareExpr
*clause
,
2207 int varRelid
, JoinType jointype
, SpecialJoinInfo
*sjinfo
)
2210 Oid opno
= linitial_oid(clause
->opnos
);
2211 Oid inputcollid
= linitial_oid(clause
->inputcollids
);
2213 bool is_join_clause
;
2215 /* Build equivalent arg list for single operator */
2216 opargs
= list_make2(linitial(clause
->largs
), linitial(clause
->rargs
));
2219 * Decide if it's a join clause. This should match clausesel.c's
2220 * treat_as_join_clause(), except that we intentionally consider only the
2221 * leading columns and not the rest of the clause.
2226 * Caller is forcing restriction mode (eg, because we are examining an
2227 * inner indexscan qual).
2229 is_join_clause
= false;
2231 else if (sjinfo
== NULL
)
2234 * It must be a restriction clause, since it's being evaluated at a
2237 is_join_clause
= false;
2242 * Otherwise, it's a join if there's more than one base relation used.
2244 is_join_clause
= (NumRelids(root
, (Node
*) opargs
) > 1);
2249 /* Estimate selectivity for a join clause. */
2250 s1
= join_selectivity(root
, opno
,
2258 /* Estimate selectivity for a restriction clause. */
2259 s1
= restriction_selectivity(root
, opno
,
2269 * eqjoinsel - Join selectivity of "="
2272 eqjoinsel(PG_FUNCTION_ARGS
)
2274 PlannerInfo
*root
= (PlannerInfo
*) PG_GETARG_POINTER(0);
2275 Oid
operator = PG_GETARG_OID(1);
2276 List
*args
= (List
*) PG_GETARG_POINTER(2);
2279 JoinType jointype
= (JoinType
) PG_GETARG_INT16(3);
2281 SpecialJoinInfo
*sjinfo
= (SpecialJoinInfo
*) PG_GETARG_POINTER(4);
2282 Oid collation
= PG_GET_COLLATION();
2285 VariableStatData vardata1
;
2286 VariableStatData vardata2
;
2292 AttStatsSlot sslot1
;
2293 AttStatsSlot sslot2
;
2294 Form_pg_statistic stats1
= NULL
;
2295 Form_pg_statistic stats2
= NULL
;
2296 bool have_mcvs1
= false;
2297 bool have_mcvs2
= false;
2299 bool join_is_reversed
;
2300 RelOptInfo
*inner_rel
;
2302 get_join_variables(root
, args
, sjinfo
,
2303 &vardata1
, &vardata2
, &join_is_reversed
);
2305 nd1
= get_variable_numdistinct(&vardata1
, &isdefault1
);
2306 nd2
= get_variable_numdistinct(&vardata2
, &isdefault2
);
2308 opfuncoid
= get_opcode(operator);
2310 memset(&sslot1
, 0, sizeof(sslot1
));
2311 memset(&sslot2
, 0, sizeof(sslot2
));
2314 * There is no use in fetching one side's MCVs if we lack MCVs for the
2315 * other side, so do a quick check to verify that both stats exist.
2317 get_mcv_stats
= (HeapTupleIsValid(vardata1
.statsTuple
) &&
2318 HeapTupleIsValid(vardata2
.statsTuple
) &&
2319 get_attstatsslot(&sslot1
, vardata1
.statsTuple
,
2320 STATISTIC_KIND_MCV
, InvalidOid
,
2322 get_attstatsslot(&sslot2
, vardata2
.statsTuple
,
2323 STATISTIC_KIND_MCV
, InvalidOid
,
2326 if (HeapTupleIsValid(vardata1
.statsTuple
))
2328 /* note we allow use of nullfrac regardless of security check */
2329 stats1
= (Form_pg_statistic
) GETSTRUCT(vardata1
.statsTuple
);
2330 if (get_mcv_stats
&&
2331 statistic_proc_security_check(&vardata1
, opfuncoid
))
2332 have_mcvs1
= get_attstatsslot(&sslot1
, vardata1
.statsTuple
,
2333 STATISTIC_KIND_MCV
, InvalidOid
,
2334 ATTSTATSSLOT_VALUES
| ATTSTATSSLOT_NUMBERS
);
2337 if (HeapTupleIsValid(vardata2
.statsTuple
))
2339 /* note we allow use of nullfrac regardless of security check */
2340 stats2
= (Form_pg_statistic
) GETSTRUCT(vardata2
.statsTuple
);
2341 if (get_mcv_stats
&&
2342 statistic_proc_security_check(&vardata2
, opfuncoid
))
2343 have_mcvs2
= get_attstatsslot(&sslot2
, vardata2
.statsTuple
,
2344 STATISTIC_KIND_MCV
, InvalidOid
,
2345 ATTSTATSSLOT_VALUES
| ATTSTATSSLOT_NUMBERS
);
2348 /* We need to compute the inner-join selectivity in all cases */
2349 selec_inner
= eqjoinsel_inner(opfuncoid
, collation
,
2350 &vardata1
, &vardata2
,
2352 isdefault1
, isdefault2
,
2355 have_mcvs1
, have_mcvs2
);
2357 switch (sjinfo
->jointype
)
2362 selec
= selec_inner
;
2368 * Look up the join's inner relation. min_righthand is sufficient
2369 * information because neither SEMI nor ANTI joins permit any
2370 * reassociation into or out of their RHS, so the righthand will
2371 * always be exactly that set of rels.
2373 inner_rel
= find_join_input_rel(root
, sjinfo
->min_righthand
);
2375 if (!join_is_reversed
)
2376 selec
= eqjoinsel_semi(opfuncoid
, collation
,
2377 &vardata1
, &vardata2
,
2379 isdefault1
, isdefault2
,
2382 have_mcvs1
, have_mcvs2
,
2386 Oid commop
= get_commutator(operator);
2387 Oid commopfuncoid
= OidIsValid(commop
) ? get_opcode(commop
) : InvalidOid
;
2389 selec
= eqjoinsel_semi(commopfuncoid
, collation
,
2390 &vardata2
, &vardata1
,
2392 isdefault2
, isdefault1
,
2395 have_mcvs2
, have_mcvs1
,
2400 * We should never estimate the output of a semijoin to be more
2401 * rows than we estimate for an inner join with the same input
2402 * rels and join condition; it's obviously impossible for that to
2403 * happen. The former estimate is N1 * Ssemi while the latter is
2404 * N1 * N2 * Sinner, so we may clamp Ssemi <= N2 * Sinner. Doing
2405 * this is worthwhile because of the shakier estimation rules we
2406 * use in eqjoinsel_semi, particularly in cases where it has to
2409 selec
= Min(selec
, inner_rel
->rows
* selec_inner
);
2412 /* other values not expected here */
2413 elog(ERROR
, "unrecognized join type: %d",
2414 (int) sjinfo
->jointype
);
2415 selec
= 0; /* keep compiler quiet */
2419 free_attstatsslot(&sslot1
);
2420 free_attstatsslot(&sslot2
);
2422 ReleaseVariableStats(vardata1
);
2423 ReleaseVariableStats(vardata2
);
2425 CLAMP_PROBABILITY(selec
);
2427 PG_RETURN_FLOAT8((float8
) selec
);
2431 * eqjoinsel_inner --- eqjoinsel for normal inner join
2433 * We also use this for LEFT/FULL outer joins; it's not presently clear
2434 * that it's worth trying to distinguish them here.
2437 eqjoinsel_inner(Oid opfuncoid
, Oid collation
,
2438 VariableStatData
*vardata1
, VariableStatData
*vardata2
,
2439 double nd1
, double nd2
,
2440 bool isdefault1
, bool isdefault2
,
2441 AttStatsSlot
*sslot1
, AttStatsSlot
*sslot2
,
2442 Form_pg_statistic stats1
, Form_pg_statistic stats2
,
2443 bool have_mcvs1
, bool have_mcvs2
)
2447 if (have_mcvs1
&& have_mcvs2
)
2450 * We have most-common-value lists for both relations. Run through
2451 * the lists to see which MCVs actually join to each other with the
2452 * given operator. This allows us to determine the exact join
2453 * selectivity for the portion of the relations represented by the MCV
2454 * lists. We still have to estimate for the remaining population, but
2455 * in a skewed distribution this gives us a big leg up in accuracy.
2456 * For motivation see the analysis in Y. Ioannidis and S.
2457 * Christodoulakis, "On the propagation of errors in the size of join
2458 * results", Technical Report 1018, Computer Science Dept., University
2459 * of Wisconsin, Madison, March 1991 (available from ftp.cs.wisc.edu).
2461 LOCAL_FCINFO(fcinfo
, 2);
2465 double nullfrac1
= stats1
->stanullfrac
;
2466 double nullfrac2
= stats2
->stanullfrac
;
2467 double matchprodfreq
,
2479 fmgr_info(opfuncoid
, &eqproc
);
2482 * Save a few cycles by setting up the fcinfo struct just once. Using
2483 * FunctionCallInvoke directly also avoids failure if the eqproc
2484 * returns NULL, though really equality functions should never do
2487 InitFunctionCallInfoData(*fcinfo
, &eqproc
, 2, collation
,
2489 fcinfo
->args
[0].isnull
= false;
2490 fcinfo
->args
[1].isnull
= false;
2492 hasmatch1
= (bool *) palloc0(sslot1
->nvalues
* sizeof(bool));
2493 hasmatch2
= (bool *) palloc0(sslot2
->nvalues
* sizeof(bool));
2496 * Note we assume that each MCV will match at most one member of the
2497 * other MCV list. If the operator isn't really equality, there could
2498 * be multiple matches --- but we don't look for them, both for speed
2499 * and because the math wouldn't add up...
2501 matchprodfreq
= 0.0;
2503 for (i
= 0; i
< sslot1
->nvalues
; i
++)
2507 fcinfo
->args
[0].value
= sslot1
->values
[i
];
2509 for (j
= 0; j
< sslot2
->nvalues
; j
++)
2515 fcinfo
->args
[1].value
= sslot2
->values
[j
];
2516 fcinfo
->isnull
= false;
2517 fresult
= FunctionCallInvoke(fcinfo
);
2518 if (!fcinfo
->isnull
&& DatumGetBool(fresult
))
2520 hasmatch1
[i
] = hasmatch2
[j
] = true;
2521 matchprodfreq
+= sslot1
->numbers
[i
] * sslot2
->numbers
[j
];
2527 CLAMP_PROBABILITY(matchprodfreq
);
2528 /* Sum up frequencies of matched and unmatched MCVs */
2529 matchfreq1
= unmatchfreq1
= 0.0;
2530 for (i
= 0; i
< sslot1
->nvalues
; i
++)
2533 matchfreq1
+= sslot1
->numbers
[i
];
2535 unmatchfreq1
+= sslot1
->numbers
[i
];
2537 CLAMP_PROBABILITY(matchfreq1
);
2538 CLAMP_PROBABILITY(unmatchfreq1
);
2539 matchfreq2
= unmatchfreq2
= 0.0;
2540 for (i
= 0; i
< sslot2
->nvalues
; i
++)
2543 matchfreq2
+= sslot2
->numbers
[i
];
2545 unmatchfreq2
+= sslot2
->numbers
[i
];
2547 CLAMP_PROBABILITY(matchfreq2
);
2548 CLAMP_PROBABILITY(unmatchfreq2
);
2553 * Compute total frequency of non-null values that are not in the MCV
2556 otherfreq1
= 1.0 - nullfrac1
- matchfreq1
- unmatchfreq1
;
2557 otherfreq2
= 1.0 - nullfrac2
- matchfreq2
- unmatchfreq2
;
2558 CLAMP_PROBABILITY(otherfreq1
);
2559 CLAMP_PROBABILITY(otherfreq2
);
2562 * We can estimate the total selectivity from the point of view of
2563 * relation 1 as: the known selectivity for matched MCVs, plus
2564 * unmatched MCVs that are assumed to match against random members of
2565 * relation 2's non-MCV population, plus non-MCV values that are
2566 * assumed to match against random members of relation 2's unmatched
2567 * MCVs plus non-MCV values.
2569 totalsel1
= matchprodfreq
;
2570 if (nd2
> sslot2
->nvalues
)
2571 totalsel1
+= unmatchfreq1
* otherfreq2
/ (nd2
- sslot2
->nvalues
);
2573 totalsel1
+= otherfreq1
* (otherfreq2
+ unmatchfreq2
) /
2575 /* Same estimate from the point of view of relation 2. */
2576 totalsel2
= matchprodfreq
;
2577 if (nd1
> sslot1
->nvalues
)
2578 totalsel2
+= unmatchfreq2
* otherfreq1
/ (nd1
- sslot1
->nvalues
);
2580 totalsel2
+= otherfreq2
* (otherfreq1
+ unmatchfreq1
) /
2584 * Use the smaller of the two estimates. This can be justified in
2585 * essentially the same terms as given below for the no-stats case: to
2586 * a first approximation, we are estimating from the point of view of
2587 * the relation with smaller nd.
2589 selec
= (totalsel1
< totalsel2
) ? totalsel1
: totalsel2
;
2594 * We do not have MCV lists for both sides. Estimate the join
2595 * selectivity as MIN(1/nd1,1/nd2)*(1-nullfrac1)*(1-nullfrac2). This
2596 * is plausible if we assume that the join operator is strict and the
2597 * non-null values are about equally distributed: a given non-null
2598 * tuple of rel1 will join to either zero or N2*(1-nullfrac2)/nd2 rows
2599 * of rel2, so total join rows are at most
2600 * N1*(1-nullfrac1)*N2*(1-nullfrac2)/nd2 giving a join selectivity of
2601 * not more than (1-nullfrac1)*(1-nullfrac2)/nd2. By the same logic it
2602 * is not more than (1-nullfrac1)*(1-nullfrac2)/nd1, so the expression
2603 * with MIN() is an upper bound. Using the MIN() means we estimate
2604 * from the point of view of the relation with smaller nd (since the
2605 * larger nd is determining the MIN). It is reasonable to assume that
2606 * most tuples in this rel will have join partners, so the bound is
2607 * probably reasonably tight and should be taken as-is.
2609 * XXX Can we be smarter if we have an MCV list for just one side? It
2610 * seems that if we assume equal distribution for the other side, we
2611 * end up with the same answer anyway.
2613 double nullfrac1
= stats1
? stats1
->stanullfrac
: 0.0;
2614 double nullfrac2
= stats2
? stats2
->stanullfrac
: 0.0;
2616 selec
= (1.0 - nullfrac1
) * (1.0 - nullfrac2
);
2627 * eqjoinsel_semi --- eqjoinsel for semi join
2629 * (Also used for anti join, which we are supposed to estimate the same way.)
2630 * Caller has ensured that vardata1 is the LHS variable.
2631 * Unlike eqjoinsel_inner, we have to cope with opfuncoid being InvalidOid.
2634 eqjoinsel_semi(Oid opfuncoid
, Oid collation
,
2635 VariableStatData
*vardata1
, VariableStatData
*vardata2
,
2636 double nd1
, double nd2
,
2637 bool isdefault1
, bool isdefault2
,
2638 AttStatsSlot
*sslot1
, AttStatsSlot
*sslot2
,
2639 Form_pg_statistic stats1
, Form_pg_statistic stats2
,
2640 bool have_mcvs1
, bool have_mcvs2
,
2641 RelOptInfo
*inner_rel
)
2646 * We clamp nd2 to be not more than what we estimate the inner relation's
2647 * size to be. This is intuitively somewhat reasonable since obviously
2648 * there can't be more than that many distinct values coming from the
2649 * inner rel. The reason for the asymmetry (ie, that we don't clamp nd1
2650 * likewise) is that this is the only pathway by which restriction clauses
2651 * applied to the inner rel will affect the join result size estimate,
2652 * since set_joinrel_size_estimates will multiply SEMI/ANTI selectivity by
2653 * only the outer rel's size. If we clamped nd1 we'd be double-counting
2654 * the selectivity of outer-rel restrictions.
2656 * We can apply this clamping both with respect to the base relation from
2657 * which the join variable comes (if there is just one), and to the
2658 * immediate inner input relation of the current join.
2660 * If we clamp, we can treat nd2 as being a non-default estimate; it's not
2661 * great, maybe, but it didn't come out of nowhere either. This is most
2662 * helpful when the inner relation is empty and consequently has no stats.
2666 if (nd2
>= vardata2
->rel
->rows
)
2668 nd2
= vardata2
->rel
->rows
;
2672 if (nd2
>= inner_rel
->rows
)
2674 nd2
= inner_rel
->rows
;
2678 if (have_mcvs1
&& have_mcvs2
&& OidIsValid(opfuncoid
))
2681 * We have most-common-value lists for both relations. Run through
2682 * the lists to see which MCVs actually join to each other with the
2683 * given operator. This allows us to determine the exact join
2684 * selectivity for the portion of the relations represented by the MCV
2685 * lists. We still have to estimate for the remaining population, but
2686 * in a skewed distribution this gives us a big leg up in accuracy.
2688 LOCAL_FCINFO(fcinfo
, 2);
2692 double nullfrac1
= stats1
->stanullfrac
;
2701 * The clamping above could have resulted in nd2 being less than
2702 * sslot2->nvalues; in which case, we assume that precisely the nd2
2703 * most common values in the relation will appear in the join input,
2704 * and so compare to only the first nd2 members of the MCV list. Of
2705 * course this is frequently wrong, but it's the best bet we can make.
2707 clamped_nvalues2
= Min(sslot2
->nvalues
, nd2
);
2709 fmgr_info(opfuncoid
, &eqproc
);
2712 * Save a few cycles by setting up the fcinfo struct just once. Using
2713 * FunctionCallInvoke directly also avoids failure if the eqproc
2714 * returns NULL, though really equality functions should never do
2717 InitFunctionCallInfoData(*fcinfo
, &eqproc
, 2, collation
,
2719 fcinfo
->args
[0].isnull
= false;
2720 fcinfo
->args
[1].isnull
= false;
2722 hasmatch1
= (bool *) palloc0(sslot1
->nvalues
* sizeof(bool));
2723 hasmatch2
= (bool *) palloc0(clamped_nvalues2
* sizeof(bool));
2726 * Note we assume that each MCV will match at most one member of the
2727 * other MCV list. If the operator isn't really equality, there could
2728 * be multiple matches --- but we don't look for them, both for speed
2729 * and because the math wouldn't add up...
2732 for (i
= 0; i
< sslot1
->nvalues
; i
++)
2736 fcinfo
->args
[0].value
= sslot1
->values
[i
];
2738 for (j
= 0; j
< clamped_nvalues2
; j
++)
2744 fcinfo
->args
[1].value
= sslot2
->values
[j
];
2745 fcinfo
->isnull
= false;
2746 fresult
= FunctionCallInvoke(fcinfo
);
2747 if (!fcinfo
->isnull
&& DatumGetBool(fresult
))
2749 hasmatch1
[i
] = hasmatch2
[j
] = true;
2755 /* Sum up frequencies of matched MCVs */
2757 for (i
= 0; i
< sslot1
->nvalues
; i
++)
2760 matchfreq1
+= sslot1
->numbers
[i
];
2762 CLAMP_PROBABILITY(matchfreq1
);
2767 * Now we need to estimate the fraction of relation 1 that has at
2768 * least one join partner. We know for certain that the matched MCVs
2769 * do, so that gives us a lower bound, but we're really in the dark
2770 * about everything else. Our crude approach is: if nd1 <= nd2 then
2771 * assume all non-null rel1 rows have join partners, else assume for
2772 * the uncertain rows that a fraction nd2/nd1 have join partners. We
2773 * can discount the known-matched MCVs from the distinct-values counts
2774 * before doing the division.
2776 * Crude as the above is, it's completely useless if we don't have
2777 * reliable ndistinct values for both sides. Hence, if either nd1 or
2778 * nd2 is default, punt and assume half of the uncertain rows have
2781 if (!isdefault1
&& !isdefault2
)
2785 if (nd1
<= nd2
|| nd2
< 0)
2786 uncertainfrac
= 1.0;
2788 uncertainfrac
= nd2
/ nd1
;
2791 uncertainfrac
= 0.5;
2792 uncertain
= 1.0 - matchfreq1
- nullfrac1
;
2793 CLAMP_PROBABILITY(uncertain
);
2794 selec
= matchfreq1
+ uncertainfrac
* uncertain
;
2799 * Without MCV lists for both sides, we can only use the heuristic
2802 double nullfrac1
= stats1
? stats1
->stanullfrac
: 0.0;
2804 if (!isdefault1
&& !isdefault2
)
2806 if (nd1
<= nd2
|| nd2
< 0)
2807 selec
= 1.0 - nullfrac1
;
2809 selec
= (nd2
/ nd1
) * (1.0 - nullfrac1
);
2812 selec
= 0.5 * (1.0 - nullfrac1
);
2819 * neqjoinsel - Join selectivity of "!="
2822 neqjoinsel(PG_FUNCTION_ARGS
)
2824 PlannerInfo
*root
= (PlannerInfo
*) PG_GETARG_POINTER(0);
2825 Oid
operator = PG_GETARG_OID(1);
2826 List
*args
= (List
*) PG_GETARG_POINTER(2);
2827 JoinType jointype
= (JoinType
) PG_GETARG_INT16(3);
2828 SpecialJoinInfo
*sjinfo
= (SpecialJoinInfo
*) PG_GETARG_POINTER(4);
2829 Oid collation
= PG_GET_COLLATION();
2832 if (jointype
== JOIN_SEMI
|| jointype
== JOIN_ANTI
)
2835 * For semi-joins, if there is more than one distinct value in the RHS
2836 * relation then every non-null LHS row must find a row to join since
2837 * it can only be equal to one of them. We'll assume that there is
2838 * always more than one distinct RHS value for the sake of stability,
2839 * though in theory we could have special cases for empty RHS
2840 * (selectivity = 0) and single-distinct-value RHS (selectivity =
2841 * fraction of LHS that has the same value as the single RHS value).
2843 * For anti-joins, if we use the same assumption that there is more
2844 * than one distinct key in the RHS relation, then every non-null LHS
2845 * row must be suppressed by the anti-join.
2847 * So either way, the selectivity estimate should be 1 - nullfrac.
2849 VariableStatData leftvar
;
2850 VariableStatData rightvar
;
2852 HeapTuple statsTuple
;
2855 get_join_variables(root
, args
, sjinfo
, &leftvar
, &rightvar
, &reversed
);
2856 statsTuple
= reversed
? rightvar
.statsTuple
: leftvar
.statsTuple
;
2857 if (HeapTupleIsValid(statsTuple
))
2858 nullfrac
= ((Form_pg_statistic
) GETSTRUCT(statsTuple
))->stanullfrac
;
2861 ReleaseVariableStats(leftvar
);
2862 ReleaseVariableStats(rightvar
);
2864 result
= 1.0 - nullfrac
;
2869 * We want 1 - eqjoinsel() where the equality operator is the one
2870 * associated with this != operator, that is, its negator.
2872 Oid eqop
= get_negator(operator);
2877 DatumGetFloat8(DirectFunctionCall5Coll(eqjoinsel
,
2879 PointerGetDatum(root
),
2880 ObjectIdGetDatum(eqop
),
2881 PointerGetDatum(args
),
2882 Int16GetDatum(jointype
),
2883 PointerGetDatum(sjinfo
)));
2887 /* Use default selectivity (should we raise an error instead?) */
2888 result
= DEFAULT_EQ_SEL
;
2890 result
= 1.0 - result
;
2893 PG_RETURN_FLOAT8(result
);
2897 * scalarltjoinsel - Join selectivity of "<" for scalars
2900 scalarltjoinsel(PG_FUNCTION_ARGS
)
2902 PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL
);
2906 * scalarlejoinsel - Join selectivity of "<=" for scalars
2909 scalarlejoinsel(PG_FUNCTION_ARGS
)
2911 PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL
);
2915 * scalargtjoinsel - Join selectivity of ">" for scalars
2918 scalargtjoinsel(PG_FUNCTION_ARGS
)
2920 PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL
);
2924 * scalargejoinsel - Join selectivity of ">=" for scalars
2927 scalargejoinsel(PG_FUNCTION_ARGS
)
2929 PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL
);
2934 * mergejoinscansel - Scan selectivity of merge join.
2936 * A merge join will stop as soon as it exhausts either input stream.
2937 * Therefore, if we can estimate the ranges of both input variables,
2938 * we can estimate how much of the input will actually be read. This
2939 * can have a considerable impact on the cost when using indexscans.
2941 * Also, we can estimate how much of each input has to be read before the
2942 * first join pair is found, which will affect the join's startup time.
2944 * clause should be a clause already known to be mergejoinable. opfamily,
2945 * strategy, and nulls_first specify the sort ordering being used.
2948 * *leftstart is set to the fraction of the left-hand variable expected
2949 * to be scanned before the first join pair is found (0 to 1).
2950 * *leftend is set to the fraction of the left-hand variable expected
2951 * to be scanned before the join terminates (0 to 1).
2952 * *rightstart, *rightend similarly for the right-hand variable.
2955 mergejoinscansel(PlannerInfo
*root
, Node
*clause
,
2956 Oid opfamily
, int strategy
, bool nulls_first
,
2957 Selectivity
*leftstart
, Selectivity
*leftend
,
2958 Selectivity
*rightstart
, Selectivity
*rightend
)
2962 VariableStatData leftvar
,
2984 /* Set default results if we can't figure anything out. */
2985 /* XXX should default "start" fraction be a bit more than 0? */
2986 *leftstart
= *rightstart
= 0.0;
2987 *leftend
= *rightend
= 1.0;
2989 /* Deconstruct the merge clause */
2990 if (!is_opclause(clause
))
2991 return; /* shouldn't happen */
2992 opno
= ((OpExpr
*) clause
)->opno
;
2993 collation
= ((OpExpr
*) clause
)->inputcollid
;
2994 left
= get_leftop((Expr
*) clause
);
2995 right
= get_rightop((Expr
*) clause
);
2997 return; /* shouldn't happen */
2999 /* Look for stats for the inputs */
3000 examine_variable(root
, left
, 0, &leftvar
);
3001 examine_variable(root
, right
, 0, &rightvar
);
3003 /* Extract the operator's declared left/right datatypes */
3004 get_op_opfamily_properties(opno
, opfamily
, false,
3008 Assert(op_strategy
== BTEqualStrategyNumber
);
3011 * Look up the various operators we need. If we don't find them all, it
3012 * probably means the opfamily is broken, but we just fail silently.
3014 * Note: we expect that pg_statistic histograms will be sorted by the '<'
3015 * operator, regardless of which sort direction we are considering.
3019 case BTLessStrategyNumber
:
3021 if (op_lefttype
== op_righttype
)
3024 ltop
= get_opfamily_member(opfamily
,
3025 op_lefttype
, op_righttype
,
3026 BTLessStrategyNumber
);
3027 leop
= get_opfamily_member(opfamily
,
3028 op_lefttype
, op_righttype
,
3029 BTLessEqualStrategyNumber
);
3039 ltop
= get_opfamily_member(opfamily
,
3040 op_lefttype
, op_righttype
,
3041 BTLessStrategyNumber
);
3042 leop
= get_opfamily_member(opfamily
,
3043 op_lefttype
, op_righttype
,
3044 BTLessEqualStrategyNumber
);
3045 lsortop
= get_opfamily_member(opfamily
,
3046 op_lefttype
, op_lefttype
,
3047 BTLessStrategyNumber
);
3048 rsortop
= get_opfamily_member(opfamily
,
3049 op_righttype
, op_righttype
,
3050 BTLessStrategyNumber
);
3053 revltop
= get_opfamily_member(opfamily
,
3054 op_righttype
, op_lefttype
,
3055 BTLessStrategyNumber
);
3056 revleop
= get_opfamily_member(opfamily
,
3057 op_righttype
, op_lefttype
,
3058 BTLessEqualStrategyNumber
);
3061 case BTGreaterStrategyNumber
:
3062 /* descending-order case */
3064 if (op_lefttype
== op_righttype
)
3067 ltop
= get_opfamily_member(opfamily
,
3068 op_lefttype
, op_righttype
,
3069 BTGreaterStrategyNumber
);
3070 leop
= get_opfamily_member(opfamily
,
3071 op_lefttype
, op_righttype
,
3072 BTGreaterEqualStrategyNumber
);
3075 lstatop
= get_opfamily_member(opfamily
,
3076 op_lefttype
, op_lefttype
,
3077 BTLessStrategyNumber
);
3084 ltop
= get_opfamily_member(opfamily
,
3085 op_lefttype
, op_righttype
,
3086 BTGreaterStrategyNumber
);
3087 leop
= get_opfamily_member(opfamily
,
3088 op_lefttype
, op_righttype
,
3089 BTGreaterEqualStrategyNumber
);
3090 lsortop
= get_opfamily_member(opfamily
,
3091 op_lefttype
, op_lefttype
,
3092 BTGreaterStrategyNumber
);
3093 rsortop
= get_opfamily_member(opfamily
,
3094 op_righttype
, op_righttype
,
3095 BTGreaterStrategyNumber
);
3096 lstatop
= get_opfamily_member(opfamily
,
3097 op_lefttype
, op_lefttype
,
3098 BTLessStrategyNumber
);
3099 rstatop
= get_opfamily_member(opfamily
,
3100 op_righttype
, op_righttype
,
3101 BTLessStrategyNumber
);
3102 revltop
= get_opfamily_member(opfamily
,
3103 op_righttype
, op_lefttype
,
3104 BTGreaterStrategyNumber
);
3105 revleop
= get_opfamily_member(opfamily
,
3106 op_righttype
, op_lefttype
,
3107 BTGreaterEqualStrategyNumber
);
3111 goto fail
; /* shouldn't get here */
3114 if (!OidIsValid(lsortop
) ||
3115 !OidIsValid(rsortop
) ||
3116 !OidIsValid(lstatop
) ||
3117 !OidIsValid(rstatop
) ||
3118 !OidIsValid(ltop
) ||
3119 !OidIsValid(leop
) ||
3120 !OidIsValid(revltop
) ||
3121 !OidIsValid(revleop
))
3122 goto fail
; /* insufficient info in catalogs */
3124 /* Try to get ranges of both inputs */
3127 if (!get_variable_range(root
, &leftvar
, lstatop
, collation
,
3128 &leftmin
, &leftmax
))
3129 goto fail
; /* no range available from stats */
3130 if (!get_variable_range(root
, &rightvar
, rstatop
, collation
,
3131 &rightmin
, &rightmax
))
3132 goto fail
; /* no range available from stats */
3136 /* need to swap the max and min */
3137 if (!get_variable_range(root
, &leftvar
, lstatop
, collation
,
3138 &leftmax
, &leftmin
))
3139 goto fail
; /* no range available from stats */
3140 if (!get_variable_range(root
, &rightvar
, rstatop
, collation
,
3141 &rightmax
, &rightmin
))
3142 goto fail
; /* no range available from stats */
3146 * Now, the fraction of the left variable that will be scanned is the
3147 * fraction that's <= the right-side maximum value. But only believe
3148 * non-default estimates, else stick with our 1.0.
3150 selec
= scalarineqsel(root
, leop
, isgt
, true, collation
, &leftvar
,
3151 rightmax
, op_righttype
);
3152 if (selec
!= DEFAULT_INEQ_SEL
)
3155 /* And similarly for the right variable. */
3156 selec
= scalarineqsel(root
, revleop
, isgt
, true, collation
, &rightvar
,
3157 leftmax
, op_lefttype
);
3158 if (selec
!= DEFAULT_INEQ_SEL
)
3162 * Only one of the two "end" fractions can really be less than 1.0;
3163 * believe the smaller estimate and reset the other one to exactly 1.0. If
3164 * we get exactly equal estimates (as can easily happen with self-joins),
3167 if (*leftend
> *rightend
)
3169 else if (*leftend
< *rightend
)
3172 *leftend
= *rightend
= 1.0;
3175 * Also, the fraction of the left variable that will be scanned before the
3176 * first join pair is found is the fraction that's < the right-side
3177 * minimum value. But only believe non-default estimates, else stick with
3180 selec
= scalarineqsel(root
, ltop
, isgt
, false, collation
, &leftvar
,
3181 rightmin
, op_righttype
);
3182 if (selec
!= DEFAULT_INEQ_SEL
)
3185 /* And similarly for the right variable. */
3186 selec
= scalarineqsel(root
, revltop
, isgt
, false, collation
, &rightvar
,
3187 leftmin
, op_lefttype
);
3188 if (selec
!= DEFAULT_INEQ_SEL
)
3189 *rightstart
= selec
;
3192 * Only one of the two "start" fractions can really be more than zero;
3193 * believe the larger estimate and reset the other one to exactly 0.0. If
3194 * we get exactly equal estimates (as can easily happen with self-joins),
3197 if (*leftstart
< *rightstart
)
3199 else if (*leftstart
> *rightstart
)
3202 *leftstart
= *rightstart
= 0.0;
3205 * If the sort order is nulls-first, we're going to have to skip over any
3206 * nulls too. These would not have been counted by scalarineqsel, and we
3207 * can safely add in this fraction regardless of whether we believe
3208 * scalarineqsel's results or not. But be sure to clamp the sum to 1.0!
3212 Form_pg_statistic stats
;
3214 if (HeapTupleIsValid(leftvar
.statsTuple
))
3216 stats
= (Form_pg_statistic
) GETSTRUCT(leftvar
.statsTuple
);
3217 *leftstart
+= stats
->stanullfrac
;
3218 CLAMP_PROBABILITY(*leftstart
);
3219 *leftend
+= stats
->stanullfrac
;
3220 CLAMP_PROBABILITY(*leftend
);
3222 if (HeapTupleIsValid(rightvar
.statsTuple
))
3224 stats
= (Form_pg_statistic
) GETSTRUCT(rightvar
.statsTuple
);
3225 *rightstart
+= stats
->stanullfrac
;
3226 CLAMP_PROBABILITY(*rightstart
);
3227 *rightend
+= stats
->stanullfrac
;
3228 CLAMP_PROBABILITY(*rightend
);
3232 /* Disbelieve start >= end, just in case that can happen */
3233 if (*leftstart
>= *leftend
)
3238 if (*rightstart
>= *rightend
)
3245 ReleaseVariableStats(leftvar
);
3246 ReleaseVariableStats(rightvar
);
3251 * matchingsel -- generic matching-operator selectivity support
3253 * Use these for any operators that (a) are on data types for which we collect
3254 * standard statistics, and (b) have behavior for which the default estimate
3255 * (twice DEFAULT_EQ_SEL) is sane. Typically that is good for match-like
3260 matchingsel(PG_FUNCTION_ARGS
)
3262 PlannerInfo
*root
= (PlannerInfo
*) PG_GETARG_POINTER(0);
3263 Oid
operator = PG_GETARG_OID(1);
3264 List
*args
= (List
*) PG_GETARG_POINTER(2);
3265 int varRelid
= PG_GETARG_INT32(3);
3266 Oid collation
= PG_GET_COLLATION();
3269 /* Use generic restriction selectivity logic. */
3270 selec
= generic_restriction_selectivity(root
, operator, collation
,
3272 DEFAULT_MATCHING_SEL
);
3274 PG_RETURN_FLOAT8((float8
) selec
);
3278 matchingjoinsel(PG_FUNCTION_ARGS
)
3280 /* Just punt, for the moment. */
3281 PG_RETURN_FLOAT8(DEFAULT_MATCHING_SEL
);
3286 * Helper routine for estimate_num_groups: add an item to a list of
3287 * GroupVarInfos, but only if it's not known equal to any of the existing
3292 Node
*var
; /* might be an expression, not just a Var */
3293 RelOptInfo
*rel
; /* relation it belongs to */
3294 double ndistinct
; /* # distinct values */
3295 bool isdefault
; /* true if DEFAULT_NUM_DISTINCT was used */
3299 add_unique_group_var(PlannerInfo
*root
, List
*varinfos
,
3300 Node
*var
, VariableStatData
*vardata
)
3302 GroupVarInfo
*varinfo
;
3307 ndistinct
= get_variable_numdistinct(vardata
, &isdefault
);
3309 foreach(lc
, varinfos
)
3311 varinfo
= (GroupVarInfo
*) lfirst(lc
);
3313 /* Drop exact duplicates */
3314 if (equal(var
, varinfo
->var
))
3318 * Drop known-equal vars, but only if they belong to different
3319 * relations (see comments for estimate_num_groups). We aren't too
3320 * fussy about the semantics of "equal" here.
3322 if (vardata
->rel
!= varinfo
->rel
&&
3323 exprs_known_equal(root
, var
, varinfo
->var
, InvalidOid
))
3325 if (varinfo
->ndistinct
<= ndistinct
)
3327 /* Keep older item, forget new one */
3332 /* Delete the older item */
3333 varinfos
= foreach_delete_current(varinfos
, lc
);
3338 varinfo
= (GroupVarInfo
*) palloc(sizeof(GroupVarInfo
));
3341 varinfo
->rel
= vardata
->rel
;
3342 varinfo
->ndistinct
= ndistinct
;
3343 varinfo
->isdefault
= isdefault
;
3344 varinfos
= lappend(varinfos
, varinfo
);
3349 * estimate_num_groups - Estimate number of groups in a grouped query
3351 * Given a query having a GROUP BY clause, estimate how many groups there
3352 * will be --- ie, the number of distinct combinations of the GROUP BY
3355 * This routine is also used to estimate the number of rows emitted by
3356 * a DISTINCT filtering step; that is an isomorphic problem. (Note:
3357 * actually, we only use it for DISTINCT when there's no grouping or
3358 * aggregation ahead of the DISTINCT.)
3362 * groupExprs - list of expressions being grouped by
3363 * input_rows - number of rows estimated to arrive at the group/unique
3365 * pgset - NULL, or a List** pointing to a grouping set to filter the
3366 * groupExprs against
3369 * estinfo - When passed as non-NULL, the function will set bits in the
3370 * "flags" field in order to provide callers with additional information
3371 * about the estimation. Currently, we only set the SELFLAG_USED_DEFAULT
3372 * bit if we used any default values in the estimation.
3374 * Given the lack of any cross-correlation statistics in the system, it's
3375 * impossible to do anything really trustworthy with GROUP BY conditions
3376 * involving multiple Vars. We should however avoid assuming the worst
3377 * case (all possible cross-product terms actually appear as groups) since
3378 * very often the grouped-by Vars are highly correlated. Our current approach
3380 * 1. Expressions yielding boolean are assumed to contribute two groups,
3381 * independently of their content, and are ignored in the subsequent
3382 * steps. This is mainly because tests like "col IS NULL" break the
3383 * heuristic used in step 2 especially badly.
3384 * 2. Reduce the given expressions to a list of unique Vars used. For
3385 * example, GROUP BY a, a + b is treated the same as GROUP BY a, b.
3386 * It is clearly correct not to count the same Var more than once.
3387 * It is also reasonable to treat f(x) the same as x: f() cannot
3388 * increase the number of distinct values (unless it is volatile,
3389 * which we consider unlikely for grouping), but it probably won't
3390 * reduce the number of distinct values much either.
3391 * As a special case, if a GROUP BY expression can be matched to an
3392 * expressional index for which we have statistics, then we treat the
3393 * whole expression as though it were just a Var.
3394 * 3. If the list contains Vars of different relations that are known equal
3395 * due to equivalence classes, then drop all but one of the Vars from each
3396 * known-equal set, keeping the one with smallest estimated # of values
3397 * (since the extra values of the others can't appear in joined rows).
3398 * Note the reason we only consider Vars of different relations is that
3399 * if we considered ones of the same rel, we'd be double-counting the
3400 * restriction selectivity of the equality in the next step.
3401 * 4. For Vars within a single source rel, we multiply together the numbers
3402 * of values, clamp to the number of rows in the rel (divided by 10 if
3403 * more than one Var), and then multiply by a factor based on the
3404 * selectivity of the restriction clauses for that rel. When there's
3405 * more than one Var, the initial product is probably too high (it's the
3406 * worst case) but clamping to a fraction of the rel's rows seems to be a
3407 * helpful heuristic for not letting the estimate get out of hand. (The
3408 * factor of 10 is derived from pre-Postgres-7.4 practice.) The factor
3409 * we multiply by to adjust for the restriction selectivity assumes that
3410 * the restriction clauses are independent of the grouping, which may not
3411 * be a valid assumption, but it's hard to do better.
3412 * 5. If there are Vars from multiple rels, we repeat step 4 for each such
3413 * rel, and multiply the results together.
3414 * Note that rels not containing grouped Vars are ignored completely, as are
3415 * join clauses. Such rels cannot increase the number of groups, and we
3416 * assume such clauses do not reduce the number either (somewhat bogus,
3417 * but we don't have the info to do better).
3420 estimate_num_groups(PlannerInfo
*root
, List
*groupExprs
, double input_rows
,
3421 List
**pgset
, EstimationInfo
*estinfo
)
3423 List
*varinfos
= NIL
;
3424 double srf_multiplier
= 1.0;
3429 /* Zero the estinfo output parameter, if non-NULL */
3430 if (estinfo
!= NULL
)
3431 memset(estinfo
, 0, sizeof(EstimationInfo
));
3434 * We don't ever want to return an estimate of zero groups, as that tends
3435 * to lead to division-by-zero and other unpleasantness. The input_rows
3436 * estimate is usually already at least 1, but clamp it just in case it
3439 input_rows
= clamp_row_est(input_rows
);
3442 * If no grouping columns, there's exactly one group. (This can't happen
3443 * for normal cases with GROUP BY or DISTINCT, but it is possible for
3444 * corner cases with set operations.)
3446 if (groupExprs
== NIL
|| (pgset
&& *pgset
== NIL
))
3450 * Count groups derived from boolean grouping expressions. For other
3451 * expressions, find the unique Vars used, treating an expression as a Var
3452 * if we can find stats for it. For each one, record the statistical
3453 * estimate of number of distinct values (total in its table, without
3454 * regard for filtering).
3459 foreach(l
, groupExprs
)
3461 Node
*groupexpr
= (Node
*) lfirst(l
);
3462 double this_srf_multiplier
;
3463 VariableStatData vardata
;
3467 /* is expression in this grouping set? */
3468 if (pgset
&& !list_member_int(*pgset
, i
++))
3472 * Set-returning functions in grouping columns are a bit problematic.
3473 * The code below will effectively ignore their SRF nature and come up
3474 * with a numdistinct estimate as though they were scalar functions.
3475 * We compensate by scaling up the end result by the largest SRF
3476 * rowcount estimate. (This will be an overestimate if the SRF
3477 * produces multiple copies of any output value, but it seems best to
3478 * assume the SRF's outputs are distinct. In any case, it's probably
3479 * pointless to worry too much about this without much better
3480 * estimates for SRF output rowcounts than we have today.)
3482 this_srf_multiplier
= expression_returns_set_rows(root
, groupexpr
);
3483 if (srf_multiplier
< this_srf_multiplier
)
3484 srf_multiplier
= this_srf_multiplier
;
3486 /* Short-circuit for expressions returning boolean */
3487 if (exprType(groupexpr
) == BOOLOID
)
3494 * If examine_variable is able to deduce anything about the GROUP BY
3495 * expression, treat it as a single variable even if it's really more
3498 * XXX This has the consequence that if there's a statistics object on
3499 * the expression, we don't split it into individual Vars. This
3500 * affects our selection of statistics in
3501 * estimate_multivariate_ndistinct, because it's probably better to
3502 * use more accurate estimate for each expression and treat them as
3503 * independent, than to combine estimates for the extracted variables
3504 * when we don't know how that relates to the expressions.
3506 examine_variable(root
, groupexpr
, 0, &vardata
);
3507 if (HeapTupleIsValid(vardata
.statsTuple
) || vardata
.isunique
)
3509 varinfos
= add_unique_group_var(root
, varinfos
,
3510 groupexpr
, &vardata
);
3511 ReleaseVariableStats(vardata
);
3514 ReleaseVariableStats(vardata
);
3517 * Else pull out the component Vars. Handle PlaceHolderVars by
3518 * recursing into their arguments (effectively assuming that the
3519 * PlaceHolderVar doesn't change the number of groups, which boils
3520 * down to ignoring the possible addition of nulls to the result set).
3522 varshere
= pull_var_clause(groupexpr
,
3523 PVC_RECURSE_AGGREGATES
|
3524 PVC_RECURSE_WINDOWFUNCS
|
3525 PVC_RECURSE_PLACEHOLDERS
);
3528 * If we find any variable-free GROUP BY item, then either it is a
3529 * constant (and we can ignore it) or it contains a volatile function;
3530 * in the latter case we punt and assume that each input row will
3531 * yield a distinct group.
3533 if (varshere
== NIL
)
3535 if (contain_volatile_functions(groupexpr
))
3541 * Else add variables to varinfos list
3543 foreach(l2
, varshere
)
3545 Node
*var
= (Node
*) lfirst(l2
);
3547 examine_variable(root
, var
, 0, &vardata
);
3548 varinfos
= add_unique_group_var(root
, varinfos
, var
, &vardata
);
3549 ReleaseVariableStats(vardata
);
3554 * If now no Vars, we must have an all-constant or all-boolean GROUP BY
3557 if (varinfos
== NIL
)
3559 /* Apply SRF multiplier as we would do in the long path */
3560 numdistinct
*= srf_multiplier
;
3562 numdistinct
= ceil(numdistinct
);
3563 /* Guard against out-of-range answers */
3564 if (numdistinct
> input_rows
)
3565 numdistinct
= input_rows
;
3566 if (numdistinct
< 1.0)
3572 * Group Vars by relation and estimate total numdistinct.
3574 * For each iteration of the outer loop, we process the frontmost Var in
3575 * varinfos, plus all other Vars in the same relation. We remove these
3576 * Vars from the newvarinfos list for the next iteration. This is the
3577 * easiest way to group Vars of same rel together.
3581 GroupVarInfo
*varinfo1
= (GroupVarInfo
*) linitial(varinfos
);
3582 RelOptInfo
*rel
= varinfo1
->rel
;
3583 double reldistinct
= 1;
3584 double relmaxndistinct
= reldistinct
;
3585 int relvarcount
= 0;
3586 List
*newvarinfos
= NIL
;
3587 List
*relvarinfos
= NIL
;
3590 * Split the list of varinfos in two - one for the current rel, one
3591 * for remaining Vars on other rels.
3593 relvarinfos
= lappend(relvarinfos
, varinfo1
);
3594 for_each_from(l
, varinfos
, 1)
3596 GroupVarInfo
*varinfo2
= (GroupVarInfo
*) lfirst(l
);
3598 if (varinfo2
->rel
== varinfo1
->rel
)
3600 /* varinfos on current rel */
3601 relvarinfos
= lappend(relvarinfos
, varinfo2
);
3605 /* not time to process varinfo2 yet */
3606 newvarinfos
= lappend(newvarinfos
, varinfo2
);
3611 * Get the numdistinct estimate for the Vars of this rel. We
3612 * iteratively search for multivariate n-distinct with maximum number
3613 * of vars; assuming that each var group is independent of the others,
3614 * we multiply them together. Any remaining relvarinfos after no more
3615 * multivariate matches are found are assumed independent too, so
3616 * their individual ndistinct estimates are multiplied also.
3618 * While iterating, count how many separate numdistinct values we
3619 * apply. We apply a fudge factor below, but only if we multiplied
3620 * more than one such values.
3626 if (estimate_multivariate_ndistinct(root
, rel
, &relvarinfos
,
3629 reldistinct
*= mvndistinct
;
3630 if (relmaxndistinct
< mvndistinct
)
3631 relmaxndistinct
= mvndistinct
;
3636 foreach(l
, relvarinfos
)
3638 GroupVarInfo
*varinfo2
= (GroupVarInfo
*) lfirst(l
);
3640 reldistinct
*= varinfo2
->ndistinct
;
3641 if (relmaxndistinct
< varinfo2
->ndistinct
)
3642 relmaxndistinct
= varinfo2
->ndistinct
;
3646 * When varinfo2's isdefault is set then we'd better set
3647 * the SELFLAG_USED_DEFAULT bit in the EstimationInfo.
3649 if (estinfo
!= NULL
&& varinfo2
->isdefault
)
3650 estinfo
->flags
|= SELFLAG_USED_DEFAULT
;
3653 /* we're done with this relation */
3659 * Sanity check --- don't divide by zero if empty relation.
3661 Assert(IS_SIMPLE_REL(rel
));
3662 if (rel
->tuples
> 0)
3665 * Clamp to size of rel, or size of rel / 10 if multiple Vars. The
3666 * fudge factor is because the Vars are probably correlated but we
3667 * don't know by how much. We should never clamp to less than the
3668 * largest ndistinct value for any of the Vars, though, since
3669 * there will surely be at least that many groups.
3671 double clamp
= rel
->tuples
;
3673 if (relvarcount
> 1)
3676 if (clamp
< relmaxndistinct
)
3678 clamp
= relmaxndistinct
;
3679 /* for sanity in case some ndistinct is too large: */
3680 if (clamp
> rel
->tuples
)
3681 clamp
= rel
->tuples
;
3684 if (reldistinct
> clamp
)
3685 reldistinct
= clamp
;
3688 * Update the estimate based on the restriction selectivity,
3689 * guarding against division by zero when reldistinct is zero.
3690 * Also skip this if we know that we are returning all rows.
3692 if (reldistinct
> 0 && rel
->rows
< rel
->tuples
)
3695 * Given a table containing N rows with n distinct values in a
3696 * uniform distribution, if we select p rows at random then
3697 * the expected number of distinct values selected is
3699 * n * (1 - product((N-N/n-i)/(N-i), i=0..p-1))
3701 * = n * (1 - (N-N/n)! / (N-N/n-p)! * (N-p)! / N!)
3703 * See "Approximating block accesses in database
3704 * organizations", S. B. Yao, Communications of the ACM,
3705 * Volume 20 Issue 4, April 1977 Pages 260-261.
3707 * Alternatively, re-arranging the terms from the factorials,
3708 * this may be written as
3710 * n * (1 - product((N-p-i)/(N-i), i=0..N/n-1))
3712 * This form of the formula is more efficient to compute in
3713 * the common case where p is larger than N/n. Additionally,
3714 * as pointed out by Dell'Era, if i << N for all terms in the
3715 * product, it can be approximated by
3717 * n * (1 - ((N-p)/N)^(N/n))
3719 * See "Expected distinct values when selecting from a bag
3720 * without replacement", Alberto Dell'Era,
3721 * http://www.adellera.it/investigations/distinct_balls/.
3723 * The condition i << N is equivalent to n >> 1, so this is a
3724 * good approximation when the number of distinct values in
3725 * the table is large. It turns out that this formula also
3726 * works well even when n is small.
3729 (1 - pow((rel
->tuples
- rel
->rows
) / rel
->tuples
,
3730 rel
->tuples
/ reldistinct
));
3732 reldistinct
= clamp_row_est(reldistinct
);
3735 * Update estimate of total distinct groups.
3737 numdistinct
*= reldistinct
;
3740 varinfos
= newvarinfos
;
3741 } while (varinfos
!= NIL
);
3743 /* Now we can account for the effects of any SRFs */
3744 numdistinct
*= srf_multiplier
;
3747 numdistinct
= ceil(numdistinct
);
3749 /* Guard against out-of-range answers */
3750 if (numdistinct
> input_rows
)
3751 numdistinct
= input_rows
;
3752 if (numdistinct
< 1.0)
3759 * Estimate hash bucket statistics when the specified expression is used
3760 * as a hash key for the given number of buckets.
3762 * This attempts to determine two values:
3764 * 1. The frequency of the most common value of the expression (returns
3765 * zero into *mcv_freq if we can't get that).
3767 * 2. The "bucketsize fraction", ie, average number of entries in a bucket
3768 * divided by total tuples in relation.
3770 * XXX This is really pretty bogus since we're effectively assuming that the
3771 * distribution of hash keys will be the same after applying restriction
3772 * clauses as it was in the underlying relation. However, we are not nearly
3773 * smart enough to figure out how the restrict clauses might change the
3774 * distribution, so this will have to do for now.
3776 * We are passed the number of buckets the executor will use for the given
3777 * input relation. If the data were perfectly distributed, with the same
3778 * number of tuples going into each available bucket, then the bucketsize
3779 * fraction would be 1/nbuckets. But this happy state of affairs will occur
3780 * only if (a) there are at least nbuckets distinct data values, and (b)
3781 * we have a not-too-skewed data distribution. Otherwise the buckets will
3782 * be nonuniformly occupied. If the other relation in the join has a key
3783 * distribution similar to this one's, then the most-loaded buckets are
3784 * exactly those that will be probed most often. Therefore, the "average"
3785 * bucket size for costing purposes should really be taken as something close
3786 * to the "worst case" bucket size. We try to estimate this by adjusting the
3787 * fraction if there are too few distinct data values, and then scaling up
3788 * by the ratio of the most common value's frequency to the average frequency.
3790 * If no statistics are available, use a default estimate of 0.1. This will
3791 * discourage use of a hash rather strongly if the inner relation is large,
3792 * which is what we want. We do not want to hash unless we know that the
3793 * inner rel is well-dispersed (or the alternatives seem much worse).
3795 * The caller should also check that the mcv_freq is not so large that the
3796 * most common value would by itself require an impractically large bucket.
3797 * In a hash join, the executor can split buckets if they get too big, but
3798 * obviously that doesn't help for a bucket that contains many duplicates of
3802 estimate_hash_bucket_stats(PlannerInfo
*root
, Node
*hashkey
, double nbuckets
,
3803 Selectivity
*mcv_freq
,
3804 Selectivity
*bucketsize_frac
)
3806 VariableStatData vardata
;
3814 examine_variable(root
, hashkey
, 0, &vardata
);
3816 /* Look up the frequency of the most common value, if available */
3819 if (HeapTupleIsValid(vardata
.statsTuple
))
3821 if (get_attstatsslot(&sslot
, vardata
.statsTuple
,
3822 STATISTIC_KIND_MCV
, InvalidOid
,
3823 ATTSTATSSLOT_NUMBERS
))
3826 * The first MCV stat is for the most common value.
3828 if (sslot
.nnumbers
> 0)
3829 *mcv_freq
= sslot
.numbers
[0];
3830 free_attstatsslot(&sslot
);
3834 /* Get number of distinct values */
3835 ndistinct
= get_variable_numdistinct(&vardata
, &isdefault
);
3838 * If ndistinct isn't real, punt. We normally return 0.1, but if the
3839 * mcv_freq is known to be even higher than that, use it instead.
3843 *bucketsize_frac
= (Selectivity
) Max(0.1, *mcv_freq
);
3844 ReleaseVariableStats(vardata
);
3848 /* Get fraction that are null */
3849 if (HeapTupleIsValid(vardata
.statsTuple
))
3851 Form_pg_statistic stats
;
3853 stats
= (Form_pg_statistic
) GETSTRUCT(vardata
.statsTuple
);
3854 stanullfrac
= stats
->stanullfrac
;
3859 /* Compute avg freq of all distinct data values in raw relation */
3860 avgfreq
= (1.0 - stanullfrac
) / ndistinct
;
3863 * Adjust ndistinct to account for restriction clauses. Observe we are
3864 * assuming that the data distribution is affected uniformly by the
3865 * restriction clauses!
3867 * XXX Possibly better way, but much more expensive: multiply by
3868 * selectivity of rel's restriction clauses that mention the target Var.
3870 if (vardata
.rel
&& vardata
.rel
->tuples
> 0)
3872 ndistinct
*= vardata
.rel
->rows
/ vardata
.rel
->tuples
;
3873 ndistinct
= clamp_row_est(ndistinct
);
3877 * Initial estimate of bucketsize fraction is 1/nbuckets as long as the
3878 * number of buckets is less than the expected number of distinct values;
3879 * otherwise it is 1/ndistinct.
3881 if (ndistinct
> nbuckets
)
3882 estfract
= 1.0 / nbuckets
;
3884 estfract
= 1.0 / ndistinct
;
3887 * Adjust estimated bucketsize upward to account for skewed distribution.
3889 if (avgfreq
> 0.0 && *mcv_freq
> avgfreq
)
3890 estfract
*= *mcv_freq
/ avgfreq
;
3893 * Clamp bucketsize to sane range (the above adjustment could easily
3894 * produce an out-of-range result). We set the lower bound a little above
3895 * zero, since zero isn't a very sane result.
3897 if (estfract
< 1.0e-6)
3899 else if (estfract
> 1.0)
3902 *bucketsize_frac
= (Selectivity
) estfract
;
3904 ReleaseVariableStats(vardata
);
3908 * estimate_hashagg_tablesize
3909 * estimate the number of bytes that a hash aggregate hashtable will
3910 * require based on the agg_costs, path width and number of groups.
3912 * We return the result as "double" to forestall any possible overflow
3913 * problem in the multiplication by dNumGroups.
3915 * XXX this may be over-estimating the size now that hashagg knows to omit
3916 * unneeded columns from the hashtable. Also for mixed-mode grouping sets,
3917 * grouping columns not in the hashed set are counted here even though hashagg
3918 * won't store them. Is this a problem?
3921 estimate_hashagg_tablesize(PlannerInfo
*root
, Path
*path
,
3922 const AggClauseCosts
*agg_costs
, double dNumGroups
)
3926 hashentrysize
= hash_agg_entry_size(list_length(root
->aggtransinfos
),
3927 path
->pathtarget
->width
,
3928 agg_costs
->transitionSpace
);
3931 * Note that this disregards the effect of fill-factor and growth policy
3932 * of the hash table. That's probably ok, given that the default
3933 * fill-factor is relatively high. It'd be hard to meaningfully factor in
3934 * "double-in-size" growth policies here.
3936 return hashentrysize
* dNumGroups
;
3940 /*-------------------------------------------------------------------------
3944 *-------------------------------------------------------------------------
3948 * Find applicable ndistinct statistics for the given list of VarInfos (which
3949 * must all belong to the given rel), and update *ndistinct to the estimate of
3950 * the MVNDistinctItem that best matches. If a match it found, *varinfos is
3951 * updated to remove the list of matched varinfos.
3953 * Varinfos that aren't for simple Vars are ignored.
3955 * Return true if we're able to find a match, false otherwise.
3958 estimate_multivariate_ndistinct(PlannerInfo
*root
, RelOptInfo
*rel
,
3959 List
**varinfos
, double *ndistinct
)
3964 Oid statOid
= InvalidOid
;
3966 StatisticExtInfo
*matched_info
= NULL
;
3967 RangeTblEntry
*rte
= planner_rt_fetch(rel
->relid
, root
);
3969 /* bail out immediately if the table has no extended statistics */
3973 /* look for the ndistinct statistics object matching the most vars */
3974 nmatches_vars
= 0; /* we require at least two matches */
3976 foreach(lc
, rel
->statlist
)
3979 StatisticExtInfo
*info
= (StatisticExtInfo
*) lfirst(lc
);
3980 int nshared_vars
= 0;
3981 int nshared_exprs
= 0;
3983 /* skip statistics of other kinds */
3984 if (info
->kind
!= STATS_EXT_NDISTINCT
)
3987 /* skip statistics with mismatching stxdinherit value */
3988 if (info
->inherit
!= rte
->inh
)
3992 * Determine how many expressions (and variables in non-matched
3993 * expressions) match. We'll then use these numbers to pick the
3994 * statistics object that best matches the clauses.
3996 foreach(lc2
, *varinfos
)
3999 GroupVarInfo
*varinfo
= (GroupVarInfo
*) lfirst(lc2
);
4002 Assert(varinfo
->rel
== rel
);
4004 /* simple Var, search in statistics keys directly */
4005 if (IsA(varinfo
->var
, Var
))
4007 attnum
= ((Var
*) varinfo
->var
)->varattno
;
4010 * Ignore system attributes - we don't support statistics on
4011 * them, so can't match them (and it'd fail as the values are
4014 if (!AttrNumberIsForUserDefinedAttr(attnum
))
4017 if (bms_is_member(attnum
, info
->keys
))
4023 /* expression - see if it's in the statistics object */
4024 foreach(lc3
, info
->exprs
)
4026 Node
*expr
= (Node
*) lfirst(lc3
);
4028 if (equal(varinfo
->var
, expr
))
4036 if (nshared_vars
+ nshared_exprs
< 2)
4040 * Does this statistics object match more columns than the currently
4041 * best object? If so, use this one instead.
4043 * XXX This should break ties using name of the object, or something
4044 * like that, to make the outcome stable.
4046 if ((nshared_exprs
> nmatches_exprs
) ||
4047 (((nshared_exprs
== nmatches_exprs
)) && (nshared_vars
> nmatches_vars
)))
4049 statOid
= info
->statOid
;
4050 nmatches_vars
= nshared_vars
;
4051 nmatches_exprs
= nshared_exprs
;
4052 matched_info
= info
;
4057 if (statOid
== InvalidOid
)
4060 Assert(nmatches_vars
+ nmatches_exprs
> 1);
4062 stats
= statext_ndistinct_load(statOid
, rte
->inh
);
4065 * If we have a match, search it for the specific item that matches (there
4066 * must be one), and construct the output values.
4071 List
*newlist
= NIL
;
4072 MVNDistinctItem
*item
= NULL
;
4074 Bitmapset
*matched
= NULL
;
4075 AttrNumber attnum_offset
;
4078 * How much we need to offset the attnums? If there are no
4079 * expressions, no offset is needed. Otherwise offset enough to move
4080 * the lowest one (which is equal to number of expressions) to 1.
4082 if (matched_info
->exprs
)
4083 attnum_offset
= (list_length(matched_info
->exprs
) + 1);
4087 /* see what actually matched */
4088 foreach(lc2
, *varinfos
)
4094 GroupVarInfo
*varinfo
= (GroupVarInfo
*) lfirst(lc2
);
4097 * Process a simple Var expression, by matching it to keys
4098 * directly. If there's a matching expression, we'll try matching
4101 if (IsA(varinfo
->var
, Var
))
4103 AttrNumber attnum
= ((Var
*) varinfo
->var
)->varattno
;
4106 * Ignore expressions on system attributes. Can't rely on the
4107 * bms check for negative values.
4109 if (!AttrNumberIsForUserDefinedAttr(attnum
))
4112 /* Is the variable covered by the statistics object? */
4113 if (!bms_is_member(attnum
, matched_info
->keys
))
4116 attnum
= attnum
+ attnum_offset
;
4118 /* ensure sufficient offset */
4119 Assert(AttrNumberIsForUserDefinedAttr(attnum
));
4121 matched
= bms_add_member(matched
, attnum
);
4127 * XXX Maybe we should allow searching the expressions even if we
4128 * found an attribute matching the expression? That would handle
4129 * trivial expressions like "(a)" but it seems fairly useless.
4134 /* expression - see if it's in the statistics object */
4136 foreach(lc3
, matched_info
->exprs
)
4138 Node
*expr
= (Node
*) lfirst(lc3
);
4140 if (equal(varinfo
->var
, expr
))
4142 AttrNumber attnum
= -(idx
+ 1);
4144 attnum
= attnum
+ attnum_offset
;
4146 /* ensure sufficient offset */
4147 Assert(AttrNumberIsForUserDefinedAttr(attnum
));
4149 matched
= bms_add_member(matched
, attnum
);
4151 /* there should be just one matching expression */
4159 /* Find the specific item that exactly matches the combination */
4160 for (i
= 0; i
< stats
->nitems
; i
++)
4163 MVNDistinctItem
*tmpitem
= &stats
->items
[i
];
4165 if (tmpitem
->nattributes
!= bms_num_members(matched
))
4168 /* assume it's the right item */
4171 /* check that all item attributes/expressions fit the match */
4172 for (j
= 0; j
< tmpitem
->nattributes
; j
++)
4174 AttrNumber attnum
= tmpitem
->attributes
[j
];
4177 * Thanks to how we constructed the matched bitmap above, we
4178 * can just offset all attnums the same way.
4180 attnum
= attnum
+ attnum_offset
;
4182 if (!bms_is_member(attnum
, matched
))
4184 /* nah, it's not this item */
4191 * If the item has all the matched attributes, we know it's the
4192 * right one - there can't be a better one. matching more.
4199 * Make sure we found an item. There has to be one, because ndistinct
4200 * statistics includes all combinations of attributes.
4203 elog(ERROR
, "corrupt MVNDistinct entry");
4205 /* Form the output varinfo list, keeping only unmatched ones */
4206 foreach(lc
, *varinfos
)
4208 GroupVarInfo
*varinfo
= (GroupVarInfo
*) lfirst(lc
);
4213 * Let's look at plain variables first, because it's the most
4214 * common case and the check is quite cheap. We can simply get the
4215 * attnum and check (with an offset) matched bitmap.
4217 if (IsA(varinfo
->var
, Var
))
4219 AttrNumber attnum
= ((Var
*) varinfo
->var
)->varattno
;
4222 * If it's a system attribute, we're done. We don't support
4223 * extended statistics on system attributes, so it's clearly
4224 * not matched. Just keep the expression and continue.
4226 if (!AttrNumberIsForUserDefinedAttr(attnum
))
4228 newlist
= lappend(newlist
, varinfo
);
4232 /* apply the same offset as above */
4233 attnum
+= attnum_offset
;
4235 /* if it's not matched, keep the varinfo */
4236 if (!bms_is_member(attnum
, matched
))
4237 newlist
= lappend(newlist
, varinfo
);
4239 /* The rest of the loop deals with complex expressions. */
4244 * Process complex expressions, not just simple Vars.
4246 * First, we search for an exact match of an expression. If we
4247 * find one, we can just discard the whole GroupVarInfo, with all
4248 * the variables we extracted from it.
4250 * Otherwise we inspect the individual vars, and try matching it
4251 * to variables in the item.
4253 foreach(lc3
, matched_info
->exprs
)
4255 Node
*expr
= (Node
*) lfirst(lc3
);
4257 if (equal(varinfo
->var
, expr
))
4264 /* found exact match, skip */
4268 newlist
= lappend(newlist
, varinfo
);
4271 *varinfos
= newlist
;
4272 *ndistinct
= item
->ndistinct
;
4281 * Convert non-NULL values of the indicated types to the comparison
4282 * scale needed by scalarineqsel().
4283 * Returns "true" if successful.
4285 * XXX this routine is a hack: ideally we should look up the conversion
4286 * subroutines in pg_type.
4288 * All numeric datatypes are simply converted to their equivalent
4289 * "double" values. (NUMERIC values that are outside the range of "double"
4290 * are clamped to +/- HUGE_VAL.)
4292 * String datatypes are converted by convert_string_to_scalar(),
4293 * which is explained below. The reason why this routine deals with
4294 * three values at a time, not just one, is that we need it for strings.
4296 * The bytea datatype is just enough different from strings that it has
4297 * to be treated separately.
4299 * The several datatypes representing absolute times are all converted
4300 * to Timestamp, which is actually an int64, and then we promote that to
4301 * a double. Note this will give correct results even for the "special"
4302 * values of Timestamp, since those are chosen to compare correctly;
4303 * see timestamp_cmp.
4305 * The several datatypes representing relative times (intervals) are all
4306 * converted to measurements expressed in seconds.
4309 convert_to_scalar(Datum value
, Oid valuetypid
, Oid collid
, double *scaledvalue
,
4310 Datum lobound
, Datum hibound
, Oid boundstypid
,
4311 double *scaledlobound
, double *scaledhibound
)
4313 bool failure
= false;
4316 * Both the valuetypid and the boundstypid should exactly match the
4317 * declared input type(s) of the operator we are invoked for. However,
4318 * extensions might try to use scalarineqsel as estimator for operators
4319 * with input type(s) we don't handle here; in such cases, we want to
4320 * return false, not fail. In any case, we mustn't assume that valuetypid
4321 * and boundstypid are identical.
4323 * XXX The histogram we are interpolating between points of could belong
4324 * to a column that's only binary-compatible with the declared type. In
4325 * essence we are assuming that the semantics of binary-compatible types
4326 * are enough alike that we can use a histogram generated with one type's
4327 * operators to estimate selectivity for the other's. This is outright
4328 * wrong in some cases --- in particular signed versus unsigned
4329 * interpretation could trip us up. But it's useful enough in the
4330 * majority of cases that we do it anyway. Should think about more
4331 * rigorous ways to do it.
4336 * Built-in numeric types
4347 case REGPROCEDUREOID
:
4349 case REGOPERATOROID
:
4352 case REGCOLLATIONOID
:
4354 case REGDICTIONARYOID
:
4356 case REGNAMESPACEOID
:
4357 *scaledvalue
= convert_numeric_to_scalar(value
, valuetypid
,
4359 *scaledlobound
= convert_numeric_to_scalar(lobound
, boundstypid
,
4361 *scaledhibound
= convert_numeric_to_scalar(hibound
, boundstypid
,
4366 * Built-in string types
4374 char *valstr
= convert_string_datum(value
, valuetypid
,
4376 char *lostr
= convert_string_datum(lobound
, boundstypid
,
4378 char *histr
= convert_string_datum(hibound
, boundstypid
,
4382 * Bail out if any of the values is not of string type. We
4383 * might leak converted strings for the other value(s), but
4384 * that's not worth troubling over.
4389 convert_string_to_scalar(valstr
, scaledvalue
,
4390 lostr
, scaledlobound
,
4391 histr
, scaledhibound
);
4399 * Built-in bytea type
4403 /* We only support bytea vs bytea comparison */
4404 if (boundstypid
!= BYTEAOID
)
4406 convert_bytea_to_scalar(value
, scaledvalue
,
4407 lobound
, scaledlobound
,
4408 hibound
, scaledhibound
);
4413 * Built-in time types
4416 case TIMESTAMPTZOID
:
4421 *scaledvalue
= convert_timevalue_to_scalar(value
, valuetypid
,
4423 *scaledlobound
= convert_timevalue_to_scalar(lobound
, boundstypid
,
4425 *scaledhibound
= convert_timevalue_to_scalar(hibound
, boundstypid
,
4430 * Built-in network types
4436 *scaledvalue
= convert_network_to_scalar(value
, valuetypid
,
4438 *scaledlobound
= convert_network_to_scalar(lobound
, boundstypid
,
4440 *scaledhibound
= convert_network_to_scalar(hibound
, boundstypid
,
4444 /* Don't know how to convert */
4445 *scaledvalue
= *scaledlobound
= *scaledhibound
= 0;
4450 * Do convert_to_scalar()'s work for any numeric data type.
4452 * On failure (e.g., unsupported typid), set *failure to true;
4453 * otherwise, that variable is not changed.
4456 convert_numeric_to_scalar(Datum value
, Oid typid
, bool *failure
)
4461 return (double) DatumGetBool(value
);
4463 return (double) DatumGetInt16(value
);
4465 return (double) DatumGetInt32(value
);
4467 return (double) DatumGetInt64(value
);
4469 return (double) DatumGetFloat4(value
);
4471 return (double) DatumGetFloat8(value
);
4473 /* Note: out-of-range values will be clamped to +-HUGE_VAL */
4475 DatumGetFloat8(DirectFunctionCall1(numeric_float8_no_overflow
,
4479 case REGPROCEDUREOID
:
4481 case REGOPERATOROID
:
4484 case REGCOLLATIONOID
:
4486 case REGDICTIONARYOID
:
4488 case REGNAMESPACEOID
:
4489 /* we can treat OIDs as integers... */
4490 return (double) DatumGetObjectId(value
);
4498 * Do convert_to_scalar()'s work for any character-string data type.
4500 * String datatypes are converted to a scale that ranges from 0 to 1,
4501 * where we visualize the bytes of the string as fractional digits.
4503 * We do not want the base to be 256, however, since that tends to
4504 * generate inflated selectivity estimates; few databases will have
4505 * occurrences of all 256 possible byte values at each position.
4506 * Instead, use the smallest and largest byte values seen in the bounds
4507 * as the estimated range for each byte, after some fudging to deal with
4508 * the fact that we probably aren't going to see the full range that way.
4510 * An additional refinement is that we discard any common prefix of the
4511 * three strings before computing the scaled values. This allows us to
4512 * "zoom in" when we encounter a narrow data range. An example is a phone
4513 * number database where all the values begin with the same area code.
4514 * (Actually, the bounds will be adjacent histogram-bin-boundary values,
4515 * so this is more likely to happen than you might think.)
4518 convert_string_to_scalar(char *value
,
4519 double *scaledvalue
,
4521 double *scaledlobound
,
4523 double *scaledhibound
)
4529 rangelo
= rangehi
= (unsigned char) hibound
[0];
4530 for (sptr
= lobound
; *sptr
; sptr
++)
4532 if (rangelo
> (unsigned char) *sptr
)
4533 rangelo
= (unsigned char) *sptr
;
4534 if (rangehi
< (unsigned char) *sptr
)
4535 rangehi
= (unsigned char) *sptr
;
4537 for (sptr
= hibound
; *sptr
; sptr
++)
4539 if (rangelo
> (unsigned char) *sptr
)
4540 rangelo
= (unsigned char) *sptr
;
4541 if (rangehi
< (unsigned char) *sptr
)
4542 rangehi
= (unsigned char) *sptr
;
4544 /* If range includes any upper-case ASCII chars, make it include all */
4545 if (rangelo
<= 'Z' && rangehi
>= 'A')
4552 /* Ditto lower-case */
4553 if (rangelo
<= 'z' && rangehi
>= 'a')
4561 if (rangelo
<= '9' && rangehi
>= '0')
4570 * If range includes less than 10 chars, assume we have not got enough
4571 * data, and make it include regular ASCII set.
4573 if (rangehi
- rangelo
< 9)
4580 * Now strip any common prefix of the three strings.
4584 if (*lobound
!= *hibound
|| *lobound
!= *value
)
4586 lobound
++, hibound
++, value
++;
4590 * Now we can do the conversions.
4592 *scaledvalue
= convert_one_string_to_scalar(value
, rangelo
, rangehi
);
4593 *scaledlobound
= convert_one_string_to_scalar(lobound
, rangelo
, rangehi
);
4594 *scaledhibound
= convert_one_string_to_scalar(hibound
, rangelo
, rangehi
);
4598 convert_one_string_to_scalar(char *value
, int rangelo
, int rangehi
)
4600 int slen
= strlen(value
);
4606 return 0.0; /* empty string has scalar value 0 */
4609 * There seems little point in considering more than a dozen bytes from
4610 * the string. Since base is at least 10, that will give us nominal
4611 * resolution of at least 12 decimal digits, which is surely far more
4612 * precision than this estimation technique has got anyway (especially in
4613 * non-C locales). Also, even with the maximum possible base of 256, this
4614 * ensures denom cannot grow larger than 256^13 = 2.03e31, which will not
4615 * overflow on any known machine.
4620 /* Convert initial characters to fraction */
4621 base
= rangehi
- rangelo
+ 1;
4626 int ch
= (unsigned char) *value
++;
4630 else if (ch
> rangehi
)
4632 num
+= ((double) (ch
- rangelo
)) / denom
;
4640 * Convert a string-type Datum into a palloc'd, null-terminated string.
4642 * On failure (e.g., unsupported typid), set *failure to true;
4643 * otherwise, that variable is not changed. (We'll return NULL on failure.)
4645 * When using a non-C locale, we must pass the string through pg_strxfrm()
4646 * before continuing, so as to generate correct locale-specific results.
4649 convert_string_datum(Datum value
, Oid typid
, Oid collid
, bool *failure
)
4652 pg_locale_t mylocale
;
4657 val
= (char *) palloc(2);
4658 val
[0] = DatumGetChar(value
);
4664 val
= TextDatumGetCString(value
);
4668 NameData
*nm
= (NameData
*) DatumGetPointer(value
);
4670 val
= pstrdup(NameStr(*nm
));
4678 mylocale
= pg_newlocale_from_collation(collid
);
4680 if (!mylocale
->collate_is_c
)
4684 size_t xfrmlen2 PG_USED_FOR_ASSERTS_ONLY
;
4687 * XXX: We could guess at a suitable output buffer size and only call
4688 * pg_strxfrm() twice if our guess is too small.
4690 * XXX: strxfrm doesn't support UTF-8 encoding on Win32, it can return
4691 * bogus data or set an error. This is not really a problem unless it
4692 * crashes since it will only give an estimation error and nothing
4695 * XXX: we do not check pg_strxfrm_enabled(). On some platforms and in
4696 * some cases, libc strxfrm() may return the wrong results, but that
4697 * will only lead to an estimation error.
4699 xfrmlen
= pg_strxfrm(NULL
, val
, 0, mylocale
);
4703 * On Windows, strxfrm returns INT_MAX when an error occurs. Instead
4704 * of trying to allocate this much memory (and fail), just return the
4705 * original string unmodified as if we were in the C locale.
4707 if (xfrmlen
== INT_MAX
)
4710 xfrmstr
= (char *) palloc(xfrmlen
+ 1);
4711 xfrmlen2
= pg_strxfrm(xfrmstr
, val
, xfrmlen
+ 1, mylocale
);
4714 * Some systems (e.g., glibc) can return a smaller value from the
4715 * second call than the first; thus the Assert must be <= not ==.
4717 Assert(xfrmlen2
<= xfrmlen
);
4726 * Do convert_to_scalar()'s work for any bytea data type.
4728 * Very similar to convert_string_to_scalar except we can't assume
4729 * null-termination and therefore pass explicit lengths around.
4731 * Also, assumptions about likely "normal" ranges of characters have been
4732 * removed - a data range of 0..255 is always used, for now. (Perhaps
4733 * someday we will add information about actual byte data range to
4737 convert_bytea_to_scalar(Datum value
,
4738 double *scaledvalue
,
4740 double *scaledlobound
,
4742 double *scaledhibound
)
4744 bytea
*valuep
= DatumGetByteaPP(value
);
4745 bytea
*loboundp
= DatumGetByteaPP(lobound
);
4746 bytea
*hiboundp
= DatumGetByteaPP(hibound
);
4749 valuelen
= VARSIZE_ANY_EXHDR(valuep
),
4750 loboundlen
= VARSIZE_ANY_EXHDR(loboundp
),
4751 hiboundlen
= VARSIZE_ANY_EXHDR(hiboundp
),
4754 unsigned char *valstr
= (unsigned char *) VARDATA_ANY(valuep
);
4755 unsigned char *lostr
= (unsigned char *) VARDATA_ANY(loboundp
);
4756 unsigned char *histr
= (unsigned char *) VARDATA_ANY(hiboundp
);
4759 * Assume bytea data is uniformly distributed across all byte values.
4765 * Now strip any common prefix of the three strings.
4767 minlen
= Min(Min(valuelen
, loboundlen
), hiboundlen
);
4768 for (i
= 0; i
< minlen
; i
++)
4770 if (*lostr
!= *histr
|| *lostr
!= *valstr
)
4772 lostr
++, histr
++, valstr
++;
4773 loboundlen
--, hiboundlen
--, valuelen
--;
4777 * Now we can do the conversions.
4779 *scaledvalue
= convert_one_bytea_to_scalar(valstr
, valuelen
, rangelo
, rangehi
);
4780 *scaledlobound
= convert_one_bytea_to_scalar(lostr
, loboundlen
, rangelo
, rangehi
);
4781 *scaledhibound
= convert_one_bytea_to_scalar(histr
, hiboundlen
, rangelo
, rangehi
);
4785 convert_one_bytea_to_scalar(unsigned char *value
, int valuelen
,
4786 int rangelo
, int rangehi
)
4793 return 0.0; /* empty string has scalar value 0 */
4796 * Since base is 256, need not consider more than about 10 chars (even
4797 * this many seems like overkill)
4802 /* Convert initial characters to fraction */
4803 base
= rangehi
- rangelo
+ 1;
4806 while (valuelen
-- > 0)
4812 else if (ch
> rangehi
)
4814 num
+= ((double) (ch
- rangelo
)) / denom
;
4822 * Do convert_to_scalar()'s work for any timevalue data type.
4824 * On failure (e.g., unsupported typid), set *failure to true;
4825 * otherwise, that variable is not changed.
4828 convert_timevalue_to_scalar(Datum value
, Oid typid
, bool *failure
)
4833 return DatumGetTimestamp(value
);
4834 case TIMESTAMPTZOID
:
4835 return DatumGetTimestampTz(value
);
4837 return date2timestamp_no_overflow(DatumGetDateADT(value
));
4840 Interval
*interval
= DatumGetIntervalP(value
);
4843 * Convert the month part of Interval to days using assumed
4844 * average month length of 365.25/12.0 days. Not too
4845 * accurate, but plenty good enough for our purposes.
4847 * This also works for infinite intervals, which just have all
4848 * fields set to INT_MIN/INT_MAX, and so will produce a result
4849 * smaller/larger than any finite interval.
4851 return interval
->time
+ interval
->day
* (double) USECS_PER_DAY
+
4852 interval
->month
* ((DAYS_PER_YEAR
/ (double) MONTHS_PER_YEAR
) * USECS_PER_DAY
);
4855 return DatumGetTimeADT(value
);
4858 TimeTzADT
*timetz
= DatumGetTimeTzADTP(value
);
4860 /* use GMT-equivalent time */
4861 return (double) (timetz
->time
+ (timetz
->zone
* 1000000.0));
4871 * get_restriction_variable
4872 * Examine the args of a restriction clause to see if it's of the
4873 * form (variable op pseudoconstant) or (pseudoconstant op variable),
4874 * where "variable" could be either a Var or an expression in vars of a
4875 * single relation. If so, extract information about the variable,
4876 * and also indicate which side it was on and the other argument.
4879 * root: the planner info
4880 * args: clause argument list
4881 * varRelid: see specs for restriction selectivity functions
4883 * Outputs: (these are valid only if true is returned)
4884 * *vardata: gets information about variable (see examine_variable)
4885 * *other: gets other clause argument, aggressively reduced to a constant
4886 * *varonleft: set true if variable is on the left, false if on the right
4888 * Returns true if a variable is identified, otherwise false.
4890 * Note: if there are Vars on both sides of the clause, we must fail, because
4891 * callers are expecting that the other side will act like a pseudoconstant.
4894 get_restriction_variable(PlannerInfo
*root
, List
*args
, int varRelid
,
4895 VariableStatData
*vardata
, Node
**other
,
4900 VariableStatData rdata
;
4902 /* Fail if not a binary opclause (probably shouldn't happen) */
4903 if (list_length(args
) != 2)
4906 left
= (Node
*) linitial(args
);
4907 right
= (Node
*) lsecond(args
);
4910 * Examine both sides. Note that when varRelid is nonzero, Vars of other
4911 * relations will be treated as pseudoconstants.
4913 examine_variable(root
, left
, varRelid
, vardata
);
4914 examine_variable(root
, right
, varRelid
, &rdata
);
4917 * If one side is a variable and the other not, we win.
4919 if (vardata
->rel
&& rdata
.rel
== NULL
)
4922 *other
= estimate_expression_value(root
, rdata
.var
);
4923 /* Assume we need no ReleaseVariableStats(rdata) here */
4927 if (vardata
->rel
== NULL
&& rdata
.rel
)
4930 *other
= estimate_expression_value(root
, vardata
->var
);
4931 /* Assume we need no ReleaseVariableStats(*vardata) here */
4936 /* Oops, clause has wrong structure (probably var op var) */
4937 ReleaseVariableStats(*vardata
);
4938 ReleaseVariableStats(rdata
);
4944 * get_join_variables
4945 * Apply examine_variable() to each side of a join clause.
4946 * Also, attempt to identify whether the join clause has the same
4947 * or reversed sense compared to the SpecialJoinInfo.
4949 * We consider the join clause "normal" if it is "lhs_var OP rhs_var",
4950 * or "reversed" if it is "rhs_var OP lhs_var". In complicated cases
4951 * where we can't tell for sure, we default to assuming it's normal.
4954 get_join_variables(PlannerInfo
*root
, List
*args
, SpecialJoinInfo
*sjinfo
,
4955 VariableStatData
*vardata1
, VariableStatData
*vardata2
,
4956 bool *join_is_reversed
)
4961 if (list_length(args
) != 2)
4962 elog(ERROR
, "join operator should take two arguments");
4964 left
= (Node
*) linitial(args
);
4965 right
= (Node
*) lsecond(args
);
4967 examine_variable(root
, left
, 0, vardata1
);
4968 examine_variable(root
, right
, 0, vardata2
);
4970 if (vardata1
->rel
&&
4971 bms_is_subset(vardata1
->rel
->relids
, sjinfo
->syn_righthand
))
4972 *join_is_reversed
= true; /* var1 is on RHS */
4973 else if (vardata2
->rel
&&
4974 bms_is_subset(vardata2
->rel
->relids
, sjinfo
->syn_lefthand
))
4975 *join_is_reversed
= true; /* var2 is on LHS */
4977 *join_is_reversed
= false;
4980 /* statext_expressions_load copies the tuple, so just pfree it. */
4982 ReleaseDummy(HeapTuple tuple
)
4989 * Try to look up statistical data about an expression.
4990 * Fill in a VariableStatData struct to describe the expression.
4993 * root: the planner info
4994 * node: the expression tree to examine
4995 * varRelid: see specs for restriction selectivity functions
4997 * Outputs: *vardata is filled as follows:
4998 * var: the input expression (with any binary relabeling stripped, if
4999 * it is or contains a variable; but otherwise the type is preserved)
5000 * rel: RelOptInfo for relation containing variable; NULL if expression
5001 * contains no Vars (NOTE this could point to a RelOptInfo of a
5002 * subquery, not one in the current query).
5003 * statsTuple: the pg_statistic entry for the variable, if one exists;
5005 * freefunc: pointer to a function to release statsTuple with.
5006 * vartype: exposed type of the expression; this should always match
5007 * the declared input type of the operator we are estimating for.
5008 * atttype, atttypmod: actual type/typmod of the "var" expression. This is
5009 * commonly the same as the exposed type of the variable argument,
5010 * but can be different in binary-compatible-type cases.
5011 * isunique: true if we were able to match the var to a unique index or a
5012 * single-column DISTINCT clause, implying its values are unique for
5013 * this query. (Caution: this should be trusted for statistical
5014 * purposes only, since we do not check indimmediate nor verify that
5015 * the exact same definition of equality applies.)
5016 * acl_ok: true if current user has permission to read the column(s)
5017 * underlying the pg_statistic entry. This is consulted by
5018 * statistic_proc_security_check().
5020 * Caller is responsible for doing ReleaseVariableStats() before exiting.
5023 examine_variable(PlannerInfo
*root
, Node
*node
, int varRelid
,
5024 VariableStatData
*vardata
)
5030 /* Make sure we don't return dangling pointers in vardata */
5031 MemSet(vardata
, 0, sizeof(VariableStatData
));
5033 /* Save the exposed type of the expression */
5034 vardata
->vartype
= exprType(node
);
5036 /* Look inside any binary-compatible relabeling */
5038 if (IsA(node
, RelabelType
))
5039 basenode
= (Node
*) ((RelabelType
*) node
)->arg
;
5043 /* Fast path for a simple Var */
5045 if (IsA(basenode
, Var
) &&
5046 (varRelid
== 0 || varRelid
== ((Var
*) basenode
)->varno
))
5048 Var
*var
= (Var
*) basenode
;
5050 /* Set up result fields other than the stats tuple */
5051 vardata
->var
= basenode
; /* return Var without relabeling */
5052 vardata
->rel
= find_base_rel(root
, var
->varno
);
5053 vardata
->atttype
= var
->vartype
;
5054 vardata
->atttypmod
= var
->vartypmod
;
5055 vardata
->isunique
= has_unique_index(vardata
->rel
, var
->varattno
);
5057 /* Try to locate some stats */
5058 examine_simple_variable(root
, var
, vardata
);
5064 * Okay, it's a more complicated expression. Determine variable
5065 * membership. Note that when varRelid isn't zero, only vars of that
5066 * relation are considered "real" vars.
5068 varnos
= pull_varnos(root
, basenode
);
5072 if (bms_is_empty(varnos
))
5074 /* No Vars at all ... must be pseudo-constant clause */
5080 if (bms_get_singleton_member(varnos
, &relid
))
5082 if (varRelid
== 0 || varRelid
== relid
)
5084 onerel
= find_base_rel(root
, relid
);
5085 vardata
->rel
= onerel
;
5086 node
= basenode
; /* strip any relabeling */
5088 /* else treat it as a constant */
5092 /* varnos has multiple relids */
5095 /* treat it as a variable of a join relation */
5096 vardata
->rel
= find_join_rel(root
, varnos
);
5097 node
= basenode
; /* strip any relabeling */
5099 else if (bms_is_member(varRelid
, varnos
))
5101 /* ignore the vars belonging to other relations */
5102 vardata
->rel
= find_base_rel(root
, varRelid
);
5103 node
= basenode
; /* strip any relabeling */
5104 /* note: no point in expressional-index search here */
5106 /* else treat it as a constant */
5112 vardata
->var
= node
;
5113 vardata
->atttype
= exprType(node
);
5114 vardata
->atttypmod
= exprTypmod(node
);
5119 * We have an expression in vars of a single relation. Try to match
5120 * it to expressional index columns, in hopes of finding some
5123 * Note that we consider all index columns including INCLUDE columns,
5124 * since there could be stats for such columns. But the test for
5125 * uniqueness needs to be warier.
5127 * XXX it's conceivable that there are multiple matches with different
5128 * index opfamilies; if so, we need to pick one that matches the
5129 * operator we are estimating for. FIXME later.
5136 * Determine the user ID to use for privilege checks: either
5137 * onerel->userid if it's set (e.g., in case we're accessing the table
5138 * via a view), or the current user otherwise.
5140 * If we drill down to child relations, we keep using the same userid:
5141 * it's going to be the same anyway, due to how we set up the relation
5142 * tree (q.v. build_simple_rel).
5144 userid
= OidIsValid(onerel
->userid
) ? onerel
->userid
: GetUserId();
5146 foreach(ilist
, onerel
->indexlist
)
5148 IndexOptInfo
*index
= (IndexOptInfo
*) lfirst(ilist
);
5149 ListCell
*indexpr_item
;
5152 indexpr_item
= list_head(index
->indexprs
);
5153 if (indexpr_item
== NULL
)
5154 continue; /* no expressions here... */
5156 for (pos
= 0; pos
< index
->ncolumns
; pos
++)
5158 if (index
->indexkeys
[pos
] == 0)
5162 if (indexpr_item
== NULL
)
5163 elog(ERROR
, "too few entries in indexprs list");
5164 indexkey
= (Node
*) lfirst(indexpr_item
);
5165 if (indexkey
&& IsA(indexkey
, RelabelType
))
5166 indexkey
= (Node
*) ((RelabelType
*) indexkey
)->arg
;
5167 if (equal(node
, indexkey
))
5170 * Found a match ... is it a unique index? Tests here
5171 * should match has_unique_index().
5173 if (index
->unique
&&
5174 index
->nkeycolumns
== 1 &&
5176 (index
->indpred
== NIL
|| index
->predOK
))
5177 vardata
->isunique
= true;
5180 * Has it got stats? We only consider stats for
5181 * non-partial indexes, since partial indexes probably
5182 * don't reflect whole-relation statistics; the above
5183 * check for uniqueness is the only info we take from
5186 * An index stats hook, however, must make its own
5187 * decisions about what to do with partial indexes.
5189 if (get_index_stats_hook
&&
5190 (*get_index_stats_hook
) (root
, index
->indexoid
,
5194 * The hook took control of acquiring a stats
5195 * tuple. If it did supply a tuple, it'd better
5196 * have supplied a freefunc.
5198 if (HeapTupleIsValid(vardata
->statsTuple
) &&
5200 elog(ERROR
, "no function provided to release variable stats with");
5202 else if (index
->indpred
== NIL
)
5204 vardata
->statsTuple
=
5205 SearchSysCache3(STATRELATTINH
,
5206 ObjectIdGetDatum(index
->indexoid
),
5207 Int16GetDatum(pos
+ 1),
5208 BoolGetDatum(false));
5209 vardata
->freefunc
= ReleaseSysCache
;
5211 if (HeapTupleIsValid(vardata
->statsTuple
))
5213 /* Get index's table for permission check */
5216 rte
= planner_rt_fetch(index
->rel
->relid
, root
);
5217 Assert(rte
->rtekind
== RTE_RELATION
);
5220 * For simplicity, we insist on the whole
5221 * table being selectable, rather than trying
5222 * to identify which column(s) the index
5223 * depends on. Also require all rows to be
5224 * selectable --- there must be no
5225 * securityQuals from security barrier views
5229 rte
->securityQuals
== NIL
&&
5230 (pg_class_aclcheck(rte
->relid
, userid
,
5231 ACL_SELECT
) == ACLCHECK_OK
);
5234 * If the user doesn't have permissions to
5235 * access an inheritance child relation, check
5236 * the permissions of the table actually
5237 * mentioned in the query, since most likely
5238 * the user does have that permission. Note
5239 * that whole-table select privilege on the
5240 * parent doesn't quite guarantee that the
5241 * user could read all columns of the child.
5242 * But in practice it's unlikely that any
5243 * interesting security violation could result
5244 * from allowing access to the expression
5245 * index's stats, so we allow it anyway. See
5246 * similar code in examine_simple_variable()
5247 * for additional comments.
5249 if (!vardata
->acl_ok
&&
5250 root
->append_rel_array
!= NULL
)
5252 AppendRelInfo
*appinfo
;
5253 Index varno
= index
->rel
->relid
;
5255 appinfo
= root
->append_rel_array
[varno
];
5257 planner_rt_fetch(appinfo
->parent_relid
,
5258 root
)->rtekind
== RTE_RELATION
)
5260 varno
= appinfo
->parent_relid
;
5261 appinfo
= root
->append_rel_array
[varno
];
5263 if (varno
!= index
->rel
->relid
)
5265 /* Repeat access check on this rel */
5266 rte
= planner_rt_fetch(varno
, root
);
5267 Assert(rte
->rtekind
== RTE_RELATION
);
5270 rte
->securityQuals
== NIL
&&
5271 (pg_class_aclcheck(rte
->relid
,
5273 ACL_SELECT
) == ACLCHECK_OK
);
5279 /* suppress leakproofness checks later */
5280 vardata
->acl_ok
= true;
5283 if (vardata
->statsTuple
)
5286 indexpr_item
= lnext(index
->indexprs
, indexpr_item
);
5289 if (vardata
->statsTuple
)
5294 * Search extended statistics for one with a matching expression.
5295 * There might be multiple ones, so just grab the first one. In the
5296 * future, we might consider the statistics target (and pick the most
5297 * accurate statistics) and maybe some other parameters.
5299 foreach(slist
, onerel
->statlist
)
5301 StatisticExtInfo
*info
= (StatisticExtInfo
*) lfirst(slist
);
5302 RangeTblEntry
*rte
= planner_rt_fetch(onerel
->relid
, root
);
5303 ListCell
*expr_item
;
5307 * Stop once we've found statistics for the expression (either
5308 * from extended stats, or for an index in the preceding loop).
5310 if (vardata
->statsTuple
)
5313 /* skip stats without per-expression stats */
5314 if (info
->kind
!= STATS_EXT_EXPRESSIONS
)
5317 /* skip stats with mismatching stxdinherit value */
5318 if (info
->inherit
!= rte
->inh
)
5322 foreach(expr_item
, info
->exprs
)
5324 Node
*expr
= (Node
*) lfirst(expr_item
);
5328 /* strip RelabelType before comparing it */
5329 if (expr
&& IsA(expr
, RelabelType
))
5330 expr
= (Node
*) ((RelabelType
*) expr
)->arg
;
5332 /* found a match, see if we can extract pg_statistic row */
5333 if (equal(node
, expr
))
5336 * XXX Not sure if we should cache the tuple somewhere.
5337 * Now we just create a new copy every time.
5339 vardata
->statsTuple
=
5340 statext_expressions_load(info
->statOid
, rte
->inh
, pos
);
5342 vardata
->freefunc
= ReleaseDummy
;
5345 * For simplicity, we insist on the whole table being
5346 * selectable, rather than trying to identify which
5347 * column(s) the statistics object depends on. Also
5348 * require all rows to be selectable --- there must be no
5349 * securityQuals from security barrier views or RLS
5353 rte
->securityQuals
== NIL
&&
5354 (pg_class_aclcheck(rte
->relid
, userid
,
5355 ACL_SELECT
) == ACLCHECK_OK
);
5358 * If the user doesn't have permissions to access an
5359 * inheritance child relation, check the permissions of
5360 * the table actually mentioned in the query, since most
5361 * likely the user does have that permission. Note that
5362 * whole-table select privilege on the parent doesn't
5363 * quite guarantee that the user could read all columns of
5364 * the child. But in practice it's unlikely that any
5365 * interesting security violation could result from
5366 * allowing access to the expression stats, so we allow it
5367 * anyway. See similar code in examine_simple_variable()
5368 * for additional comments.
5370 if (!vardata
->acl_ok
&&
5371 root
->append_rel_array
!= NULL
)
5373 AppendRelInfo
*appinfo
;
5374 Index varno
= onerel
->relid
;
5376 appinfo
= root
->append_rel_array
[varno
];
5378 planner_rt_fetch(appinfo
->parent_relid
,
5379 root
)->rtekind
== RTE_RELATION
)
5381 varno
= appinfo
->parent_relid
;
5382 appinfo
= root
->append_rel_array
[varno
];
5384 if (varno
!= onerel
->relid
)
5386 /* Repeat access check on this rel */
5387 rte
= planner_rt_fetch(varno
, root
);
5388 Assert(rte
->rtekind
== RTE_RELATION
);
5391 rte
->securityQuals
== NIL
&&
5392 (pg_class_aclcheck(rte
->relid
,
5394 ACL_SELECT
) == ACLCHECK_OK
);
5408 * examine_simple_variable
5409 * Handle a simple Var for examine_variable
5411 * This is split out as a subroutine so that we can recurse to deal with
5412 * Vars referencing subqueries (either sub-SELECT-in-FROM or CTE style).
5414 * We already filled in all the fields of *vardata except for the stats tuple.
5417 examine_simple_variable(PlannerInfo
*root
, Var
*var
,
5418 VariableStatData
*vardata
)
5420 RangeTblEntry
*rte
= root
->simple_rte_array
[var
->varno
];
5422 Assert(IsA(rte
, RangeTblEntry
));
5424 if (get_relation_stats_hook
&&
5425 (*get_relation_stats_hook
) (root
, rte
, var
->varattno
, vardata
))
5428 * The hook took control of acquiring a stats tuple. If it did supply
5429 * a tuple, it'd better have supplied a freefunc.
5431 if (HeapTupleIsValid(vardata
->statsTuple
) &&
5433 elog(ERROR
, "no function provided to release variable stats with");
5435 else if (rte
->rtekind
== RTE_RELATION
)
5438 * Plain table or parent of an inheritance appendrel, so look up the
5439 * column in pg_statistic
5441 vardata
->statsTuple
= SearchSysCache3(STATRELATTINH
,
5442 ObjectIdGetDatum(rte
->relid
),
5443 Int16GetDatum(var
->varattno
),
5444 BoolGetDatum(rte
->inh
));
5445 vardata
->freefunc
= ReleaseSysCache
;
5447 if (HeapTupleIsValid(vardata
->statsTuple
))
5449 RelOptInfo
*onerel
= find_base_rel_noerr(root
, var
->varno
);
5453 * Check if user has permission to read this column. We require
5454 * all rows to be accessible, so there must be no securityQuals
5455 * from security barrier views or RLS policies.
5457 * Normally the Var will have an associated RelOptInfo from which
5458 * we can find out which userid to do the check as; but it might
5459 * not if it's a RETURNING Var for an INSERT target relation. In
5460 * that case use the RTEPermissionInfo associated with the RTE.
5463 userid
= onerel
->userid
;
5466 RTEPermissionInfo
*perminfo
;
5468 perminfo
= getRTEPermissionInfo(root
->parse
->rteperminfos
, rte
);
5469 userid
= perminfo
->checkAsUser
;
5471 if (!OidIsValid(userid
))
5472 userid
= GetUserId();
5475 rte
->securityQuals
== NIL
&&
5476 ((pg_class_aclcheck(rte
->relid
, userid
,
5477 ACL_SELECT
) == ACLCHECK_OK
) ||
5478 (pg_attribute_aclcheck(rte
->relid
, var
->varattno
, userid
,
5479 ACL_SELECT
) == ACLCHECK_OK
));
5482 * If the user doesn't have permissions to access an inheritance
5483 * child relation or specifically this attribute, check the
5484 * permissions of the table/column actually mentioned in the
5485 * query, since most likely the user does have that permission
5486 * (else the query will fail at runtime), and if the user can read
5487 * the column there then he can get the values of the child table
5488 * too. To do that, we must find out which of the root parent's
5489 * attributes the child relation's attribute corresponds to.
5491 if (!vardata
->acl_ok
&& var
->varattno
> 0 &&
5492 root
->append_rel_array
!= NULL
)
5494 AppendRelInfo
*appinfo
;
5495 Index varno
= var
->varno
;
5496 int varattno
= var
->varattno
;
5499 appinfo
= root
->append_rel_array
[varno
];
5502 * Partitions are mapped to their immediate parent, not the
5503 * root parent, so must be ready to walk up multiple
5504 * AppendRelInfos. But stop if we hit a parent that is not
5505 * RTE_RELATION --- that's a flattened UNION ALL subquery, not
5506 * an inheritance parent.
5509 planner_rt_fetch(appinfo
->parent_relid
,
5510 root
)->rtekind
== RTE_RELATION
)
5512 int parent_varattno
;
5515 if (varattno
<= 0 || varattno
> appinfo
->num_child_cols
)
5516 break; /* safety check */
5517 parent_varattno
= appinfo
->parent_colnos
[varattno
- 1];
5518 if (parent_varattno
== 0)
5519 break; /* Var is local to child */
5521 varno
= appinfo
->parent_relid
;
5522 varattno
= parent_varattno
;
5525 /* If the parent is itself a child, continue up. */
5526 appinfo
= root
->append_rel_array
[varno
];
5530 * In rare cases, the Var may be local to the child table, in
5531 * which case, we've got to live with having no access to this
5537 /* Repeat the access check on this parent rel & column */
5538 rte
= planner_rt_fetch(varno
, root
);
5539 Assert(rte
->rtekind
== RTE_RELATION
);
5542 * Fine to use the same userid as it's the same in all
5543 * relations of a given inheritance tree.
5546 rte
->securityQuals
== NIL
&&
5547 ((pg_class_aclcheck(rte
->relid
, userid
,
5548 ACL_SELECT
) == ACLCHECK_OK
) ||
5549 (pg_attribute_aclcheck(rte
->relid
, varattno
, userid
,
5550 ACL_SELECT
) == ACLCHECK_OK
));
5555 /* suppress any possible leakproofness checks later */
5556 vardata
->acl_ok
= true;
5559 else if ((rte
->rtekind
== RTE_SUBQUERY
&& !rte
->inh
) ||
5560 (rte
->rtekind
== RTE_CTE
&& !rte
->self_reference
))
5563 * Plain subquery (not one that was converted to an appendrel) or
5564 * non-recursive CTE. In either case, we can try to find out what the
5565 * Var refers to within the subquery. We skip this for appendrel and
5566 * recursive-CTE cases because any column stats we did find would
5567 * likely not be very relevant.
5569 PlannerInfo
*subroot
;
5575 * Punt if it's a whole-row var rather than a plain column reference.
5577 if (var
->varattno
== InvalidAttrNumber
)
5581 * Otherwise, find the subquery's planner subroot.
5583 if (rte
->rtekind
== RTE_SUBQUERY
)
5588 * Fetch RelOptInfo for subquery. Note that we don't change the
5589 * rel returned in vardata, since caller expects it to be a rel of
5590 * the caller's query level. Because we might already be
5591 * recursing, we can't use that rel pointer either, but have to
5592 * look up the Var's rel afresh.
5594 rel
= find_base_rel(root
, var
->varno
);
5596 subroot
= rel
->subroot
;
5600 /* CTE case is more difficult */
5601 PlannerInfo
*cteroot
;
5608 * Find the referenced CTE, and locate the subroot previously made
5611 levelsup
= rte
->ctelevelsup
;
5613 while (levelsup
-- > 0)
5615 cteroot
= cteroot
->parent_root
;
5616 if (!cteroot
) /* shouldn't happen */
5617 elog(ERROR
, "bad levelsup for CTE \"%s\"", rte
->ctename
);
5621 * Note: cte_plan_ids can be shorter than cteList, if we are still
5622 * working on planning the CTEs (ie, this is a side-reference from
5623 * another CTE). So we mustn't use forboth here.
5626 foreach(lc
, cteroot
->parse
->cteList
)
5628 CommonTableExpr
*cte
= (CommonTableExpr
*) lfirst(lc
);
5630 if (strcmp(cte
->ctename
, rte
->ctename
) == 0)
5634 if (lc
== NULL
) /* shouldn't happen */
5635 elog(ERROR
, "could not find CTE \"%s\"", rte
->ctename
);
5636 if (ndx
>= list_length(cteroot
->cte_plan_ids
))
5637 elog(ERROR
, "could not find plan for CTE \"%s\"", rte
->ctename
);
5638 plan_id
= list_nth_int(cteroot
->cte_plan_ids
, ndx
);
5640 elog(ERROR
, "no plan was made for CTE \"%s\"", rte
->ctename
);
5641 subroot
= list_nth(root
->glob
->subroots
, plan_id
- 1);
5644 /* If the subquery hasn't been planned yet, we have to punt */
5645 if (subroot
== NULL
)
5647 Assert(IsA(subroot
, PlannerInfo
));
5650 * We must use the subquery parsetree as mangled by the planner, not
5651 * the raw version from the RTE, because we need a Var that will refer
5652 * to the subroot's live RelOptInfos. For instance, if any subquery
5653 * pullup happened during planning, Vars in the targetlist might have
5654 * gotten replaced, and we need to see the replacement expressions.
5656 subquery
= subroot
->parse
;
5657 Assert(IsA(subquery
, Query
));
5660 * Punt if subquery uses set operations or GROUP BY, as these will
5661 * mash underlying columns' stats beyond recognition. (Set ops are
5662 * particularly nasty; if we forged ahead, we would return stats
5663 * relevant to only the leftmost subselect...) DISTINCT is also
5664 * problematic, but we check that later because there is a possibility
5665 * of learning something even with it.
5667 if (subquery
->setOperations
||
5668 subquery
->groupClause
||
5669 subquery
->groupingSets
)
5672 /* Get the subquery output expression referenced by the upper Var */
5673 if (subquery
->returningList
)
5674 subtlist
= subquery
->returningList
;
5676 subtlist
= subquery
->targetList
;
5677 ste
= get_tle_by_resno(subtlist
, var
->varattno
);
5678 if (ste
== NULL
|| ste
->resjunk
)
5679 elog(ERROR
, "subquery %s does not have attribute %d",
5680 rte
->eref
->aliasname
, var
->varattno
);
5681 var
= (Var
*) ste
->expr
;
5684 * If subquery uses DISTINCT, we can't make use of any stats for the
5685 * variable ... but, if it's the only DISTINCT column, we are entitled
5686 * to consider it unique. We do the test this way so that it works
5687 * for cases involving DISTINCT ON.
5689 if (subquery
->distinctClause
)
5691 if (list_length(subquery
->distinctClause
) == 1 &&
5692 targetIsInSortList(ste
, InvalidOid
, subquery
->distinctClause
))
5693 vardata
->isunique
= true;
5694 /* cannot go further */
5699 * If the sub-query originated from a view with the security_barrier
5700 * attribute, we must not look at the variable's statistics, though it
5701 * seems all right to notice the existence of a DISTINCT clause. So
5704 * This is probably a harsher restriction than necessary; it's
5705 * certainly OK for the selectivity estimator (which is a C function,
5706 * and therefore omnipotent anyway) to look at the statistics. But
5707 * many selectivity estimators will happily *invoke the operator
5708 * function* to try to work out a good estimate - and that's not OK.
5709 * So for now, don't dig down for stats.
5711 if (rte
->security_barrier
)
5714 /* Can only handle a simple Var of subquery's query level */
5715 if (var
&& IsA(var
, Var
) &&
5716 var
->varlevelsup
== 0)
5719 * OK, recurse into the subquery. Note that the original setting
5720 * of vardata->isunique (which will surely be false) is left
5721 * unchanged in this situation. That's what we want, since even
5722 * if the underlying column is unique, the subquery may have
5723 * joined to other tables in a way that creates duplicates.
5725 examine_simple_variable(subroot
, var
, vardata
);
5731 * Otherwise, the Var comes from a FUNCTION or VALUES RTE. (We won't
5732 * see RTE_JOIN here because join alias Vars have already been
5733 * flattened.) There's not much we can do with function outputs, but
5734 * maybe someday try to be smarter about VALUES.
5740 * Check whether it is permitted to call func_oid passing some of the
5741 * pg_statistic data in vardata. We allow this either if the user has SELECT
5742 * privileges on the table or column underlying the pg_statistic data or if
5743 * the function is marked leak-proof.
5746 statistic_proc_security_check(VariableStatData
*vardata
, Oid func_oid
)
5748 if (vardata
->acl_ok
)
5751 if (!OidIsValid(func_oid
))
5754 if (get_func_leakproof(func_oid
))
5758 (errmsg_internal("not using statistics because function \"%s\" is not leak-proof",
5759 get_func_name(func_oid
))));
5764 * get_variable_numdistinct
5765 * Estimate the number of distinct values of a variable.
5767 * vardata: results of examine_variable
5768 * *isdefault: set to true if the result is a default rather than based on
5769 * anything meaningful.
5771 * NB: be careful to produce a positive integral result, since callers may
5772 * compare the result to exact integer counts, or might divide by it.
5775 get_variable_numdistinct(VariableStatData
*vardata
, bool *isdefault
)
5778 double stanullfrac
= 0.0;
5784 * Determine the stadistinct value to use. There are cases where we can
5785 * get an estimate even without a pg_statistic entry, or can get a better
5786 * value than is in pg_statistic. Grab stanullfrac too if we can find it
5787 * (otherwise, assume no nulls, for lack of any better idea).
5789 if (HeapTupleIsValid(vardata
->statsTuple
))
5791 /* Use the pg_statistic entry */
5792 Form_pg_statistic stats
;
5794 stats
= (Form_pg_statistic
) GETSTRUCT(vardata
->statsTuple
);
5795 stadistinct
= stats
->stadistinct
;
5796 stanullfrac
= stats
->stanullfrac
;
5798 else if (vardata
->vartype
== BOOLOID
)
5801 * Special-case boolean columns: presumably, two distinct values.
5803 * Are there any other datatypes we should wire in special estimates
5808 else if (vardata
->rel
&& vardata
->rel
->rtekind
== RTE_VALUES
)
5811 * If the Var represents a column of a VALUES RTE, assume it's unique.
5812 * This could of course be very wrong, but it should tend to be true
5813 * in well-written queries. We could consider examining the VALUES'
5814 * contents to get some real statistics; but that only works if the
5815 * entries are all constants, and it would be pretty expensive anyway.
5817 stadistinct
= -1.0; /* unique (and all non null) */
5822 * We don't keep statistics for system columns, but in some cases we
5823 * can infer distinctness anyway.
5825 if (vardata
->var
&& IsA(vardata
->var
, Var
))
5827 switch (((Var
*) vardata
->var
)->varattno
)
5829 case SelfItemPointerAttributeNumber
:
5830 stadistinct
= -1.0; /* unique (and all non null) */
5832 case TableOidAttributeNumber
:
5833 stadistinct
= 1.0; /* only 1 value */
5836 stadistinct
= 0.0; /* means "unknown" */
5841 stadistinct
= 0.0; /* means "unknown" */
5844 * XXX consider using estimate_num_groups on expressions?
5849 * If there is a unique index or DISTINCT clause for the variable, assume
5850 * it is unique no matter what pg_statistic says; the statistics could be
5851 * out of date, or we might have found a partial unique index that proves
5852 * the var is unique for this query. However, we'd better still believe
5853 * the null-fraction statistic.
5855 if (vardata
->isunique
)
5856 stadistinct
= -1.0 * (1.0 - stanullfrac
);
5859 * If we had an absolute estimate, use that.
5861 if (stadistinct
> 0.0)
5862 return clamp_row_est(stadistinct
);
5865 * Otherwise we need to get the relation size; punt if not available.
5867 if (vardata
->rel
== NULL
)
5870 return DEFAULT_NUM_DISTINCT
;
5872 ntuples
= vardata
->rel
->tuples
;
5876 return DEFAULT_NUM_DISTINCT
;
5880 * If we had a relative estimate, use that.
5882 if (stadistinct
< 0.0)
5883 return clamp_row_est(-stadistinct
* ntuples
);
5886 * With no data, estimate ndistinct = ntuples if the table is small, else
5887 * use default. We use DEFAULT_NUM_DISTINCT as the cutoff for "small" so
5888 * that the behavior isn't discontinuous.
5890 if (ntuples
< DEFAULT_NUM_DISTINCT
)
5891 return clamp_row_est(ntuples
);
5894 return DEFAULT_NUM_DISTINCT
;
5898 * get_variable_range
5899 * Estimate the minimum and maximum value of the specified variable.
5900 * If successful, store values in *min and *max, and return true.
5901 * If no data available, return false.
5903 * sortop is the "<" comparison operator to use. This should generally
5904 * be "<" not ">", as only the former is likely to be found in pg_statistic.
5905 * The collation must be specified too.
5908 get_variable_range(PlannerInfo
*root
, VariableStatData
*vardata
,
5909 Oid sortop
, Oid collation
,
5910 Datum
*min
, Datum
*max
)
5914 bool have_data
= false;
5922 * XXX It's very tempting to try to use the actual column min and max, if
5923 * we can get them relatively-cheaply with an index probe. However, since
5924 * this function is called many times during join planning, that could
5925 * have unpleasant effects on planning speed. Need more investigation
5926 * before enabling this.
5929 if (get_actual_variable_range(root
, vardata
, sortop
, collation
, min
, max
))
5933 if (!HeapTupleIsValid(vardata
->statsTuple
))
5935 /* no stats available, so default result */
5940 * If we can't apply the sortop to the stats data, just fail. In
5941 * principle, if there's a histogram and no MCVs, we could return the
5942 * histogram endpoints without ever applying the sortop ... but it's
5943 * probably not worth trying, because whatever the caller wants to do with
5944 * the endpoints would likely fail the security check too.
5946 if (!statistic_proc_security_check(vardata
,
5947 (opfuncoid
= get_opcode(sortop
))))
5950 opproc
.fn_oid
= InvalidOid
; /* mark this as not looked up yet */
5952 get_typlenbyval(vardata
->atttype
, &typLen
, &typByVal
);
5955 * If there is a histogram with the ordering we want, grab the first and
5958 if (get_attstatsslot(&sslot
, vardata
->statsTuple
,
5959 STATISTIC_KIND_HISTOGRAM
, sortop
,
5960 ATTSTATSSLOT_VALUES
))
5962 if (sslot
.stacoll
== collation
&& sslot
.nvalues
> 0)
5964 tmin
= datumCopy(sslot
.values
[0], typByVal
, typLen
);
5965 tmax
= datumCopy(sslot
.values
[sslot
.nvalues
- 1], typByVal
, typLen
);
5968 free_attstatsslot(&sslot
);
5972 * Otherwise, if there is a histogram with some other ordering, scan it
5973 * and get the min and max values according to the ordering we want. This
5974 * of course may not find values that are really extremal according to our
5975 * ordering, but it beats ignoring available data.
5978 get_attstatsslot(&sslot
, vardata
->statsTuple
,
5979 STATISTIC_KIND_HISTOGRAM
, InvalidOid
,
5980 ATTSTATSSLOT_VALUES
))
5982 get_stats_slot_range(&sslot
, opfuncoid
, &opproc
,
5983 collation
, typLen
, typByVal
,
5984 &tmin
, &tmax
, &have_data
);
5985 free_attstatsslot(&sslot
);
5989 * If we have most-common-values info, look for extreme MCVs. This is
5990 * needed even if we also have a histogram, since the histogram excludes
5991 * the MCVs. However, if we *only* have MCVs and no histogram, we should
5992 * be pretty wary of deciding that that is a full representation of the
5993 * data. Proceed only if the MCVs represent the whole table (to within
5996 if (get_attstatsslot(&sslot
, vardata
->statsTuple
,
5997 STATISTIC_KIND_MCV
, InvalidOid
,
5998 have_data
? ATTSTATSSLOT_VALUES
:
5999 (ATTSTATSSLOT_VALUES
| ATTSTATSSLOT_NUMBERS
)))
6001 bool use_mcvs
= have_data
;
6005 double sumcommon
= 0.0;
6009 for (i
= 0; i
< sslot
.nnumbers
; i
++)
6010 sumcommon
+= sslot
.numbers
[i
];
6011 nullfrac
= ((Form_pg_statistic
) GETSTRUCT(vardata
->statsTuple
))->stanullfrac
;
6012 if (sumcommon
+ nullfrac
> 0.99999)
6017 get_stats_slot_range(&sslot
, opfuncoid
, &opproc
,
6018 collation
, typLen
, typByVal
,
6019 &tmin
, &tmax
, &have_data
);
6020 free_attstatsslot(&sslot
);
6029 * get_stats_slot_range: scan sslot for min/max values
6031 * Subroutine for get_variable_range: update min/max/have_data according
6032 * to what we find in the statistics array.
6035 get_stats_slot_range(AttStatsSlot
*sslot
, Oid opfuncoid
, FmgrInfo
*opproc
,
6036 Oid collation
, int16 typLen
, bool typByVal
,
6037 Datum
*min
, Datum
*max
, bool *p_have_data
)
6041 bool have_data
= *p_have_data
;
6042 bool found_tmin
= false;
6043 bool found_tmax
= false;
6045 /* Look up the comparison function, if we didn't already do so */
6046 if (opproc
->fn_oid
!= opfuncoid
)
6047 fmgr_info(opfuncoid
, opproc
);
6049 /* Scan all the slot's values */
6050 for (int i
= 0; i
< sslot
->nvalues
; i
++)
6054 tmin
= tmax
= sslot
->values
[i
];
6055 found_tmin
= found_tmax
= true;
6056 *p_have_data
= have_data
= true;
6059 if (DatumGetBool(FunctionCall2Coll(opproc
,
6061 sslot
->values
[i
], tmin
)))
6063 tmin
= sslot
->values
[i
];
6066 if (DatumGetBool(FunctionCall2Coll(opproc
,
6068 tmax
, sslot
->values
[i
])))
6070 tmax
= sslot
->values
[i
];
6076 * Copy the slot's values, if we found new extreme values.
6079 *min
= datumCopy(tmin
, typByVal
, typLen
);
6081 *max
= datumCopy(tmax
, typByVal
, typLen
);
6086 * get_actual_variable_range
6087 * Attempt to identify the current *actual* minimum and/or maximum
6088 * of the specified variable, by looking for a suitable btree index
6089 * and fetching its low and/or high values.
6090 * If successful, store values in *min and *max, and return true.
6091 * (Either pointer can be NULL if that endpoint isn't needed.)
6092 * If unsuccessful, return false.
6094 * sortop is the "<" comparison operator to use.
6095 * collation is the required collation.
6098 get_actual_variable_range(PlannerInfo
*root
, VariableStatData
*vardata
,
6099 Oid sortop
, Oid collation
,
6100 Datum
*min
, Datum
*max
)
6102 bool have_data
= false;
6103 RelOptInfo
*rel
= vardata
->rel
;
6107 /* No hope if no relation or it doesn't have indexes */
6108 if (rel
== NULL
|| rel
->indexlist
== NIL
)
6110 /* If it has indexes it must be a plain relation */
6111 rte
= root
->simple_rte_array
[rel
->relid
];
6112 Assert(rte
->rtekind
== RTE_RELATION
);
6114 /* ignore partitioned tables. Any indexes here are not real indexes */
6115 if (rte
->relkind
== RELKIND_PARTITIONED_TABLE
)
6118 /* Search through the indexes to see if any match our problem */
6119 foreach(lc
, rel
->indexlist
)
6121 IndexOptInfo
*index
= (IndexOptInfo
*) lfirst(lc
);
6122 ScanDirection indexscandir
;
6124 /* Ignore non-btree indexes */
6125 if (index
->relam
!= BTREE_AM_OID
)
6129 * Ignore partial indexes --- we only want stats that cover the entire
6132 if (index
->indpred
!= NIL
)
6136 * The index list might include hypothetical indexes inserted by a
6137 * get_relation_info hook --- don't try to access them.
6139 if (index
->hypothetical
)
6143 * The first index column must match the desired variable, sortop, and
6144 * collation --- but we can use a descending-order index.
6146 if (collation
!= index
->indexcollations
[0])
6147 continue; /* test first 'cause it's cheapest */
6148 if (!match_index_to_operand(vardata
->var
, 0, index
))
6150 switch (get_op_opfamily_strategy(sortop
, index
->sortopfamily
[0]))
6152 case BTLessStrategyNumber
:
6153 if (index
->reverse_sort
[0])
6154 indexscandir
= BackwardScanDirection
;
6156 indexscandir
= ForwardScanDirection
;
6158 case BTGreaterStrategyNumber
:
6159 if (index
->reverse_sort
[0])
6160 indexscandir
= ForwardScanDirection
;
6162 indexscandir
= BackwardScanDirection
;
6165 /* index doesn't match the sortop */
6170 * Found a suitable index to extract data from. Set up some data that
6171 * can be used by both invocations of get_actual_variable_endpoint.
6174 MemoryContext tmpcontext
;
6175 MemoryContext oldcontext
;
6178 TupleTableSlot
*slot
;
6181 ScanKeyData scankeys
[1];
6183 /* Make sure any cruft gets recycled when we're done */
6184 tmpcontext
= AllocSetContextCreate(CurrentMemoryContext
,
6185 "get_actual_variable_range workspace",
6186 ALLOCSET_DEFAULT_SIZES
);
6187 oldcontext
= MemoryContextSwitchTo(tmpcontext
);
6190 * Open the table and index so we can read from them. We should
6191 * already have some type of lock on each.
6193 heapRel
= table_open(rte
->relid
, NoLock
);
6194 indexRel
= index_open(index
->indexoid
, NoLock
);
6196 /* build some stuff needed for indexscan execution */
6197 slot
= table_slot_create(heapRel
, NULL
);
6198 get_typlenbyval(vardata
->atttype
, &typLen
, &typByVal
);
6200 /* set up an IS NOT NULL scan key so that we ignore nulls */
6201 ScanKeyEntryInitialize(&scankeys
[0],
6202 SK_ISNULL
| SK_SEARCHNOTNULL
,
6203 1, /* index col to scan */
6204 InvalidStrategy
, /* no strategy */
6205 InvalidOid
, /* no strategy subtype */
6206 InvalidOid
, /* no collation */
6207 InvalidOid
, /* no reg proc for this */
6208 (Datum
) 0); /* constant */
6210 /* If min is requested ... */
6213 have_data
= get_actual_variable_endpoint(heapRel
,
6225 /* If min not requested, still want to fetch max */
6229 /* If max is requested, and we didn't already fail ... */
6230 if (max
&& have_data
)
6232 /* scan in the opposite direction; all else is the same */
6233 have_data
= get_actual_variable_endpoint(heapRel
,
6244 /* Clean everything up */
6245 ExecDropSingleTupleTableSlot(slot
);
6247 index_close(indexRel
, NoLock
);
6248 table_close(heapRel
, NoLock
);
6250 MemoryContextSwitchTo(oldcontext
);
6251 MemoryContextDelete(tmpcontext
);
6253 /* And we're done */
6262 * Get one endpoint datum (min or max depending on indexscandir) from the
6263 * specified index. Return true if successful, false if not.
6264 * On success, endpoint value is stored to *endpointDatum (and copied into
6267 * scankeys is a 1-element scankey array set up to reject nulls.
6268 * typLen/typByVal describe the datatype of the index's first column.
6269 * tableslot is a slot suitable to hold table tuples, in case we need
6270 * to probe the heap.
6271 * (We could compute these values locally, but that would mean computing them
6272 * twice when get_actual_variable_range needs both the min and the max.)
6274 * Failure occurs either when the index is empty, or we decide that it's
6275 * taking too long to find a suitable tuple.
6278 get_actual_variable_endpoint(Relation heapRel
,
6280 ScanDirection indexscandir
,
6284 TupleTableSlot
*tableslot
,
6285 MemoryContext outercontext
,
6286 Datum
*endpointDatum
)
6288 bool have_data
= false;
6289 SnapshotData SnapshotNonVacuumable
;
6290 IndexScanDesc index_scan
;
6291 Buffer vmbuffer
= InvalidBuffer
;
6292 BlockNumber last_heap_block
= InvalidBlockNumber
;
6293 int n_visited_heap_pages
= 0;
6295 Datum values
[INDEX_MAX_KEYS
];
6296 bool isnull
[INDEX_MAX_KEYS
];
6297 MemoryContext oldcontext
;
6300 * We use the index-only-scan machinery for this. With mostly-static
6301 * tables that's a win because it avoids a heap visit. It's also a win
6302 * for dynamic data, but the reason is less obvious; read on for details.
6304 * In principle, we should scan the index with our current active
6305 * snapshot, which is the best approximation we've got to what the query
6306 * will see when executed. But that won't be exact if a new snap is taken
6307 * before running the query, and it can be very expensive if a lot of
6308 * recently-dead or uncommitted rows exist at the beginning or end of the
6309 * index (because we'll laboriously fetch each one and reject it).
6310 * Instead, we use SnapshotNonVacuumable. That will accept recently-dead
6311 * and uncommitted rows as well as normal visible rows. On the other
6312 * hand, it will reject known-dead rows, and thus not give a bogus answer
6313 * when the extreme value has been deleted (unless the deletion was quite
6314 * recent); that case motivates not using SnapshotAny here.
6316 * A crucial point here is that SnapshotNonVacuumable, with
6317 * GlobalVisTestFor(heapRel) as horizon, yields the inverse of the
6318 * condition that the indexscan will use to decide that index entries are
6319 * killable (see heap_hot_search_buffer()). Therefore, if the snapshot
6320 * rejects a tuple (or more precisely, all tuples of a HOT chain) and we
6321 * have to continue scanning past it, we know that the indexscan will mark
6322 * that index entry killed. That means that the next
6323 * get_actual_variable_endpoint() call will not have to re-consider that
6324 * index entry. In this way we avoid repetitive work when this function
6325 * is used a lot during planning.
6327 * But using SnapshotNonVacuumable creates a hazard of its own. In a
6328 * recently-created index, some index entries may point at "broken" HOT
6329 * chains in which not all the tuple versions contain data matching the
6330 * index entry. The live tuple version(s) certainly do match the index,
6331 * but SnapshotNonVacuumable can accept recently-dead tuple versions that
6332 * don't match. Hence, if we took data from the selected heap tuple, we
6333 * might get a bogus answer that's not close to the index extremal value,
6334 * or could even be NULL. We avoid this hazard because we take the data
6335 * from the index entry not the heap.
6337 * Despite all this care, there are situations where we might find many
6338 * non-visible tuples near the end of the index. We don't want to expend
6339 * a huge amount of time here, so we give up once we've read too many heap
6340 * pages. When we fail for that reason, the caller will end up using
6341 * whatever extremal value is recorded in pg_statistic.
6343 InitNonVacuumableSnapshot(SnapshotNonVacuumable
,
6344 GlobalVisTestFor(heapRel
));
6346 index_scan
= index_beginscan(heapRel
, indexRel
,
6347 &SnapshotNonVacuumable
,
6349 /* Set it up for index-only scan */
6350 index_scan
->xs_want_itup
= true;
6351 index_rescan(index_scan
, scankeys
, 1, NULL
, 0);
6353 /* Fetch first/next tuple in specified direction */
6354 while ((tid
= index_getnext_tid(index_scan
, indexscandir
)) != NULL
)
6356 BlockNumber block
= ItemPointerGetBlockNumber(tid
);
6358 if (!VM_ALL_VISIBLE(heapRel
,
6362 /* Rats, we have to visit the heap to check visibility */
6363 if (!index_fetch_heap(index_scan
, tableslot
))
6366 * No visible tuple for this index entry, so we need to
6367 * advance to the next entry. Before doing so, count heap
6368 * page fetches and give up if we've done too many.
6370 * We don't charge a page fetch if this is the same heap page
6371 * as the previous tuple. This is on the conservative side,
6372 * since other recently-accessed pages are probably still in
6373 * buffers too; but it's good enough for this heuristic.
6375 #define VISITED_PAGES_LIMIT 100
6377 if (block
!= last_heap_block
)
6379 last_heap_block
= block
;
6380 n_visited_heap_pages
++;
6381 if (n_visited_heap_pages
> VISITED_PAGES_LIMIT
)
6385 continue; /* no visible tuple, try next index entry */
6388 /* We don't actually need the heap tuple for anything */
6389 ExecClearTuple(tableslot
);
6392 * We don't care whether there's more than one visible tuple in
6393 * the HOT chain; if any are visible, that's good enough.
6398 * We expect that btree will return data in IndexTuple not HeapTuple
6399 * format. It's not lossy either.
6401 if (!index_scan
->xs_itup
)
6402 elog(ERROR
, "no data returned for index-only scan");
6403 if (index_scan
->xs_recheck
)
6404 elog(ERROR
, "unexpected recheck indication from btree");
6406 /* OK to deconstruct the index tuple */
6407 index_deform_tuple(index_scan
->xs_itup
,
6408 index_scan
->xs_itupdesc
,
6411 /* Shouldn't have got a null, but be careful */
6413 elog(ERROR
, "found unexpected null value in index \"%s\"",
6414 RelationGetRelationName(indexRel
));
6416 /* Copy the index column value out to caller's context */
6417 oldcontext
= MemoryContextSwitchTo(outercontext
);
6418 *endpointDatum
= datumCopy(values
[0], typByVal
, typLen
);
6419 MemoryContextSwitchTo(oldcontext
);
6424 if (vmbuffer
!= InvalidBuffer
)
6425 ReleaseBuffer(vmbuffer
);
6426 index_endscan(index_scan
);
6432 * find_join_input_rel
6433 * Look up the input relation for a join.
6435 * We assume that the input relation's RelOptInfo must have been constructed
6439 find_join_input_rel(PlannerInfo
*root
, Relids relids
)
6441 RelOptInfo
*rel
= NULL
;
6443 if (!bms_is_empty(relids
))
6447 if (bms_get_singleton_member(relids
, &relid
))
6448 rel
= find_base_rel(root
, relid
);
6450 rel
= find_join_rel(root
, relids
);
6454 elog(ERROR
, "could not find RelOptInfo for given relids");
6460 /*-------------------------------------------------------------------------
6462 * Index cost estimation functions
6464 *-------------------------------------------------------------------------
6468 * Extract the actual indexquals (as RestrictInfos) from an IndexClause list
6471 get_quals_from_indexclauses(List
*indexclauses
)
6476 foreach(lc
, indexclauses
)
6478 IndexClause
*iclause
= lfirst_node(IndexClause
, lc
);
6481 foreach(lc2
, iclause
->indexquals
)
6483 RestrictInfo
*rinfo
= lfirst_node(RestrictInfo
, lc2
);
6485 result
= lappend(result
, rinfo
);
6492 * Compute the total evaluation cost of the comparison operands in a list
6493 * of index qual expressions. Since we know these will be evaluated just
6494 * once per scan, there's no need to distinguish startup from per-row cost.
6496 * This can be used either on the result of get_quals_from_indexclauses(),
6497 * or directly on an indexorderbys list. In both cases, we expect that the
6498 * index key expression is on the left side of binary clauses.
6501 index_other_operands_eval_cost(PlannerInfo
*root
, List
*indexquals
)
6503 Cost qual_arg_cost
= 0;
6506 foreach(lc
, indexquals
)
6508 Expr
*clause
= (Expr
*) lfirst(lc
);
6509 Node
*other_operand
;
6510 QualCost index_qual_cost
;
6513 * Index quals will have RestrictInfos, indexorderbys won't. Look
6514 * through RestrictInfo if present.
6516 if (IsA(clause
, RestrictInfo
))
6517 clause
= ((RestrictInfo
*) clause
)->clause
;
6519 if (IsA(clause
, OpExpr
))
6521 OpExpr
*op
= (OpExpr
*) clause
;
6523 other_operand
= (Node
*) lsecond(op
->args
);
6525 else if (IsA(clause
, RowCompareExpr
))
6527 RowCompareExpr
*rc
= (RowCompareExpr
*) clause
;
6529 other_operand
= (Node
*) rc
->rargs
;
6531 else if (IsA(clause
, ScalarArrayOpExpr
))
6533 ScalarArrayOpExpr
*saop
= (ScalarArrayOpExpr
*) clause
;
6535 other_operand
= (Node
*) lsecond(saop
->args
);
6537 else if (IsA(clause
, NullTest
))
6539 other_operand
= NULL
;
6543 elog(ERROR
, "unsupported indexqual type: %d",
6544 (int) nodeTag(clause
));
6545 other_operand
= NULL
; /* keep compiler quiet */
6548 cost_qual_eval_node(&index_qual_cost
, other_operand
, root
);
6549 qual_arg_cost
+= index_qual_cost
.startup
+ index_qual_cost
.per_tuple
;
6551 return qual_arg_cost
;
6555 genericcostestimate(PlannerInfo
*root
,
6558 GenericCosts
*costs
)
6560 IndexOptInfo
*index
= path
->indexinfo
;
6561 List
*indexQuals
= get_quals_from_indexclauses(path
->indexclauses
);
6562 List
*indexOrderBys
= path
->indexorderbys
;
6563 Cost indexStartupCost
;
6564 Cost indexTotalCost
;
6565 Selectivity indexSelectivity
;
6566 double indexCorrelation
;
6567 double numIndexPages
;
6568 double numIndexTuples
;
6569 double spc_random_page_cost
;
6570 double num_sa_scans
;
6571 double num_outer_scans
;
6573 double qual_op_cost
;
6574 double qual_arg_cost
;
6575 List
*selectivityQuals
;
6579 * If the index is partial, AND the index predicate with the explicitly
6580 * given indexquals to produce a more accurate idea of the index
6583 selectivityQuals
= add_predicate_to_index_quals(index
, indexQuals
);
6586 * If caller didn't give us an estimate for ScalarArrayOpExpr index scans,
6587 * just assume that the number of index descents is the number of distinct
6588 * combinations of array elements from all of the scan's SAOP clauses.
6590 num_sa_scans
= costs
->num_sa_scans
;
6591 if (num_sa_scans
< 1)
6594 foreach(l
, indexQuals
)
6596 RestrictInfo
*rinfo
= (RestrictInfo
*) lfirst(l
);
6598 if (IsA(rinfo
->clause
, ScalarArrayOpExpr
))
6600 ScalarArrayOpExpr
*saop
= (ScalarArrayOpExpr
*) rinfo
->clause
;
6601 double alength
= estimate_array_length(root
, lsecond(saop
->args
));
6604 num_sa_scans
*= alength
;
6609 /* Estimate the fraction of main-table tuples that will be visited */
6610 indexSelectivity
= clauselist_selectivity(root
, selectivityQuals
,
6616 * If caller didn't give us an estimate, estimate the number of index
6617 * tuples that will be visited. We do it in this rather peculiar-looking
6618 * way in order to get the right answer for partial indexes.
6620 numIndexTuples
= costs
->numIndexTuples
;
6621 if (numIndexTuples
<= 0.0)
6623 numIndexTuples
= indexSelectivity
* index
->rel
->tuples
;
6626 * The above calculation counts all the tuples visited across all
6627 * scans induced by ScalarArrayOpExpr nodes. We want to consider the
6628 * average per-indexscan number, so adjust. This is a handy place to
6629 * round to integer, too. (If caller supplied tuple estimate, it's
6630 * responsible for handling these considerations.)
6632 numIndexTuples
= rint(numIndexTuples
/ num_sa_scans
);
6636 * We can bound the number of tuples by the index size in any case. Also,
6637 * always estimate at least one tuple is touched, even when
6638 * indexSelectivity estimate is tiny.
6640 if (numIndexTuples
> index
->tuples
)
6641 numIndexTuples
= index
->tuples
;
6642 if (numIndexTuples
< 1.0)
6643 numIndexTuples
= 1.0;
6646 * Estimate the number of index pages that will be retrieved.
6648 * We use the simplistic method of taking a pro-rata fraction of the total
6649 * number of index pages. In effect, this counts only leaf pages and not
6650 * any overhead such as index metapage or upper tree levels.
6652 * In practice access to upper index levels is often nearly free because
6653 * those tend to stay in cache under load; moreover, the cost involved is
6654 * highly dependent on index type. We therefore ignore such costs here
6655 * and leave it to the caller to add a suitable charge if needed.
6657 if (index
->pages
> 1 && index
->tuples
> 1)
6658 numIndexPages
= ceil(numIndexTuples
* index
->pages
/ index
->tuples
);
6660 numIndexPages
= 1.0;
6662 /* fetch estimated page cost for tablespace containing index */
6663 get_tablespace_page_costs(index
->reltablespace
,
6664 &spc_random_page_cost
,
6668 * Now compute the disk access costs.
6670 * The above calculations are all per-index-scan. However, if we are in a
6671 * nestloop inner scan, we can expect the scan to be repeated (with
6672 * different search keys) for each row of the outer relation. Likewise,
6673 * ScalarArrayOpExpr quals result in multiple index scans. This creates
6674 * the potential for cache effects to reduce the number of disk page
6675 * fetches needed. We want to estimate the average per-scan I/O cost in
6676 * the presence of caching.
6678 * We use the Mackert-Lohman formula (see costsize.c for details) to
6679 * estimate the total number of page fetches that occur. While this
6680 * wasn't what it was designed for, it seems a reasonable model anyway.
6681 * Note that we are counting pages not tuples anymore, so we take N = T =
6682 * index size, as if there were one "tuple" per page.
6684 num_outer_scans
= loop_count
;
6685 num_scans
= num_sa_scans
* num_outer_scans
;
6689 double pages_fetched
;
6691 /* total page fetches ignoring cache effects */
6692 pages_fetched
= numIndexPages
* num_scans
;
6694 /* use Mackert and Lohman formula to adjust for cache effects */
6695 pages_fetched
= index_pages_fetched(pages_fetched
,
6697 (double) index
->pages
,
6701 * Now compute the total disk access cost, and then report a pro-rated
6702 * share for each outer scan. (Don't pro-rate for ScalarArrayOpExpr,
6703 * since that's internal to the indexscan.)
6705 indexTotalCost
= (pages_fetched
* spc_random_page_cost
)
6711 * For a single index scan, we just charge spc_random_page_cost per
6714 indexTotalCost
= numIndexPages
* spc_random_page_cost
;
6718 * CPU cost: any complex expressions in the indexquals will need to be
6719 * evaluated once at the start of the scan to reduce them to runtime keys
6720 * to pass to the index AM (see nodeIndexscan.c). We model the per-tuple
6721 * CPU costs as cpu_index_tuple_cost plus one cpu_operator_cost per
6722 * indexqual operator. Because we have numIndexTuples as a per-scan
6723 * number, we have to multiply by num_sa_scans to get the correct result
6724 * for ScalarArrayOpExpr cases. Similarly add in costs for any index
6725 * ORDER BY expressions.
6727 * Note: this neglects the possible costs of rechecking lossy operators.
6728 * Detecting that that might be needed seems more expensive than it's
6729 * worth, though, considering all the other inaccuracies here ...
6731 qual_arg_cost
= index_other_operands_eval_cost(root
, indexQuals
) +
6732 index_other_operands_eval_cost(root
, indexOrderBys
);
6733 qual_op_cost
= cpu_operator_cost
*
6734 (list_length(indexQuals
) + list_length(indexOrderBys
));
6736 indexStartupCost
= qual_arg_cost
;
6737 indexTotalCost
+= qual_arg_cost
;
6738 indexTotalCost
+= numIndexTuples
* num_sa_scans
* (cpu_index_tuple_cost
+ qual_op_cost
);
6741 * Generic assumption about index correlation: there isn't any.
6743 indexCorrelation
= 0.0;
6746 * Return everything to caller.
6748 costs
->indexStartupCost
= indexStartupCost
;
6749 costs
->indexTotalCost
= indexTotalCost
;
6750 costs
->indexSelectivity
= indexSelectivity
;
6751 costs
->indexCorrelation
= indexCorrelation
;
6752 costs
->numIndexPages
= numIndexPages
;
6753 costs
->numIndexTuples
= numIndexTuples
;
6754 costs
->spc_random_page_cost
= spc_random_page_cost
;
6755 costs
->num_sa_scans
= num_sa_scans
;
6759 * If the index is partial, add its predicate to the given qual list.
6761 * ANDing the index predicate with the explicitly given indexquals produces
6762 * a more accurate idea of the index's selectivity. However, we need to be
6763 * careful not to insert redundant clauses, because clauselist_selectivity()
6764 * is easily fooled into computing a too-low selectivity estimate. Our
6765 * approach is to add only the predicate clause(s) that cannot be proven to
6766 * be implied by the given indexquals. This successfully handles cases such
6767 * as a qual "x = 42" used with a partial index "WHERE x >= 40 AND x < 50".
6768 * There are many other cases where we won't detect redundancy, leading to a
6769 * too-low selectivity estimate, which will bias the system in favor of using
6770 * partial indexes where possible. That is not necessarily bad though.
6772 * Note that indexQuals contains RestrictInfo nodes while the indpred
6773 * does not, so the output list will be mixed. This is OK for both
6774 * predicate_implied_by() and clauselist_selectivity(), but might be
6775 * problematic if the result were passed to other things.
6778 add_predicate_to_index_quals(IndexOptInfo
*index
, List
*indexQuals
)
6780 List
*predExtraQuals
= NIL
;
6783 if (index
->indpred
== NIL
)
6786 foreach(lc
, index
->indpred
)
6788 Node
*predQual
= (Node
*) lfirst(lc
);
6789 List
*oneQual
= list_make1(predQual
);
6791 if (!predicate_implied_by(oneQual
, indexQuals
, false))
6792 predExtraQuals
= list_concat(predExtraQuals
, oneQual
);
6794 return list_concat(predExtraQuals
, indexQuals
);
6799 btcostestimate(PlannerInfo
*root
, IndexPath
*path
, double loop_count
,
6800 Cost
*indexStartupCost
, Cost
*indexTotalCost
,
6801 Selectivity
*indexSelectivity
, double *indexCorrelation
,
6804 IndexOptInfo
*index
= path
->indexinfo
;
6805 GenericCosts costs
= {0};
6808 VariableStatData vardata
= {0};
6809 double numIndexTuples
;
6811 List
*indexBoundQuals
;
6815 bool found_is_null_op
;
6816 double num_sa_scans
;
6820 * For a btree scan, only leading '=' quals plus inequality quals for the
6821 * immediately next attribute contribute to index selectivity (these are
6822 * the "boundary quals" that determine the starting and stopping points of
6823 * the index scan). Additional quals can suppress visits to the heap, so
6824 * it's OK to count them in indexSelectivity, but they should not count
6825 * for estimating numIndexTuples. So we must examine the given indexquals
6826 * to find out which ones count as boundary quals. We rely on the
6827 * knowledge that they are given in index column order.
6829 * For a RowCompareExpr, we consider only the first column, just as
6830 * rowcomparesel() does.
6832 * If there's a ScalarArrayOpExpr in the quals, we'll actually perform up
6833 * to N index descents (not just one), but the ScalarArrayOpExpr's
6834 * operator can be considered to act the same as it normally does.
6836 indexBoundQuals
= NIL
;
6840 found_is_null_op
= false;
6842 foreach(lc
, path
->indexclauses
)
6844 IndexClause
*iclause
= lfirst_node(IndexClause
, lc
);
6847 if (indexcol
!= iclause
->indexcol
)
6849 /* Beginning of a new column's quals */
6851 break; /* done if no '=' qual for indexcol */
6854 if (indexcol
!= iclause
->indexcol
)
6855 break; /* no quals at all for indexcol */
6858 /* Examine each indexqual associated with this index clause */
6859 foreach(lc2
, iclause
->indexquals
)
6861 RestrictInfo
*rinfo
= lfirst_node(RestrictInfo
, lc2
);
6862 Expr
*clause
= rinfo
->clause
;
6863 Oid clause_op
= InvalidOid
;
6866 if (IsA(clause
, OpExpr
))
6868 OpExpr
*op
= (OpExpr
*) clause
;
6870 clause_op
= op
->opno
;
6872 else if (IsA(clause
, RowCompareExpr
))
6874 RowCompareExpr
*rc
= (RowCompareExpr
*) clause
;
6876 clause_op
= linitial_oid(rc
->opnos
);
6878 else if (IsA(clause
, ScalarArrayOpExpr
))
6880 ScalarArrayOpExpr
*saop
= (ScalarArrayOpExpr
*) clause
;
6881 Node
*other_operand
= (Node
*) lsecond(saop
->args
);
6882 double alength
= estimate_array_length(root
, other_operand
);
6884 clause_op
= saop
->opno
;
6886 /* estimate SA descents by indexBoundQuals only */
6888 num_sa_scans
*= alength
;
6890 else if (IsA(clause
, NullTest
))
6892 NullTest
*nt
= (NullTest
*) clause
;
6894 if (nt
->nulltesttype
== IS_NULL
)
6896 found_is_null_op
= true;
6897 /* IS NULL is like = for selectivity purposes */
6902 elog(ERROR
, "unsupported indexqual type: %d",
6903 (int) nodeTag(clause
));
6905 /* check for equality operator */
6906 if (OidIsValid(clause_op
))
6908 op_strategy
= get_op_opfamily_strategy(clause_op
,
6909 index
->opfamily
[indexcol
]);
6910 Assert(op_strategy
!= 0); /* not a member of opfamily?? */
6911 if (op_strategy
== BTEqualStrategyNumber
)
6915 indexBoundQuals
= lappend(indexBoundQuals
, rinfo
);
6920 * If index is unique and we found an '=' clause for each column, we can
6921 * just assume numIndexTuples = 1 and skip the expensive
6922 * clauselist_selectivity calculations. However, a ScalarArrayOp or
6923 * NullTest invalidates that theory, even though it sets eqQualHere.
6925 if (index
->unique
&&
6926 indexcol
== index
->nkeycolumns
- 1 &&
6930 numIndexTuples
= 1.0;
6933 List
*selectivityQuals
;
6934 Selectivity btreeSelectivity
;
6937 * If the index is partial, AND the index predicate with the
6938 * index-bound quals to produce a more accurate idea of the number of
6939 * rows covered by the bound conditions.
6941 selectivityQuals
= add_predicate_to_index_quals(index
, indexBoundQuals
);
6943 btreeSelectivity
= clauselist_selectivity(root
, selectivityQuals
,
6947 numIndexTuples
= btreeSelectivity
* index
->rel
->tuples
;
6950 * btree automatically combines individual ScalarArrayOpExpr primitive
6951 * index scans whenever the tuples covered by the next set of array
6952 * keys are close to tuples covered by the current set. That puts a
6953 * natural ceiling on the worst case number of descents -- there
6954 * cannot possibly be more than one descent per leaf page scanned.
6956 * Clamp the number of descents to at most 1/3 the number of index
6957 * pages. This avoids implausibly high estimates with low selectivity
6958 * paths, where scans usually require only one or two descents. This
6959 * is most likely to help when there are several SAOP clauses, where
6960 * naively accepting the total number of distinct combinations of
6961 * array elements as the number of descents would frequently lead to
6962 * wild overestimates.
6964 * We somewhat arbitrarily don't just make the cutoff the total number
6965 * of leaf pages (we make it 1/3 the total number of pages instead) to
6966 * give the btree code credit for its ability to continue on the leaf
6967 * level with low selectivity scans.
6969 num_sa_scans
= Min(num_sa_scans
, ceil(index
->pages
* 0.3333333));
6970 num_sa_scans
= Max(num_sa_scans
, 1);
6973 * As in genericcostestimate(), we have to adjust for any
6974 * ScalarArrayOpExpr quals included in indexBoundQuals, and then round
6977 * It is tempting to make genericcostestimate behave as if SAOP
6978 * clauses work in almost the same way as scalar operators during
6979 * btree scans, making the top-level scan look like a continuous scan
6980 * (as opposed to num_sa_scans-many primitive index scans). After
6981 * all, btree scans mostly work like that at runtime. However, such a
6982 * scheme would badly bias genericcostestimate's simplistic approach
6983 * to calculating numIndexPages through prorating.
6985 * Stick with the approach taken by non-native SAOP scans for now.
6986 * genericcostestimate will use the Mackert-Lohman formula to
6987 * compensate for repeat page fetches, even though that definitely
6988 * won't happen during btree scans (not for leaf pages, at least).
6989 * We're usually very pessimistic about the number of primitive index
6990 * scans that will be required, but it's not clear how to do better.
6992 numIndexTuples
= rint(numIndexTuples
/ num_sa_scans
);
6996 * Now do generic index cost estimation.
6998 costs
.numIndexTuples
= numIndexTuples
;
6999 costs
.num_sa_scans
= num_sa_scans
;
7001 genericcostestimate(root
, path
, loop_count
, &costs
);
7004 * Add a CPU-cost component to represent the costs of initial btree
7005 * descent. We don't charge any I/O cost for touching upper btree levels,
7006 * since they tend to stay in cache, but we still have to do about log2(N)
7007 * comparisons to descend a btree of N leaf tuples. We charge one
7008 * cpu_operator_cost per comparison.
7010 * If there are ScalarArrayOpExprs, charge this once per estimated SA
7011 * index descent. The ones after the first one are not startup cost so
7012 * far as the overall plan goes, so just add them to "total" cost.
7014 if (index
->tuples
> 1) /* avoid computing log(0) */
7016 descentCost
= ceil(log(index
->tuples
) / log(2.0)) * cpu_operator_cost
;
7017 costs
.indexStartupCost
+= descentCost
;
7018 costs
.indexTotalCost
+= costs
.num_sa_scans
* descentCost
;
7022 * Even though we're not charging I/O cost for touching upper btree pages,
7023 * it's still reasonable to charge some CPU cost per page descended
7024 * through. Moreover, if we had no such charge at all, bloated indexes
7025 * would appear to have the same search cost as unbloated ones, at least
7026 * in cases where only a single leaf page is expected to be visited. This
7027 * cost is somewhat arbitrarily set at 50x cpu_operator_cost per page
7028 * touched. The number of such pages is btree tree height plus one (ie,
7029 * we charge for the leaf page too). As above, charge once per estimated
7032 descentCost
= (index
->tree_height
+ 1) * DEFAULT_PAGE_CPU_MULTIPLIER
* cpu_operator_cost
;
7033 costs
.indexStartupCost
+= descentCost
;
7034 costs
.indexTotalCost
+= costs
.num_sa_scans
* descentCost
;
7037 * If we can get an estimate of the first column's ordering correlation C
7038 * from pg_statistic, estimate the index correlation as C for a
7039 * single-column index, or C * 0.75 for multiple columns. (The idea here
7040 * is that multiple columns dilute the importance of the first column's
7041 * ordering, but don't negate it entirely. Before 8.0 we divided the
7042 * correlation by the number of columns, but that seems too strong.)
7044 if (index
->indexkeys
[0] != 0)
7046 /* Simple variable --- look to stats for the underlying table */
7047 RangeTblEntry
*rte
= planner_rt_fetch(index
->rel
->relid
, root
);
7049 Assert(rte
->rtekind
== RTE_RELATION
);
7051 Assert(relid
!= InvalidOid
);
7052 colnum
= index
->indexkeys
[0];
7054 if (get_relation_stats_hook
&&
7055 (*get_relation_stats_hook
) (root
, rte
, colnum
, &vardata
))
7058 * The hook took control of acquiring a stats tuple. If it did
7059 * supply a tuple, it'd better have supplied a freefunc.
7061 if (HeapTupleIsValid(vardata
.statsTuple
) &&
7063 elog(ERROR
, "no function provided to release variable stats with");
7067 vardata
.statsTuple
= SearchSysCache3(STATRELATTINH
,
7068 ObjectIdGetDatum(relid
),
7069 Int16GetDatum(colnum
),
7070 BoolGetDatum(rte
->inh
));
7071 vardata
.freefunc
= ReleaseSysCache
;
7076 /* Expression --- maybe there are stats for the index itself */
7077 relid
= index
->indexoid
;
7080 if (get_index_stats_hook
&&
7081 (*get_index_stats_hook
) (root
, relid
, colnum
, &vardata
))
7084 * The hook took control of acquiring a stats tuple. If it did
7085 * supply a tuple, it'd better have supplied a freefunc.
7087 if (HeapTupleIsValid(vardata
.statsTuple
) &&
7089 elog(ERROR
, "no function provided to release variable stats with");
7093 vardata
.statsTuple
= SearchSysCache3(STATRELATTINH
,
7094 ObjectIdGetDatum(relid
),
7095 Int16GetDatum(colnum
),
7096 BoolGetDatum(false));
7097 vardata
.freefunc
= ReleaseSysCache
;
7101 if (HeapTupleIsValid(vardata
.statsTuple
))
7106 sortop
= get_opfamily_member(index
->opfamily
[0],
7107 index
->opcintype
[0],
7108 index
->opcintype
[0],
7109 BTLessStrategyNumber
);
7110 if (OidIsValid(sortop
) &&
7111 get_attstatsslot(&sslot
, vardata
.statsTuple
,
7112 STATISTIC_KIND_CORRELATION
, sortop
,
7113 ATTSTATSSLOT_NUMBERS
))
7115 double varCorrelation
;
7117 Assert(sslot
.nnumbers
== 1);
7118 varCorrelation
= sslot
.numbers
[0];
7120 if (index
->reverse_sort
[0])
7121 varCorrelation
= -varCorrelation
;
7123 if (index
->nkeycolumns
> 1)
7124 costs
.indexCorrelation
= varCorrelation
* 0.75;
7126 costs
.indexCorrelation
= varCorrelation
;
7128 free_attstatsslot(&sslot
);
7132 ReleaseVariableStats(vardata
);
7134 *indexStartupCost
= costs
.indexStartupCost
;
7135 *indexTotalCost
= costs
.indexTotalCost
;
7136 *indexSelectivity
= costs
.indexSelectivity
;
7137 *indexCorrelation
= costs
.indexCorrelation
;
7138 *indexPages
= costs
.numIndexPages
;
7142 hashcostestimate(PlannerInfo
*root
, IndexPath
*path
, double loop_count
,
7143 Cost
*indexStartupCost
, Cost
*indexTotalCost
,
7144 Selectivity
*indexSelectivity
, double *indexCorrelation
,
7147 GenericCosts costs
= {0};
7149 genericcostestimate(root
, path
, loop_count
, &costs
);
7152 * A hash index has no descent costs as such, since the index AM can go
7153 * directly to the target bucket after computing the hash value. There
7154 * are a couple of other hash-specific costs that we could conceivably add
7157 * Ideally we'd charge spc_random_page_cost for each page in the target
7158 * bucket, not just the numIndexPages pages that genericcostestimate
7159 * thought we'd visit. However in most cases we don't know which bucket
7160 * that will be. There's no point in considering the average bucket size
7161 * because the hash AM makes sure that's always one page.
7163 * Likewise, we could consider charging some CPU for each index tuple in
7164 * the bucket, if we knew how many there were. But the per-tuple cost is
7165 * just a hash value comparison, not a general datatype-dependent
7166 * comparison, so any such charge ought to be quite a bit less than
7167 * cpu_operator_cost; which makes it probably not worth worrying about.
7169 * A bigger issue is that chance hash-value collisions will result in
7170 * wasted probes into the heap. We don't currently attempt to model this
7171 * cost on the grounds that it's rare, but maybe it's not rare enough.
7172 * (Any fix for this ought to consider the generic lossy-operator problem,
7173 * though; it's not entirely hash-specific.)
7176 *indexStartupCost
= costs
.indexStartupCost
;
7177 *indexTotalCost
= costs
.indexTotalCost
;
7178 *indexSelectivity
= costs
.indexSelectivity
;
7179 *indexCorrelation
= costs
.indexCorrelation
;
7180 *indexPages
= costs
.numIndexPages
;
7184 gistcostestimate(PlannerInfo
*root
, IndexPath
*path
, double loop_count
,
7185 Cost
*indexStartupCost
, Cost
*indexTotalCost
,
7186 Selectivity
*indexSelectivity
, double *indexCorrelation
,
7189 IndexOptInfo
*index
= path
->indexinfo
;
7190 GenericCosts costs
= {0};
7193 genericcostestimate(root
, path
, loop_count
, &costs
);
7196 * We model index descent costs similarly to those for btree, but to do
7197 * that we first need an idea of the tree height. We somewhat arbitrarily
7198 * assume that the fanout is 100, meaning the tree height is at most
7199 * log100(index->pages).
7201 * Although this computation isn't really expensive enough to require
7202 * caching, we might as well use index->tree_height to cache it.
7204 if (index
->tree_height
< 0) /* unknown? */
7206 if (index
->pages
> 1) /* avoid computing log(0) */
7207 index
->tree_height
= (int) (log(index
->pages
) / log(100.0));
7209 index
->tree_height
= 0;
7213 * Add a CPU-cost component to represent the costs of initial descent. We
7214 * just use log(N) here not log2(N) since the branching factor isn't
7215 * necessarily two anyway. As for btree, charge once per SA scan.
7217 if (index
->tuples
> 1) /* avoid computing log(0) */
7219 descentCost
= ceil(log(index
->tuples
)) * cpu_operator_cost
;
7220 costs
.indexStartupCost
+= descentCost
;
7221 costs
.indexTotalCost
+= costs
.num_sa_scans
* descentCost
;
7225 * Likewise add a per-page charge, calculated the same as for btrees.
7227 descentCost
= (index
->tree_height
+ 1) * DEFAULT_PAGE_CPU_MULTIPLIER
* cpu_operator_cost
;
7228 costs
.indexStartupCost
+= descentCost
;
7229 costs
.indexTotalCost
+= costs
.num_sa_scans
* descentCost
;
7231 *indexStartupCost
= costs
.indexStartupCost
;
7232 *indexTotalCost
= costs
.indexTotalCost
;
7233 *indexSelectivity
= costs
.indexSelectivity
;
7234 *indexCorrelation
= costs
.indexCorrelation
;
7235 *indexPages
= costs
.numIndexPages
;
7239 spgcostestimate(PlannerInfo
*root
, IndexPath
*path
, double loop_count
,
7240 Cost
*indexStartupCost
, Cost
*indexTotalCost
,
7241 Selectivity
*indexSelectivity
, double *indexCorrelation
,
7244 IndexOptInfo
*index
= path
->indexinfo
;
7245 GenericCosts costs
= {0};
7248 genericcostestimate(root
, path
, loop_count
, &costs
);
7251 * We model index descent costs similarly to those for btree, but to do
7252 * that we first need an idea of the tree height. We somewhat arbitrarily
7253 * assume that the fanout is 100, meaning the tree height is at most
7254 * log100(index->pages).
7256 * Although this computation isn't really expensive enough to require
7257 * caching, we might as well use index->tree_height to cache it.
7259 if (index
->tree_height
< 0) /* unknown? */
7261 if (index
->pages
> 1) /* avoid computing log(0) */
7262 index
->tree_height
= (int) (log(index
->pages
) / log(100.0));
7264 index
->tree_height
= 0;
7268 * Add a CPU-cost component to represent the costs of initial descent. We
7269 * just use log(N) here not log2(N) since the branching factor isn't
7270 * necessarily two anyway. As for btree, charge once per SA scan.
7272 if (index
->tuples
> 1) /* avoid computing log(0) */
7274 descentCost
= ceil(log(index
->tuples
)) * cpu_operator_cost
;
7275 costs
.indexStartupCost
+= descentCost
;
7276 costs
.indexTotalCost
+= costs
.num_sa_scans
* descentCost
;
7280 * Likewise add a per-page charge, calculated the same as for btrees.
7282 descentCost
= (index
->tree_height
+ 1) * DEFAULT_PAGE_CPU_MULTIPLIER
* cpu_operator_cost
;
7283 costs
.indexStartupCost
+= descentCost
;
7284 costs
.indexTotalCost
+= costs
.num_sa_scans
* descentCost
;
7286 *indexStartupCost
= costs
.indexStartupCost
;
7287 *indexTotalCost
= costs
.indexTotalCost
;
7288 *indexSelectivity
= costs
.indexSelectivity
;
7289 *indexCorrelation
= costs
.indexCorrelation
;
7290 *indexPages
= costs
.numIndexPages
;
7295 * Support routines for gincostestimate
7300 bool attHasFullScan
[INDEX_MAX_KEYS
];
7301 bool attHasNormalScan
[INDEX_MAX_KEYS
];
7302 double partialEntries
;
7303 double exactEntries
;
7304 double searchEntries
;
7309 * Estimate the number of index terms that need to be searched for while
7310 * testing the given GIN query, and increment the counts in *counts
7311 * appropriately. If the query is unsatisfiable, return false.
7314 gincost_pattern(IndexOptInfo
*index
, int indexcol
,
7315 Oid clause_op
, Datum query
,
7316 GinQualCounts
*counts
)
7325 bool *partial_matches
= NULL
;
7326 Pointer
*extra_data
= NULL
;
7327 bool *nullFlags
= NULL
;
7328 int32 searchMode
= GIN_SEARCH_MODE_DEFAULT
;
7331 Assert(indexcol
< index
->nkeycolumns
);
7334 * Get the operator's strategy number and declared input data types within
7335 * the index opfamily. (We don't need the latter, but we use
7336 * get_op_opfamily_properties because it will throw error if it fails to
7337 * find a matching pg_amop entry.)
7339 get_op_opfamily_properties(clause_op
, index
->opfamily
[indexcol
], false,
7340 &strategy_op
, &lefttype
, &righttype
);
7343 * GIN always uses the "default" support functions, which are those with
7344 * lefttype == righttype == the opclass' opcintype (see
7345 * IndexSupportInitialize in relcache.c).
7347 extractProcOid
= get_opfamily_proc(index
->opfamily
[indexcol
],
7348 index
->opcintype
[indexcol
],
7349 index
->opcintype
[indexcol
],
7350 GIN_EXTRACTQUERY_PROC
);
7352 if (!OidIsValid(extractProcOid
))
7354 /* should not happen; throw same error as index_getprocinfo */
7355 elog(ERROR
, "missing support function %d for attribute %d of index \"%s\"",
7356 GIN_EXTRACTQUERY_PROC
, indexcol
+ 1,
7357 get_rel_name(index
->indexoid
));
7361 * Choose collation to pass to extractProc (should match initGinState).
7363 if (OidIsValid(index
->indexcollations
[indexcol
]))
7364 collation
= index
->indexcollations
[indexcol
];
7366 collation
= DEFAULT_COLLATION_OID
;
7368 fmgr_info(extractProcOid
, &flinfo
);
7370 set_fn_opclass_options(&flinfo
, index
->opclassoptions
[indexcol
]);
7372 FunctionCall7Coll(&flinfo
,
7375 PointerGetDatum(&nentries
),
7376 UInt16GetDatum(strategy_op
),
7377 PointerGetDatum(&partial_matches
),
7378 PointerGetDatum(&extra_data
),
7379 PointerGetDatum(&nullFlags
),
7380 PointerGetDatum(&searchMode
));
7382 if (nentries
<= 0 && searchMode
== GIN_SEARCH_MODE_DEFAULT
)
7384 /* No match is possible */
7388 for (i
= 0; i
< nentries
; i
++)
7391 * For partial match we haven't any information to estimate number of
7392 * matched entries in index, so, we just estimate it as 100
7394 if (partial_matches
&& partial_matches
[i
])
7395 counts
->partialEntries
+= 100;
7397 counts
->exactEntries
++;
7399 counts
->searchEntries
++;
7402 if (searchMode
== GIN_SEARCH_MODE_DEFAULT
)
7404 counts
->attHasNormalScan
[indexcol
] = true;
7406 else if (searchMode
== GIN_SEARCH_MODE_INCLUDE_EMPTY
)
7408 /* Treat "include empty" like an exact-match item */
7409 counts
->attHasNormalScan
[indexcol
] = true;
7410 counts
->exactEntries
++;
7411 counts
->searchEntries
++;
7415 /* It's GIN_SEARCH_MODE_ALL */
7416 counts
->attHasFullScan
[indexcol
] = true;
7423 * Estimate the number of index terms that need to be searched for while
7424 * testing the given GIN index clause, and increment the counts in *counts
7425 * appropriately. If the query is unsatisfiable, return false.
7428 gincost_opexpr(PlannerInfo
*root
,
7429 IndexOptInfo
*index
,
7432 GinQualCounts
*counts
)
7434 Oid clause_op
= clause
->opno
;
7435 Node
*operand
= (Node
*) lsecond(clause
->args
);
7437 /* aggressively reduce to a constant, and look through relabeling */
7438 operand
= estimate_expression_value(root
, operand
);
7440 if (IsA(operand
, RelabelType
))
7441 operand
= (Node
*) ((RelabelType
*) operand
)->arg
;
7444 * It's impossible to call extractQuery method for unknown operand. So
7445 * unless operand is a Const we can't do much; just assume there will be
7446 * one ordinary search entry from the operand at runtime.
7448 if (!IsA(operand
, Const
))
7450 counts
->exactEntries
++;
7451 counts
->searchEntries
++;
7455 /* If Const is null, there can be no matches */
7456 if (((Const
*) operand
)->constisnull
)
7459 /* Otherwise, apply extractQuery and get the actual term counts */
7460 return gincost_pattern(index
, indexcol
, clause_op
,
7461 ((Const
*) operand
)->constvalue
,
7466 * Estimate the number of index terms that need to be searched for while
7467 * testing the given GIN index clause, and increment the counts in *counts
7468 * appropriately. If the query is unsatisfiable, return false.
7470 * A ScalarArrayOpExpr will give rise to N separate indexscans at runtime,
7471 * each of which involves one value from the RHS array, plus all the
7472 * non-array quals (if any). To model this, we average the counts across
7473 * the RHS elements, and add the averages to the counts in *counts (which
7474 * correspond to per-indexscan costs). We also multiply counts->arrayScans
7475 * by N, causing gincostestimate to scale up its estimates accordingly.
7478 gincost_scalararrayopexpr(PlannerInfo
*root
,
7479 IndexOptInfo
*index
,
7481 ScalarArrayOpExpr
*clause
,
7482 double numIndexEntries
,
7483 GinQualCounts
*counts
)
7485 Oid clause_op
= clause
->opno
;
7486 Node
*rightop
= (Node
*) lsecond(clause
->args
);
7487 ArrayType
*arrayval
;
7494 GinQualCounts arraycounts
;
7495 int numPossible
= 0;
7498 Assert(clause
->useOr
);
7500 /* aggressively reduce to a constant, and look through relabeling */
7501 rightop
= estimate_expression_value(root
, rightop
);
7503 if (IsA(rightop
, RelabelType
))
7504 rightop
= (Node
*) ((RelabelType
*) rightop
)->arg
;
7507 * It's impossible to call extractQuery method for unknown operand. So
7508 * unless operand is a Const we can't do much; just assume there will be
7509 * one ordinary search entry from each array entry at runtime, and fall
7510 * back on a probably-bad estimate of the number of array entries.
7512 if (!IsA(rightop
, Const
))
7514 counts
->exactEntries
++;
7515 counts
->searchEntries
++;
7516 counts
->arrayScans
*= estimate_array_length(root
, rightop
);
7520 /* If Const is null, there can be no matches */
7521 if (((Const
*) rightop
)->constisnull
)
7524 /* Otherwise, extract the array elements and iterate over them */
7525 arrayval
= DatumGetArrayTypeP(((Const
*) rightop
)->constvalue
);
7526 get_typlenbyvalalign(ARR_ELEMTYPE(arrayval
),
7527 &elmlen
, &elmbyval
, &elmalign
);
7528 deconstruct_array(arrayval
,
7529 ARR_ELEMTYPE(arrayval
),
7530 elmlen
, elmbyval
, elmalign
,
7531 &elemValues
, &elemNulls
, &numElems
);
7533 memset(&arraycounts
, 0, sizeof(arraycounts
));
7535 for (i
= 0; i
< numElems
; i
++)
7537 GinQualCounts elemcounts
;
7539 /* NULL can't match anything, so ignore, as the executor will */
7543 /* Otherwise, apply extractQuery and get the actual term counts */
7544 memset(&elemcounts
, 0, sizeof(elemcounts
));
7546 if (gincost_pattern(index
, indexcol
, clause_op
, elemValues
[i
],
7549 /* We ignore array elements that are unsatisfiable patterns */
7552 if (elemcounts
.attHasFullScan
[indexcol
] &&
7553 !elemcounts
.attHasNormalScan
[indexcol
])
7556 * Full index scan will be required. We treat this as if
7557 * every key in the index had been listed in the query; is
7560 elemcounts
.partialEntries
= 0;
7561 elemcounts
.exactEntries
= numIndexEntries
;
7562 elemcounts
.searchEntries
= numIndexEntries
;
7564 arraycounts
.partialEntries
+= elemcounts
.partialEntries
;
7565 arraycounts
.exactEntries
+= elemcounts
.exactEntries
;
7566 arraycounts
.searchEntries
+= elemcounts
.searchEntries
;
7570 if (numPossible
== 0)
7572 /* No satisfiable patterns in the array */
7577 * Now add the averages to the global counts. This will give us an
7578 * estimate of the average number of terms searched for in each indexscan,
7579 * including contributions from both array and non-array quals.
7581 counts
->partialEntries
+= arraycounts
.partialEntries
/ numPossible
;
7582 counts
->exactEntries
+= arraycounts
.exactEntries
/ numPossible
;
7583 counts
->searchEntries
+= arraycounts
.searchEntries
/ numPossible
;
7585 counts
->arrayScans
*= numPossible
;
7591 * GIN has search behavior completely different from other index types
7594 gincostestimate(PlannerInfo
*root
, IndexPath
*path
, double loop_count
,
7595 Cost
*indexStartupCost
, Cost
*indexTotalCost
,
7596 Selectivity
*indexSelectivity
, double *indexCorrelation
,
7599 IndexOptInfo
*index
= path
->indexinfo
;
7600 List
*indexQuals
= get_quals_from_indexclauses(path
->indexclauses
);
7601 List
*selectivityQuals
;
7602 double numPages
= index
->pages
,
7603 numTuples
= index
->tuples
;
7604 double numEntryPages
,
7608 GinQualCounts counts
;
7611 double partialScale
;
7612 double entryPagesFetched
,
7614 dataPagesFetchedBySel
;
7615 double qual_op_cost
,
7617 spc_random_page_cost
,
7621 GinStatsData ginStats
;
7626 * Obtain statistical information from the meta page, if possible. Else
7627 * set ginStats to zeroes, and we'll cope below.
7629 if (!index
->hypothetical
)
7631 /* Lock should have already been obtained in plancat.c */
7632 indexRel
= index_open(index
->indexoid
, NoLock
);
7633 ginGetStats(indexRel
, &ginStats
);
7634 index_close(indexRel
, NoLock
);
7638 memset(&ginStats
, 0, sizeof(ginStats
));
7642 * Assuming we got valid (nonzero) stats at all, nPendingPages can be
7643 * trusted, but the other fields are data as of the last VACUUM. We can
7644 * scale them up to account for growth since then, but that method only
7645 * goes so far; in the worst case, the stats might be for a completely
7646 * empty index, and scaling them will produce pretty bogus numbers.
7647 * Somewhat arbitrarily, set the cutoff for doing scaling at 4X growth; if
7648 * it's grown more than that, fall back to estimating things only from the
7649 * assumed-accurate index size. But we'll trust nPendingPages in any case
7650 * so long as it's not clearly insane, ie, more than the index size.
7652 if (ginStats
.nPendingPages
< numPages
)
7653 numPendingPages
= ginStats
.nPendingPages
;
7655 numPendingPages
= 0;
7657 if (numPages
> 0 && ginStats
.nTotalPages
<= numPages
&&
7658 ginStats
.nTotalPages
> numPages
/ 4 &&
7659 ginStats
.nEntryPages
> 0 && ginStats
.nEntries
> 0)
7662 * OK, the stats seem close enough to sane to be trusted. But we
7663 * still need to scale them by the ratio numPages / nTotalPages to
7664 * account for growth since the last VACUUM.
7666 double scale
= numPages
/ ginStats
.nTotalPages
;
7668 numEntryPages
= ceil(ginStats
.nEntryPages
* scale
);
7669 numDataPages
= ceil(ginStats
.nDataPages
* scale
);
7670 numEntries
= ceil(ginStats
.nEntries
* scale
);
7671 /* ensure we didn't round up too much */
7672 numEntryPages
= Min(numEntryPages
, numPages
- numPendingPages
);
7673 numDataPages
= Min(numDataPages
,
7674 numPages
- numPendingPages
- numEntryPages
);
7679 * We might get here because it's a hypothetical index, or an index
7680 * created pre-9.1 and never vacuumed since upgrading (in which case
7681 * its stats would read as zeroes), or just because it's grown too
7682 * much since the last VACUUM for us to put our faith in scaling.
7684 * Invent some plausible internal statistics based on the index page
7685 * count (and clamp that to at least 10 pages, just in case). We
7686 * estimate that 90% of the index is entry pages, and the rest is data
7687 * pages. Estimate 100 entries per entry page; this is rather bogus
7688 * since it'll depend on the size of the keys, but it's more robust
7689 * than trying to predict the number of entries per heap tuple.
7691 numPages
= Max(numPages
, 10);
7692 numEntryPages
= floor((numPages
- numPendingPages
) * 0.90);
7693 numDataPages
= numPages
- numPendingPages
- numEntryPages
;
7694 numEntries
= floor(numEntryPages
* 100);
7697 /* In an empty index, numEntries could be zero. Avoid divide-by-zero */
7702 * If the index is partial, AND the index predicate with the index-bound
7703 * quals to produce a more accurate idea of the number of rows covered by
7704 * the bound conditions.
7706 selectivityQuals
= add_predicate_to_index_quals(index
, indexQuals
);
7708 /* Estimate the fraction of main-table tuples that will be visited */
7709 *indexSelectivity
= clauselist_selectivity(root
, selectivityQuals
,
7714 /* fetch estimated page cost for tablespace containing index */
7715 get_tablespace_page_costs(index
->reltablespace
,
7716 &spc_random_page_cost
,
7720 * Generic assumption about index correlation: there isn't any.
7722 *indexCorrelation
= 0.0;
7725 * Examine quals to estimate number of search entries & partial matches
7727 memset(&counts
, 0, sizeof(counts
));
7728 counts
.arrayScans
= 1;
7729 matchPossible
= true;
7731 foreach(lc
, path
->indexclauses
)
7733 IndexClause
*iclause
= lfirst_node(IndexClause
, lc
);
7736 foreach(lc2
, iclause
->indexquals
)
7738 RestrictInfo
*rinfo
= lfirst_node(RestrictInfo
, lc2
);
7739 Expr
*clause
= rinfo
->clause
;
7741 if (IsA(clause
, OpExpr
))
7743 matchPossible
= gincost_opexpr(root
,
7751 else if (IsA(clause
, ScalarArrayOpExpr
))
7753 matchPossible
= gincost_scalararrayopexpr(root
,
7756 (ScalarArrayOpExpr
*) clause
,
7764 /* shouldn't be anything else for a GIN index */
7765 elog(ERROR
, "unsupported GIN indexqual type: %d",
7766 (int) nodeTag(clause
));
7771 /* Fall out if there were any provably-unsatisfiable quals */
7774 *indexStartupCost
= 0;
7775 *indexTotalCost
= 0;
7776 *indexSelectivity
= 0;
7781 * If attribute has a full scan and at the same time doesn't have normal
7782 * scan, then we'll have to scan all non-null entries of that attribute.
7783 * Currently, we don't have per-attribute statistics for GIN. Thus, we
7784 * must assume the whole GIN index has to be scanned in this case.
7786 fullIndexScan
= false;
7787 for (i
= 0; i
< index
->nkeycolumns
; i
++)
7789 if (counts
.attHasFullScan
[i
] && !counts
.attHasNormalScan
[i
])
7791 fullIndexScan
= true;
7796 if (fullIndexScan
|| indexQuals
== NIL
)
7799 * Full index scan will be required. We treat this as if every key in
7800 * the index had been listed in the query; is that reasonable?
7802 counts
.partialEntries
= 0;
7803 counts
.exactEntries
= numEntries
;
7804 counts
.searchEntries
= numEntries
;
7807 /* Will we have more than one iteration of a nestloop scan? */
7808 outer_scans
= loop_count
;
7811 * Compute cost to begin scan, first of all, pay attention to pending
7814 entryPagesFetched
= numPendingPages
;
7817 * Estimate number of entry pages read. We need to do
7818 * counts.searchEntries searches. Use a power function as it should be,
7819 * but tuples on leaf pages usually is much greater. Here we include all
7820 * searches in entry tree, including search of first entry in partial
7823 entryPagesFetched
+= ceil(counts
.searchEntries
* rint(pow(numEntryPages
, 0.15)));
7826 * Add an estimate of entry pages read by partial match algorithm. It's a
7827 * scan over leaf pages in entry tree. We haven't any useful stats here,
7828 * so estimate it as proportion. Because counts.partialEntries is really
7829 * pretty bogus (see code above), it's possible that it is more than
7830 * numEntries; clamp the proportion to ensure sanity.
7832 partialScale
= counts
.partialEntries
/ numEntries
;
7833 partialScale
= Min(partialScale
, 1.0);
7835 entryPagesFetched
+= ceil(numEntryPages
* partialScale
);
7838 * Partial match algorithm reads all data pages before doing actual scan,
7839 * so it's a startup cost. Again, we haven't any useful stats here, so
7840 * estimate it as proportion.
7842 dataPagesFetched
= ceil(numDataPages
* partialScale
);
7844 *indexStartupCost
= 0;
7845 *indexTotalCost
= 0;
7848 * Add a CPU-cost component to represent the costs of initial entry btree
7849 * descent. We don't charge any I/O cost for touching upper btree levels,
7850 * since they tend to stay in cache, but we still have to do about log2(N)
7851 * comparisons to descend a btree of N leaf tuples. We charge one
7852 * cpu_operator_cost per comparison.
7854 * If there are ScalarArrayOpExprs, charge this once per SA scan. The
7855 * ones after the first one are not startup cost so far as the overall
7856 * plan is concerned, so add them only to "total" cost.
7858 if (numEntries
> 1) /* avoid computing log(0) */
7860 descentCost
= ceil(log(numEntries
) / log(2.0)) * cpu_operator_cost
;
7861 *indexStartupCost
+= descentCost
* counts
.searchEntries
;
7862 *indexTotalCost
+= counts
.arrayScans
* descentCost
* counts
.searchEntries
;
7866 * Add a cpu cost per entry-page fetched. This is not amortized over a
7869 *indexStartupCost
+= entryPagesFetched
* DEFAULT_PAGE_CPU_MULTIPLIER
* cpu_operator_cost
;
7870 *indexTotalCost
+= entryPagesFetched
* counts
.arrayScans
* DEFAULT_PAGE_CPU_MULTIPLIER
* cpu_operator_cost
;
7873 * Add a cpu cost per data-page fetched. This is also not amortized over a
7874 * loop. Since those are the data pages from the partial match algorithm,
7875 * charge them as startup cost.
7877 *indexStartupCost
+= DEFAULT_PAGE_CPU_MULTIPLIER
* cpu_operator_cost
* dataPagesFetched
;
7880 * Since we add the startup cost to the total cost later on, remove the
7881 * initial arrayscan from the total.
7883 *indexTotalCost
+= dataPagesFetched
* (counts
.arrayScans
- 1) * DEFAULT_PAGE_CPU_MULTIPLIER
* cpu_operator_cost
;
7886 * Calculate cache effects if more than one scan due to nestloops or array
7887 * quals. The result is pro-rated per nestloop scan, but the array qual
7888 * factor shouldn't be pro-rated (compare genericcostestimate).
7890 if (outer_scans
> 1 || counts
.arrayScans
> 1)
7892 entryPagesFetched
*= outer_scans
* counts
.arrayScans
;
7893 entryPagesFetched
= index_pages_fetched(entryPagesFetched
,
7894 (BlockNumber
) numEntryPages
,
7895 numEntryPages
, root
);
7896 entryPagesFetched
/= outer_scans
;
7897 dataPagesFetched
*= outer_scans
* counts
.arrayScans
;
7898 dataPagesFetched
= index_pages_fetched(dataPagesFetched
,
7899 (BlockNumber
) numDataPages
,
7900 numDataPages
, root
);
7901 dataPagesFetched
/= outer_scans
;
7905 * Here we use random page cost because logically-close pages could be far
7908 *indexStartupCost
+= (entryPagesFetched
+ dataPagesFetched
) * spc_random_page_cost
;
7911 * Now compute the number of data pages fetched during the scan.
7913 * We assume every entry to have the same number of items, and that there
7914 * is no overlap between them. (XXX: tsvector and array opclasses collect
7915 * statistics on the frequency of individual keys; it would be nice to use
7918 dataPagesFetched
= ceil(numDataPages
* counts
.exactEntries
/ numEntries
);
7921 * If there is a lot of overlap among the entries, in particular if one of
7922 * the entries is very frequent, the above calculation can grossly
7923 * under-estimate. As a simple cross-check, calculate a lower bound based
7924 * on the overall selectivity of the quals. At a minimum, we must read
7925 * one item pointer for each matching entry.
7927 * The width of each item pointer varies, based on the level of
7928 * compression. We don't have statistics on that, but an average of
7929 * around 3 bytes per item is fairly typical.
7931 dataPagesFetchedBySel
= ceil(*indexSelectivity
*
7932 (numTuples
/ (BLCKSZ
/ 3)));
7933 if (dataPagesFetchedBySel
> dataPagesFetched
)
7934 dataPagesFetched
= dataPagesFetchedBySel
;
7936 /* Add one page cpu-cost to the startup cost */
7937 *indexStartupCost
+= DEFAULT_PAGE_CPU_MULTIPLIER
* cpu_operator_cost
* counts
.searchEntries
;
7940 * Add once again a CPU-cost for those data pages, before amortizing for
7943 *indexTotalCost
+= dataPagesFetched
* counts
.arrayScans
* DEFAULT_PAGE_CPU_MULTIPLIER
* cpu_operator_cost
;
7945 /* Account for cache effects, the same as above */
7946 if (outer_scans
> 1 || counts
.arrayScans
> 1)
7948 dataPagesFetched
*= outer_scans
* counts
.arrayScans
;
7949 dataPagesFetched
= index_pages_fetched(dataPagesFetched
,
7950 (BlockNumber
) numDataPages
,
7951 numDataPages
, root
);
7952 dataPagesFetched
/= outer_scans
;
7955 /* And apply random_page_cost as the cost per page */
7956 *indexTotalCost
+= *indexStartupCost
+
7957 dataPagesFetched
* spc_random_page_cost
;
7960 * Add on index qual eval costs, much as in genericcostestimate. We charge
7961 * cpu but we can disregard indexorderbys, since GIN doesn't support
7964 qual_arg_cost
= index_other_operands_eval_cost(root
, indexQuals
);
7965 qual_op_cost
= cpu_operator_cost
* list_length(indexQuals
);
7967 *indexStartupCost
+= qual_arg_cost
;
7968 *indexTotalCost
+= qual_arg_cost
;
7971 * Add a cpu cost per search entry, corresponding to the actual visited
7974 *indexTotalCost
+= (counts
.searchEntries
* counts
.arrayScans
) * (qual_op_cost
);
7975 /* Now add a cpu cost per tuple in the posting lists / trees */
7976 *indexTotalCost
+= (numTuples
* *indexSelectivity
) * (cpu_index_tuple_cost
);
7977 *indexPages
= dataPagesFetched
;
7981 * BRIN has search behavior completely different from other index types
7984 brincostestimate(PlannerInfo
*root
, IndexPath
*path
, double loop_count
,
7985 Cost
*indexStartupCost
, Cost
*indexTotalCost
,
7986 Selectivity
*indexSelectivity
, double *indexCorrelation
,
7989 IndexOptInfo
*index
= path
->indexinfo
;
7990 List
*indexQuals
= get_quals_from_indexclauses(path
->indexclauses
);
7991 double numPages
= index
->pages
;
7992 RelOptInfo
*baserel
= index
->rel
;
7993 RangeTblEntry
*rte
= planner_rt_fetch(baserel
->relid
, root
);
7994 Cost spc_seq_page_cost
;
7995 Cost spc_random_page_cost
;
7996 double qual_arg_cost
;
7997 double qualSelectivity
;
7998 BrinStatsData statsData
;
8000 double minimalRanges
;
8001 double estimatedRanges
;
8005 VariableStatData vardata
;
8007 Assert(rte
->rtekind
== RTE_RELATION
);
8009 /* fetch estimated page cost for the tablespace containing the index */
8010 get_tablespace_page_costs(index
->reltablespace
,
8011 &spc_random_page_cost
,
8012 &spc_seq_page_cost
);
8015 * Obtain some data from the index itself, if possible. Otherwise invent
8016 * some plausible internal statistics based on the relation page count.
8018 if (!index
->hypothetical
)
8021 * A lock should have already been obtained on the index in plancat.c.
8023 indexRel
= index_open(index
->indexoid
, NoLock
);
8024 brinGetStats(indexRel
, &statsData
);
8025 index_close(indexRel
, NoLock
);
8027 /* work out the actual number of ranges in the index */
8028 indexRanges
= Max(ceil((double) baserel
->pages
/
8029 statsData
.pagesPerRange
), 1.0);
8034 * Assume default number of pages per range, and estimate the number
8035 * of ranges based on that.
8037 indexRanges
= Max(ceil((double) baserel
->pages
/
8038 BRIN_DEFAULT_PAGES_PER_RANGE
), 1.0);
8040 statsData
.pagesPerRange
= BRIN_DEFAULT_PAGES_PER_RANGE
;
8041 statsData
.revmapNumPages
= (indexRanges
/ REVMAP_PAGE_MAXITEMS
) + 1;
8045 * Compute index correlation
8047 * Because we can use all index quals equally when scanning, we can use
8048 * the largest correlation (in absolute value) among columns used by the
8049 * query. Start at zero, the worst possible case. If we cannot find any
8050 * correlation statistics, we will keep it as 0.
8052 *indexCorrelation
= 0;
8054 foreach(l
, path
->indexclauses
)
8056 IndexClause
*iclause
= lfirst_node(IndexClause
, l
);
8057 AttrNumber attnum
= index
->indexkeys
[iclause
->indexcol
];
8059 /* attempt to lookup stats in relation for this index column */
8062 /* Simple variable -- look to stats for the underlying table */
8063 if (get_relation_stats_hook
&&
8064 (*get_relation_stats_hook
) (root
, rte
, attnum
, &vardata
))
8067 * The hook took control of acquiring a stats tuple. If it
8068 * did supply a tuple, it'd better have supplied a freefunc.
8070 if (HeapTupleIsValid(vardata
.statsTuple
) && !vardata
.freefunc
)
8072 "no function provided to release variable stats with");
8076 vardata
.statsTuple
=
8077 SearchSysCache3(STATRELATTINH
,
8078 ObjectIdGetDatum(rte
->relid
),
8079 Int16GetDatum(attnum
),
8080 BoolGetDatum(false));
8081 vardata
.freefunc
= ReleaseSysCache
;
8087 * Looks like we've found an expression column in the index. Let's
8088 * see if there's any stats for it.
8091 /* get the attnum from the 0-based index. */
8092 attnum
= iclause
->indexcol
+ 1;
8094 if (get_index_stats_hook
&&
8095 (*get_index_stats_hook
) (root
, index
->indexoid
, attnum
, &vardata
))
8098 * The hook took control of acquiring a stats tuple. If it
8099 * did supply a tuple, it'd better have supplied a freefunc.
8101 if (HeapTupleIsValid(vardata
.statsTuple
) &&
8103 elog(ERROR
, "no function provided to release variable stats with");
8107 vardata
.statsTuple
= SearchSysCache3(STATRELATTINH
,
8108 ObjectIdGetDatum(index
->indexoid
),
8109 Int16GetDatum(attnum
),
8110 BoolGetDatum(false));
8111 vardata
.freefunc
= ReleaseSysCache
;
8115 if (HeapTupleIsValid(vardata
.statsTuple
))
8119 if (get_attstatsslot(&sslot
, vardata
.statsTuple
,
8120 STATISTIC_KIND_CORRELATION
, InvalidOid
,
8121 ATTSTATSSLOT_NUMBERS
))
8123 double varCorrelation
= 0.0;
8125 if (sslot
.nnumbers
> 0)
8126 varCorrelation
= fabs(sslot
.numbers
[0]);
8128 if (varCorrelation
> *indexCorrelation
)
8129 *indexCorrelation
= varCorrelation
;
8131 free_attstatsslot(&sslot
);
8135 ReleaseVariableStats(vardata
);
8138 qualSelectivity
= clauselist_selectivity(root
, indexQuals
,
8143 * Now calculate the minimum possible ranges we could match with if all of
8144 * the rows were in the perfect order in the table's heap.
8146 minimalRanges
= ceil(indexRanges
* qualSelectivity
);
8149 * Now estimate the number of ranges that we'll touch by using the
8150 * indexCorrelation from the stats. Careful not to divide by zero (note
8151 * we're using the absolute value of the correlation).
8153 if (*indexCorrelation
< 1.0e-10)
8154 estimatedRanges
= indexRanges
;
8156 estimatedRanges
= Min(minimalRanges
/ *indexCorrelation
, indexRanges
);
8158 /* we expect to visit this portion of the table */
8159 selec
= estimatedRanges
/ indexRanges
;
8161 CLAMP_PROBABILITY(selec
);
8163 *indexSelectivity
= selec
;
8166 * Compute the index qual costs, much as in genericcostestimate, to add to
8167 * the index costs. We can disregard indexorderbys, since BRIN doesn't
8170 qual_arg_cost
= index_other_operands_eval_cost(root
, indexQuals
);
8173 * Compute the startup cost as the cost to read the whole revmap
8174 * sequentially, including the cost to execute the index quals.
8177 spc_seq_page_cost
* statsData
.revmapNumPages
* loop_count
;
8178 *indexStartupCost
+= qual_arg_cost
;
8181 * To read a BRIN index there might be a bit of back and forth over
8182 * regular pages, as revmap might point to them out of sequential order;
8183 * calculate the total cost as reading the whole index in random order.
8185 *indexTotalCost
= *indexStartupCost
+
8186 spc_random_page_cost
* (numPages
- statsData
.revmapNumPages
) * loop_count
;
8189 * Charge a small amount per range tuple which we expect to match to. This
8190 * is meant to reflect the costs of manipulating the bitmap. The BRIN scan
8191 * will set a bit for each page in the range when we find a matching
8192 * range, so we must multiply the charge by the number of pages in the
8195 *indexTotalCost
+= 0.1 * cpu_operator_cost
* estimatedRanges
*
8196 statsData
.pagesPerRange
;
8198 *indexPages
= index
->pages
;